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Goal

The aim of these lectures is to show how basic ideas in ergodic theory can
be used to understand the structure and global behaviour of different
number theoretic expansions.
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A sampler of expansions

(m-adic expansions) x =
∑∞

n=1

an

mn
, m ∈ N, m ≥ 2, and

an ∈ {0, 1 · · · ,m − 1} .

(β expansions) x =
∑∞

n=1

an

βn
, β ∈ R, β > 1 and an ∈ {0, 1 · · · , bβc}.

(Lüroth series expansion)

x =
1

a1
+
∞∑

n=2

1

a1(a1 − 1) · · · an−1(an−1 − 1)an
+ · · · ,

here ak ∈ N, ak ≥ 2 for each k ≥ 1.

(Generalized Lüroth series expansion)

x =
h1

s1
+

h2

s1s2
+ · · ·+ hk

s1s2 · · · sk
+ · · · ,

here hi , si belong to a given set of non-negative real numbers.
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A sampler of expansions

(Continued fraction expansion)

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

ai ∈ N, ai ≥ 1.
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What is common?

They are all generated by iterating an appropriate map.
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m-adic expansions

x =
∑∞

n=1

an

mn

Generated by iterating Tx = mx − bmxc, which is defined on [0, 1).
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m-adic expansions
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m-adic expansions

Set a1(x) = bmxc, and an(x) = a1(T n−1x), where
T n = T ◦ T ◦ · · · ◦ T .

Tx = mx − a1(x).

Rewriting we get, x =
a1(x)

m
+

Tx

m
After k-steps we get

x =
a1(x)

m
+

a2(x)

m2
+ · · ·+ ak(x)

mk
+

T kx

mk

Since
T kx

mk
→ 0 as k →∞, we get

x =
a1(x)

m
+

a2(x)

m2
+ · · ·+ ak(x)

mk
+ · · ·
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m-adic expansions

All points have unique m-adic expansion except for points of the form
k

mn , they have two expansions.

The map Tx = mx − bmxc is the only map (algorithm) generating
m-adic expansions. In the sense that any other map differs from T in
countably many points only.
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β-expansions

Expansions of the form x =
∑∞

n=1

an

βn
, β ∈ R, where β > 1 and

an ∈ {0, 1 · · · , bβc} are non-unique.

Typically a point has uncountably many such expansions.

There are uncountably many maps generating such expansions.
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Greedy expansions

Introduced by Renyi in the late 50’s.

The greedy map/algorithm generate expansions of the form

x =
∑∞

n=1

an

βn
with the property that for each n ≥ 1, an is the largest

element of {0, 1, · · · , bβc} satisfying

n∑
i=1

ai

βi
≤ x .
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The greedy map

β > 1 non-integer. Define Tβ : [0, bβc/(β − 1))→: [0, bβc/(β − 1)) by

Tβ(x) =


βx (mod 1), 0 ≤ x < 1,

βx − bβc, 1 ≤ x < bβc/(β − 1),
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The greedy map

1
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The greedy map Tβ (here β =
√

2 + 1).
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Generating greedy expansions

Define

a1(x) =


bβxc 0 ≤ x < 1,

bβc, 1 ≤ x < bβc/(β − 1),

Then Tβx = βx − a1(x).

Rewriting, after k steps we get

x =
a1(x)

β
+

a2(x)

β2
+ · · ·+ ak(x)

βk
+

T k
β x

βk
.

Taking limits, we get the greedy expansion.
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Lazy expansions

Introduced by the Hungarian school in the early 90’s.

The lazy map/algorithm generate expansions of the form

x =
∑∞

n=1

an

βn
with the property that for each n ≥ 1, an is the

smallest element of {0, 1, · · · , bβc} satisfying

x ≤
n∑

i=1

ai

βi
+

∞∑
k=n+1

bβc
βk

.
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The lazy map

Consider the map Lβ : (0, bβc/(β − 1)]→ (0, bβc/(β − 1)] by

Lβ(x) = βx − d , for x ∈ ∆(d),

where

∆(0) =

(
0,

bβc
β(β − 1)

]
(1)

and

∆(d) =

( bβc
β(β − 1)

+
d − 1

β
,
bβc

β(β − 1)
+

d

β

]
, d ∈ {1, 2, . . . , bβc}.
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The lazy map
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The lazy map Sβ .
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Generating lazy expansions

Define a1(x) = d if x ∈ ∆(d). Set an(x) = a1(T n−1x).

Then Lβx = βx − a1(x).

Rewriting, after k steps we get

x =
a1(x)

β
+

a2(x)

β2
+ · · ·+ ak(x)

βk
+

Lk
βx

βk
.

Taking limits, we get the lazy expansion.
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Lüroth series expansions

x =
1

a1
+
∞∑

n=2

1

a1(a1 − 1) · · · an−1(an−1 − 1)an
,

here ak ∈ N, ak ≥ 2 for each k ≥ 1.

introduced by Lüroth in 1883.
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The Lüroth map

Let T : [0, 1)→ [0, 1) be defined by

Tx =


n(n + 1)x − n, x ∈ [ 1

n+1 ,
1
n ),

0, x = 0.
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The Lüroth map
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The Lüroth Series map T .
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Let a1(x) = n if x ∈ [ 1
n ,

1
n−1), n ≥ 2.

set am(x) = a1(T m−1x).

Tx =

{
a1(x)(a1(x)− 1)x − (a1(x)− 1), x 6= 0,
0, x = 0.

Rewriting, after k steps we get

x =
1

a1
+ · · ·+ 1

a1(a1 − 1) · · · ak−1(ak−1 − 1)ak
+

+
T kx

a1(a1 − 1) · · · ak(ak − 1)
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Generalized Lüroth series expansions(GLS-expansions)

Let I = {[`n, rn) : n ∈ D} be any finite or countable collection of
intervals such that D ⊂ Z+ and

∑
n∈D(rn − `n) = 1.

Let In = [`n, rn).

Define T on [0, 1) by

Tx =


1

rn − `n x − `n
rn − `n , x ∈ In, n ∈ D ,

0, x ∈ I∞ = [0, 1) \⋃n∈D In ;
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Generalized Lüroth series expansions (GLS-expansions)
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The GLS-map T .
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Generalized Lüroth series expansions (GLS-expansions)

let s1(x) = 1
rn − `n , and h1(x) = `n

rn − `n , x ∈ In.

Then, Tx = xs1(x)− h1(x).

set sn(x) = s1(T n−1x) and hn(x) = h1(T n−1x).

iterations of T and taking limits, lead to an expansion of the form

x =
h1

s1
+

h2

s1s2
+ · · ·+ hk

s1s2 · · · sk
+ · · ·
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Continued fractions

Generated by the map T : [0, 1)→ [0, 1) by T 0 = 0 and for x 6= 0

Tx =
1

x
−
⌊

1

x

⌋
.
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Continued fractions
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The continued fraction map T .

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 28 / 80



Continued fractions

Define a1(x) =

⌊
1

x

⌋
, and an(x) = a1(T n−1x).

Iterations of T lead to

x =
1

a1 + Tx
= · · · =

1

a1 +
1

a2 +
.. . +

1

an + T nx

.

Convergence will be shown later.
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Basics of ergodic theory

We now view our maps in the setup of Ergodic Theory in order to
understand their metrical properties.
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measure preserving

Start with a probability space (X ,F , µ), and a measurable transformation
T : X → X .

Assume T is measure preserving with respect to µ, i.e. µ(A) = µ(T−1A)
or all A ∈ F

We call (X ,F , µ,T ) a measure preserving system.
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Ergodicity

Roughly speaking we call a map T on a set X ergodic if it is impossible
to divide X into two pieces A and B (each with positive probability of
occuring) such that T acts on each piece separately. Below is a picture of
a non-ergodic map T .

x

Tx

THTxL

y

Ty

THTyL

A B

X
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Ergodicity

Let (X ,F , µ,T ) be a measure preserving system.

T is ergodic with respect to µ, if whenever B = T−1B (B ∈ F) one has

µ(B) = 0 or µ(B) = 1.
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Ergodicity

Theorem

Let (X ,F , µ) be a probability space and T : X → X measure preserving.
The following are equivalent:

(i) T is ergodic.

(ii) If B ∈ F with µ(T−1B∆B) = 0, then µ(B) = 0 or 1.

(iii) If A ∈ F with µ(A) > 0, then µ (∪∞n=1T−nA) = 1.

(iv) If A,B ∈ F with µ(A) > 0 and µ(B) > 0, then there exists n > 0
such that µ(T−nA ∩ B) > 0.

(v) If f ∈ L2 satisfies f (x) = f (Tx) µ a.e., then f is a constant µ a.e.
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Ergodicity

(i)⇒ (ii):

Suppose µ(T−1B∆B) = 0.

By induction µ(T−kB∆B) = 0 for all k ≥ 1.

Let A =
⋂∞

n=1

⋃∞
m=n T−mB.

Then, T−1A = A, and by (i) µ(A) = 0 or 1.

µ(B∆A) ≤∑∞k=1 µ(T−kB∆B) = 0.

Hence, µ(B) = 0 or 1.
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Ergodicity

(ii)⇒ (iii):

Suppose µ(A) > 0 and let B =
⋃∞

n=1 T−nA.

Then, µ(B) > 0, and T−1B ⊂ B.

µ(T−1B∆B) = µ(B \ T−1B) = µ(B)− µ(T−1B) = 0.

By (ii), µ(B) = µ (
⋃∞

n=1 T−nA) = 1.

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 36 / 80



Ergodicity

(ii)⇒ (iii):

Suppose µ(A) > 0 and let B =
⋃∞

n=1 T−nA.

Then, µ(B) > 0, and T−1B ⊂ B.

µ(T−1B∆B) = µ(B \ T−1B) = µ(B)− µ(T−1B) = 0.

By (ii), µ(B) = µ (
⋃∞

n=1 T−nA) = 1.

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 36 / 80



Ergodicity

(ii)⇒ (iii):

Suppose µ(A) > 0 and let B =
⋃∞

n=1 T−nA.

Then, µ(B) > 0, and T−1B ⊂ B.

µ(T−1B∆B) = µ(B \ T−1B) = µ(B)− µ(T−1B) = 0.

By (ii), µ(B) = µ (
⋃∞

n=1 T−nA) = 1.

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 36 / 80



Ergodicity

(ii)⇒ (iii):

Suppose µ(A) > 0 and let B =
⋃∞

n=1 T−nA.

Then, µ(B) > 0, and T−1B ⊂ B.

µ(T−1B∆B) = µ(B \ T−1B) = µ(B)− µ(T−1B) = 0.

By (ii), µ(B) = µ (
⋃∞

n=1 T−nA) = 1.

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 36 / 80



Ergodicity

(v)⇒ (i):

Suppose A = T−1A.

Then, 1A(x) = 1T−1A(x) = 1A(Tx).

By (v), 1A is a constant a.e.

So, µ(A) = 0 or 1, and T is ergodic.
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The Ergodic Theorem

Theorem

(The Ergodic Theorem) Let (X ,F , µ,T ) be a measure preserving system.
Then, for any f in L1(µ),

lim
n→∞

1

n

n−1∑
i=0

f (T i (x)) = f ∗(x)

exists a.e., is T -invariant and
∫
X f dµ =

∫
X f ∗ dµ. If moreover T is

ergodic, then f ∗ is a constant a.e. and f ∗ =
∫
X f dµ.
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Consequences of the Ergodic Theorem

For example if 1A is the indicator function of a measurable set, then for µ
a.e. x ,

lim
n→∞

1

n
#{0 ≤ i ≤ n − 1 : T ix ∈ A} = lim

n→∞

1

n

n−1∑
i=0

1A(T i (x)) = µ(A).
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Consequences of the Ergodic Theorem

Corollary

Let (X ,F , µ,T ) be a measure preserving system. Then, T is ergodic if
and only if for all A,B ∈ F , one has

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩ B) = µ(A)µ(B).
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Consequences of the Ergodic Theorem

Proof: Suppose T is ergodic, and let A,B ∈ F .

By the Ergodic Theorem

lim
n→∞

1

n

n−1∑
i=0

1T−iA∩B(x) = 1B(x) lim
n→∞

1

n

n−1∑
i=0

1A(T ix) = 1B(x)µ(A)

µ a.e

Integrating, and using the Lebesgue Dominated Convergence Theorem,
gives the result.
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Consequences of the Ergodic Theorem

Conversely, suppose T−1A = A. By hypotheses,

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩ A) = µ(A)2.

By T -invariance of A,

lim
n→∞

1

n

n−1∑
i=0

µ(T−iA ∩ A) = µ(A).

So µ(A) = µ(A)2, which implies that µ(A) = 0 or 1.

Therefore, T is ergodic.
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By T -invariance of A,

lim
n→∞

1

n

n−1∑
i=0
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Consequences of the Ergodic Theorem

Theorem

Suppose µ1 and µ2 are probability measures on (X ,F), and T : X → X is
measurable and measure preserving with respect to µ1 and µ2. Then,

(i) if T is ergodic with respect to µ1, and µ2 is absolutely continuous
with respect to µ1, then µ1 = µ2,

(ii) if T is ergodic with respect to µ1 and µ2, then either µ1 = µ2 or µ1

and µ2 are singular with respect to each other.
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Consequences of the Ergodic Theorem

Proof (ii): Suppose T is ergodic with respect to µ1 and µ2, and assume
µ1 6= µ2.

There exists A ∈ F such µ1(A) 6= µ2(A).

Define Cj = {x : limn→∞
1
n

∑n−1
i=0 1A(T i (x)) = µj(A)}, j = 1, 2.

C1 ∩ C2 = ∅. By the Ergodic Theorem, µj(Cj) = 1.

Therefore, µ1 and µ2 are mutually singular
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Examples Revisited

For each of the examples in the sampler, we will show that there is a
measure µ which is absolutely continuous with respect to Lebesgue
measure, such that the underlying transformation is measure preserving
and ergodic.
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Useful tool

Lemma

(Knopp’s Lemma) If B is a Lebesgue set and C is a class of subintervals
of [0, 1), satisfying

(i) every open subinterval of [0, 1) is at most a countable union of
disjoint elements from C,

(ii) ∀A ∈ C , λ(A ∩ B) ≥ γλ(A), where γ > 0 is independent of A,

then λ(B) = 1.
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Proof of Knopp’s Lemma

Let ε > 0, there exists a set Eε which is a finite disjoint union of open
intervals such that λ(Bc 4 Eε) < ε.

Then λ(Bc) < ε+ λ(Bc ∩ Eε).

Now by conditions (i) and (ii) (that is, writing Eε as a countable union of
disjoint elements of C) one gets that λ(B ∩ Eε) ≥ γλ(Eε).

ε > λ(Bc4Eε) ≥ λ(B ∩ Eε) ≥ γλ(Eε) ≥ γλ(Bc ∩ Eε) > γ(λ(Bc)− ε),

This implies γλ(Bc) < ε+ γε, so λ(Bc) = 0.
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m-adic revisited

Tx = mx − bmxc.

T is measure preserving with respect to Lebesgue measure:

T−1[a, b) =
m−1⋃
i=0

[
a + i

m
,

b + i

m

)
,

and
λ
(
T−1[a, b)

)
= b − a = λ ([a, b)) .
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m-adic revisited

To prove ergodicity, we use Knopp’s Lemma. First few facts:

T nx = mnx − bmnxc.

T n
(
[ k
mn ,

k+1
mn )

)
= [0, 1), for any n ≥ 1, 0 ≤ k ≤ mn − 1.

Let C = {[k/mn, (k + 1)/mn) : n ≥ 1, 0 ≤ k ≤ mn − 1. Then C satisfies
condition (i) of Knopp’s Lemma.

Let T−1B = B, and suppose λ(B) > 0. For any element
A = [k/mn, (k + 1)/mn) of C,

λ(A ∩ B) = λ(A ∩ T−nB) =
1

mn
λ(B) = λ(A)λ(B).

Hence, hypothesis (ii) of Knopp’s Lemma is satisfied with γ = λ(B) > 0.

Therefore T is ergodic.
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Lüroth series revisited

Tx =


n(n + 1)x − n, x ∈ [ 1

n+1 ,
1
n ),

0, x = 0.

T−1[a, b) =
⋃∞

k=2

[
1
k + a

k(k−1) ,
1
k + b

k(k−1)

)
.

T is measure preserving with respect to Lebesgue measure λ.

λ(T−1[a, b)) =
∞∑

k=2

b − a

k(k − 1)
= b − a = λ([a, b)) ,
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Lüroth series revisited

Tx =


n(n + 1)x − n, x ∈ [ 1

n+1 ,
1
n ),

0, x = 0.

T−1[a, b) =
⋃∞

k=2

[
1
k + a

k(k−1) ,
1
k + b

k(k−1)

)
.

T is measure preserving with respect to Lebesgue measure λ.

λ(T−1[a, b)) =
∞∑

k=2

b − a

k(k − 1)
= b − a = λ([a, b)) ,

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 50 / 80
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Lüroth series revisited

A fundamental interval of order n:

∆(i1, i2, . . . , ik) = {x : a1(x) = i1, a2(x) = i2, . . . , ak(x) = ik}.

T k(∆(i1, i2, . . . , ik)) = [0, 1).

T k restricted to ∆(i1, i2, . . . , ik) is surjective of slope
i1(i1 − 1) · · · ik−1(ik−1 − 1)ik .

λ(∆(i1, i2, . . . , ik)) =
1

i1(i1 − 1) · · · ik−1(ik−1 − 1)ik
.

Let C be the collection of all fundamental intervals of all order.

C satisfies hypothesis (i) of Knopp’s Lemma.
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Lüroth series revisited

Let T−1B = B, and assume λ(B) > 0.

Let A = ∆(i1, i2, . . . , ik) be a fundamental interval of order k.

λ(B ∩ A) = λ(T−kB ∩ A) =
1

i1(i1 − 1) · · · ik−1(ik−1 − 1)ik
λ(B) =

λ(B)λ(A).

With γ = λ(B) > 0, the set B satisfies (ii) of Knopp’s Lemma. Hence
λ(B) = 1.

Therefore, T is ergodic.
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Lüroth series revisited

Let T−1B = B, and assume λ(B) > 0.

Let A = ∆(i1, i2, . . . , ik) be a fundamental interval of order k.

λ(B ∩ A) = λ(T−kB ∩ A) =
1

i1(i1 − 1) · · · ik−1(ik−1 − 1)ik
λ(B) =

λ(B)λ(A).

With γ = λ(B) > 0, the set B satisfies (ii) of Knopp’s Lemma. Hence
λ(B) = 1.

Therefore, T is ergodic.

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 52 / 80



Greedy expansions revisited

Tβ(x) =


βx (mod 1), 0 ≤ x < 1,

βx − bβc, 1 ≤ x < bβc/(β − 1),

Independently, A.O. Gel’fond (in 1959) and W. Parry (in 1960) showed
that Tβ is measure preserving with respect to the measure µβ =

∫
A hβdλ

with

hβ(x) =

{
1

F (β)

∑∞
n=0

1
βn 1[0,T n

β(1))(x) x ∈ [0, 1)

0 x ∈ [1, [0, bβc1−β ),

F (β) =
∫ 1
0 (
∑

x<T n
β(1)

1
βn ) dλ is a normalizing constant.
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Greedy expansions revisited

A fundamental interval of order k :

∆(i1, i2, . . . , ik) = {x : a1(x) = i1, a2(x) = i2, . . . , ak(x) = ik}.

∆(i1, i2, . . . , ik) is full if T k
β (∆(i1, i2, . . . , ik)) = [0, 1).

T k
β restricted to a full interval ∆(i1, i2, . . . , ik) is surjective of slope βk . In

this case λ(∆(i1, i2, . . . , ik)) = 1
βk .

For any k ≥ 1 there is at most one non full fundamental interval of order
k that is not a subset of a full interval of lower order.

Let C be the collection of all full fundamental intervals of all order.

C satisfies hypothesis (i) of Knopp’s Lemma.
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Greedy expansions revisited

Let T−1
β B = B, and assume λ(B) > 0.

Let A = ∆(i1, i2, . . . , ik) be a full fundamental interval of order k .

λ(B ∩ A) = λ(T−k
β B ∩ A) =

1

βk
λ(B) = λ(B)λ(A).

With γ = λ(B) > 0, the set B satisfies (ii) of Knopp’s Lemma. Hence
λ(B) = 1 which implies µβ(B) = 1.

Therefore, Tβ is ergodic.
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Lazy expansions revisited

Lβ(x) = βx − d , for x ∈ ∆(d),

where

∆(0) =

(
0,

bβc
β(β − 1)

]
and

∆(d) =

( bβc
β(β − 1)

+
d − 1

β
,
bβc

β(β − 1)
+

d

β

]
, d ∈ {1, 2, . . . , bβc}.
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Lazy expansions revisited

The map ψ : [0, bβc/(β − 1))→ (0, bβc/(β − 1)] defined by

ψ(x) =
bβc
β − 1

− x ,

then ψ is a continuous bijection.

ψTβ = Lβψ.

Lβ is measure preserving and ergodic with respect ρβ defined by

ρβ(A) = µβ(ψ−1(A)).
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Continued fractions revisited

Tx =
1

x
−
⌊

1

x

⌋
.

T is measure preserving with respect to the Gauss measure

µ(A) =

∫
A

1

1 + x
dλ.
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Continued fractions revisited

All fundamental intervals ∆(i1, i2, . . . , ik) are full.

Using properties of continued fractions and the equivalence of the Gauss
measure to the Lebesgue measure, one can show

µ(T−kA ∩∆(i1, i2, . . . , ik)) ≥ log 2

4
µ(A)µ(∆(i1, i2, . . . , ik))

for any Borel set A, and any fundamental interval ∆(i1, i2, . . . , ik).

The collection C of all fundamental intervals satisfy (i) of Knopp’s Lemma.

Let T−1B = B, with µ(B) > 0.

For any fundamental interval ∆ = ∆(i1, i2, . . . , ik)

µ(B ∩∆) = µ(T−kB ∩∆) ≥ log 2

4
µ(B)µ(∆)

.

(ii) of Knopp’s Lemma is satisfied with γ = log 2
4 µ(B) > 0.

Hence µ(B) = 1, and T is ergodic.Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 59 / 80
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Natural Extension

The goal is to find an invertible system associated with a given
non-invertible system in such a way that all the dynamical properties of
the original system are preserved.

Natural extensions were first introduced and studied by Rohlin in his paper
Exact endomorphisms of a Lebesgue space (1960).
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Definition of Natural Extension

An invertible measure-preserving system (X ,F , µ,T ) is called a natural
extension of the non-invertible measure preserving system (Y ,G, ν,S) if
there exists a measurable surjective (a.e.) map ψ : X → Y such that

(i) ψ ◦ T = S ◦ ψ,

(ii) ν = µ ◦ ψ−1,

(iii) ∨∞m=0T mψ−1G = F , where
∨∞

k=0 T kψ−1G is the smallest σ-algebra
containing the σ-algebras T kψ−1G for all k ≥ 0.
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Definition of Natural Extension

Suppose (X ,F , µ,T ) is a natural extension of (Y ,G, ν,S).

The system (X ,F , µ,T ) is unique up to isomorphism.

(X ,F , µ,T ) and (Y ,G, ν,S) have the same dynamical properties.
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Natural Extension of m-adic expansions

Let Tx = mx − bmxc.

A natural extension of the measure preserving system ([0, 1),B, λ,T ) is
the invertible system ([0, 1)× [0, 1),B × B, λ× λ, T ) where

T (x , y) = (Tx ,
y + a1(x)

m
),

with a1(x) the m-adic digit of x .

T can be identified with a two sided shift.
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Natural Extension of m-adic expansions

Set ψ(x , y) = x . Then ψ is measurable.

ψ ◦ T = T ◦ ψ and λ = (λ× λ) ◦ ψ−1.

B × B is generated by sets of the form ∆(k1, . . . , kn)×∆(l1, . . . , lm)

∆(k1, . . . , kn)×∆(l1, . . . , lm) = T m(∆(lm, . . . , l1, k1, . . . , kn)× [0, 1))
which is an element of T m(B × [0, 1)).

So,
∨

m≥0 T mπ−1B =
∨

m≥0 T m(B × [0, 1)) = B × B .
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Natural Extension of Lüroth series

Tx =


n(n + 1)x − n, x ∈ [ 1

n+1 ,
1
n ),

0, x = 0.

A natural extension of the measure preserving system ([0, 1),B, λ,T ) is
the invertible system ([0, 1)× [0, 1),B × B, λ× λ, T ) where

T (x , y) = (Tx ,
y + a1(x)− 1

a1(x)(a1(x)− 1)
),

with a1(x) the Lüroth digit of x .
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Natural Extension of greedy expansions, a special case

Let β be the positive root of the polynomial xm − xm−1 − · · · − x − 1.

1 has a greedy expansion 1 = 1
β + 1

β2 + · · · + 1
βm .

Tβx = βx (mod 1), Tβ is restricted to [0, 1).

Recall that Tβ is measure preserving and ergodic with respect to the Parry
measure µβ with density

hβ(x) =
1

F (β)

m−1∑
i=0

1[0,T i
β1),

where F (β) =
∫ ∑m−1

i=0
1
βi 1[0,T i

β1)dλ, and T i
β1 = 1

β + 1
β2 + · · · + 1

βm−i .
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Natural Extension of greedy expansions, a special case

X =
⋃m−1

k=0

[
T m−k
β 1, T m−k−1

β 1
)
×
[
0, T k

β 1
)

Let L be the restriction of the two dimensional Lebesgue σ-algebra to X ,
and λ the normalized two dimensional Lebesgue measure.

Consider the transformation T on X defined by

Tβ(x , y) :=

(
Tβx ,

1

β
(bβxc+ y)

)
.

T is a measurable bijection, and is measure preserving with respect to λ.
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Natural Extension of greedy expansions, a special case

1

0 1

1

1
β

1
β

1
β2

1
β + 1

β2

1
β + 1

β2

1
β2 + 1

β3

The natural extension of Tβ if β is mbonacci number with m = 3.
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Natural Extension of greedy expansions, a special case

Let ψ(x , y) = x . Then ψ ◦ T = T ◦ ψ and µβ = λ ◦ ψ−1.

A similar proof as the one used for the m-adic shows that T is the natural
extension of Tβ with one small difference.

L is generated by sets of the form

∆(k1, . . . , kn)×∆(l1, . . . , lm),

where ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals.

If ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals, then

∆(k1, . . . , kn)×∆(l1, . . . , lm) = T m(ψ−1∆(lm, . . . , l1, k1, . . . , kn))

which is an element of T m(ψ−1B).

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 69 / 80



Natural Extension of greedy expansions, a special case

Let ψ(x , y) = x . Then ψ ◦ T = T ◦ ψ and µβ = λ ◦ ψ−1.

A similar proof as the one used for the m-adic shows that T is the natural
extension of Tβ with one small difference.

L is generated by sets of the form

∆(k1, . . . , kn)×∆(l1, . . . , lm),

where ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals.

If ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals, then

∆(k1, . . . , kn)×∆(l1, . . . , lm) = T m(ψ−1∆(lm, . . . , l1, k1, . . . , kn))

which is an element of T m(ψ−1B).

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 69 / 80



Natural Extension of greedy expansions, a special case

Let ψ(x , y) = x . Then ψ ◦ T = T ◦ ψ and µβ = λ ◦ ψ−1.

A similar proof as the one used for the m-adic shows that T is the natural
extension of Tβ with one small difference.

L is generated by sets of the form

∆(k1, . . . , kn)×∆(l1, . . . , lm),

where ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals.

If ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals, then

∆(k1, . . . , kn)×∆(l1, . . . , lm) = T m(ψ−1∆(lm, . . . , l1, k1, . . . , kn))

which is an element of T m(ψ−1B).

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 69 / 80



Natural Extension of greedy expansions, a special case

Let ψ(x , y) = x . Then ψ ◦ T = T ◦ ψ and µβ = λ ◦ ψ−1.

A similar proof as the one used for the m-adic shows that T is the natural
extension of Tβ with one small difference.

L is generated by sets of the form

∆(k1, . . . , kn)×∆(l1, . . . , lm),

where ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals.

If ∆(k1, . . . , kn) and ∆(l1, . . . , lm), are full fundamental intervals, then

∆(k1, . . . , kn)×∆(l1, . . . , lm) = T m(ψ−1∆(lm, . . . , l1, k1, . . . , kn))

which is an element of T m(ψ−1B).

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 69 / 80



Natural Extension of greedy expansions, the general case

The map Tβ(x , y) :=
(

Tβx , 1
β (bβxc+ y)

)
corresponds to a two sided

shift.

Because not all blocks are allowed, it is not always possible to find a nice
domain X in R2 on which T is bijective.

One can overcome this problem by changing a bit the definition of T .

Roughly speaking, T will correspond to a two sided (full) block shift.
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Natural Extension of greedy expansions, the general case

Let R0 = [0, 1)2 and Ri = [0,T i
β1)× [0, 1

βi ) , i ≥ 1.

Underlying space of the natural extension is the set

X = R0 × {0} ∪
∞⋃

n=1

Ri × {i}.

The σ-algebra F on X is the disjoint union of the Lebesgue σ-algebras on
all the rectangles Ri .

Let λ be the normalized Lebesgue measure on X .
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Natural Extension of greedy expansions, the general case

Let 1 = b1
β + b2

β2 + · · · be the greedy expansion of 1.

Define Tβ on Ri × {i}by

Tβ(x , y , i) =

{
(Tβx , y∗, 0), if a1(x) < bi+1

(Tβx , y∗, i + 1), if a1(x) = bi+1
,

where, a1(x) is the greedy digit of x , and

y∗ =


b1
β

+ · · ·+ bi

βi +
a1(x)

βi+1 + y
β

if a1(x) < bi+1

y
β

if a1(x) = bi+1.
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Natural Extension of greedy expansions, the general case

Notice that if y has greedy expansion y = ci+1

βi+1 + ci+2

βi+2 + · · · (y < 1
βi ).

Then, the greedy digits of y∗ are given by

y∗ �


= .b1 · · · bid1ci+1ci+2 · · · , if a1(x) < bi+1

.000 · · · 00︸ ︷︷ ︸
i+1−times

ci+1ci+2 . . . , if a1(x) = bi+1.
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Natural Extension of greedy expansions, the general case

Define ψ(x , y , i) = x , then µβ = λ ◦ ψ−1, and ψ ◦ T = T ◦ ψ.

By working per rectangle Ri , and using a modification of the argument
used for the special case (shifting by full blocks) one can show for any full
fundamental intervals ∆(a1, . . . , an) and ∆(b1, . . . , bm),

(∆(a1, . . . , an)×∆(b1, . . . , bm) ∩ Ri )× {i} ∈ T mψ−1B ∩ (Ri × {i}).
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Natural Extension of continued fractions

Tx =
1

x
−
⌊

1

x

⌋
is measure preserving and ergodic with respect to the

gauss measure µ(A) = 1
log 2

∫
A

1

1 + x
dλ.
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Natural Extension of continued fractions

Theorem

(Ito, Nakada, Tanaka, 1977; Nakada, 1981) Let Ω = [0, 1)× [0, 1], B be
the collection of Borel sets of Ω. Define the two-dimensional
Gauss-measure µ̄ on (Ω, B̄) by

µ̄(E ) =
1

log 2

∫∫
E

dx dy

(1 + xy)2
,E ∈ B̄.

and the two-dimensional rcf-operator T : Ω→ Ω for (x , y) ∈ Ω be
defined by

T (x , y) =

(
T (x),

1⌊
1
x

⌋
+ y

)
, x 6= 0, T (0, y) = (0, y). (2)

Then (Ω, B̄, µ̄, T ) is the natural extension of ([0, 1),B, µ,T ).
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Classical Facts

Let x = 1

a1 +
1

a2 +
1

a3 +
1

. . .

be the continued fraction expansion of x .

pn

qn
= 1

a1 +
1

a2 +
.. . +

1

an

.

With some work, one has x − pn

qn
= (−1)n T nx

qn(qn+qn−1T nx) .

Yielding, x − pn

qn
< 1

q2
n
, and hence convergence of pn

qn
to x .
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Classical Facts

Define Θn = q2
n

∣∣∣x − pn

qn

∣∣∣ = T nx

1+
qn−1

qn
T nx

.

Using the recursion relation qi = aiqi−1 + qi−2 repeatedly, one gets

qn−1

qn
=

1

an +
1

an−1 +
.. . +

1

a1

,

the past of x .

Given x , set Tn = T nx and Vn = qn−1

qn
. Then T n(x , 0) = (Tn,Vn), and

Θn = Θn(x) =
Tn

1 + TnVn
, n ≥ 0.
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Define Θn = q2
n

∣∣∣x − pn

qn

∣∣∣ = T nx

1+
qn−1

qn
T nx

.

Using the recursion relation qi = aiqi−1 + qi−2 repeatedly, one gets

qn−1

qn
=

1

an +
1

an−1 +
.. . +

1

a1

,

the past of x .

Given x , set Tn = T nx and Vn = qn−1

qn
. Then T n(x , 0) = (Tn,Vn), and

Θn = Θn(x) =
Tn

1 + TnVn
, n ≥ 0.

Karma Dajani () Introduction to Ergodic Theory of Numbers March 21, 2009 78 / 80



Doeblin-Lenstra Conjecture

Theorem

For (Lebesgue) a.e. point x, and for any 0 ≤ z ≤ 1,

lim
n→∞

1

n
#{j ; 1 ≤ j ≤ n, Θj(x) ≤ z} = F (z)

where

F (z)


z

log 2
0 ≤ z ≤ 1

2

1

log 2
(1− z + log 2z) 1

2 ≤ z ≤ 1.
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Doeblin-Lenstra Conjecture

Let Az = {(x , y) ∈ Ω :
x

1 + xy
≤ z}.

µ(Az) = F (z).

Θj(x) ≤ z ⇔ T j(x , 0) ∈ Az .

1

n
#{j ; 1 ≤ j ≤ n, Θj(x) ≤ z} =

1

n

n∑
j=1

1Az (T j(x , 0)).

Jager (1986) showed that for a.e. x , and for any Borel set C of Ω,

lim
n→∞

1

n

n∑
j=1

1C (T j(x , 0)) = µ(C ).

lim
n→∞

1

n
#{j ; 1 ≤ j ≤ n, Θj(x) ≤ z} = F (z).
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