Multidimensional Generalized Automatic Sequences and Shape-Symmetric Morphic Words

Emilie Charlier Tomi Kärki Michel Rigo

Department of Mathematics
University of Liège

Numération : Mathématiques et Informatique
Marseille, March 26th 2009
Background

A *k*-ary numeration system, $k \geq 2$

$\Sigma_k = \{0, \ldots, k - 1\}$

$$n = \sum_{i=0}^{\ell} d_i k^i, \ d_\ell \neq 0, \ \text{rep}_k(n) = d_\ell \cdots d_0 \in \Sigma_k^*$$

An infinite word $x = (x_n)_{n \geq 0}$ is *k-automatic* if there exists a DFAO $A = (Q, q_0, \Sigma_k, \delta, \Gamma, \tau)$ s.t. for all $n \geq 0$,

$$x_n = \tau(\delta(q_0, \text{rep}_k(n))).$$

Theorem (Cobham)

Let $k \geq 2$. An infinite word is *k-automatic* iif it is the image under a coding of an infinite fixed point of a *k-uniform* morphism.
Abstract Numeration Systems

Definition

An *abstract numeration system* is a triple $S = (L, \Sigma, <)$ where L is a regular language over a totally ordered alphabet $(\Sigma, <)$.

Enumerating the words of L with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$\text{rep}_S : \mathbb{N} \rightarrow L \quad \text{val}_S = \text{rep}_S^{-1} : L \rightarrow \mathbb{N}.$$

Example

$L = a^*$, $\Sigma = \{a\}$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>⋯</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep(n)</td>
<td>ε</td>
<td>a</td>
<td>aa</td>
<td>aaa</td>
<td>$aaaa$</td>
<td>⋯</td>
</tr>
</tbody>
</table>

The **Abstract Numeration Systems** study the structure and properties of numeration systems, which are used to represent numbers in a given basis. A numeration system is defined by a regular language L over an alphabet Σ and a linear order $<$ on Σ. The genealogical ordering induced by $<$ allows for the enumeration of words in L, establishing a one-to-one correspondence between the natural numbers and the elements of L.

For instance, consider $L = a^*$, the set of all strings consisting of a. The alphabet $\Sigma = \{a\}$ consists only of the symbol a. The genealogical ordering induced by $<$ defines the order of words in L as $\varepsilon < a < aa < aaa < aaaa < ⋯$. This ordering allows us to map each natural number n to a word in L and vice versa, providing a unique representation of numbers in terms of words over the alphabet $\{a\}$. This mapping is crucial in various applications, including number theory, combinatorics, and computer science.
Abstract Numeration Systems

Example

\[L = \{a, b\}^*, \Sigma = \{a, b\}, \ a < b \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{rep}(n))</td>
<td>(\varepsilon)</td>
<td>a</td>
<td>b</td>
<td>aa</td>
<td>ab</td>
<td>ba</td>
<td>bb</td>
<td>aaa</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Example

\[L = a^*b^*, \Sigma = \{a, b\}, \ a < b \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{rep}(n))</td>
<td>(\varepsilon)</td>
<td>a</td>
<td>b</td>
<td>aa</td>
<td>ab</td>
<td>bb</td>
<td>aaa</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Definition

Let $S = (L, \Sigma, <)$ be an abstract numeration system. An infinite word $x = (x_n)_{n \geq 0}$ is S-automatic if there exists a DFAO $A = (Q, q_0, \Sigma, \delta, \Gamma, \tau)$ s.t. for all $n \geq 0$,

$$x_n = \tau(\delta(q_0, \text{rep}_S(n))).$$

Theorem (Maes, Rigo)

An infinite word is S-automatic for some abstract numeration system S iif it is the image under a coding of an infinite fixed point of a morphism, i.e. a morphic word.
Idea of the Proof in Dimension 1

Example (S-Automatic \rightarrow Morphic)

$$S = (L, \{0, 1, 2\}, 0 < 1 < 2) \text{ where } L = \{w \in \Sigma^*: |w|_1 \text{ is odd}\}$$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>rep$_S(n)$</td>
<td>1</td>
<td>01</td>
<td>10</td>
<td>12</td>
<td>21</td>
<td>001</td>
<td>010</td>
<td>012</td>
<td>021</td>
<td>...</td>
</tr>
<tr>
<td>x</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Example (Continued)

\[f : \alpha \mapsto \alpha I_a \quad F_a \mapsto F_b I_b F_a \quad g : \alpha, I_a, I_b \mapsto \varepsilon \]
\[I_a \mapsto I_b F_b I_a \quad F_b \mapsto F_a I_a F_b \quad F_a \mapsto a \]
\[I_b \mapsto I_a F_a I_b \quad F_b \mapsto b \]

\[L \subseteq \Sigma^* \]
\[
\begin{array}{ccccccccccc}
\varepsilon & 0 & 1 & 2 & 00 & 01 & 02 & 10 & 11 & 12 \\
\hline
f^\omega(\alpha) & \alpha & I_a & I_b & F_b & I_a & I_a & F_a & I_b & F_a & I_a & F_b \\
\hline
x & b & a & a & b
\end{array}
\]

\[g(f^\omega(\alpha)) = x \]
Idea of the Proof in Dimension 1

Example (Morphic → S-Automatic)

Consider the morphism μ defined by $a \mapsto abc$; $b \mapsto bc$; $c \mapsto aac$. We have $\mu^\omega(a) = abcbaacbcacabcabcaacabcabc$.

One canonically associates the DFA $A_{\mu,a}$

$$L_{\mu,a} = \{ \varepsilon, 1, 2, 10, 11, 20, 21, 22, 100, 101, 110, 111, 112, 200, \ldots \}$$

If $S = (L_{\mu,a}, \{0,1,2\}, 0 < 1 < 2)$, then

$$(\mu^\omega(a))_n = \delta_{\mu}(a, \text{rep}_S(n)) \text{ for all } n \geq 0.$$
Multidimensional Case

A *d-dimensional infinite word* over an alphabet Σ is a map $x : \mathbb{N}^d \to \Sigma$. We use notation like x_{n_1, \ldots, n_d} or $x(n_1, \ldots, n_d)$ to denote the value of x at (n_1, \ldots, n_d).

If w_1, \ldots, w_d are finite words over the alphabet Σ,

$$(w_1, \ldots, w_d)^\#: = (\#^{m-|w_1|}w_1, \ldots, \#^{m-|w_d|}w_d)$$

where $m = \max\{|w_1|, \ldots, |w_d|\}$.

Example

$$(ab, bbaa)^\# = (\#\#ab, bbaa)$$
A d-dimensional infinite word over an alphabet Γ is k-automatic if there exists a DFAO

$$\mathcal{A} = (Q, q_0, (\Sigma_k)^d \setminus \{0, \ldots, 0\}, \delta, \Gamma, \tau)$$

s.t. for all $n_1, \ldots, n_d \geq 0$,

$$\tau \left(\delta \left(q_0, (\text{rep}_k(n_1), \ldots, \text{rep}_k(n_d))^0 \right) \right) = x_{n_1,\ldots,n_d}.$$

Theorem (Salon)

Let $k \geq 2$ and $d \geq 1$. A d-dimensional infinite word is k-automatic iff it is the image under a coding of a fixed point of a k-uniform d-dimensional morphism.
Background

A *d-dimensional picture* over the alphabet Σ is a map

$$x : [0, s_1 - 1] \times \cdots \times [0, s_d - 1] \to \Sigma.$$

The *shape* of x is $|x| = (s_1, \ldots, s_d)$.

If $s_i < \infty$ for all $i \in [1, d]$, then x is said to be *bounded*.

The set of d-dimensional bounded pictures over Σ is $B_d(\Sigma)$.

A bounded picture x is a *square* of *size* c if $s_i = c$ for all $i \in [1, d]$.
Example

Consider the two bidimensional pictures

\[x = \begin{array}{cc} a & b \\ c & d \end{array} \quad \text{and} \quad y = \begin{array}{cccc} a & a & b \\ b & c & d \end{array} \]

of shapes \(|x| = (2, 2)\) and \(|y| = (3, 2)\) respectively.

Since \(|x|_2 = |y|_2 = 2\), we get

\[x \odot^1 y = \begin{array}{cccc} a & b & a & a & b \\ c & d & b & c & d \end{array}. \]

But notice that \(x \odot^2 y\) is not defined because \(2 = |x|_1 \neq |y|_1 = 3\).
Example

Consider the map μ given by

\[
 a \mapsto \begin{array}{cc}
 a & a \\
 b & d \\
 \end{array},
 b \mapsto \begin{array}{c}
 c
 \end{array},
 c \mapsto \begin{array}{cc}
 a & a \\
 \end{array},
 d \mapsto \begin{array}{c}
 d
 \end{array}.
\]

Let

\[
 x = \begin{array}{cc}
 a & b \\
 c & d
 \end{array}.
\]

Since $|\mu(a)|_2 = |\mu(b)|_2 = 2$, $|\mu(c)|_2 = |\mu(d)|_2 = 1$, $|\mu(a)|_1 = |\mu(c)|_1 = 2$ and $|\mu(b)|_1 = |\mu(d)|_1 = 1$, $\mu(x)$ is well defined and given by

\[
 \mu(x) = \begin{array}{ccc}
 a & a & c \\
 b & d & b \\
 a & a & d
 \end{array}.
\]

Notice that $\mu^2(x)$ is not well defined.
Background

Definition
Let $\mu : \Sigma \to B_d(\Sigma)$ be a map. If for all $a \in \Sigma$ and all $n \geq 0$, $\mu^n(a)$ is well defined from $\mu^{n-1}(a)$, then μ is said to be a d-dimensional morphism.

Example
If for all $a \in \Sigma$, $\mu(a)$ has a fixed shape (s_1, s_2), then the map μ is a morphism.

Definition
If for all $a \in \Sigma$, $\mu(a)$ is a square of size k, then μ is said to be a k-uniform morphism.
Let μ be a d-dimensional morphism and a be a letter such that $(\mu(a))_0 = a$. We say that μ is *prolongable on a* and the limit

$$w = \mu^\omega(a) := \lim_{n \to +\infty} \mu^n(a)$$

is well defined and $w = \mu(w)$ is a *fixed point* of μ.

A d-dimensional infinite word x over Σ is *purely morphic* if it is a fixed point of a d-dimensional morphism.

It is *morphic* if there exists a coding $\nu : \Gamma \to \Sigma$ such that $x = \nu(y)$ for some purely morphic word y over Γ.
Definition

Let $S = (L, \Sigma, <)$ be an abstract numeration system. A *d-dimensional infinite word* over the alphabet Γ is *S-automatic* if there exists a DFAO

$$\mathcal{A} = (Q, q_0, (\Sigma \cup \{\#\})^d, \delta, \Gamma, \tau)$$

s.t. for all $n_1, \ldots, n_d \geq 0$,

$$\tau \left(\delta \left(q_0, (\operatorname{rep}_S(n_1), \ldots, \operatorname{rep}_S(n_d))\# \right) \right) = x_{n_1, \ldots, n_d}.$$
Example

Consider \(S = (\{a, ba\}^* \{\varepsilon, b\}, \{a, b\}, a < b) \) and the DFA

\[
\begin{align*}
\text{State } p: & \quad (\#, a), (\#, b), (a, \#) \\
\text{State } q: & \quad (a, b), (b, \#), (b, a) \\
\text{State } r: & \quad (a, \#), (b, \#), (b, a) \\
\text{State } s: & \quad (a, b), (b, \#), (b, a)
\end{align*}
\]
We produce the following bidimensional infinite S-automatic word:

	ω	a	b	aa	ab	ba	aaa	aab	\ldots
ε	p	q	q	p	q	p	q	q	\ldots
a	p	p	s	s	q	s	p	s	\ldots
b	q	p	s	q	s	q	p	s	\ldots
aa	p	p	s	p	s	q	q	s	\ldots
ab	q	p	s	p	s	s	s	r	\ldots
ba	p	s	q	p	s	q	s	q	\ldots
aaa	p	p	s	p	s	q	p	s	\ldots
aab	q	p	s	p	s	s	p	s	\ldots
\vdots	\ldots								
Shape-Symmetry

Definition (Maes)

Let $\mu : \Sigma \rightarrow B_d(\Sigma)$ be a d-dimensional morphism having the d-dimensional infinite word x as a fixed point.

If for any permutation f of $\{1, \ldots, d\}$ and for all $n_1, \ldots, n_d > 0$,

$$|\mu(x_{n_1}, \ldots, n_d)| = (s_1, \ldots, s_d)$$

$$\downarrow$$

$$|\mu(x_{nf(1)}, \ldots, nf(d))| = (sf(1), \ldots, sf(d)),$$

then x is said to be *shape-symmetric with respect to μ.*
Example

$$\mu(a) = \mu(f) = \begin{array}{cc} a & b \\ c & d \end{array}, \quad \mu(b) = \begin{array}{c} e \\ c \end{array}, \quad \mu(c) = \begin{array}{cc} e & b \end{array}, \quad \mu(d) = \begin{array}{c} f \end{array},$$

$$\mu(e) = \begin{array}{cc} e & b \\ g & d \end{array}, \quad \mu(g) = \begin{array}{cc} h & b \end{array}, \quad \mu(h) = \begin{array}{cc} h & b \\ c & d \end{array}.$$
Main Result

Theorem (C., Kärki, Rigo)

Let $d \geq 1$. The d-dimensional infinite word x is *S-automatic* for some abstract numeration system $S = (L, \Sigma, <)$ where $\varepsilon \in L$ iif x is the image under a coding of a *shape-symmetric* infinite d-dimensional word.
Idea of the Proof in Dimension 2

Example (S-Automatic \rightarrow Shape-Symmetric)

Consider $S = (\{a, ba\}^*\{\varepsilon, b\}, \{a, b\}, a < b)$ and the DFA \mathcal{A}.
One associates a uniform bidimensional morphism μ_{A} to A: If $\sigma_0 = \#$, $\sigma_1 = a$ and $\sigma_2 = b$, then

$$\mu_A(t) = z \text{ with } z_{m,n} = \delta(t, (\sigma_m, \sigma_n)).$$

$$\mu_A(p) = \begin{array}{ccc}
p & q & q \\
p & p & s \\
q & p & s \\
\end{array} ; \quad \mu_A(q) = \begin{array}{ccc}
q & p & q \\
p & s & q \\
p & q & s \\
\end{array} ;$$

$$\mu_A(r) = \begin{array}{ccc}
r & s & s \\
p & r & s \\
p & r & p \\
\end{array} ; \quad \mu_A(s) = \begin{array}{ccc}
s & r & s \\
r & q & s \\
r & s & r \\
\end{array} .$$

Iterating μ_A from p, we obtain ...
The subword in blue is the S-automatic word from the beginning.
Idea of the Proof in Dimension 2

Example (Shape-Symmetric \rightarrow S-Automatic)

$\mu(a) = \mu(f) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; $\mu(b) = \begin{pmatrix} e \\ c \end{pmatrix}$; $\mu(c) = \begin{pmatrix} e & b \end{pmatrix}$; $\mu(d) = \begin{pmatrix} f \end{pmatrix}$

$\mu(e) = \begin{pmatrix} e & b \\ g & d \end{pmatrix}$; $\mu(g) = \begin{pmatrix} h & b \end{pmatrix}$; $\mu(h) = \begin{pmatrix} h & b \\ c & d \end{pmatrix}$.

$\mu^\omega(a) =$

\[
\begin{array}{cccccccc}
 a & b & e & e & b & e & b & e & \cdots \\
 c & d & c & g & d & g & d & c \\
 e & b & f & e & b & h & b & f \\
 e & b & e & a & b & e & b & e \\
 g & d & c & g & d & c & d & c \\
 e & b & e & e & b & a & b & e \\
 g & d & c & g & d & c & d & c \\
 h & b & f & e & b & e & b & f \\
 \vdots & & & & & & & \vdots \\
\end{array}
\]
Example (Continued)

Consider the morphism μ_1 defined by

$$a \mapsto ab ; b \mapsto e ; e \mapsto eb.$$

We have $\mu_1^\omega(a) = abeebebeebeebeebeebeebeebeebeebeebeebeebeeb \cdots$. One canonically associates the DFA $A_{\mu_1,a}$

$$L_{\mu_1,a} = \{ \varepsilon, 1, 10, 100, 101, 1000, 1001, 1010, 10000, \ldots \}$$
Consider the morphism μ_2 defined by

$$a \mapsto ac ; c \mapsto e ; e \mapsto eg ; g \mapsto h ; h \mapsto hc.$$

We have $\mu_2^\omega(a) = aceegegheghhceghhchceeghhchce \cdots$.

One canonically associates the DFA $A_{\mu_2,a}$

$$L_{\mu_2,a} = \{ \varepsilon, 1, 10, 100, 101, 1000, 1001, 1010, 10000, \ldots \}$$

$$L_{\mu,a} := L_{\mu_1,a} = L_{\mu_2,a}$$
Definition

Let $\mu : \Sigma \to \Sigma^*$ be a morphism having the infinite word $x = x_0x_1x_2 \cdots$ as a fixed point. The *shape sequence of x with respect to μ* is

$$\text{Shape}_\mu(x) = (|\mu(x_k)|)_{k \geq 0}.$$

Lemma

Let x, y be two infinite (unidimensional) words and λ, μ be two morphisms s.t. there exist letters a, b s.t. $x = \lambda^\omega(a)$ and $y = \mu^\omega(b)$.

$$L_{\lambda,a} = L_{\mu,b} \iff \text{Shape}_\lambda(x) = \text{Shape}_\mu(y).$$
Consider $S = (L_{\mu}, a, \{0, 1\}, 0 < 1)$.

<table>
<thead>
<tr>
<th></th>
<th>ω</th>
<th>ε</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>101</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>g</td>
<td>d</td>
<td>g</td>
<td>d</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>e</td>
<td>b</td>
<td>f</td>
<td>f</td>
<td>e</td>
<td>b</td>
<td>h</td>
<td>b</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>g</td>
<td>d</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>g</td>
<td>d</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>g</td>
<td>d</td>
<td>c</td>
<td>g</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>h</td>
<td>b</td>
<td>f</td>
<td>e</td>
<td>b</td>
<td>e</td>
<td>b</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
</tr>
</tbody>
</table>

$\left(\mu(\text{val}_S(101), \text{val}_S(10)) \right)_{0, 1} = \text{val}_S(1010), \text{val}_S(101)$
Example (Continued)

\(\delta_\mu(\sigma, (i, j)) = (\mu(\sigma))(i, j) \)

\[
\begin{align*}
(\mu^\omega(a))_{m,n} &= \delta_\mu(a, (\text{rep}_S(m), \text{rep}_S(n))^0) \text{ for all } m, n \geq 0.
\end{align*}
\]