REGULARITIES OF THE DISTRIBUTION OF ABSTRACT VAN DER
CORPUT SEQUENCES

WOLFGANG STEINER

ABSTRACT. Similarly to (-adic van der Corput sequences, abstract van der Corput se-
quences can be defined for abstract numeration systems. Under some assumptions, these
sequences are low discrepancy sequences. The discrepancy function is computed ex-
plicitely, and a characterization of bounded remainder sets of the form [0,y) is provided.

1. INTRODUCTION

Let (z,)n>0 be a sequence with z,, € [0,1) for all n > 0, and
DIN.I)=#{0<n < N: z, €I} — NI

its discrepancy function on the interval I, where A(I) denotes the length of I. Then
(Tn)n>0 18 a low discrepancy sequence if sup; D(N, I) = O(log N), where the supremum is
taken over all intervals I C [0,1). If D(N,I) is bounded in N, then [ is called a bounded
remainder set. For details on the discrepancy, we refer to [KN] and [DT]. References to
results on bounded remainder sets can be found in the introduction of [St].

In [Ni], f-adic van der Corput sequences are defined, and it is shown that they are low
discrepancy sequences if J is a Pisot number with irreducible -polynomial. Recall that
a Pisot number is an algebraic integer greater than 1 with all its conjugates lying in the
interior of the unit disk. For these low discrepancy sequences, the interval [0,y), 0 <y <1,
is a bounded remainder set if and only if the (-expansion of y is finite or its tail is the
same as that of the expansion of 1, see [St].

If 3 is a Pisot number, then the language of S-expansions is regular, which means that
it is recognized by a finite automaton. Therefore these [F-expansions are special cases of
abstract numeration systems as defined in [LR], see Section 2. This article is devoted to the
study of van der Corput sequences defined by more general abstract numeration systems.

2. DEFINITIONS

Let (A, <) be a finite and totally ordered alphabet. Denote by A* the free monoid
generated by A for the concatenation product, i.e., the set of finite words with letters in A.
The length of a word w € A* is denoted |w|. Extend the order on A to A* by the shortlex
(or genalogical) order, which means that v < w if either |v| < |w| or |v| = |w| and there
exist p, v, w' € A*, a,b € A such that v = pav’, w = pbw’ and a < b.
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2 WOLFGANG STEINER
The triple S = (L, A, <) is an abstract numeration system if L is an infinite regular
language over A and the numerical value of a word w € L is defined by
valg(w) = #{v e L: v <w}.

If valg(w) = n, then we say that w is the representation of n and write repg(n) = w.
Assume that the language L grows exponentially, with

| L: <
i lo8#{vEL: [y <m} log 5.

m—00 m
Then real numbers are represented by infinite words which are limits of sequences of words
in L. The value of an infinite word u = lim; ., w"), wV) € L, is

. valg(w®))
Ig(u) =1 — .
vals(u) = i e = e
Let L, the set of these words u. Since valg(u) € [1/, 1], we define the normalized value
15(u) — 1
() = [ valg(u)
g—1
We extend this definition to finite words w € L which are prefixes of words in L, by

setting (w) = (u), where u is the lexicographically smallest word in L,, with prefix w. Since
we want to define a sequence without multiple occurrences of the same value, we set

L'={weL: (w)+# (v) for all v € L with v < w}.

The mirror image of a word w = wyws -+ wy, w; € A, is W = wy - - - wowy. The mirror

€ [0,1].

image of a language Lis L ={w: w € L}.
Assume that every w € L is the prefix of some v € L,. Then we define the abstract van
der Corput sequence corresponding to .S by setting

r, = (w) with w =repg(n),

where S" = (L', A, <). This means that {x, : n >0} = {{(w) : we L} = {{w) : we L'},
where the w € L' are ordered by the shortlex order on their mirror images.

Let Ay = (@, qo, A, 7, F) be a (complete) deterministic finite automaton recognizing L,
with set of states (), initial state ¢y, transition function 7 : Q x A — @ and set of final
states F'. The transition function is extended to words, 7 : @ x A* — @, by setting
7(q,€) = q for the empty word ¢ and 7(q, wa) = 7(7(q,w),a). A word w € A* is accepted
by Ay, and thus in L, if and only if 7(q, w) € F.

Assume that there exists an ordering of the states such that

e the maximal state is the initial state,
e all states except the minimal state are final,
e 7(q,a) < 7(r,a) for some ¢,r € Q, a € A implies ¢ < r,
e 7(s,a) = s for the minimal state s and all a € A.
An automaton satisfying this property will be called automaton with ordered states.
From now on, all automata will be automata with ordered states with set of states
Q =1{0,1,...,d}, thus initial state gy = d and set of final states F' = {1,...,d}.
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Lemma 1. If L is recognized by an automaton with ordered states Ay, = (Q,d, A, 7, Q\{0}),
Q =1{0,1,...,d}, then L is recognized by Ay = (Q,d, A, 7,Q \ {0}), where

T(ria)=#{q€eQ: 7(q,a)+r>d} forall reQ,ac A

.Az 1s an aumaton with ordered states as well.

Proof. A deterministic automaton A’ recognizing L is obtained by choosing the set of final
states in A, as initial state of A" and setting recursively 7'(r,a) = {g € Q : 7(¢,a) € r}.
The initial state of A’ is thus {1,...,d}. Because of the ordering of the states, 7(q,a) =0
implies that 7(¢’,a) = 0 for all ¢ < ¢, hence 7'({1,...,d},a) ={d—r+1,...,d} for some
r € @ (with r = 0 corresponding to the empty set). Similarly, we obtain for all r € @,
a€ A that "({d—r+1,...,d},a) ={d—r"+1,...,d} for some 1" € Q, with

rr=#{qeQ: 1(ga)e{d—r+1,....d}} =#{q € Q: 7(¢,a) +r > d}.

The final states of A’ are all sets containing the initial state d of A: {d —r +1,...,d},
1 <r < d. If we label the states by r instead of {d —r + 1,...,d}, then we obtain As,
which is easily seen to be an automaton with ordered states. Il

The next lemma provides a fundamental characterization of the words in a language
recognized by an automaton with ordered states.

Lemma 2. Let wy---wy € A*. For any j € {0,1,...,k}, we have wy ---wy € L if and
only if T(d,wy - -~ w;) +7(d, wg - - - wjy1) > d.

Proof. By the proof of Lemma 1, 7(d, wy, - - - wj41) = r means that 7(q, wj41 ---wg) > 0 if
and only if ¢ > d—r. Therefore we have 7(d, wy - - - wy) = 7(7(d, wy - - - w;), Wj41 - - wg) >0
if and only if 7(d, wy - - - w;) + 7(d, wy, - - - wj41) > d. O

Remark. If 7(d,a)+---+7(1, a) is considered as a partition, then 7(d, a)+- - -+7(1, a) is the
conjugate partition. E.g., if (7(4,a),...,7(1,a)) = (4,2,1,0), then (7(4,a),...,7(1,a)) =
(3,2,1,1), and the corresponding Ferrers diagram is

32 11

[ ]

O N

Let My = (#{a € A: 7(¢,a) = r})a>qr>1 be the incidence matrix of the co-accessible
part of Ar. (A state ¢ is co-accessible if 7(q,w) € F for some w € A*.) Assume that
My, is primitive, let 5 > 1 be its Perron-Frobenius eigenvalue and (14, ...,m)" be the
corresponding right eigenvector of My, with ng = 1. Set 7o = 0 and €,(b) = >_,_, r(g.a) fOr
be A g€ Q.
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For an infinite word u = wjuy --- with u; ---u; € L for every j > 1, let goq; - - - be the
corresponding sequence of states deﬁned by T(q] 1, u]) =g; for all j > 1. It was shown in

[LR] that valg(u) = 1/8+ (8 — 1) 372, €, (u;)57 and thus

[e.9]

U1U2 E €qj 1 uj

7=1

We clearly have (ujus -+ -) < (ujuh---)if ugug - - - is lexicographically smaller than u)u, -
The primitivity of M}, implies that n, > 0 for all ¢ > 0, thus ¢,(a) < €,(b) if a < b and
7(q,a) > 0. Therefore we have (v) = (w) for v,w € L if and only if v is a prefix of w and
no right extension of v with length |w| is lexicographically smaller than w.

Let ag be the smallest letter of A and assume that 7(d, ag) = d, i.e., 7(q,ap) > 0 for all
q > 0. Then we have vaf € L for all v € L, k > 0, where af means that the letter aq is
repeated k times. This implies that (v) = (w) with v < w if and only if w = val®' ",
hence L’ consists exactly of those words in L which do not end with ag.

Ezample. Let Ay be an automaton with ordered states on the alphabet A = {0,1,..., B}
with integers b, € A, ¢ € {1,...,d}, such that 7(q,a) = d for all a < b, and 7(q,a) = 0
for all a > b,. Assume that M, is primitive and let § be its Perron-Frobenius eigenvalue.
Then we have

(uug -+ ) = Z Z nT(quha)ﬁ’j = Z Z ngB 7 = Zu]ﬂ’j for all wquy--- € Ly,.
j=1

7=1 a<u; 7=1 a<u;

Let t1t5 - - - be the lexicographically maximal sequence in L, and gyq; - - - the correspond-
ing sequence of states, i.e., t; = b,,_, and ¢; = 7(gj_1,by,_,) for all j > 1. Since Af is
an automaton with ordered states, ¢; < g implies by, < by, or by, = by, ¢jt1 < qrr1,
thus ¢j1tj10 -+ < tpyrtpyo--- (with the lexicographical ordering). In particular, we have
tititjro - <tity---. Since Z]Oil t; 377 = 1, the sequence t;t5 - - - is the expansion of 1 with
respect to B if ¢4 1tj40- - <tyty--- forall j > 1, cf. [Pa, St]. Otherwise, the expansion of 1
istq---t;_1(t;+1)00 - - -, where j is the minimal positive integer with ¢, 1¢;19--- =tity- -
(The sequence tqty - - - is sometimes called quasi-greedy or infinite expansion of 1.)

If uyuy--- € L, then we have either wjus--- = tity--- or some k£ > 1 such that
Uy Up_1 = t1 - -tp_1, up < tg. Since ¢ = d in the latter case, we obtain ujus--- € Ly,
if and only if wjujiq--- < tytg--- for all 7 > 1. Therefore, ujus - - - is either the (greedy)
(-expansion of (ujus - --) or its quasi-greedy expansion. Since the abstract van der Corput
sequence is defined by finite words u; ---ux € L, and uy - - - 4,00 - - - is always a (greedy)
[-expansion, we obtain exactly the -adic van der Corput sequence defined in [Ni, St].
Therefore we call Ay, a (G-automaton.
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3. DISCREPANCY FUNCTION
Let C(N,I)=#{z, € I: 0 <n < N}. Then we have, for y = (ujus---),

=> (C(N, [(uy - ujon), (un -y auy)) — Nﬁqj_l(uj)ﬁ_j)
j=1
If we set repg (N) = wy---wy, w;j = ag for j > £, r; = 7(d,wy---wjyq) for 0 < j < 4,
rj =d for j > ¢, and

qu“’r ={v-vo € A" (g )+ >dy={u v € AY g T(r oo +) > dY
for all g, € Q, k > 0, then we obtain the following lemma.

Lemma 3. If L is recognized by an automaton with ordered states and 7(d,ag) = d, then

k’ 1
V.l )l t)) = 3 S S AT (Vo)
k=j+1 a<u; b<wy,
#{CL<U]' 3’7'((]]',1,@)4—7"]' >d} ’quj S’LU]',
/L](N,y) = #{a < w;j T(qj,l,a) +7”j > d} quj > Wi, Uj—1 UL > Wi—q1 W1,
#{a <wj:71(gj—1,a)+r; >d} ifup > wj, ujqcup < wjog Wy

Proof. We have to consider the words v € L’ with ¥ = repg(n) for some n < N. Since
v < wy---w;p if and only if a g < wy -+ - wy, and vae "l ¢ L because of T(d,ap) = d,
we can con81der the words vy -+ -v, € L W1th vp- -] < wy---wp instead. The set of these
words can be written as Ui:l Ub<wk {vy - -vk,lbwkﬂ ceewg s T(rg, bug—y -+ - vp) > 0}

If j < ¢, then (vy---vp) is in [(ul o), (Ug g 1u]>) if and only if o0 =

. : k—
up - --uj—1 and v; < u;. For j <k < ¥, every word in u; - - - u;— laL j bwyy1 -+ - wy

i—1,a),T (T%,b)
with @ < uj, b < wy provides therefore some z,, in the given 1nterva1 )W(hlich proves the
main part of the formula. It remains to count the words u; - - - uj_jawj4q1 - - - w, € L with
a < u; and au;_q - --uy < wj;---wy, which provides p; (N, y).

If j > /£, then we have (vy---vg) = (v1---veal *) € [(ug - wj1), (ug -+ - uj_quy)) if and
only if u; > ap = wj, uj_1- - Upp1 = ao---ap = Wj_1 - Wepy, and ug--- Uy = Vg -V <
wy - - - wy. Since 7(gj_1,ap) is positive and r; = d, we have 7(¢;_1, w;) +r; > d. O

Assume that the characteristic polynomial of My is irreducible and let s, ..., 3; be the
conjugates of §; = (3. Then the characteristic polynomial of M7 is equal to that of M.
Since #L% ;= #{v € A¥: 7(¢q,v) > 0} and #L;, = #{v € A*: 7(r,v) > 0}, we have

an 9k,

where (64, ...,61)" is a right eigenvector of M5 to the eigenvalue 3, 6y = 0 and 2 denotes
the image of z by the isomorphism from Q(3) to Q(;) mapping 3’ to (3.
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Assume furthermore that (3 is a Pisot number, i.e., that its conjugates satisty |5;| < p
for some p < 1. With N = Zi:l > bew, Lfl;bk p)> We obtain

D(N, [0,y Z(Zzz#kjl T(m—i_uﬂNy Zz# dT’“lm E%ﬁﬂ>

j=1 \k=j+1 a<uJ b<wy, k=1 b<wy,

2 (Z > 2 Z O (W = ity BB ) (N, )

j=1 \a<u; k*j—i—l b<wy, =2

o Z Z Z Z T(rk,b)nT(Qj—lﬂ)ﬁflﬁ_j) = Z Z O(l)

a<uj k=1 b<wy i=1 j=1 a<u;

(1)

Changing the order of summation gives

= i > (ZZ%, (9 ()37 = g, ()31 877)

k=1 b<wy, j=1 i=2
SIS ) )z
j=k i=1
VA k—1
€ i k—j—1

-y (uk SO OLAN SEECES W NS WS BT

k=1 b<wyg b<wy =2 j=1

¢
= o1 = O(log N).

k=1 b<wy,

An automaton satisfying the above assumptions that the incidence matrix of the co-
accessible part has one simple eigenvalue 3 > 1 and all other eigenvalues in the interior of
the unit disk will be called a Pisot automaton. The above calculations prove the following
theorem.

Theorem 4. Let S = (L, A, <) be an abstract numeration system where L is recognized
by a Pisot automaton with ordered states and T(d,ag) = d for the minimal letter ag € A.
Then the corresponding abstract van der Corput sequence is a low discrepancy sequence.

This theorem is a generalization of Ninomiya’s result for S-adic van der Corput sequences:
If § is a Pisot number, then the infinite expansion of 1 is eventually periodic, i.e., tity--- =
t1 b (tmyr - - tqg)® with d > m > 0. If d is chosen minimally and the (-polynomial
(28 =tz — o —ty) — (2™ —t, 2™ L — ... —t,,) is irreducible, then the 3-automaton with
by =t; for ¢ = #{k < d: tytys1--- < tjtj41--- } satisfies the assumptions of this theorem.
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Now assume y € Q(/3), which is equivalent to ujus - - - being eventually periodic, see [RS].
If we set y, = Zj’;k eqjil(uj)ﬁk“*j, and uius - -+, qoqy - - - have period length p, then

E

-1

o ()BT = (e, (unp) B 4 el () (L4 B+ BT +--) + O(8)
1

<.
I

€ (W) + -t € o (Ukyp—1)\ @) ;
— ( qk J 1 — ﬁp qk+p—2 +p ) + O(ﬁfc) — _yl(c) + O(ﬁfc)
for 2 < i < d. This gives
¢

D, 0.00) = 3 (Vo) = 3 D208, ul?) + 00

k=1 b<wy, i=1

If we set G (z) = 32, 0920 for z € Q(B), r € Q, then

2) DNV [0.9) = Y (ukw, D= Gon <yk>) o).

k=1 b<wk
4. BOUNDED REMAINDER SETS
In this section, we prove the following theorem.

Theorem 5. Let (2,)n>0 be an abstract van der Corput sequence defined by (L, A, <) where
L is recognized by a Pisot automaton with ordered states and 7(q, al™ ") = d for the minimal
letter ag € A and all ¢ > 0. Let y = (wyug--+), yp = D=, €qyr (u;) 3" for k> 1.

Then D(N,[0,y)) is bounded in N if and only if y € Q(B) and there exists some m > 1
such that either y,, = 0 or

1 dfop-vp <ug---ug and uy -+ Up_1V -V € L
(3) Gdvp-vp) (Y) = { 0 else

forallvg---v, € A*, m < k < /.

The proof of the theorem is split up into three propositions. Note that the conditions
for Propositions 6 and 7 are weaker than those for Theorem 5.

Proposition 6. Let (x,),>0 be an abstract van der Corput sequence defined by (L, A, <)
where L is recognized by an automaton with ordered states, 7(d,ag) = d, and the incidence
matriz My, s primitive with Perron-Frobenius eigenvalue 3.

If D(N,I) is bounded, then \(I) € Q(f3).

Proof. Proposition 6 is proved in the same way as Theorem 1 in [St]. Define a substitution
q+— 7(q,a1) - 7(q,am), with {ay,...,a,} ={a € A: T(¢q,a) > 0} and a1 < -+ < ap,,
1 < g < d, which plays the role of the substitution 7 in [St]. Since 7(d,ay) = d, we have
d — dw for some w € A*. Then a continuous successor function on L, (with the usual
topology on right infinite words) satisfying repg (n)ag — repg(n 4 1)ag is topologically
conjugate to the successor function on D defined in [St]. Il
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Proposition 7. Let (z,),>0 be an abstract van der Corput sequence defined by (L, A, <)
where L is recognized by a Pisot automaton with ordered states and T(d,ag) = d.

If y € Q(B) and there exists some m > 1 such that either y,, = 0 or (3) holds for all
vp-rvg € AN, m < k </{, then D(N,[0,y)) is bounded.

Proof. Let repg (N) = wy---wy and 1, = 7(d,wy - - - wi41), 0 < k < L. If gy, = 0 for some
m > 1, then u; = a for all 7 > m and the result follows from (1). Otherwise, we have

1 if bwggr - we < ug - wy, T(qr—1,b) + 11 > d,
0 else,

Gire,b) (k) = Gdwgwpesrb) (Yr) = {

for k > m, thus

Uit ug > wp, up—1 - up < wpy - wi, Gy + 11 > d,
s )= G (n) = § =1 1wk < wi, wrsr g > Weyr - we, g+ 13 > d,
b<wy, 0 else.

Denote this difference by Ay. If Ay = =1, m < k </, and ugyq--- Uy > Wiy - - - Wy, then
we have A; = 1, where j > k is defined by w41+ uj—1 = Wgg1 -+ uj—1, u; > w;, and

Ak—H = = Aj—l =0. If Ak == 1, m S k S g, then let Uk—1 """ Ujp1 = Wg—1 """ Wj41,
uj < wj, j <k, and we obtain A; = —1 if j > m. Therefore the 1’s and (—1)’s alternate
in A, --- Ay, hence 3¢ Ay is bounded and D(N, [0,5)) = O(1) by (2). O

Proposition 8. Let (x,,),>0 be as in Theorem 5. If D(N,[0,y)) is bounded, then y € Q(f3)
and there exists m > 1 such that either y,, = 0 or (3) holds for allvy - - - vy, € A*, m < k < (.

Proof. By Proposition 6, we have y € Q() and thus ujug - -+ = uy + -+ Upy (Uppr 1+ + * Uy 4p)*
Q% = qo Gu—1(@ms  +* Gurap—1)” for some m’ > 0, p > 1, by [RS]. We can assume
U/ g1 *** Ut p > Qg * -+ Qg Since Yp41 = 0 otherwise.

Let m = m/+max(d,p+1) and vy ---v, € A", m <k </{. Ifv,---v, & L, then (3) holds
since Ga,vy-vy)(WUk) = Co(yr) = 0. If vg---vp € L\ af;, then assume w.lo.g. v, > ao, since
7(d,al™) = d implies 7(d, ag) = d, thus (3) holds for agv,_1 - - - v}, if it holds for vy_; - - - vy.

Let J > 1 be such that Jp > ¢ — k + d. Then 7(v; - vkagp k= 1) = d, and we define

NK:valg,((W vkagp —brhe 1) Vg vpap” 1)

for K > 0. If furthermore Jp > {—k+p, then p;(No,y) = pjrnsp(Nk,y) for k < j < k+Jp,
0 < h < K. With (2), we obtain

k+Jp—1

D 00 = 003 w000~ 35 G 0D

Jj=k b<wv;

Therefore D(N, [0,y)) = O(1) implies

(4) Z:u] NOa ZZC‘I‘ (r;,b y]

j=k b<v;

where r; = 7(d,vp - - - vj41) for k < j </{, r; =d and v; = ag for j > /.
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Assume first that there exists some v, > vy such that vjvg1---v, € L, and consider
Ny = valg (v - vp41vpag~"). Then we have

o0 o0 L if v <ug < v Upgr - - U1 = Vpger - - Uy,
Z wi(Ng,y) — Z i (No,y) = u; > vj, 7(¢j—1,vj) +r; > d for some j > k,
j=k+1 j=k+1 0 else.

1 ity < <o, Vpgr e < Wpgr e U, @ T > d
0 else.

If 7(ry,b) = 0 for v < b < vy, then we have furthermore

Z CT (rk,b) yk Z CT (k,b) yk C?'(rk.,vk.)(yk):

b<vk b<vy,
1 ifo, <u , 1T > d,
Mk(Névy) - ,uk(N(),y) = { k ky Qk—1 b—1

0 else.
By using (4) for Ny and N/, we obtain

1 oifog---vp < ug - ug, Qp—1 +rp—1 > d,
0 else,

Cottonony (U) = Cotonon) () = {

since v < wu, < vy, implies T(rg, ux) = 0, thus ¢ + 1, < d, and v, = u implies that
qr + 7 > d is equivalent with g1 + 7,_1 > d. Thus (3) holds in this case.
If vg - vg = ag - - - ag, then similar arguments apply, hence (4(yx) = 1 unless y; = 0.
Assume now 7(rg, b) = 0 for all b > vy, and consider

Q«k ?jk+1 29 ﬁyk — € uk Zﬁl Y Zem Z nT(Qk 1,0)

b<up

Using 3;608) = Y obea 0(;()% o) SInce (Qg), ..., 6t is an eigenvector of M5z, and

d .
(i) G) _ 170 1 if7(ge_1,b) + 1k > d,
an—(qkfl’b)erk - #LT(Qk717b),Tk - { O else7
=1

we obtain
Cre (Yr+1) Zgr(rk, (yr) — #{b < ug : gr—1 + 7 (1, b) > d}.
beA
We already know that (3) holds for G, 4)(Yx) = Gi(dvp-vesb) (Uk), b < Vi, hence

—1 ifog <wug, qp_1+1r_1>d,

Cr (Uht1) = Gy (Wk) + 9 1 i op > up, vpgr v g - ug, g + 11 > d,
0 else.

If vy <max{b € A: T(rpq1,0) > 0}, then (3) holds for ¢, (yrt1) = Fdpvprr) Yrs1)-
If G (Yng1) = Grpon) (W) — 1, then vy < wy, implies upvgsq - -ve € L, hence G, (yr+1) = 0.
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Since C’I"k (yk+1) = g?(rk,vk)(yk> +1 lmphes CTk (yk-l-l) =1, we get

1 if0=¢ = GFrew —lorl=¢( = Corron ’
C?(rk,vk)(yk) = { 0 else’ Ck(yk—i-l) C (ks k)(yk) Qk(ka) g (re, k)(yk)

hence (3) holds for Gz(gu,...v;)(Yx) in this case as well.
Finally, there exists some j > k such that v; < max{b € A : 7(r;,b) > 0}. Then we
obtain inductively that (3) holds for Cz(gv,..v;) (%), - - - Gdwevp) (YUk)- O

In the case of f-adic van der Corput sequences, the bounded remainder sets [0,y) are
characterized by the fact that y,, = 7, for some m > 1, ¢ € Q). In the more general case,
we have the following partial characterization.

Proposition 9. Let (z,),>0 be an abstract van der Corput sequence defined by (L, A, <)
where L is recognized by a Pisot automaton with ordered states and 7(d,ag) = d.

If there exists some m > 1 and some s € Q) such that, for all k > m, €, _,(ux) =
Er(syum-up_1)(Uk) aNd T(S, U, -+~ ug—10) = 0 for all b > uy, then D(N,[0,y)) is bounded.

Proof. Let s = 7(S,Up - ux_1) for k > m. If s, = 0 for some k > m, then we have
yr = 0 and D(N,[0,y)) is bounded. Therefore we can assume s; > 0 for all & > m.
Then w1 - - - is the lexicographically maximal sequence accepted from s, which implies
Ym = 7s, in particular y € Q(). We provide two differents ways to complete the proof.

First, assume w.l.o.g. m > d. Then the primitivity of My, implies 7(d, vy - - - v,—1) = s for
some vy -+ V1 € L. Let 2 = (v1 Uy 1 U U1 -+ - ). If 01 -+~ vy, 1 is the maximal word
of length m —1in L, then vy - - - v, _1Up U1 - - - 1S the lexicographically maximal sequence
in L,, hence z = 1 and D(N,|0,2)) = 0. Otherwise, we have z = (w; -+ wy_1a0a9 - - ),
where wy « - - w,,—1 is the successor of vy - - - v,—1 in L, thus D(N, |0, z)) is bounded as well.
We have yy, = 2 for all £ > m and pi(N,y) = ur(N, z) for almost all & > m, thus

D(N,[0,9)) = ) (/%(N, IEDY C%(m)(yk)) +0(1) = D(N,[0,2)) + O(1) = O(1).

k=m b<wy

The second proof uses Proposition 7. Since y, = n, for all & > m, we have (,(yx) =
#LSW for all » € Q). By the ordering of the states and the primitivity of the matrix,
q > r implies n, > n,, and ¢,(a) = €,(a) implies therefore 7(q,b) = 7(r,b) for all b < a. In
case vy« -+ vy < Uy -+ - ug, we have thus 7(qx_1, vy - - vg) = 7(Sk, Vg - - - v¢), which means that
Uy Ug_10g -+ - g € L is equivalent with sy, + 7(d, ve - - - v) > d, which is equivalent with
Gdwpvy) = 1. For v« -vg = ug - - - ug, we have 7(sp, vp,---vg) > 0, hence Gxapv) = 1.
In case vg - -vg > uy - - up, we have 7(sg, vg---vy) = 0 and thus 7(d,vp- - vx) + sx < d,
Gi(d,vg--vp) = 0. Therefore, (3) holds for all vy ---v, € A, m <k < L. O

We conclude with an example which shows that there might be bounded remainder sets
[0,y), where y does not satisfy the conditions of Proposition 9.
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Ezample. Let A=0Q ={0,1,...,4}, and Ay be given by the transition table

4 4 4 4 2 4 4 4 4 3
4 4 4 3 1 ~ 4 4 4 3 1
(T(Q7a))42q21,0§a§4 = 3392 92 1| hence (T(q7a>>42q20,0§a§3 = 4 4 2 2 0
33 210 2 2 210

(Remember that the columns 7(.,a) are obtained by conjugating the Ferrers diagram cor-
responding to 7(.,a).) If y = (4033 ---), then qoqy - -- = 4233 ---. For k > 3, we have thus
€qe_r (Uk) = 304, Y = M3 — N2 + 11, which implies (4(yx) = C2(n) = 1, G3(yx) = Ci(x) = 0.
It can be easily verified that (3) holds for all v;---v, € A*, 3 < k < ¢, but the conditions
on y of Proposition 9 are not satisfied. However, A}, is not a Pisot automaton.

It is an open question whether there exists an abstract van der Corput sequence with a
bounded remainder set [0,y) such that v, # n, for allm > 1, ¢ € Q.

We conclude by the remark that the boundedness of D(V, ) is not invariant under
translation of the interval, i.e., D(N,[z,y 4+ 2)) can be unbounded if [0,y) is a bounded
remainder set and vice versa, see [St].
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