Resemblance and difference between beta-integers and ordinary integers

L'. Balková, J.-P. Gazeau, K. Klouda, E. Pelantová

Numeration: Mathematics and Computer Science, Marseille-Luminy

March 26, 2009

Outline

- Background: beta-integers
- Beta-integers versus integers
- 3 Asymptotic behavior of beta-integers
- 4 Repetitions in beta-integers

• Let $\beta > 1$ and $x \ge 0$, any series

$$x = \sum_{i=-\infty}^{k} x_i \beta^i =: x_k x_{k-1} ... x_0 \bullet x_{-1} ..., \qquad x_i \in \mathbb{N},$$

is a β -representation of x

• Let $\beta > 1$ and $x \ge 0$, any series

$$x = \sum_{i=-\infty}^{k} x_i \beta^i =: x_k x_{k-1} ... x_0 \bullet x_{-1} ..., \qquad x_i \in \mathbb{N},$$

is a β -representation of x

• β -expansion $\langle x \rangle_{\beta}$ of $x = \beta$ -representation of x obtained by the greedy algorithm

• Let $\beta > 1$ and $x \ge 0$, any series

$$x = \sum_{i=-\infty}^{k} x_i \beta^i =: x_k x_{k-1} ... x_0 \bullet x_{-1} ..., \qquad x_i \in \mathbb{N},$$

is a β -representation of x

- β -expansion $\langle x \rangle_{\beta}$ of $x=\beta$ -representation of x obtained by the greedy algorithm
- $\begin{array}{ll} \bullet \ \ \text{coefficients of} \ \beta\text{-expansions} \\ \ \ \text{in} \ \{0,1,\ldots,\beta-1\} & \ \text{for} \ \beta\in\mathbb{N} \\ \ \ \text{in} \ \{0,1,\ldots,|\beta|\} & \ \text{for} \ \beta\not\in\mathbb{N} \\ \end{array}$

• Let $\beta > 1$ and $x \ge 0$, any series

$$x = \sum_{i=-\infty}^{k} x_i \beta^i =: x_k x_{k-1} ... x_0 \bullet x_{-1} ..., \qquad x_i \in \mathbb{N},$$

is a β -representation of x

- β -expansion $\langle x \rangle_{\beta}$ of $x=\beta$ -representation of x obtained by the greedy algorithm
- coefficients of β -expansions in $\{0,1,\ldots,\beta-1\}$ for $\beta\in\mathbb{N}$ in $\{0,1,\ldots,\lfloor\beta\rfloor\}$ for $\beta\not\in\mathbb{N}$
- $\mathbb{Z}_{\beta} := \{x \in \mathbb{R} \mid \langle |x| \rangle_{\beta} = x_k x_{k-1} ... x_0 \bullet \}$

• Golden ratio $au = \frac{1}{2}(1+\sqrt{5}) \doteq 1.618$ root of x^2-x-1

- Golden ratio $\tau = \frac{1}{2}(1+\sqrt{5}) \doteq 1.618$ root of x^2-x-1
- $\lfloor \tau \rfloor = 1 \Rightarrow$ coefficients of τ -expansions are 0,1

- Golden ratio $\tau = \frac{1}{2}(1 + \sqrt{5}) \doteq 1.618$ root of $x^2 x 1$
- $\lfloor \tau \rfloor = 1 \Rightarrow$ coefficients of au-expansions are 0, 1

$$\mathbb{Z}_{\tau} = \left\{ \pm \sum_{i=0}^{k} x_{i} \tau^{i} \mid x_{i} \in \{0, 1\}, \ x_{i} x_{i+1} = 0 \right\}$$

$$\mathbb{Z}_{\tau} = \pm \{0, 1, \tau, \tau^2, \tau^2 + 1, \tau^3, \tau^3 + 1, \tau^3 + \tau, \tau^4, \tau^4 + 1, \dots\}$$

(□) (□) (□) (□) (□)

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

for
$$\beta \in \mathbb{N}$$
: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

ullet \mathbb{Z}_eta not periodic

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- \mathbb{Z}_{β} not periodic
- \mathbb{Z}_{β} has no accumulation points

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- ullet \mathbb{Z}_{eta} not periodic
- ullet \mathbb{Z}_{eta} has no accumulation points

$$\mathbb{Z}_{\beta}^{+}=\{b_{n}\mid n\in\mathbb{N}\}$$

with $b_0 = 0$ and $b_{n+1} > b_n$

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- ullet \mathbb{Z}_{eta} not periodic
- ullet \mathbb{Z}_{eta} has no accumulation points

$$\mathbb{Z}_{\beta}^{+}=\{b_{n}\mid n\in\mathbb{N}\}$$

with
$$b_0 = 0$$
 and $b_{n+1} > b_n$

ullet distances in \mathbb{Z}_eta bounded from above by 1

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- ullet \mathbb{Z}_{eta} not periodic
- ullet \mathbb{Z}_eta has no accumulation points

$$\mathbb{Z}_{\beta}^{+}=\{b_{n}\mid n\in\mathbb{N}\}$$

with $b_0 = 0$ and $b_{n+1} > b_n$

- ullet distances in \mathbb{Z}_eta bounded from above by 1
- distances in \mathbb{Z}_{β} not necessarily bounded from below (not necessarily a Delone set)

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- ullet \mathbb{Z}_{eta} not periodic
- ullet \mathbb{Z}_eta has no accumulation points

$$\mathbb{Z}_{\beta}^{+}=\{b_{n}\mid n\in\mathbb{N}\}$$

with $b_0 = 0$ and $b_{n+1} > b_n$

- ullet distances in \mathbb{Z}_eta bounded from above by 1
- distances in \mathbb{Z}_{β} not necessarily bounded from below (not necessarily a Delone set)
- $\beta \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}$

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- \mathbb{Z}_{β} not periodic
- ullet \mathbb{Z}_eta has no accumulation points

$$\mathbb{Z}_{\beta}^{+}=\{b_{n}\mid n\in\mathbb{N}\}$$

with $b_0 = 0$ and $b_{n+1} > b_n$

- ullet distances in \mathbb{Z}_eta bounded from above by 1
- distances in \mathbb{Z}_{β} not necessarily bounded from below (not necessarily a Delone set)
- $\beta \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}$

 β is a *Parry number* if the number of distances in \mathbb{Z}_{β} finite

for $\beta \in \mathbb{N}$: $\mathbb{Z}_{\beta} = \mathbb{Z}$

for $\beta \notin \mathbb{N}$:

- \mathbb{Z}_{β} not periodic
- ullet \mathbb{Z}_{eta} has no accumulation points

$$\mathbb{Z}_{\beta}^{+}=\{b_{n}\mid n\in\mathbb{N}\}$$

with $b_0 = 0$ and $b_{n+1} > b_n$

- ullet distances in \mathbb{Z}_{eta} bounded from above by 1
- distances in \mathbb{Z}_{β} not necessarily bounded from below (not necessarily a Delone set)
- $\beta \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}$

 β is a *Parry number* if the number of distances in \mathbb{Z}_{β} finite

Pisot numbers \subset Parry numbers \subset Perron numbers

5 / 20

Definition

Given Parry number β and set of distances $\{\Delta_0, \Delta_1, \dots, \Delta_{m-1}\}$ in \mathbb{Z}_{β} ,

Definition

Given Parry number β and set of distances $\{\Delta_0, \Delta_1, \ldots, \Delta_{m-1}\}$ in \mathbb{Z}_{β} , define $u_{\beta} = u_0 u_1 u_2 \ldots$

Definition

Given Parry number β and set of distances $\{\Delta_0, \Delta_1, \ldots, \Delta_{m-1}\}$ in \mathbb{Z}_{β} , define $u_{\beta} = u_0 u_1 u_2 \ldots$

$$u_n := i$$
 if $b_{n+1} - b_n = \Delta_i$

Definition

Given Parry number β and set of distances $\{\Delta_0, \Delta_1, \dots, \Delta_{m-1}\}$ in \mathbb{Z}_{β} , define $u_{\beta} = u_0 u_1 u_2 \dots$

$$u_n := i$$
 if $b_{n+1} - b_n = \Delta_i$

• Fabre: $u_{\beta} =$ fixed point of one of 2 possible primitive substitutions (simple and non-simple Parry)

Definition

Given Parry number β and set of distances $\{\Delta_0, \Delta_1, \ldots, \Delta_{m-1}\}$ in \mathbb{Z}_{β} , define $u_{\beta} = u_0 u_1 u_2 \ldots$

$$u_n := i$$
 if $b_{n+1} - b_n = \Delta_i$

- Fabre: $u_{\beta} = \text{fixed point of one of 2 possible primitive substitutions}$ (simple and non-simple Parry)
- **Example**: $u_{\tau} = \varphi(u_{\tau})$ for φ defined by

$$\varphi(0) = 01, \quad \varphi(1) = 0$$

Simple Parry numbers

Simple Parry numbers

If φ , $u_{\beta} = \varphi(u_{\beta})$, of the form

$$\varphi(0) = 0^{t_1} 1
\varphi(1) = 0^{t_2} 2
\vdots
\varphi(m-2) = 0^{t_{m-1}} (m-1)
\varphi(m-1) = 0^{t_m}$$

with $t_i \in \mathbb{N}$ and $t_j t_{j+1} \cdots t_m \prec t_1 t_2 \cdots t_m$ for every $1 < j \le m$ and $t_m \ne 0$, then

 β is a simple Parry number

7 / 20

Simple Parry numbers

If φ , $u_{\beta} = \varphi(u_{\beta})$, of the form

$$\varphi(0) = 0^{t_1} 1
\varphi(1) = 0^{t_2} 2
\vdots
\varphi(m-2) = 0^{t_{m-1}} (m-1)
\varphi(m-1) = 0^{t_m}$$

with $t_i \in \mathbb{N}$ and $t_j t_{j+1} \cdots t_m \prec t_1 t_2 \cdots t_m$ for every $1 < j \le m$ and $t_m \ne 0$, then

 β is a simple Parry number

Parry polynomial of β :

$$p(x) = x^m - t_1 x^{m-1} - t_2 x^{m-2} - \dots - t_m$$

Non-simple Parry numbers

Non-simple Parry numbers

If φ of the form

$$\varphi(0) = 0^{t_1} 1$$
 $\varphi(1) = 0^{t_2} 2$
 \vdots
 $\varphi(p-2) = 0^{t_{p-1}} (p-1)$
 $\varphi(p-1) = 0^{t_p} p$
 \vdots
 $\varphi(m-2) = 0^{t_{m-1}} m - 1$
 $\varphi(m-1) = 0^{t_m} p$

with $p \in \mathbb{N}, \ p \neq 0$, $t_i \in \mathbb{N}$ and any suffix of $t_1 \dots t_p (t_{p+1} \dots t_m)^{\omega}$ lexicographically smaller than the sequence itself, then

 β is a non-simple Parry number

Asymptotic behavior of beta-integers

Asymptotic behavior of beta-integers

• For Parry numbers: a simple formula for

$$c_{\beta}:=\lim_{n\to+\infty}\frac{b_n}{n},$$

where b_n is the n-th β -integer

Asymptotic behavior of beta-integers

For Parry numbers: a simple formula for

$$c_{\beta}:=\lim_{n\to+\infty}\frac{b_n}{n},$$

where b_n is the n-th β -integer For simple Parry numbers: $c_{\beta} = \frac{\beta-1}{\beta^m-1}p'(\beta)$

9 / 20

Asymptotic behavior of beta-integers

For Parry numbers: a simple formula for

$$c_{\beta}:=\lim_{n\to+\infty}\frac{b_n}{n},$$

where b_n is the n-th β -integer For simple Parry numbers: $c_{\beta} = \frac{\beta-1}{\beta^m-1}p'(\beta)$

Theorem

For any Pisot number such that its Parry and minimal polynomial coincide, $(b_n - c_\beta n)_{n \in \mathbb{N}}$ is a bounded sequence.

Asymptotic behavior of beta-integers

For Parry numbers: a simple formula for

$$c_{\beta}:=\lim_{n\to+\infty}\frac{b_n}{n},$$

where b_n is the n-th β -integer For simple Parry numbers: $c_{\beta} = \frac{\beta-1}{\beta^m-1}p'(\beta)$

Theorem

For any Pisot number such that its Parry and minimal polynomial coincide, $(b_n - c_\beta n)_{n \in \mathbb{N}}$ is a bounded sequence.

Conjecture

If β is a Parry number, then $(b_n - c_\beta n)_{n \in \mathbb{N}}$ is a bounded sequence if and only if β is a Pisot number such that its Parry and minimal polynomial coincide.

Repetitions in beta-integers

- quadratic non-simple Parry case
- simple Parry case

Powers of words

Definition

Let w be a nonempty word, $r \in \mathbb{Q}$, then v is r-th power of w if v is a prefix of w^{ω} and $r = \frac{|v|}{|w|}$, i.e.,

$$v = w^r := w^{\lfloor r \rfloor} w',$$

where w' is a proper prefix of w.

Example

Let w=123 and $v=12312312312=(123)^312$, then $r=\frac{|v|}{|w|}=\frac{11}{3}=3+\frac{2}{3}$ and so v is $\frac{11}{3}$ -power of w.

Index of finite word

Definition

Let $u=(u_n)_{n\geq 1}$ be an infinite word and w its nonempty factor. Then the index of w in u is given by

$$\operatorname{ind}(w) = \sup\{r \in \mathbb{Q} | w^r \text{ is a factor of } u\}.$$

Remark

$$\operatorname{ind}(w) = \max\{r \in \mathbb{Q} | w^r \text{ is a factor of } u\} \text{ or } \operatorname{ind}(w) = \infty$$

Example

$$u = 12(121)^{\omega} = 12121121121 \cdots$$
, then

$$ind(121) = \infty, ind(12) = 2 + \frac{1}{2}$$

Index of infinite word

Definition

Let $u = (u_n)_{n \ge 1}$ be an infinite word. Then the index of u is given by

 $ind(u) = sup\{ind(w) \mid w \text{ is a factor of } u\}.$

Index of infinite word

Definition

Let $u = (u_n)_{n \ge 1}$ be an infinite word. Then the index of u is given by

 $ind(u) = sup\{ind(w) \mid w \text{ is a factor of } u\}.$

Remark

For *u* uniformly recurrent and aperiodic, $ind(w) < \infty$ for all factors *w*.

Index of infinite word

Definition

Let $u = (u_n)_{n \ge 1}$ be an infinite word. Then the index of u is given by

 $ind(u) = sup\{ind(w) \mid w \text{ is a factor of } u\}.$

Remark

For u uniformly recurrent and aperiodic, $\operatorname{ind}(w) < \infty$ for all factors w. However, $\operatorname{ind}(u)$ may be $= \infty$, even for Sturmian words.

Important lemma

Important lemma

Definition

A factor v of an infinite word u is bispecial if v has two distinct left extensions and two distinct right extensions in u, i.e., av, bv, vc, vd are factors of u for some letters $a \neq b$, $c \neq d$.

Important lemma

Definition

A factor v of an infinite word u is bispecial if v has two distinct left extensions and two distinct right extensions in u, i.e., av, bv, vc, vd are factors of u for some letters $a \neq b$, $c \neq d$.

Lemma

Let w be a factor of u_{β} and let w have the maximal index among factors of the same length. Put $k := \lfloor ind(w) \rfloor$ and denote w' the prefix of w such that

$$w^{ind(w)} = w^k w'.$$

Then all the following factors are bispecial:

$$w', ww', \ldots, w^{k-1}w'.$$

Quadratic non-simple Parry case

$$u_{\beta} = \varphi(u_{\beta})$$
, where

$$\begin{array}{rcl} \varphi(0) & = & 0^p 1, \\ \varphi(1) & = & 0^q 1, \\ & & p, q \in \mathbb{N}, \ p > q \ge 1 \end{array}$$

Bispecial factors in u_{β}

Lemma

Let v be a bispecial factor of u_{β} containing at least one letter 1. Then there exists a unique bispecial factor \tilde{v} such that

$$v = 0^q 1 \varphi(\tilde{v}) 0^q =: T(\tilde{v}),$$

i.e.,

each bispecial factor is either 0^s , s = 1, 2, ..., p - 1, or it is equal to the T-image of another bispecial factor or of the empty word.

Index of u_{β}

Corollary

The index of u_{β} is given by the following formula

$$ind(u_{\beta}) = \sup\{ind(w^{(n)}) \mid n \in \mathbb{N}\},\$$

where

$$w^{(1)} = 0,$$
 $w^{(n+1)} = 0^q 1 \varphi(w^{(n)})(0^q 1)^{-1}.$

Moreover, the maximal power

- of 0 is 0^p,
- of $w^{(n+1)}$ is $v^{(n+1)} = 0^q 1 \varphi(v^{(n)})(0^q 1)^{-1}$.

Calculation of $ind(w^{(n)})$

Substitution matrix
$$M_{\varphi} = \begin{pmatrix} |\varphi(0)|_0 & |\varphi(0)|_1 \\ |\varphi(1)|_0 & |\varphi(1)|_1 \end{pmatrix} = \begin{pmatrix} p & 1 \\ q & 1 \end{pmatrix}$$

Calculation of $ind(w^{(n)})$

Substitution matrix
$$M_{\varphi} = \begin{pmatrix} |\varphi(0)|_0 & |\varphi(0)|_1 \\ |\varphi(1)|_0 & |\varphi(1)|_1 \end{pmatrix} = \begin{pmatrix} p & 1 \\ q & 1 \end{pmatrix}$$

For each factor w

$$(|\varphi(w)|_0, |\varphi(w)|_1) = (|w|_0, |w|_1)M_{\varphi}$$

Calculation of ind($w^{(n)}$)

Substitution matrix
$$M_{\varphi} = \begin{pmatrix} |\varphi(0)|_0 & |\varphi(0)|_1 \\ |\varphi(1)|_0 & |\varphi(1)|_1 \end{pmatrix} = \begin{pmatrix} p & 1 \\ q & 1 \end{pmatrix}$$

For each factor w

$$(|\varphi(w)|_0, |\varphi(w)|_1) = (|w|_0, |w|_1)M_{\varphi}$$

$$\begin{split} &\inf(w^{(n)}) = \frac{|v^{(n)}|}{|w^{(n)}|} = \\ &= \frac{(p+1,0)M_{\varphi}^{n}(\frac{1}{1}) + (0,\frac{2q+1-p}{q})M_{\varphi}^{n}(\frac{1}{1}) - (1,\frac{2q+1-p}{q})(\frac{1}{1})}{(1,0)M_{\varphi}^{n}(\frac{1}{1})} \\ &= p+1 + \frac{\frac{2q+1-p}{q}\left((1-\beta')\beta^{n+1} - (1-\beta)\beta'^{n+1}\right) - \frac{3q+1-p}{q}(\beta-\beta')}{\beta^{n+1} - \beta'^{n+1}} \end{split}$$

Result for quadratic non-simple Parry case

Theorem

If
$$p \le 3q + 1$$
,

$$ind(u_{eta})=p+1+rac{2q+1-p}{eta-1},$$

otherwise

$$ind(u_{\beta}) = ind(w^{(n_0)}) > p + 1 + \frac{2q + 1 - p}{\beta - 1}$$

for certain $n_0 \in \mathbb{N}$.

Simple Parry case

$$\operatorname{ind}(u_{\beta}) = \sup \{ \operatorname{ind}(\varphi^{n}(0)) \mid n \in \mathbb{N} \}$$

- Recursive construction of the sequence $(v^{(n)})_{n\in\mathbb{N}}$ of the maximal powers of $\varphi^n(0)$
- Explicit form of $v^{(n)}$ for u_{β} satisfying
 - 1 $t_1 > \max\{t_2, \ldots, t_{m-1}\}$

$$\operatorname{ind}(u_{\beta}) \ge \beta + t_m + \frac{\beta^{m-1} - t_m}{\beta^{m-1} - 1} > t_1 + t_m$$

2 $t_1 = \cdots = t_{m-1} =: t$

$$\operatorname{ind}(u_{eta}) \geq t + t_m + rac{t}{eta - 1}$$

