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A classical problem in Diophantine approximation

How to approximate a line in R3 by points in Z3 ?

How to define a discrete line in R3?
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... and its dual version

How to approximate a plane in R3 by points in Z3 ?
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Numeration/representation systems in discrete geometry

• Continued fractions (regular, multidimensional unimodular)

• S-adic systems (infinite composition of a finite number of substitutions)

Continued fractions/ Ostrowski numeration

Jacobi-Perron, Brun c.f., generalized substitutions
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Arithmetic discrete plane

Let a, b, c be strictly positive real numbers

The (standard) arithmetic discrete plane P((a,b,c),h) is defined as

P((a,b,c),h) = {(p, q, r) ∈ Z3 | 0 ≤ ap + bq + cr + h < a + b + c}.

We consider the stepped surface P((a,b,c),h) defined as the union of the facets of
integer translates of unit cubes whose set of integer vertices equals P((a,b,c),h)
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A first dynamical description

Let E1, E2, and E3 be the three following faces:

e1 e2

e3

0 0 0

P((a,b,c),h) = {(p, q, r) ∈ Z3 | 0 ≤ ap + bq + cr + h < a + b + c}.

A point (p, q, r) ∈ Z3 is the distinguished vertex of a face in P((a,b,c),h) of type

• 1 if and only if ap + bq + cr + h ∈ [0, a[

• 2 if and only if ap + bq + cr + h ∈ [a, a + b[

• 3 if and only if ap + bq + cr + h ∈ [a + b, a + b + c[
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A first dynamical description

A point (p, q, r) ∈ Z3 is the distinguished vertex of a face in P((a,b,c),h) of type

• 1 if and only if ap + bq + cr + h ∈ [0, a[

• 2 if and only if ap + bq + cr + h ∈ [a, a + b[

• 3 if and only if ap + bq + cr + h ∈ [a + b, a + b + c[

The triple of strictly positive numbers (a, b, c) being fixed, let:

Ra : [0, a + b + c[ → [0, a + b + c[ x 7→ x + a mod a + b + c,

Rb : [0, a + b + c[ → [0, a + b + c[ x 7→ x + b mod a + b + c.

Discrete planes are codings of Z2-actions



Induction Generation Ostrowski Recognition

A first dynamical description

A point (p, q, r) ∈ Z3 is the distinguished vertex of a face in P((a,b,c),h) of type

• 1 if and only if ap + bq + cr + h ∈ [0, a[

• 2 if and only if ap + bq + cr + h ∈ [a, a + b[

• 3 if and only if ap + bq + cr + h ∈ [a + b, a + b + c[

We can deduce information on

• possible local configurations/factors

• density of factors

Arithmetic discrete planes with the same normal vector have the same language
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Toward an arithmetic representation

We can deduce information on

• possible local configurations/factors

• density of factors

We would like to be able to

• Generate discrete planes

• Recognize discrete planes: given a set of points in Z3, is it contained in an
arithmetic discrete plane?
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How to describe a discrete plane?

We will use a classical strategy based on

• induction/first return map

• substitutions

• continued fractions

P~n,h = {~x ∈ Z3 | 0 ≤ 〈~n, ~x〉+ h < a + b + c}

We want to describe P~n,h w.r. to

• A continued fraction algorithm for the normal vector ~n

• An Ostrowski-type numeration system associated with the chosen c.f.a. for h
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Induction

The induced map TA of a map T on a subset A is defined by

TA(x) = T nx (x) with nx = inf{p > 0|T p(x) ∈ A}.

What is the meaning for a Z2-action?

• if I is the induction interval, consider the set of (m, n) such that Rm
a Rn

b x ∈ I .

• This subset is NOT a sublattice of Z2

We want to reorganize the induced orbit and give a one-to-one correspondence with
the original one in terms of substitutions

substitution = reconstruction of the lost information
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Connectedness of arithmetic planes

Question

Find the smallest width ω for which the plane P(~n, h, ω)

P~n,h,ω = {~x ∈ Zd | 0 ≤ 〈~x ,~n〉+ h < ω}

is connected.

Rational parameters: [Brimkov-Barneva] [Gérard][Jamet-Toutant]
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Jacobi-Perron algorithm

The projective Jacobi-Perron algorithm is defined on the unit square
X = [0, 1)× [0, 1) by:

Φ(α, β) =

„
β

α
− b

β

α
c,

1

α
− b

1

α
c
«

= ({β/α}, {1/α})

The linear Jacobi-Perron algorithm is defined on the positive cone

{(a, b, c) ∈ R3|0 ≤ a, b < c}

by:
F (a, b, c) = (b − bb/aca, c − bc/aca, a).
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Jacobi-Perron algorithm

The linear Jacobi-Perron algorithm is defined on the positive cone

{(a, b, c) ∈ R3 | 0 ≤ a, b < c}

by
(a1, b1, c1) = (b − bb/aca, c − bc/aca, a).

Set B = bb/aca, C = bc/ac0@ a1

b1

c1

1A =

0@ −B 1 0
−C 0 1
1 0 0

1A 0@ a
b
c

1A
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Jacobi-Perron algorithm

The linear Jacobi-Perron algorithm is defined

{(a, b, c) ∈ R3 | 0 ≤ a, b < c}

Set B = bb/aca, C = bc/ac0@ a1

b1

c1

1A =

0@ −B 1 0
−C 0 1
1 0 0

1A 0@ a
b
c

1A

• The matrix

0@ −B 1 0
−C 0 1
1 0 0

1A belongs to SL3(Z). It is invertible

• The Jacobi-Perron algorithm is unimodular

• The inverse of

0@ −B 1 0
−C 0 1
1 0 0

1A belongs to SL3(N)
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Jacobi-Perron algorithm

The inverse of

0@ −B 1 0
−C 0 1
1 0 0

1A belongs to SL3(N)

0@ a1

b1

c1

1A =

0@ −B 1 0
−C 0 1
1 0 0

1A 0@ a
b
c

1A

We can tile Ia ∪ Ib ∪ Ic by intervals Ia1 , Ib1
, Ic1

0@ a
b
c

1A =

0@ 0 0 1
1 0 B
0 1 C

1A 0@ a1

b1

c1

1A



Induction Generation Ostrowski Recognition

Jacobi-Perron substitution

The equation
ap + bq + cr = a1p1 + b1q1 + c1r1

provides a relation between (p1, q1, r1) and (p, q, r)

We now can go from the induced orbit to the original full orbit under the Z2-action

P~n  full orbit

P~n1
 induced orbit

We want to reconstruct the full orbit from the induced orbit

We want to reconstruct P~n from P~n1
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From a continued fraction algorithm to substitutions

We are given a unimodular matrix M ∈ SL3(N) which describes a continued fraction
algorithm

~n = M ~n1

We want
ap + bq + cr = a1p1 + b1q1 + c1r1

〈~n, ~x〉 = 〈 ~n1, ~x1〉

Hence
〈~n, ~x〉 = 〈M ~n1, ~x〉 = 〈 ~n1,

tM ~x〉

provides
~x  ~x1 = tM ~x

We go from P~n1
to P~n by

~x1 7→ tM−1 ~x

We then use a tiling of Ia ∪ Ib ∪ Ic by intervals Ia1 , Ib1
, Ic1
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From a continued fraction algorithm to substitutions

• We go from P~n1
to P~n by

~x1 7→ tM−1 ~x

• The way we tile Ia ∪ Ib ∪ Ic by intervals Ia1 , Ib1
, Ic1 is noncanonical

• With each such choice is associated a substitution rule

Continued fraction algorithm  Induction process  Substitution rule

Theorem [Arnoux,B.,Ito]

Let σ be a unimodular substitution. Let ~n ∈ Rd
+ be a positive vector. The substitution

rule maps without overlaps the stepped plane P~n,h onto PM ~n,h.

Θ∗
σ
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Substitutions

Let σ be a substitution on A.
Example:

σ(1) = 12, σ(2) = 13, σ(3) = 1.

The incidence matrix Mσ of σ is defined by

Mσ = (|σ(j)|i )(i,j)∈A2 ,

where |σ(j)|i counts the number of occurrences of the letter i in σ(j).

Unimodular substitution

det Mσ = ±1

Abelianisation

Let d be the cardinality of A. Let l : A? → Nd be the abelinisation map

l(w) = t(|w |1, |w |2, · · · , |w |d ).
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Generalized substitutions

Let (x, 1∗), (x, 2∗), (x, 3∗) stand for the following faces

e
3

e
1

e
2

x

e
3

e
1

e
2

x

e
3

e
1

e
2

x

Generalized substitution [Arnoux-Ito][Ei]

Let σ be a unimodular morphism of the free froup.

E∗1 (σ)(x, i∗) =
X
k∈A

X
P, σ(k)=PiS

(M−1
σ (x− l(P)) , k∗).

Θ
∗

Θ

Θσ

∗

σ

∗

Θσ

∗

σ
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Action on planes and surfaces

Theorem [Arnoux-Ito, Fernique]

Let σ be a unimodular substitution. Let ~n ∈ Rd
+ be a positive vector. The generalized

substitution E∗1 (σ) maps without overlaps the stepped plane P~n,h onto PtMσ~n,h.

Θ∗
σ

Θ
∗

σ
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Ostrowski expansion of real numbers

Ostrowski’s representation of integers can be extended to real numbers.

The base is given by the sequence (θn)n≥0, where θn = (qnα− pn).

Every real number −α ≤ β < 1− α can be expanded uniquely in the form

β =
+∞X
k=1

ckθk−1,

where 8>><>>:
0 ≤ c1 ≤ a1 − 1
0 ≤ ck ≤ ak for k ≥ 2
ck = 0 if ck+1 = ak+1

ck 6= ak for infinitely many odd integers.
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A skew product of the Gauss map

We consider the following skew product of the Gauss map

T : (α, β) 7→ ({1/α}, {β/α}) = (1/α− a1, β/α− b1) = (α1, β1).

We have
β1 = β/α− b1 and thus β = b1α + αβ1.

We deduce that

β =
+∞X
k=1

bkαα1 · · ·αk−1 =
+∞X
k=1

bk |qk−1α− pk−1|.
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A skew product of the Gauss map
We consider the following skew product of the Gauss map

T : (α, β) 7→ ({1/α}, {β/α}) = (1/α− a1, β/α− b1) = (α1, β1).

We have
β1 = β/α− b1 and thus β = b1α + αβ1.

We deduce that

β =
+∞X
k=1

bkαα1 · · ·αk−1 =
+∞X
k=1

bk |qk−1α− pk−1|.

Indeed we use the fact that„
1
αn

«
=

1

α · · ·αn−1
M−1

an
· · ·M−1

a1

„
1
α

«
where M−1

a =

„
0 1
1 −a

«
.

We deduce that

α · · ·αn−1 = first coordinate of (Ma1 · · ·Man )
−1

„
1
α

«
= 〈l(n)

1 , (1, α)〉.

We conclude by noticing

Ma =

„
a 1
1 0

«
and Ma1 · · ·Man =

„
qn qn−1

pn pn−1

«
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A skew product of the Gauss map

We consider the following skew product of the Gauss map

T : (α, β) 7→ ({1/α}, {β/α}) = (1/α− a1, β/α− b1) = (α1, β1).

We have
β1 = β/α− b1 and thus β = b1α + αβ1.

We deduce that

β =
+∞X
k=1

bkαα1 · · ·αk−1 =
+∞X
k=1

bk |qk−1α− pk−1|.

We similarly consider the following skew product of the Brun map

T (α, β, γ) =


(β/α, 1/α− a1, γ/α− b1) if β < α
(1/β − a1, α/β, γ/β − b1) if β > α

or of the Jacobi-Perron map

T (α, β, γ) = ({β/α}, {1/α}, {γ/α}).
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Jacobi-Perron algorithm

The linear Jacobi-Perron algorithm is defined on the positive cone
{(a, b, c) ∈ R3|0 ≤ a, b < c} by the transformation F :

F (a, b, c) = (b − bb/aca, c − bc/aca, a).

Let
B = bb/ac and C = bc/ac.

We have as admissibility conditions

0 ≤ Bn ≤ Cn, Cn ≥ 1, if Bn = Cn then Bn+1 6= 0.
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Jacobi-Perron substitutions

We denote by σB,C the substitution over the three- letter alphabet {1, 2, 3} defined by:

σB,C (1) = 3, σB,C (2) = 13B , σB,C (3) = 23C .

Its incidence matrix M equals

M =

0@ 0 1 0
0 0 1
1 B C

1A
Recall that the linear Jacobi-Perron algorithm is defined on the positive cone
{(a, b, c) ∈ R3|0 ≤ a, b < c} by the transformation F :

F (a, b, c) = (b − bb/aca, c − bc/aca, a).

If F (a, b, c) = (a1, b1, c1), then

(a1, b1, c1) = tM−1(a, b, c) with B = bb/ac and C = bc/ac.
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Jacobi Perron generalized substitution

We denote by σB,C the substitution over the three- letter alphabet {1, 2, 3} defined by:

σB,C (1) = 3, σB,C (2) = 13B , σB,C (3) = 23C .

7→ 7→

7→ 7→
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Jacobi-Perron substitutions

The linear Jacobi-Perron algorithm is defined by

F (a, b, c) = (a1, b1, c1) = (b − bb/aca, c − bc/aca, a).

We have

σB,C (1) = 3, σB,C (2) = 13B , σB,C (3) = 23C , M =

0@ 0 1 0
0 0 1
1 B C

1A
We thus have

(a, b, c) = tM (a1, b1, c1)

with B = bb/ac and C = bc/ac.

Hence

E∗1 (σ)(P(a1,b1,c1)) = P(a,b,c).
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Jacobi-Perron substitutions

We have
E∗1 (σ)(P(a1,b1,c1)) = P(a,b,c).

If we obtain the JP digits (B1, C1) · · · (Bn, Cn), then

E∗1 (σ(B1,C1)) ◦ E∗1 (σ(B2,C2)) · · · ◦ E∗1 (σ(Bn,Cn))P(an,bn,cn) = P(a,b,c).

Since the unit cube U belongs to every discrete plane, we conclude

(an, bn, cn) = F n(a, b, c) =⇒ E∗1 (σ(B1,C1)) . . . E∗1 (σ(Bn,Cn))(U) ⊂ P(a,b,c).

Question

Does E∗1 (σ(B1,C1)) . . . E∗1 (σ(Bn,Cn))(U) ⊂ P(a,b,c) generate the whole plane P(a,b,c)?
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Generation of a discrete plane

Question

Consider a discrete plane P(a,b,c). Let U be the unit cube at the origin. By
considering the iterates of U under the action of a generalized substitution, are we
able to generate generate the whole discrete plane P(a,b,c)?
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Geometric Finiteness Property

Definition

Let σ be a unimodular Pisot substitution. The geometric (F)-property is satisfied if
and only if

Pσ =
[
k∈N

(E∗1 (σ))k (U).

(F) dβ(x) finite for all x ∈ Z[1/β] ∩ [0, 1)
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Jacobi Perron expansions

Theorem [Ito-Ohtsuki]

There exists a finite set of faces V with U ⊂ V s.t. if there exists n such that for all k

1 Bn+3k = Cn+3k

2 Cn+3k − Bn+3k ≥ 1

3 Bn+3k+2 = 0,

then the sequence of patterns

E∗1 (σ(B1,C1)) . . . E∗1 (σ(Bn,Cn))(V)

generates the whole plane P(a,b,c).
Otherwise, the sequence of patterns

E∗1 (σ(B1,C1)) . . . E∗1 (σ(Bn,Cn))(U)

generates the whole plane P(a,b,c).
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Boundary of fundamental domains

The sequence of patterns

E∗1 (σ(B1,C1)) . . . E∗1 (σ(Bn,Cn))(U)

generates the whole plane P(a,b,c)

What is the shape of these patterns?

Theorem [Ei] Let σ be an invertible three-letter substitution. The boundary of

E∗1 (σ)(U) is given by gσ−1, the mirror image of the inverse of σ

Theorem [B.,Lacasse,Paquin,Provençal] Take any admissible JP expansion. The
boundaries of the patterns

E∗1 (σ(B1,C1)) . . . E∗1 (σ(Bn,Cn))(U)

are selfavoiding curves.
Question Does the renormalization provide a Rauzy fractal with disjoint subpieces?
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Multidimensional continued fractions and discrete geometry

• Approximate a direction par nested cones

• Lattice reduction

• Multidimensional Euclid algorithm

• A sequence of best approximations

We would like to get

• Reasonable convergence speed

• Reasonable computation time of the rational approximations with respect to the
precision

• Detect rational dependencies

• Characterization of cubic numbers
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Convergence

Theorem

There exists δ > 0 s.t. for a.e. (α, β) , there exists n0 = n0(α, β) s.t. for all n ≥ n0

|α− pn/qn| <
1

q1+δ
n

|β − rn/qn| <
1

q1+δ
n

,

where pn, qn, rn are given by Brun/JP.

Brun [Ito-Fujita-Keane-Ohtsuki ’93+’96]; Jacobi-Perron [Broise-Guivarc’h ’99]
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Brun’s algorithm

Brun’s transformation is defined on [0, 1]d\{0} by

T (α1, · · · , αd ) = (
α1

αd
, · · · ,

αi−1

αi
, {

1

αi
},

αi+1

αi
, · · · ,

αd

αi
),

where
i = min{j | αj = ||α||∞}.

The linear version is obtained by subtracting the second largest entry to the largest
one
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, α0, β0) = (1, 11
14

, 19
21

)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 11
14

, 19
21

) ∝ B1,2(1, 33
38

, 2
19

)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 33
38

, 2
19

) ∝ B1,1(1, 5
33

, 4
33

)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 5
33

, 4
33

) ∝ B6,1(1, 3
4
, 4

5
)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 3
4
, 4

5
) ∝ B1,2(1, 3

4
, 1

4
)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 3
4
, 1

4
) ∝ B1,1(1, 1

3
, 1

3
)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 1
3
, 1

3
) ∝ B3,1(1, 0, 1)
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Arithmetics Geometry

d-uple α ∈ [0, 1]d stepped plane P(1,α)

(1, αn) ∝ Bn(1, αn+1) P(1,αn) = Θ∗σn
(P(1,αn+1))

with t Bn incidence matrice of σn

(1, 0, 1) ∝ B1,2(1, 0, 0)
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S-adic expansions

We want to consider not only a substitution but a sequence of substitutions.

Definition

A sequence u is said S-adic if there exist

• a finite set of substitutions S over an alphabet D = {0, ..., d − 1}
• a morphism ϕ from D? to A?

• an infinite sequence of substitutions (σn)n≥1 with values in S
such that

u = lim
n→+∞

σ1σ2...σn(0).
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