A Residue Approach to the Finite Field Arithmetics

JC Bajard

LIRMM, CNRS UM2 161 rue Ada, 34392 Montpellier cedex 5, France

CIRM 2009

Contents

Introduction to Residue Systems

Modular reduction in Residue Systems

Applications to Cryptography

Conclusion

Introduction to Residue Systems

Introduction to Residue Systems

- In some applications, like cryptography, we use finite field arithmetics on huge numbers or large polynomials.
- Residue systems are a way to distribute the calculus on small arithmetic units.
- Are these systems suitable for finite field arithmetics?

Residue Number Systems in \mathbb{F}_p , p prime

- Modular arithmetic mod p, elements are considered as integers.
- Residue Number System
 - ▶ RNS base: a set of coprime numbers (*m*₁, ..., *m*_k)
 - RNS representation: $(a_1, ..., a_k)$ with $a_i = |A|_{m_i}$
 - ► Full parallel operations mod M with $M = \prod_{i=1}^{k} m_i$ $(|a_1 \otimes b_1|_{m_1}, \dots, |a_n \otimes b_n|_{m_n}) \to A \otimes B \pmod{M}$
- Very fast product, but an extension of the base could be necessary and a reduction modulo p is needed.

Residue Number Systems in \mathbb{F}_p , *p* prime

•
$$\Phi(m) = \sum_{\substack{p \le m \\ p \text{ prime}}} \log p = \log \prod_{\substack{p \le m \\ p \text{ prime}}} p \sim m$$

• If $2^{m-1} \leq M < 2^m$ then the size moduli is of order $\mathcal{O}(\log m)$.

In other words, if addition and multiplication have complexities of order Θ(f(m)) then in RNS the complexities become Θ(f(log m)).

Lagrange representations in \mathbb{F}_{p^k} with p>2k

- ► Arithmetic modulo *I*(*X*), an irreducible 𝔽_p polynomial of degree *k*. Elements of 𝔽_{p^k} are considered as 𝔽_p polynomials of degree lower than *k*.
- Lagrange representation
 - ▶ is defined by k different points $e_1, ..., e_k$ in \mathbb{F}_p . $(k \leq p)$.
 - A polynomial A(X) = α₀ + α₁X + ... + α_{k-1}X^{k-1} over 𝔽_p is given in Lagrange representation by:

$$(a_1 = A(e_1), ..., a_k = A(e_k)).$$

(日)

- ▶ Remark: a_i = A(e_i) = A(X) mod (X e_i). If we note m_i(X) = (X - e_i), we obtain a similar representation as RNS.
- Operations are made independently on each A(e_i) (like in FFT or Tom-Cook approaches). We need to extend to 24 propints for the product.

8/23

Trinomial residue in \mathbb{F}_{2^n}

- ► Arithmetic modulo I(X), an irreducible F₂ polynomial of degree n. Elements of F_{2ⁿ} are considered as F₂ polynomials of degree lower than n.
- Trinomial representation
 - ► is defined by a set of k coprime trinomials $m_i(X) = X^d + X^{t_i} + 1$, with $k \times d \ge n$,
 - an element A(X) is represented by $(a_1(X), ..., a_k(X))$ with $a_i(X) = A(X) \mod m_i(X)$.
 - This representation is equivalent to RNS.
- Operations are made independently for each $m_i(X)$

Residue Systems

- Residue systems could be an issue for computing efficiently the product.
- The main operation is now the modular reduction for constructing the finite field elements.
- The choice of the residue system base is important, it gives the complexity of the basic operations.

-Modular reduction in Residue Systems

Modular reduction in Residue Systems

Reduction of Montgomery on \mathbb{F}_p

- The most used reduction algorithm is due to Montgomery (1985)[9]
- For reducing A modulo p, one evaluates q = −(Ap⁻¹) mod 2^s, then one constructs R = (A + qp)/2^s. The obtained value satisfies: R ≡ A × 2^{-s} (mod p) and R < 2p if A < p2^s. We note Montg(A, 2^s, p) = R.
- Montgomery notation: A' = A × 2^s mod p Montg(A' × B', 2^s, p) ≡ (A × B) × 2^s (mod p)

Residue version of Montgomery Reduction

- ► The residue base is such that p < M (or deg M(X) ≥ deg I(X))
- We use an auxiliary base such that p < M' (or deg M'(X) ≥ deg I(X)), M' and M coprime. (Exact product, and existence of M⁻¹)
- Steps of the algorithm
 - 1. $Q = -(Ap^{-1}) \mod M$ (calculus in base M)
 - 2. Extension of the representation of Q to the base M'
 - 3. $R = (A + Qp) \times M^{-1}$ (calculus in base M')
 - 4. Extension of the representation of R to the base M

・ロト ・ 理 ・ ・ ヨ ・ ・

The values are represented in the two bases.

Extension of Residue System Bases (from M to M')

The extension comes from the Lagrange interpolation. If $(a_1, ..., a_k)$ is the residue representation in the base M, then

$$A = \sum_{i=1}^{k} \left| a_i \times \left[\frac{M}{m_i} \right]_{m_i}^{-1} \right|_{m_i} \times \frac{M}{m_i} - \alpha M$$

The factor α can be, in certain cases, neglected or computed.[1] Another approach consists in the Newton interpolation where A is correctly reconstructed. [4] In the polynomial case, the term $-\alpha M$ vanishes.

Extension for Q

By the CRT

$$\widehat{Q} = \sum_{i=1}^{n} \left| q_i \left| M_i \right|_{m_i}^{-1} \right|_{m_i} M_i = Q + \alpha M$$

where $0 \le \alpha < n$. When \widehat{Q} has been computed it is possible to compute \widehat{R} as

$$\widehat{R} = (AB + \widehat{Q}p)M^{-1} = (AB + Qp + \alpha Mp)M^{-1}$$

= $(AB + Qp)M^{-1} + \alpha p$

so that $\widehat{R} \equiv R \equiv ABM^{-1} \pmod{p}$, which is sufficient for our purpose. Also, assuming that AB < pM we find that $\widehat{R} < (n+2)p$ since $\alpha < n$.

化口压 化塑料 化量压 化量

Extension R

Shenoy et Kumaresan (1989):
we have
$$(\sum_{i=1}^{n} M_i ||M_i|_{m_i}^{-1} r_i|_{m_i}) = R + \alpha \times M$$

 $\alpha = \left| |M|_{m_{n+1}}^{-1} \left(\sum_{i=1}^{n} |M_i| |M_i|_{m_i}^{-1} r_i|_{m_i} |_{m_i} - |R|_{m_{n+1}} - |R|_{m_{n+1}} \right) \right|_{m_{n+1}}$
 $\tilde{r}_j = \left| \sum_{i=1}^{n} |M_i| |M_i|_{m_i}^{-1} r_i|_{m_i} |_{\widetilde{m}_j} - |\alpha M|_{\widetilde{m}_j} \right|_{\widetilde{m}_j}$

Extension of Residue System Bases

We first translate in an intermediate representation (MRS):

$$\begin{cases} \zeta_1 = a_1 \\ \zeta_2 = (a_2 - \zeta_1) \ m_1^{-1} \mod m_2 \\ \zeta_3 = ((a_3 - \zeta_1) \ m_1^{-1} - \zeta_2) \ m_2^{-1} \mod m_3 \\ \vdots \\ \zeta_n = (\dots ((a_n - \zeta_1) \ m_1^{-1} - \zeta_2) \ m_2^{-1} - \dots - \zeta_{n-1}) \ m_{n-1}^{-1} \mod m_n. \end{cases}$$

We evaluate A, with Horner's rule, as

$$A = (\dots ((\zeta_n m_{n-1} + \zeta_{n-1}) m_{n-2} + \dots + \zeta_3) m_2 + \zeta_2) m_1 + \zeta_1.$$

Features of the residue system

- Efficient multiplication, the cost being the cost of one multiplication on one residue.
- Costly reduction: O(k^{1.6}) for trinomials [4], 2k² + 3k for RNS [1], O(k²) for Lagrange representation [5].
- If we take into account that most of the operations are multiplications by a constant, the cost can be considerably smaller.

Applications to Cryptography

Elliptic curve cryptography

- The main idea comes from the efficiency of the product and the cost of the reduction in Residue Systems.
- ► We try to minimize the number of reductions. A reduction is not necessary after each operation. Clearly, for a formula like A × B + C × D, only one reduction is needed.
- Elliptic Curve Cryptography is based on points addition. We use appropriate forms (Hessian, Jacobi, Montgomery...) and coordinates: projective, Jacobian or Chudnowski...
- For 512 bits values Residues Systems for curves defined over a prime field, are more efficient than classical representations.

Pairings

- ► To summarize we define a pairing as follows: let G₁ and G₂ be two additive abelian groups of cardinal n and G₃ a multiplicative group of cardinal n.
- ► A pairing is a function e : G₁ × G₂ → G₃ which verifies the following properties: Bilinearity, Non-degeneracy.
- For pairings defined on an elliptic curve *E* over a finite field 𝔽_p, we have 𝒪₁ ⊂ 𝔼(𝔽_p), 𝒪₂ ⊂ 𝔼(𝔽_{p^k}) and 𝒪₃ ⊂ 𝔽_{p^k}, where *k* is the smallest integer such that *n* divides p^k − 1, *k* is called the embedded degree of the curve.

Pairings

- ► The construction of the pairing involves values over F_p and F_{p^k} into the formulas. An approach with Residue Systems, similar to the one made on ECC could be interesting.[3]
- k is most of the time chosen as a small power of 2 and 3 for algorithmic reasons. Residue arithmetics allow to pass over this restriction.
- With pairings, we can also imagine two levels of Residue Systems: one over 𝔽_p and one over 𝔽p^k.

Conclusion on Residue Systems

If your number system is not efficient, then it remains to try the residues.

- Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extension in residue number systems.
 15th IEEE Symposium on Computer Arithmetic, 2001 Vail Colorado USA pp. 59–65
- Bajard, J.C., Duquesne, S., Ercegovac M. and Meloni N.: Residue systems efficiency for modular products summation: Application to Elliptic Curves Cryptography, in Advanced Signal Processing Algorithms, Architectures, and Implementations XVI, SPIE 2006, San Diego, USA.
 - Bajard, J.C. and ElMrabet N.: Pairing in cryptography: an arithmetic point of view, Advanced Signal Processing Algorithms, Architectures, and Implementations XVII, part of the SPIE Optics & Photonics 2007 Symposium. August 2007 San Diego, USA.

・ロト ・ 理 ・ ・ ヨ ・ ・

- J.C. Bajard, L. Imbert, and G. A. Jullien: Parallel Montgomery Multiplication in GF(2^k) using Trinomial Residue Arithmetic, 17th IEEE symposium on Computer Arithmetic, 2005, Cape Cod, MA, USA.pp. 164-171
- J.C. Bajard, L. Imbert et Ch. Negre, Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation, journal IEEE Transactions on Computers, September 2006 (Vol. 55, No. 9) p p. 1167-1177

Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases for Cryptography IMACS'05, Applied Mathematics and Simulation, (2005)

Garner, H.L.: The residue number system. IRE Transactions on Electronic Computers, EL **8:6** (1959) 140–147

Knuth, D.: Seminumerical Algorithms. The Art of Company of Programming, vol. 2. Addison-Wesley (1981)

- Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. **44:170** (1985) 519–521
- Svoboda, A. and Valach, M.: Operational Circuits. Stroje na Zpracovani Informaci, Sbornik III, Nakl. CSAV, Prague, 1955, pp.247-295.
- Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill (1967)

