MULTIDIMENSIONAL GENERALIZED AUTOMATIC SEQUENCES AND SHAPE-SYMMETRIC MORPHIC WORDS

Emilie Charlier Tomi Kärki Michel Rigo

Department of Mathematics University of Liège

Numération : Mathématiques et Informatique Marseille, March 26th 2009

BACKGROUND

k-ary numeration system, $k \geq 2$ $\Sigma_k = \{0, \dots, k-1\}$

$$n = \sum_{i=0}^{\ell} d_i k^i, d_\ell \neq 0, \quad \operatorname{rep}_k(n) = d_\ell \cdots d_0 \in {\Sigma_k}^*$$

An infinite word $x=(x_n)_{n\geq 0}$ is k-automatic if there exists a DFAO $\mathcal{A}=(Q,q_0,\Sigma_k,\delta,\Gamma,\tau)$ s.t. for all $n\geq 0$,

$$x_n = \tau(\delta(q_0, \operatorname{rep}_k(n))).$$

THEOREM (COBHAM)

Let $k \ge 2$. An infinite word is k-automatic iif it is the image under a coding of an infinite fixed point of a k-uniform morphism.

Abstract Numeration Systems

DEFINITION

An abstract numeration system is a triple $S = (L, \Sigma, <)$ where L is a regular language over a totally ordered alphabet $(\Sigma, <)$.

Enumerating the words of $\it L$ with respect to the genealogical ordering induced by $\it <$ gives a one-to-one correspondence

$$\operatorname{rep}_{S}: \mathbb{N} \to L \qquad \operatorname{val}_{S} = \operatorname{rep}_{S}^{-1}: L \to \mathbb{N}.$$

EXAMPLE

$$L = a^*, \ \Sigma = \{a\}$$

ABSTRACT NUMERATION SYSTEMS

EXAMPLE

EXAMPLE

S-Automatic words

DEFINITION

Let $S = (L, \Sigma, <)$ be an abstract numeration system.

An infinite word $x=(x_n)_{n\geq 0}$ is *S-automatic* if there exists a DFAO $\mathcal{A}=(Q,q_0,\Sigma,\delta,\Gamma,\tau)$ s.t. for all $n\geq 0$,

$$x_n = \tau(\delta(q_0, \operatorname{rep}_S(n))).$$

THEOREM (MAES, RIGO)

An infinite word is S-automatic for some abstract numeration system S iif it is the image under a coding of an infinite fixed point of a morphism, i.e. a morphic word.

IDEA OF THE PROOF IN DIMENSION 1

Example (S-Automatic \rightarrow Morphic)

$$S = (L, \{0, 1, 2\}, 0 < 1 < 2)$$
 where $L = \{w \in \Sigma^* \colon |w|_1 \text{ is odd}\}$

minimal automaton of L

DFAO generating x

n	0	1	2	3	4	5	6	7	8	
$rep_S(n)$	1	01	10	12	21	001	010	012	021	• • •
X	b	а	а	b	b	b	b	а	a	

EXAMPLE (CONTINUED)

$$f: \alpha \mapsto \alpha I_{a} \qquad F_{a} \mapsto F_{b}I_{b}F_{a} \qquad g: \alpha, I_{a}, I_{b} \mapsto \varepsilon$$

$$I_{a} \mapsto I_{b}F_{b}I_{a} \qquad F_{b} \mapsto F_{a}I_{a}F_{b} \qquad F_{a} \mapsto a$$

$$I_{b} \mapsto I_{a}F_{a}I_{b} \qquad F_{b} \mapsto b$$

$$g(f^{\omega}(\alpha)) = x$$

IDEA OF THE PROOF IN DIMENSION 1

Example (Morphic \rightarrow S-Automatic)

Consider the morphism μ defined by $a\mapsto abc$; $b\mapsto bc$; $c\mapsto aac$.

One canonically associates the DFA $\mathcal{A}_{\mu,a}$

$$L_{\mu,a} = \{\varepsilon, 1, 2, 10, 11, 20, 21, 22, 100, 101, 110, 111, 112, 200, \ldots\}$$

If
$$S = (L_{\mu,a}, \{0, 1, 2\}, 0 < 1 < 2)$$
, then

$$(\mu^{\omega}(a))_n = \delta_{\mu}(a, \operatorname{rep}_S(n))$$
 for all $n \geq 0$.

MULTIDIMENSIONAL CASE

A *d-dimensional infinite word* over an alphabet Σ is a map $x: \mathbb{N}^d \to \Sigma$. We use notation like x_{n_1,\dots,n_d} or $x(n_1,\dots,n_d)$ to denote the value of x at (n_1,\dots,n_d) .

If w_1, \ldots, w_d are finite words over the alphabet Σ ,

$$(w_1,\ldots,w_d)^{\#}:=(\#^{m-|w_1|}w_1,\ldots,\#^{m-|w_d|}w_d)$$

where $m = \max\{|w_1|, ..., |w_d|\}.$

EXAMPLE

$$(ab, bbaa)^{\#} = (\#\#ab, bbaa)$$

BACKGROUND

A *d*-dimensional infinite word over an alphabet Γ is *k*-automatic if there exists a DFAO

$$\mathcal{A} = (Q, q_0, (\Sigma_k)^d \setminus \{0, \dots, 0\}, \delta, \Gamma, \tau)$$

s.t. for all $n_1, \ldots, n_d \geq 0$,

$$\tau\left(\delta\left(q_0,(\mathsf{rep}_k(n_1),\ldots,\mathsf{rep}_k(n_d))^0\right)\right)=x_{n_1,\ldots,n_d}.$$

THEOREM (SALON)

Let $k \ge 2$ and $d \ge 1$. A d-dimensional infinite word is k-automatic iif it is the image under a coding of a fixed point of a k-uniform d-dimensional morphism.

BACKGROUND

A *d-dimensional picture* over the alphabet Σ is a map

$$x: \llbracket 0, s_1 - 1 \rrbracket \times \cdots \times \llbracket 0, s_d - 1 \rrbracket \rightarrow \Sigma.$$

The *shape* of x is $|x| = (s_1, \ldots, s_d)$.

If $s_i < \infty$ for all $i \in [1, d]$, then x is said to be bounded.

The set of d-dimensional bounded pictures over Σ is $B_d(\Sigma)$.

A bounded picture x is a square of size c if $s_i = c$ for all $i \in [1, d]$.

EXAMPLE

Consider the two bidimensional pictures

$$x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{and} \quad y = \begin{bmatrix} a & a & b \\ b & c & d \end{bmatrix}$$

of shapes |x| = (2,2) and |y| = (3,2) respectively. Since $|x|_2 = |y|_2 = 2$, we get

$$x \odot^1 y = \begin{array}{|c|c|c|c|c|} \hline a & b & a & a & b \\ \hline c & d & b & c & d \\ \hline \end{array}.$$

But notice that $x \odot^2 y$ is not defined because $2 = |x|_1 \neq |y|_1 = 3$.

EXAMPLE

Consider the map μ given by

Let

$$x = \begin{array}{|c|c|} \hline a & b \\ \hline c & d \end{array}.$$

Since $|\mu(a)|_2 = |\mu(b)|_2 = 2$, $|\mu(c)|_2 = |\mu(d)|_2 = 1$, $|\mu(a)|_1 = |\mu(c)|_1 = 2$ and $|\mu(b)|_1 = |\mu(d)|_1 = 1$, $\mu(x)$ is well defined and given by

$$\mu(x) = \begin{vmatrix} a & a & c \\ b & d & b \\ a & a & d \end{vmatrix}.$$

Notice that $\mu^2(x)$ is not well defined.

BACKGROUND

DEFINITION

Let $\mu: \Sigma \to B_d(\Sigma)$ be a map. If for all $a \in \Sigma$ and all $n \geq 0$, $\mu^n(a)$ is well defined from $\mu^{n-1}(a)$, then μ is said to be a *d-dimensional morphism*.

EXAMPLE

If for all $a \in \Sigma$, $\mu(a)$ has a fixed shape (s_1, s_2) , then the map μ is a morphism.

DEFINITION

If for all $a \in \Sigma$, $\mu(a)$ is a square of size k, then μ is said to be a k-uniform morphism.

BACKGROUND

Let μ be a d-dimensional morphism and a be a letter such that $(\mu(a))_0 = a$. We say that μ is prolongable on a and the limit

$$w = \mu^{\omega}(a) := \lim_{n \to +\infty} \mu^{n}(a)$$

is well defined and $w = \mu(w)$ is a *fixed point* of μ .

A d-dimensional infinite word x over Σ is *purely morphic* if it is a fixed point of a d-dimensional morphism.

It is *morphic* if there exists a coding $\nu : \Gamma \to \Sigma$ such that $x = \nu(y)$ for some purely morphic word y over Γ .

MULTIDIMENSIONAL S-AUTOMATIC WORDS

DEFINITION

Let $S = (L, \Sigma, <)$ be an abstract numeration system.

A d-dimensional infinite word over the alphabet Γ is S-automatic if there exists a DFAO

$$\mathcal{A} = (Q, q_0, (\Sigma \cup \{\#\})^d, \delta, \Gamma, \tau)$$

s.t. for all $n_1, \ldots, n_d \geq 0$,

$$\tau\left(\delta\left(q_0,(\mathsf{rep}_S(n_1),\ldots,\mathsf{rep}_S(n_d))^\#\right)\right)=x_{n_1,\ldots,n_d}.$$

EXAMPLE

Consider $S = (\{a, ba\}^* \{\varepsilon, b\}, \{a, b\}, a < b)$ and the DFAO

Example (Continued)

We produce the following bidimensional infinite S-automatic word :

	ω	Ф	9	вв	ap	ba	aaa	aab	
ε	р	q	q	р	q	р	q	q	•••
а	p	р	5	5	q	5	p	5	
Ь	q	р	S	q	5	q	p	5	
aa	p	р	S	р	5	q	q	5	
ab	q	р	S	р	5	5	S	r	
ba	p	5	q	р	5	q	S	q	
aaa	p	р	S	р	5	q	p	5	
aab	q	р	S	р	5	5	p	5	
:	:								•

DEFINITION (MAES)

Let $\mu: \Sigma \to B_d(\Sigma)$ be a d-dimensional morphism having the d-dimensional infinite word x as a fixed point.

If for any permutation f of $\{1,\ldots,d\}$ and for all $n_1,\ldots,n_d>0$,

$$|\mu(x_{n_1,...,n_d})| = (s_1,...,s_d)$$
 \Downarrow
 $|\mu(x_{n_{f(1)},...,n_{f(d)}})| = (s_{f(1)},...,s_{f(d)}),$

then x is said to be shape-symmetric with respect to μ .

EXAMPLE

$$\mu(a) = \mu(f) = \begin{bmatrix} a & b \\ \hline c & d \end{bmatrix}, \ \mu(b) = \begin{bmatrix} e \\ \hline c \end{bmatrix}, \ \mu(c) = \begin{bmatrix} e & b \\ \hline c & d \end{bmatrix}, \ \mu(d) = \begin{bmatrix} f \\ \hline f \\ \hline g & d \end{bmatrix}, \ \mu(g) = \begin{bmatrix} h & b \\ \hline c & d \end{bmatrix}.$$

Main Result

THEOREM (C., KÄRKI, RIGO)

Let $d \geq 1$. The d-dimensional infinite word x is S-automatic for some abstract numeration system $S = (L, \Sigma, <)$ where $\varepsilon \in L$ iif x is the image under a coding of a shape-symmetric infinite d-dimensional word.

Example (S-Automatic \rightarrow Shape-Symmetric)

Consider $S = (\{a, ba\}^* \{\varepsilon, b\}, \{a, b\}, a < b)$ and the DFAO A

EXAMPLE (CONTINUED)

One associates a uniform bidimensional morphism $\mu_{\mathcal{A}}$ to \mathcal{A} : If $\sigma_0 = \#$, $\sigma_1 = a$ and $\sigma_2 = b$, then

$$\mu_{\mathcal{A}}(t) = z \text{ with } z_{m,n} = \delta(t, (\sigma_m, \sigma_n)).$$

Iterating μ_A from p, we obtain . . .

Example (Continued)

$L \times L$	ω	в	þ	##	#a	q #	#e	aa	ap	#q	ba	qq	
ε	р	q	q	q	р	q	q	р	q	q	р	q	• • • •
a	p	p	S	р	S	q	р	S	q	р	S	p	
b	q	p	S	р	q	S	р	q	S	р	q	S	
##	р	q	q	р	q	q	S	r	S	р	q	q	
#a	р	S	р	р	S	r	q	S	p	р	р	S	
#b	q	p	S	q	р	S	r	S	r	q	р	S	
a#	q	р	q	р	q	q	S	r	S	р	q	q	
aa	p	S	q	р	р	S	r	q	S	р	р	S	
ab	p	q	S	q	p	S	r	S	r	q	р	S	
b#	р	q	q	q	р	q	q	р	q	р	q	q	
ba	p	p	S	р	S	q	р	S	q	р	р	S	
bb	q	p	S	р	q	S	р	q	S	р	q	S	

The subword in blue is the S-automatic word from the beginning.

IDEA OF THE PROOF IN DIMENSION 2

Example (Shape-Symmetric \rightarrow S-Automatic)

$$\mu(a) = \mu(f) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \ \mu(b) = \begin{bmatrix} e \\ c \end{bmatrix}; \ \mu(c) = \begin{bmatrix} e & b \\ c & d \end{bmatrix}; \ \mu(d) = \begin{bmatrix} f \\ d \end{bmatrix}; \ \mu(e) = \begin{bmatrix} e & b \\ g & d \end{bmatrix}; \ \mu(g) = \begin{bmatrix} h & b \\ c & d \end{bmatrix}.$$

$$\mu^{\omega}(a) = \begin{bmatrix} a & b & e & e & b & e & b & e \\ c & d & c & g & d & g & d & c \\ e & b & f & e & b & h & b & f \\ e & b & e & a & b & e & b & e \\ g & d & c & c & d & g & d & c \\ e & b & e & e & b & a & b & e \\ g & d & c & g & d & c & d & c \\ h & b & f & e & b & e & b & f \\ \vdots & & & & & \ddots & \ddots \end{bmatrix}$$

EXAMPLE (CONTINUED)

Consider the morphism μ_1 defined by

$$a\mapsto ab$$
 ; $b\mapsto e$; $e\mapsto eb$.

We have $\mu_1^{\omega}(a) = abeebebeebeebeebeebeebeebeebe \cdots$. One canonically associates the DFA $\mathcal{A}_{\mu_1,a}$

$$L_{\mu_1,a} = \{\varepsilon, 1, 10, 100, 101, 1000, 1001, 1010, 10000, \ldots\}$$

EXAMPLE (CONTINUED)

Consider the morphism μ_2 defined by

$$a \mapsto ac$$
; $c \mapsto e$; $e \mapsto eg$; $g \mapsto h$; $h \mapsto hc$.

We have $\mu_2^{\omega}(\mathbf{a}) = aceegegheghhceghhchceeghhchce \cdots$. One canonically associates the DFA $\mathcal{A}_{\mu_2,\mathbf{a}}$

$$L_{\mu_2,a} = \{\varepsilon, 1, 10, 100, 101, 1000, 1001, 1010, 10000, \ldots\}$$

$$L_{\mu,a} := L_{\mu_1,a} = L_{\mu_2,a}$$

DEFINITION

Let $\mu: \Sigma \to \Sigma^*$ be a morphism having the infinite word $x = x_0 x_1 x_2 \cdots$ as a fixed point.

The shape sequence of x with respect to μ is

$$\mathsf{Shape}_{\mu}(x) = (|\mu(x_k)|)_{k \geq 0}.$$

LEMMA

Let x, y be two infinite (unidimensional) words and λ , μ be two morphisms s.t. there exist letters a, b s.t. $x = \lambda^{\omega}(a)$ and $y = \mu^{\omega}(b)$.

$$L_{\lambda,a} = L_{\mu,b} \Leftrightarrow \mathsf{Shape}_{\lambda}(x) = \mathsf{Shape}_{\mu}(y).$$

EXAMPLE (CONTINUED)

Consider $S = (L_{\mu,a}, \{0,1\}, 0 < 1)$.

	ω	\vdash	10	100	101	1000	1001	1010	
ε	а	b	е	е	b	е	b	е	
1	С	d	С	g	d	g	d	С	
10	е	b	f	е	b	h	b	f	
100	е	b	е	а	b	е	b	е	
101	g	d	С	С	d	g	d	С	
1000	е	b	е	е	b	а	b	е	
1001	g	d	С	g	d	С	d	С	
1010	h	b	f	е	b	е	b	f	
:		:							٠

$$(\mu(y_{\mathsf{val}_{\mathcal{S}}(101),\mathsf{val}_{\mathcal{S}}(10)}))_{0,1} = y_{\mathsf{val}_{\mathcal{S}}(1010),\mathsf{val}_{\mathcal{S}}(101)}$$

Example (Continued)

