Generation

Ostrowski

Recognition

Discrete geometry and numeration

V. Berthé

LIRMM-CNRS-Montpellier-France berthe@lirmm.fr http://www.lirmm.fr/~berthe

Numeration: Mathematics and Computer Science–Mars 09

Recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

A classical problem in Diophantine approximation

How to approximate a line in \mathbb{R}^3 by points in \mathbb{Z}^3 ?

How to define a discrete line in \mathbb{R}^3 ?

Recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

How to approximate a plane in \mathbb{R}^3 by points in \mathbb{Z}^3 ?

Numeration/representation systems in discrete geometry

- Continued fractions (regular, multidimensional unimodular)
- S-adic systems (infinite composition of a finite number of substitutions)

・ロト ・ 一下・ ・ ヨト・

Jacobi-Perron, Brun c.f., generalized substitutions

Recognition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Arithmetic discrete plane

Let a, b, c be strictly positive real numbers

The (standard) arithmetic discrete plane $\mathcal{P}_{((a,b,c),h)}$ is defined as

$$\mathcal{P}_{((a,b,c),h)} = \{(p,q,r) \in \mathbb{Z}^3 \mid 0 \leq ap + bq + cr + h < a + b + c\}.$$

We consider the stepped surface $\mathfrak{P}_{((a,b,c),h)}$ defined as the union of the facets of integer translates of unit cubes whose set of integer vertices equals $\mathcal{P}_{((a,b,c),h)}$

Recognition

A first dynamical description

Let E_1 , E_2 , and E_3 be the three following faces:

 $\mathfrak{P}_{((a,b,c),h)} = \{(p,q,r) \in \mathbb{Z}^3 \mid 0 \le ap + bq + cr + h < a + b + c\}.$

A point $(p, q, r) \in \mathbb{Z}^3$ is the distinguished vertex of a face in $\mathfrak{P}_{((a,b,c),h)}$ of type

- 1 if and only if $ap + bq + cr + h \in [0, a[$
- 2 if and only if $ap + bq + cr + h \in [a, a + b[$
- 3 if and only if $ap + bq + cr + h \in [a + b, a + b + c[$

Induction

Generation

Ostrowski

Recognition

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A first dynamical description

A point $(p,q,r) \in \mathbb{Z}^3$ is the distinguished vertex of a face in $\mathfrak{P}_{((a,b,c),h)}$ of type

- 1 if and only if $ap + bq + cr + h \in [0, a[$
- 2 if and only if $ap + bq + cr + h \in [a, a + b[$
- 3 if and only if $ap + bq + cr + h \in [a + b, a + b + c[$

The triple of strictly positive numbers (a, b, c) being fixed, let:

$$\begin{aligned} R_a &: [0, a + b + c[\rightarrow [0, a + b + c[& x \mapsto x + a \mod a + b + c, \\ R_b &: [0, a + b + c[\rightarrow [0, a + b + c[& x \mapsto x + b \mod a + b + c. \end{aligned}$$

Discrete planes are codings of \mathbb{Z}^2 -actions

Induction

Ostrowski

Recognition

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A first dynamical description

A point $(p,q,r) \in \mathbb{Z}^3$ is the distinguished vertex of a face in $\mathcal{P}_{((a,b,c),h)}$ of type

- 1 if and only if $ap + bq + cr + h \in [0, a[$
- 2 if and only if $ap + bq + cr + h \in [a, a + b[$
- 3 if and only if $ap + bq + cr + h \in [a + b, a + b + c[$

We can deduce information on

- possible local configurations/factors
- density of factors

Arithmetic discrete planes with the same normal vector have the same language

Recognition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Toward an arithmetic representation

We can deduce information on

- possible local configurations/factors
- density of factors

We would like to be able to

- Generate discrete planes
- Recognize discrete planes: given a set of points in \mathbb{Z}^3 , is it contained in an arithmetic discrete plane?

Recognition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to describe a discrete plane?

We will use a classical strategy based on

- induction/first return map
- substitutions
- continued fractions

$$\mathcal{P}_{\vec{n},h} = \{ \vec{x} \in \mathbb{Z}^3 \mid 0 \le \langle \vec{n}, \vec{x} \rangle + h < a + b + c \}$$

We want to describe $\mathcal{P}_{\vec{n},h}$ w.r. to

- A continued fraction algorithm for the normal vector \vec{n}
- An Ostrowski-type numeration system associated with the chosen c.f.a. for h

Recognition

Induction

The induced map T_A of a map T on a subset A is defined by

$$T_A(x) = T^{n_x}(x)$$
 with $n_x = \inf\{p > 0 | T^p(x) \in A\}$.

What is the meaning for a \mathbb{Z}^2 -action?

- if I is the induction interval, consider the set of (m, n) such that $R_a^m R_b^n x \in I$.
- This subset is NOT a sublattice of \mathbb{Z}^2

We want to reorganize the induced orbit and give a one-to-one correspondence with the original one in terms of substitutions

substitution = reconstruction of the lost information

Recognition

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Connectedness of arithmetic planes

Question

Find the smallest width ω for which the plane $\mathcal{P}(\vec{n}, h, \omega)$

$$\mathcal{P}_{\vec{n},h,\omega} = \{ \vec{x} \in \mathbb{Z}^d \mid 0 \leq \langle \vec{x}, \vec{n} \rangle + h < \omega \}$$

is connected.

Rational parameters: [Brimkov-Barneva] [Gérard][Jamet-Toutant]

Recognition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jacobi-Perron algorithm

The projective Jacobi-Perron algorithm is defined on the unit square $X = [0, 1) \times [0, 1)$ by:

$$\Phi(lpha,eta)=\left(rac{eta}{lpha}-\lfloorrac{eta}{lpha}
ight
ceit,rac{1}{lpha}-\lfloorrac{1}{lpha}
ight
ceit
ight)=(\{eta/lpha\},\{1/lpha\})$$

The linear Jacobi-Perron algorithm is defined on the positive cone

 $\{(a, b, c) \in \mathbb{R}^3 | 0 \leq a, b < c\}$

by:

$$F(a, b, c) = (b - \lfloor b/a \rfloor a, c - \lfloor c/a \rfloor a, a).$$

Generation

Ostrowski

Recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Jacobi-Perron algorithm

The linear Jacobi-Perron algorithm is defined on the positive cone

$$\{(a,b,c) \in \mathbb{R}^3 \, | \, 0 \leq a,b < c\}$$

by

$$(a_1, b_1, c_1) = (b - \lfloor b/a \rfloor a, c - \lfloor c/a \rfloor a, a).$$

Set
$$B = \lfloor b/a \rfloor a$$
, $C = \lfloor c/a \rfloor$
$$\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} -B & 1 & 0 \\ -C & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Recognition

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Jacobi-Perron algorithm

The linear Jacobi-Perron algorithm is defined

$$\{(a,b,c) \in \mathbb{R}^3 \, | \, 0 \leq a,b < c\}$$

Set $B = \lfloor b/a \rfloor a$, $C = \lfloor c/a \rfloor$

$$\left(\begin{array}{c} a_1\\ b_1\\ c_1\end{array}\right) = \left(\begin{array}{cc} -B & 1 & 0\\ -C & 0 & 1\\ 1 & 0 & 0\end{array}\right) \left(\begin{array}{c} a\\ b\\ c\end{array}\right)$$

• The matrix $\begin{pmatrix} -B & 1 & 0 \\ -C & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ belongs to $SL_3(\mathbb{Z}).$ It is invertible

• The Jacobi-Perron algorithm is unimodular

• The inverse of
$$\begin{pmatrix} -B & 1 & 0 \\ -C & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 belongs to $SL_3(\mathbb{N})$

Recognition

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Jacobi-Perron algorithm

The inverse of
$$\begin{pmatrix} -B & 1 & 0\\ -C & 0 & 1\\ 1 & 0 & 0 \end{pmatrix}$$
 belongs to $SL_3(\mathbb{N})$
$$\begin{pmatrix} a_1\\ b_1\\ c_1 \end{pmatrix} = \begin{pmatrix} -B & 1 & 0\\ -C & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix}$$

We can tile $I_a \cup I_b \cup I_c$ by intervals $I_{a_1}, I_{b_1}, I_{c_1}$

$$\left(\begin{array}{c}a\\b\\c\end{array}\right)=\left(\begin{array}{c}0&0&1\\1&0&B\\0&1&C\end{array}\right)\left(\begin{array}{c}a_1\\b_1\\c_1\end{array}\right)$$

Recognition

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Jacobi-Perron substitution

The equation

$$ap + bq + cr = a_1p_1 + b_1q_1 + c_1r_1$$

provides a relation between (p_1, q_1, r_1) and (p, q, r)

We now can go from the induced orbit to the original full orbit under the \mathbb{Z}^2 -action

													•	•						
		•						٠	•						•	٠				
		-	٠	•			•			•	٠	•					•	٠	•	•
-			•		•	٠	٠			•			•	•	•		-	•	-	٠
•	•	•			•		-	•	•	•		-			•	•		-		•
•			٠	•	•		-		-	•	•	•	•	-	•			٠	•	•
•			-	-	•	•	•	•	-	•		-	•	•	•			-		•
•	•	•	•		•		•	•	•	•		•	•		•	•	•	•		•
•			•	•	•			•		•	•	•	•		•			•	•	•
•						•	•						•							•

 $\mathcal{P}_{\vec{n}} \leadsto \mathsf{full} \mathsf{ orbit}$

 $\mathcal{P}_{\vec{n}_1} \rightsquigarrow \mathsf{induced orbit}$

We want to reconstruct the full orbit from the induced orbit

We want to reconstruct $\mathcal{P}_{\vec{n}}$ from $\mathcal{P}_{\vec{n_1}}$

Recognition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

From a continued fraction algorithm to substitutions

We are given a unimodular matrix $M \in SL_3(\mathbb{N})$ which describes a continued fraction algorithm $\vec{n} = M \, \vec{n}$

$$ap + bq + cr = a_1p_1 + b_1q_1 + c_1r_1$$

 $\langle \vec{n}, \vec{x} \rangle = \langle \vec{n_1}, \vec{x_1} \rangle$

Hence

$$\langle \vec{n}, \vec{x} \rangle = \langle M \, \vec{n_1}, \vec{x} \rangle = \langle \vec{n_1}, {}^t M \, \vec{x} \rangle$$

provides

$$\vec{x} \rightsquigarrow \vec{x_1} = {}^t M \vec{x}$$

We go from $\mathcal{P}_{\vec{n_1}}$ to $\mathcal{P}_{\vec{n}}$ by

 $\vec{x_1} \mapsto {}^t M^{-1} \vec{x}$

We then use a tiling of $I_a \cup I_b \cup I_c$ by intervals $I_{a_1}, I_{b_1}, I_{c_1}$

From a continued fraction algorithm to substitutions

• We go from $\mathcal{P}_{\vec{n_1}}$ to $\mathcal{P}_{\vec{n}}$ by

$$\vec{x_1} \mapsto {}^t M^{-1} \vec{x}$$

- The way we tile $I_a \cup I_b \cup I_c$ by intervals $I_{a_1}, I_{b_1}, I_{c_1}$ is noncanonical
- With each such choice is associated a substitution rule

Continued fraction algorithm \rightsquigarrow Induction process \rightsquigarrow Substitution rule

Theorem [Arnoux, B., Ito]

Let σ be a unimodular substitution. Let $\vec{n} \in \mathbb{R}^d_+$ be a positive vector. The substitution rule maps without overlaps the stepped plane $\mathcal{P}_{\vec{n},h}$ onto $\mathcal{P}_{M\vec{n},h}$.

Recognition

Substitutions

Let σ be a substitution on \mathcal{A} . Example:

$$\sigma(1) = 12, \ \sigma(2) = 13, \ \sigma(3) = 1.$$

The incidence matrix \mathbf{M}_{σ} of σ is defined by

$$\mathbf{M}_{\sigma} = (|\sigma(j)|_i)_{(i,j)\in\mathcal{A}^2},$$

where $|\sigma(j)|_i$ counts the number of occurrences of the letter *i* in $\sigma(j)$.

Unimodular substitution

 $\det\,{\bf M}_\sigma=\pm 1$

Abelianisation

Let d be the cardinality of \mathcal{A} . Let $\mathsf{I}:\mathcal{A}^\star o \mathbb{N}^d$ be the abelinisation map

 $I(w) = {}^{t}(|w|_{1}, |w|_{2}, \cdots, |w|_{d}).$

Recognition

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Generalized substitutions

Let $(x, 1^*)$, $(x, 2^*)$, $(x, 3^*)$ stand for the following faces

Generalized substitution [Arnoux-Ito][Ei]

Let σ be a unimodular morphism of the free froup.

$$E_1^*(\sigma)(\mathbf{x}, i^*) = \sum_{k \in \mathcal{A}} \sum_{P, \sigma(k) = PiS} (\mathsf{M}_{\sigma}^{-1}(\mathbf{x} - \mathsf{I}(P)), k^*).$$

Induction

Generation

Ostrowski

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recognition

Action on planes and surfaces

Theorem [Arnoux-Ito, Fernique]

Let σ be a unimodular substitution. Let $\vec{n} \in \mathbb{R}^d_+$ be a positive vector. The generalized substitution $E_1^*(\sigma)$ maps without overlaps the stepped plane $\mathcal{P}_{\vec{n},h}$ onto $\mathcal{P}_{tM_{\sigma}\vec{n},h}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Ostrowski expansion of real numbers

Ostrowski's representation of integers can be extended to real numbers.

The base is given by the sequence $(\theta_n)_{n\geq 0}$, where $\theta_n = (q_n\alpha - p_n)$.

Every real number $-\alpha \leq \beta < 1-\alpha$ can be expanded uniquely in the form

$$\beta = \sum_{k=1}^{+\infty} c_k \theta_{k-1},$$

where

$$\begin{cases} 0 \leq c_1 \leq a_1 - 1\\ 0 \leq c_k \leq a_k \text{ for } k \geq 2\\ c_k = 0 \text{ if } c_{k+1} = a_{k+1}\\ c_k \neq a_k \text{ for infinitely many odd integers.} \end{cases}$$

Induction

Generation

Ostrowski

Recognition

A skew product of the Gauss map

We consider the following skew product of the Gauss map

$$\mathcal{T} \colon (lpha, eta) \mapsto (\{1/lpha\}, \{eta/lpha\}) = (1/lpha - eta_1, eta/lpha - eta_1) = (lpha_1, eta_1).$$

We have

 $\beta_1 = \beta/\alpha - b_1$ and thus $\beta = b_1 \alpha + \alpha \beta_1$.

We deduce that

$$\beta = \sum_{k=1}^{+\infty} b_k \alpha \alpha_1 \cdots \alpha_{k-1} = \sum_{k=1}^{+\infty} b_k |q_{k-1}\alpha - p_{k-1}|.$$

A skew product of the Gauss map

We consider the following skew product of the Gauss map

$$T: (\alpha, \beta) \mapsto (\{1/\alpha\}, \{\beta/\alpha\}) = (1/\alpha - a_1, \beta/\alpha - b_1) = (\alpha_1, \beta_1).$$

We have

$$\beta_1 = \beta/\alpha - b_1$$
 and thus $\beta = b_1 \alpha + \alpha \beta_1$.

We deduce that

$$\beta = \sum_{k=1}^{+\infty} b_k \alpha \alpha_1 \cdots \alpha_{k-1} = \sum_{k=1}^{+\infty} b_k |q_{k-1}\alpha - p_{k-1}|.$$

Indeed we use the fact that

$$\left(\begin{array}{c}1\\\alpha_n\end{array}\right) = \frac{1}{\alpha \cdots \alpha_{n-1}} \mathbf{M}_{\mathbf{a}_n}^{-1} \cdots \mathbf{M}_{\mathbf{a}_1}^{-1} \left(\begin{array}{c}1\\\alpha\end{array}\right) \text{ where } \mathbf{M}_{\mathbf{a}}^{-1} = \left(\begin{array}{c}0&1\\1&-\mathbf{a}\end{array}\right).$$

We deduce that

$$\alpha \cdots \alpha_{n-1} = \text{ first coordinate of } (\mathbf{M}_{a_1} \cdots \mathbf{M}_{a_n})^{-1} \begin{pmatrix} 1 \\ \alpha \end{pmatrix} = \langle \mathbf{I}_1^{(n)}, (1, \alpha) \rangle.$$

We conclude by noticing

$$\mathbf{M}_{a} = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \mathbf{M}_{a_{1}} \cdots \mathbf{M}_{a_{n}} = \begin{pmatrix} q_{n} & q_{n-1} \\ p_{n} & p_{n-1} \end{pmatrix}$$

Recognition

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A skew product of the Gauss map

We consider the following skew product of the Gauss map

$$T: (\alpha, \beta) \mapsto (\{1/\alpha\}, \{\beta/\alpha\}) = (1/\alpha - a_1, \beta/\alpha - b_1) = (\alpha_1, \beta_1).$$

We have

$$\beta_1 = \beta/\alpha - b_1$$
 and thus $\beta = b_1 \alpha + \alpha \beta_1$.

We deduce that

$$\beta = \sum_{k=1}^{+\infty} b_k \alpha \alpha_1 \cdots \alpha_{k-1} = \sum_{k=1}^{+\infty} b_k |q_{k-1}\alpha - p_{k-1}|.$$

We similarly consider the following skew product of the Brun map

$$\mathcal{T}(\alpha,\beta,\gamma) = \begin{cases} (\beta/\alpha, 1/\alpha - \mathbf{a}_1, \gamma/\alpha - \mathbf{b}_1) & \text{if } \beta < \alpha \\ (1/\beta - \mathbf{a}_1, \alpha/\beta, \gamma/\beta - \mathbf{b}_1) & \text{if } \beta > \alpha \end{cases}$$

or of the Jacobi-Perron map

$$T(\alpha,\beta,\gamma) = (\{\beta/\alpha\},\{1/\alpha\},\{\gamma/\alpha\}).$$

Recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Jacobi-Perron algorithm

The linear Jacobi-Perron algorithm is defined on the positive cone $\{(a, b, c) \in \mathbb{R}^3 | 0 \le a, b < c\}$ by the transformation F:

$$\mathsf{F}(\mathsf{a},\mathsf{b},\mathsf{c}) = (\mathsf{b} - \lfloor \mathsf{b}/\mathsf{a}
floor \mathsf{a}, \mathsf{c} - \lfloor \mathsf{c}/\mathsf{a}
floor \mathsf{a}, \mathsf{a}).$$

Let

$$B = \lfloor b/a \rfloor$$
 and $C = \lfloor c/a \rfloor$.

We have as admissibility conditions

$$0 \leq B_n \leq C_n, \ C_n \geq 1,$$
 if $B_n = C_n$ then $B_{n+1} \neq 0$.

Recognition

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Jacobi-Perron substitutions

We denote by $\sigma_{B,C}$ the substitution over the three- letter alphabet $\{1,2,3\}$ defined by:

$$\sigma_{B,C}(1) = 3, \qquad \sigma_{B,C}(2) = 13^B, \qquad \sigma_{B,C}(3) = 23^C.$$

Its incidence matrix M equals

$$\mathbf{M} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B & C \end{array} \right)$$

Recall that the linear Jacobi-Perron algorithm is defined on the positive cone $\{(a, b, c) \in \mathbb{R}^3 | 0 \le a, b < c\}$ by the transformation F:

$$F(a, b, c) = (b - \lfloor b/a \rfloor a, c - \lfloor c/a \rfloor a, a).$$

If $F(a, b, c) = (a_1, b_1, c_1)$, then

$$(a_1, b_1, c_1) = {}^t \mathsf{M}^{-1}(a, b, c)$$
 with $B = \lfloor b/a \rfloor$ and $C = \lfloor c/a \rfloor$.

Induction

Generation

Ostrowski

Recognition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jacobi Perron generalized substitution

We denote by $\sigma_{B,C}$ the substitution over the three- letter alphabet $\{1,2,3\}$ defined by:

Recognition

(ロ)、(型)、(E)、(E)、 E、 の(の)

Jacobi-Perron substitutions

The linear Jacobi-Perron algorithm is defined by

$$F(a, b, c) = (a_1, b_1, c_1) = (b - \lfloor b/a \rfloor a, c - \lfloor c/a \rfloor a, a).$$

We have

$$\sigma_{B,C}(1) = 3, \qquad \sigma_{B,C}(2) = 13^{B}, \qquad \sigma_{B,C}(3) = 23^{C}, \ \mathbf{M} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & B & C \end{pmatrix}$$

We thus have

$$(a, b, c) = {}^t M(a_1, b_1, c_1)$$

with $B = \lfloor b/a \rfloor$ and $C = \lfloor c/a \rfloor$.

Hence

$$E_1^*(\sigma)(\mathcal{P}_{(a_1,b_1,c_1)}) = \mathcal{P}_{(a,b,c)}.$$

Recognition

Jacobi-Perron substitutions

We have

$$E_1^*(\sigma)(\mathcal{P}_{(a_1,b_1,c_1)})=\mathcal{P}_{(a,b,c)}.$$

If we obtain the JP digits $(B_1, C_1) \cdots (B_n, C_n)$, then

$$E_1^*(\sigma_{(B_1,C_1)}) \circ E_1^*(\sigma_{(B_2,C_2)}) \cdots \circ E_1^*(\sigma_{(B_n,C_n)}) \mathcal{P}_{(a_n,b_n,c_n)} = \mathcal{P}_{(a,b,c)}.$$

Since the unit cube \mathcal{U} belongs to every discrete plane, we conclude

$$(a_n, b_n, c_n) = F^n(a, b, c) \implies E_1^*(\sigma_{(B_1, C_1)}) \dots E_1^*(\sigma_{(B_n, C_n)})(\mathcal{U}) \subset \mathcal{P}_{(a, b, c)}.$$

Question

Does $E_1^*(\sigma_{(B_1,C_1)}) \dots E_1^*(\sigma_{(B_n,C_n)})(\mathcal{U}) \subset \mathcal{P}_{(a,b,c)}$ generate the whole plane $\mathcal{P}_{(a,b,c)}$?

Recognition

Generation of a discrete plane

Question

Consider a discrete plane $\mathfrak{P}_{(a,b,c)}$. Let \mathcal{U} be the unit cube at the origin. By considering the iterates of \mathcal{U} under the action of a generalized substitution, are we able to generate generate the whole discrete plane $\mathfrak{P}_{(a,b,c)}$?

Induction

Generation

Ostrowski

Recognition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometric Finiteness Property

Definition

Let σ be a unimodular Pisot substitution. The geometric (F)-property is satisfied if and only if

$$\mathcal{P}_{\sigma} = \bigcup_{k \in \mathbb{N}} (E_1^*(\sigma))^k (\mathcal{U}).$$

(F) $d_{\beta}(x)$ finite for all $x \in \mathbb{Z}[1/\beta] \cap [0,1)$

Recognition

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Jacobi Perron expansions

Theorem [Ito-Ohtsuki]

There exists a finite set of faces V with $U \subset V$ s.t. if there exists *n* such that for all *k*

- $B_{n+3k} = C_{n+3k}$
- ② $C_{n+3k} B_{n+3k} ≥ 1$
- 3 $B_{n+3k+2} = 0$,

then the sequence of patterns

$$E_1^*(\sigma_{(B_1,C_1)}) \dots E_1^*(\sigma_{(B_n,C_n)})(\mathcal{V})$$

generates the whole plane $\mathcal{P}_{(a,b,c)}$. Otherwise, the sequence of patterns

$$E_1^*(\sigma_{(B_1,C_1)}) \dots E_1^*(\sigma_{(B_n,C_n)})(\mathcal{U})$$

generates the whole plane $\mathcal{P}_{(a,b,c)}$.

Recognition

Boundary of fundamental domains

The sequence of patterns

$$E_1^*(\sigma_{(B_1,C_1)}) \dots E_1^*(\sigma_{(B_n,C_n)})(\mathcal{U})$$

generates the whole plane $\mathcal{P}_{(a,b,c)}$

What is the shape of these patterns?

Theorem [Ei] Let σ be an invertible three-letter substitution. The boundary of $\widetilde{E_1^*(\sigma)(\mathcal{U})}$ is given by $\widetilde{\sigma^{-1}}$, the mirror image of the inverse of σ

Theorem [B.,Lacasse,Paquin,Provençal] Take any admissible JP expansion. The boundaries of the patterns

$$E_1^*(\sigma_{(B_1,C_1)}) \dots E_1^*(\sigma_{(B_n,C_n)})(\mathcal{U})$$

are selfavoiding curves.

Question Does the renormalization provide a Rauzy fractal with disjoint subpieces?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Multidimensional continued fractions and discrete geometry

- Approximate a direction par nested cones
- Lattice reduction
- Multidimensional Euclid algorithm
- A sequence of best approximations

We would like to get

- Reasonable convergence speed
- Reasonable computation time of the rational approximations with respect to the precision
- Detect rational dependencies
- Characterization of cubic numbers

Recognition

Convergence

Theorem

There exists $\delta > 0$ s.t. for a.e. (α, β) , there exists $n_0 = n_0(\alpha, \beta)$ s.t. for all $n \ge n_0$

$$ert lpha - p_n/q_n ert < rac{1}{q_n^{1+\delta}}$$
 $ert eta - r_n/q_n ert < rac{1}{q_n^{1+\delta}},$

where p_n , q_n , r_n are given by Brun/JP.

Brun [Ito-Fujita-Keane-Ohtsuki '93+'96]; Jacobi-Perron [Broise-Guivarc'h '99]

Generation

Ostrowski

Recognition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Brun's algorithm

Brun's transformation is defined on $[0,1]^d \setminus \{0\}$ by

$$T(\alpha_1, \cdots, \alpha_d) = \left(\frac{\alpha_1}{\alpha_d}, \cdots, \frac{\alpha_{i-1}}{\alpha_i}, \left\{\frac{1}{\alpha_i}\right\}, \frac{\alpha_{i+1}}{\alpha_i}, \cdots, \frac{\alpha_d}{\alpha_i}\right),$$

where

$$i = \min\{j \mid \alpha_j = ||\alpha||_{\infty}\}.$$

The $\ensuremath{\,{\rm linear}}$ version is obtained by subtracting the second largest entry to the largest one

Arithmetics	Geometry
$\textit{d}\text{-uple } \alpha \in [0,1]^{d}$	stepped plane $\mathcal{P}_{(1,lpha)}$
$(1, \alpha_n) \propto B_n(1, \alpha_{n+1})$	$\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with ^t B _n incidence matrice of σ_n

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1, lpha_0, eta_0) = (1, rac{11}{14}, rac{19}{21})$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,rac{11}{14},rac{19}{21}) \propto B_{1,2}(1,rac{33}{38},rac{2}{19})$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,rac{33}{38},rac{2}{19}) \propto B_{1,1}(1,rac{5}{33},rac{4}{33})$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,rac{5}{33},rac{4}{33}) \propto B_{6,1}(1,rac{3}{4},rac{4}{5})$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,rac{3}{4},rac{4}{5}) \propto B_{1,2}(1,rac{3}{4},rac{1}{4})$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,rac{3}{4},rac{1}{4}) \propto B_{1,1}(1,rac{1}{3},rac{1}{3})$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,rac{1}{3},rac{1}{3}) \propto B_{3,1}(1,0,1)$	

Arithmetics	Geometry
$d ext{-uple } lpha \in [0,1]^d$ $(1,lpha_n) \propto B_n(1,lpha_{n+1})$	stepped plane $\mathcal{P}_{(1,\alpha)}$ $\mathcal{P}_{(1,\alpha_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\alpha_{n+1})})$ with tB_n incidence matrice of σ_n
$(1,0,1) \propto B_{1,2}(1,0,0)$	

Recognition

S-adic expansions

We want to consider not only a substitution but a sequence of substitutions.

