e
A Residue Approach to the Finite Field Arithmetics

1/23

A Residue Approach to the Finite Field
Arithmetics
JC Bajard

LIRMM, CNRS UM2
161 rue Ada, 34392 Montpellier cedex 5, France

CIRM 2009



A Residue Approach to the Finite Field Arithmetics

Contents

2/23

Introduction to Residue Systems

Modular reduction in Residue Systems

Applications to Cryptography

Conclusion



e
A Residue Approach to the Finite Field Arithmetics
|—Introdut:tion to Residue Systems

3/23

Introduction to Residue Systems



A Residue Approach to the Finite Field Arithmetics 4/23
Llntroduction to Residue Systems

Introduction to Residue Systems

» In some applications, like cryptography, we use finite field
arithmetics on huge numbers or large polynomials.

» Residue systems are a way to distribute the calculus on small
arithmetic units.

» Are these systems suitable for finite field arithmetics?

LIRMM
[m] = =

‘@sﬂdm %




A Residue Approach to the Finite Field Arithmetics
Llntroduction to Residue Systems

5/23

Residue Number Systems in F,, p prime

» Modular arithmetic mod p, elements are considered as
integers.

» Residue Number System

» RNS base: a set of coprime numbers (my,
» RNS representation: (ay,

ceey mk)
,ak) with a; = |A|m,-
» Full parallel operations mod M with M Hf:l m;
(las®@ b1l .--y]an @ byl ) = A B (mod M)
» Very fast product, but an extension of the base could be
necessary and a reduction modulo p is needed
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Residue Number Systems in F,, p prime

> ®(m) = Z log p = log H p~m

p<m p<m
p prime p prime

> If 2™~1 < M < 2™ then the size moduli is of order O(log m).

» In other words, if addition and multiplication have
complexities of order ©(f(m)) then in RNS the complexities
become ©(f(log m)).
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Lagrange representations in IF« with p > 2k

» Arithmetic modulo /(X), an irreducible F, polynomial of
degree k. Elements of F .« are considered as Fj, polynomials
of degree lower than k.

» Lagrange representation

> is defined by k different points ey, ...ex in Fp. (k < p.)
» A polynomial A(X) = ap + a1 X + ... + ax_1 X "L over F, is
given in Lagrange representation by:

(31 = A(el), ey die = A(ek))

» Remark: a; = A(e;) = A(X) mod (X — ¢). If we note
m;(X) = (X — &), we obtain a similar representation as RNS.

» Operations are made independently on each A(e;) (like in FFT é

or Tom-Cook approaches). We need to extend to 2 i
for the product. %%@g
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Trinomial residue in Fyn

» Arithmetic modulo /(X), an irreducible F, polynomial of
degree n. Elements of Fon are considered as F» polynomials of
degree lower than n.

» Trinomial representation

> is defined by a set of k coprime trinomials
mi(X) = X9+ X% + 1, with k x d > n,

> an element A(X) is represented by (a;(X),...ax(X)) with
a;(X) = A(X) mod m;(X).

» This representation is equivalent to RNS.

» Operations are made independently for each m;(X)
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Residue Systems

» Residue systems could be an issue for computing efficiently
the product.

» The main operation is now the modular reduction for
constructing the finite field elements.

» The choice of the residue system base is important, it gives
the complexity of the basic operations.

G
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Modular reduction in Residue Systems
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LModular reduction in Residue Systems

Reduction of Montgomery on [,

» The most used reduction algorithm is due to Montgomery

(1985)[9]
» For reducing A modulo p,
one evaluates g = —(Ap~ 1) mod 2%,

then one constructs R = (A + gp)/2°.
The obtained value satisfies: R = A x 27° (mod p) and
R < 2pif A< p2°.
We note Montg(A,2°%,p) = R.
» Montgomery notation: A’ = A x 2° mod p
Montg(A" x B',2° p) = (A x B) x 2° (mod p)
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Residue version of Montgomery Reduction

12/23

» The residue base is such that p < M
(or deg M(X) > deg /(X))

» We use an auxiliary base such that p < M’

(or deg M'(X) > deg (X)), M’ and M coprime.
(Exact product, and existence of M~1)
» Steps of the algorithm

1. @ =—(Ap~1) mod M (calculus in base M)

2. Extension of the representation of @ to the base M’
3. R=(A+ Qp) x M~ (calculus in base M")
4. Extension of the representation of R to the base M
» The values are represented in the two bases.
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Extension of Residue System Bases (from M to M’)

The extension comes from the Lagrange interpolation.
If (a1, ..., ak) is the residue representation in the base M, then

SEN

m,-m

M
x—.—aM

m;

The factor « can be, in certain cases, neglected or computed.[1]
Another approach consists in the Newton interpolation where A is
correctly reconstructed. [4]

In the polynomial case, the term —aM vanishes.
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Q=2

i=1
where 0 < o < n.

qi |M,|;ll ’mM,‘ - Q + aM
When /Q has been computed it is possible to compute R as

R = (AB+ Qp)M~! = (AB+ Qp+ aMp)M~!

= (AB+ Qp)M ! +ap

so that R = R = ABM~1 (mod p), which is sufficient for our
purpose. Also, assuming that AB < pM we find that R
since a < n.

n+2)p
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Shenoy et Kumaresan (1989):

n
we have (3 M; ‘|M,-|;} r,-‘ )=R+axM
.
i=1

n

a= ML 1>

-1
Mi‘\/\/’i|m,- fi‘ — Rl
i=1 Tmpya
n
F= > |Mi|IMil,}
i=1

- |04M|'m7
mj| =

m;j

Mp+1

mj
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Extension of Residue System Bases

We first translate in an intermediate representation (MRS):
G1=a
<2 = (32 — Cl) ml_l mod moy

G=((a3—¢) m* — &) my* mod ms

C,,:(...((a,,—g‘l)ml_l—g}) m2_1— o= 1)m 1modm,,

We evaluate A, with Horner's rule, as

“@s‘dme« -~z
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Features of the residue system

» Efficient multiplication, the cost being the cost of one
multiplication on one residue.

» Costly reduction: O(k®) for trinomials [4], 2k + 3k for RNS
[1], O(k?) for Lagrange representation [5].

» |If we take into account that most of the operations are
multiplications by a constant, the cost can be considerably
smaller.
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Elliptic curve cryptography

» The main idea comes from the efficiency of the product and
the cost of the reduction in Residue Systems.

» We try to minimize the number of reductions. A reduction is
not necessary after each operation. Clearly, for a formula like
A x B+ C x D, only one reduction is needed.

» Elliptic Curve Cryptography is based on points addition. We
use appropriate forms (Hessian, Jacobi, Montgomery...) and
coordinates: projective, Jacobian or Chudnowski...

» For 512 bits values Residues Systems for curves defined over a
prime field, are more efficient than classical representations.|2]
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Pairings

» To summarize we define a pairing as follows: let G; and Gy be
two additive abelian groups of cardinal n and G3 a
multiplicative group of cardinal n.

» A pairing is a function e : G X Go — G3 which verifies the
following properties: Bilinearity, Non-degeneracy.

» For pairings defined on an elliptic curve E over a finite field
Fp, we have Gy C E(F,), G C E(F ) and Gz C Fp¥, where
k is the smallest integer such that n divides pX — 1, k is called

the embedded degree of the curve.
o K
G
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Pairings

» The construction of the pairing involves values over IF, and
[« into the formulas. An approach with Residue Systems,
similar to the one made on ECC could be interesting.[3]

» k is most of the time chosen as a small power of 2 and 3 for
algorithmic reasons. Residue arithmetics allow to pass over
this restriction.

» With pairings, we can also imagine two levels of Residue
Systems: one over [, and one over Fpk.
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the residues.

» If your number system is not efficient, then it remains to try
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