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Introduction to Residue Systems

Introduction to Residue Systems

I In some applications, like cryptography, we use finite field
arithmetics on huge numbers or large polynomials.

I Residue systems are a way to distribute the calculus on small
arithmetic units.

I Are these systems suitable for finite field arithmetics?
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Introduction to Residue Systems

Residue Number Systems in Fp, p prime

I Modular arithmetic mod p, elements are considered as
integers.

I Residue Number System
I RNS base: a set of coprime numbers (m1, ...,mk)
I RNS representation: (a1, ..., ak) with ai = |A|mi

I Full parallel operations modM with M =
∏k

i=1 mi

(|a1 ⊗ b1|m1
, . . . , |an ⊗ bn|mn

)→ A⊗ B (mod M)

I Very fast product, but an extension of the base could be
necessary and a reduction modulo p is needed.
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Introduction to Residue Systems

Residue Number Systems in Fp, p prime

I Φ(m) =
∑
p≤m

p prime

log p = log
∏
p≤m

p prime

p ∼ m

I If 2m−1 ≤ M < 2m then the size moduli is of order O(log m).

I In other words, if addition and multiplication have
complexities of order Θ(f (m)) then in RNS the complexities
become Θ(f (log m)).
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Introduction to Residue Systems

Lagrange representations in Fpk with p > 2k

I Arithmetic modulo I (X ), an irreducible Fp polynomial of
degree k. Elements of Fpk are considered as Fp polynomials
of degree lower than k .

I Lagrange representation
I is defined by k different points e1, ...ek in Fp. (k ≤ p.)
I A polynomial A(X ) = α0 + α1X + ...+ αk−1X

k−1 over Fp is
given in Lagrange representation by:

(a1 = A(e1), ..., ak = A(ek)).

I Remark: ai = A(ei ) = A(X ) mod (X − ei ). If we note
mi (X ) = (X − ei ), we obtain a similar representation as RNS.

I Operations are made independently on each A(ei ) (like in FFT
or Tom-Cook approaches). We need to extend to 2k points
for the product.
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Introduction to Residue Systems

Trinomial residue in F2n

I Arithmetic modulo I (X ), an irreducible F2 polynomial of
degree n. Elements of F2n are considered as F2 polynomials of
degree lower than n.

I Trinomial representation
I is defined by a set of k coprime trinomials

mi (X ) = X d + X ti + 1, with k × d ≥ n,
I an element A(X ) is represented by (a1(X ), ...ak(X )) with

ai (X ) = A(X ) mod mi (X ).
I This representation is equivalent to RNS.

I Operations are made independently for each mi (X )



A Residue Approach to the Finite Field Arithmetics 9/23

Introduction to Residue Systems

Residue Systems

I Residue systems could be an issue for computing efficiently
the product.

I The main operation is now the modular reduction for
constructing the finite field elements.

I The choice of the residue system base is important, it gives
the complexity of the basic operations.
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Modular reduction in Residue Systems

Reduction of Montgomery on Fp

I The most used reduction algorithm is due to Montgomery
(1985)[9]

I For reducing A modulo p,
one evaluates q = −(Ap−1) mod 2s ,
then one constructs R = (A + qp)/2s .
The obtained value satisfies: R ≡ A× 2−s (mod p) and
R < 2p if A < p2s .
We note Montg(A, 2s , p) = R.

I Montgomery notation: A′ = A× 2s mod p
Montg(A′ × B ′, 2s , p) ≡ (A× B)× 2s (mod p)
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Modular reduction in Residue Systems

Residue version of Montgomery Reduction

I The residue base is such that p < M
(or deg M(X ) ≥ deg I (X ))

I We use an auxiliary base such that p < M ′

(or deg M ′(X ) ≥ deg I (X )), M ′ and M coprime.
(Exact product, and existence of M−1)

I Steps of the algorithm

1. Q = −(Ap−1) mod M (calculus in base M)
2. Extension of the representation of Q to the base M ′

3. R = (A + Qp)×M−1 (calculus in base M ′)
4. Extension of the representation of R to the base M

I The values are represented in the two bases.
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Modular reduction in Residue Systems

Extension of Residue System Bases (from M to M ′)

The extension comes from the Lagrange interpolation.
If (a1, ..., ak) is the residue representation in the base M, then

A =
k∑

i=1

∣∣∣∣∣ai ×
[

M

mi

]−1

mi

∣∣∣∣∣
mi

× M

mi
− αM

The factor α can be, in certain cases, neglected or computed.[1]
Another approach consists in the Newton interpolation where A is
correctly reconstructed. [4]
In the polynomial case, the term −αM vanishes.
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Modular reduction in Residue Systems

Extension for Q

By the CRT

Q̂ =
n∑

i=1

∣∣∣qi |Mi |−1
mi

∣∣∣
mi

Mi = Q + αM

where 0 ≤ α < n.
When Q̂ has been computed it is possible to compute R̂ as

R̂ = (AB + Q̂p)M−1 = (AB + Qp + αMp)M−1

= (AB + Qp)M−1 + αp

so that R̂ ≡ R ≡ ABM−1 (mod p), which is sufficient for our
purpose. Also, assuming that AB < pM we find that R̂ < (n + 2)p
since α < n.
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Modular reduction in Residue Systems

Extension R

Shenoy et Kumaresan (1989):

we have (
n∑

i=1

Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

) = R + α×M

α =

∣∣∣∣∣|M|−1
mn+1

(
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

∣∣∣∣
mn+1

− |R|mn+1

)∣∣∣∣∣
mn+1

r̃j =

∣∣∣∣∣
n∑

i=1

∣∣∣∣Mi

∣∣∣|Mi |−1
mi

ri

∣∣∣
mi

∣∣∣∣fmj

− |αM|fmj

∣∣∣∣∣fmj
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Modular reduction in Residue Systems

Extension of Residue System Bases

We first translate in an intermediate representation (MRS):

ζ1 = a1

ζ2 = (a2 − ζ1) m−1
1 mod m2

ζ3 =
(
(a3 − ζ1) m−1

1 − ζ2
)

m−1
2 mod m3

...

ζn =
(
. . .
(
(an − ζ1) m−1

1 − ζ2
)

m−1
2 − · · · − ζn−1

)
m−1

n−1 mod mn.

We evaluate A, with Horner’s rule, as

A = (. . . ((ζn mn−1 + ζn−1) mn−2 + · · ·+ ζ3) m2 + ζ2) m1 + ζ1.
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Modular reduction in Residue Systems

Features of the residue system

I Efficient multiplication, the cost being the cost of one
multiplication on one residue.

I Costly reduction: O(k1.6) for trinomials [4], 2k2 + 3k for RNS
[1], O(k2) for Lagrange representation [5].

I If we take into account that most of the operations are
multiplications by a constant, the cost can be considerably
smaller.
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Applications to Cryptography

Elliptic curve cryptography

I The main idea comes from the efficiency of the product and
the cost of the reduction in Residue Systems.

I We try to minimize the number of reductions. A reduction is
not necessary after each operation. Clearly, for a formula like
A× B + C × D, only one reduction is needed.

I Elliptic Curve Cryptography is based on points addition. We
use appropriate forms (Hessian, Jacobi, Montgomery...) and
coordinates: projective, Jacobian or Chudnowski...

I For 512 bits values Residues Systems for curves defined over a
prime field, are more efficient than classical representations.[2]
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Applications to Cryptography

Pairings

I To summarize we define a pairing as follows: let G1 and G2 be
two additive abelian groups of cardinal n and G3 a
multiplicative group of cardinal n.

I A pairing is a function e : G1 × G2 → G3 which verifies the
following properties: Bilinearity, Non-degeneracy.

I For pairings defined on an elliptic curve E over a finite field
Fp, we have G1 ⊂ E (Fp), G2 ⊂ E (Fpk ) and G3 ⊂ Fpk , where

k is the smallest integer such that n divides pk − 1, k is called
the embedded degree of the curve.
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Applications to Cryptography

Pairings

I The construction of the pairing involves values over Fp and
Fpk into the formulas. An approach with Residue Systems,
similar to the one made on ECC could be interesting.[3]

I k is most of the time chosen as a small power of 2 and 3 for
algorithmic reasons. Residue arithmetics allow to pass over
this restriction.

I With pairings, we can also imagine two levels of Residue
Systems: one over Fp and one over Fpk .
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Conclusion

Conclusion on Residue Systems
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Conclusion

Conclusion

I If your number system is not efficient, then it remains to try
the residues.
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