Subword complexity and finite characteristic numbers

Alina FIRICEL

Institut Camille Jordan, Université Lyon 1

CIRM, March 26, 2009

The world of real numbers

The sequence of digits of the *b*-ary expansion of real numbers like:

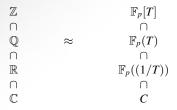
 $\sqrt{2} := 1.0110101001 \cdots$ or $\pi := 3.14159265358 \cdots$

is a source of difficult questions. Are there any simple "rules" or any evident patterns? Or is this "random"?

- The *b*-ary expansion of a rational number is eventually periodic. In particular, the structure of its sequence of digits is very simple.
- ▶ What about the real irrational algebraic numbers?
 - The sequence of digits of an irrational algebraic number cannot be generated by a finite automaton.
 - Conjecture: every irrational algebraic number is normal.
- What about the classical transcendental constants like π or e?
- Many problems related to this topic are open!

Formal power series with coefficients in a finite field

- Finite fields \Rightarrow no more carry-over difficulties.
- ▶ There is a well-known analogy:



We replace the real number

$$\sum_{n\geq -k} \frac{a_n}{p^n}$$

by the formal power series

$$f(T) = \sum_{n \ge -k} \frac{a_n}{T^n} \in \mathbb{F}_p((1/T)).$$

- Purpose: Study the subword complexity of formal power series with coefficients in a finite field in function of their arithmetic properties.
- What can we say about the Laurent series expansion of analogs of real numbers like $\sqrt{2}$, π , $\zeta(s)$, e?
- Study the effect of usual operations over formal power series. Closure properties of formal power series of "low" complexity (addition, multiplication, Hadamard product, derivative, Cartier operator,...).

Complexity

Let $\mathbf{a} = a_0 a_1 a_2 \cdots \in A^{\mathbb{N}}$. (A finite alphabet)

The subword complexity function is defined as follows:

$$p(\mathbf{a}, m) = \text{Card} \{ (a_j, a_{j+1}, \dots, a_{j+m-1}) : j \ge 0 \}.$$

- **Example 1.** If $\mathbf{a} = aaa \cdots$ then $p(\mathbf{a}, m) = 1$ for every nonnegative integer m.
- **Example 2.** Champernowne's word: $\mathbf{c} = 01234567891011121314\cdots$ verifies $p(\mathbf{c}, m) = 10^m$.
- Remark: $1 \le p(\mathbf{a}, m) \le (Card A)^m$, for every integer $m \ge 0$.
- Let $f(T) = \sum a_n T^{-n} \in \mathbb{F}_p[[T^{-1}]]$. We define the complexity function of f:

$$p(f,m) := p(\mathbf{a},m)$$

If α is a real number whose b-ary expansion

$$\alpha = a_0.a_1a_2\cdots,$$

then the complexity of α in base b: $p(\alpha, b, m) := p(\mathbf{a}, m)$.

Rational formal power series

Theorem (Morse–Hedlund, 1938)

a is eventually periodic if and only if p(a, m) is bounded. If not, the complexity function is strictly increasing. In particular,

 $p(\boldsymbol{a},m) \geq m+1,$

for every nonnegative integer m.

•
$$f \in \mathbb{F}_p(T) \iff p(f,m) = O(1).$$

$$\blacktriangleright \ \alpha \in \mathbb{Q} \iff p(\alpha, b, m) = O(1).$$

• $p(\pi, b, m) \ge m + 1$. Conjecture: $p(\pi, b, m) = b^m$.

Algebraic formal power series

• Example:
$$f(T) = \sum_{n \ge 0} T^{-2^n} \in \mathbb{F}_2[[T^{-1}]]$$
. We have:
 $Tf^2(T) + Tf(T) + 1 = 0.$

► The sequence of coefficients of *f*:

$$a_n = \begin{cases} 1 \text{ if } n \text{ is a power of } 2; \\ 0 \text{ otherwise} \end{cases}$$

is generated by a finite automaton.

J.-P. Allouche & J. Shallit Automatic Sequences: Theory, Applications, Generalizations Cambridge University Press, Cambridge, 2003.

• Moreover
$$p(f,m) = O(m)$$
.

Algebraic formal power series

Theorem (Christol, 1979)

Let $f(T) = \sum_{n\geq 0} a_n (1/T)^n$ be a formal power series with coefficients in \mathbb{F}_q . Then f is algebraic over $\mathbb{F}_q(T)$ if, and only if, the sequence $(a_n)_{n\geq 0}$ is q-automatic.

Cobham, 1972: If **a** is an automatic sequence then $p(\mathbf{a}, m) = O(m)$.

Theorem Let $f \in \mathbb{F}_p((1/T))$ algebraic over $\mathbb{F}_p(T)$. Then

$$p(f,m)=O(m).$$

• *Real numbers:* If α is an irrational algebraic number and $b \ge 2$ then:

$$\lim_{m \to +\infty} \frac{p(\alpha, b, m)}{m} = +\infty.$$

B.Adamczewski & Y.Bugeaud

On the complexity of algebraic numbers I. Expansions in integer bases Annals of Math. 165 (2007), 547–565.

Carlitz' analogs

► Carlitz module over $\mathbb{F}_q[T] \Rightarrow$ an unique exponential $e_C(z)$ defined over C by:

$$e_C(z) = z \prod_{a \in \mathbb{F}_q[T], a \neq 0} \left(1 - \frac{z}{a \widetilde{\Pi}_q}\right)$$

where

$$\widetilde{\Pi}_q = (-T)^{\frac{q}{q-1}} \prod_{j=1}^{\infty} \left(1 - \frac{1}{T^{q^{j-1}}}\right)^{-1}.$$

• Remark: ker
$$e_C = F_q[T] \Pi_q$$
.

- ▶ Remark: $\widetilde{\Pi}_q$ is an analogue of $2i\pi$. Indeed, it is easy to verify that $\widetilde{\Pi}_q$ is a period of $e_C(z)$ (as $2i\pi$ is the period of e(z)).
- ▶ In order to obtain a formal power series associated to $\widetilde{\Pi}_q$ we take its real part:

$$\Pi_q = \prod_{j=1}^{\infty} \left(1 - \frac{1}{T^{q^j - 1}} \right)^{-1}.$$

Complexity of $\frac{1}{\Pi_a}$

The power series expansion of

$$\Pi_q = \prod_{j=1}^{\infty} \left(1 - \frac{1}{T^{q^{j-1}}} \right)^{-1} = \sum_{n \ge 0} p_n T^{-n},$$

 p_n = number of partitions of *n* whose parts take values in $I = \{q^j - 1, j \ge 1\} \mod p$.

BUT the power series expansion of:

$$\frac{1}{\Pi_q} = \sum_{n=0}^{\infty} a_n T^{-n}$$

 $a_n = \begin{cases} (-1)^{\operatorname{card} J} & \text{if } n \text{ can be written as} \quad \sum_{j \in J} (q^j - 1); \\ 0 & \text{if } n & \text{cannot be represented as a sum } \sum_{j \in J} (q^j - 1) \text{ for no finite set } J. \end{cases}$

J.-P. Allouche

Sur la transcendance de la série formelle Π J. Théor. Nombres Bordeaux 2 (1990), 103–117.

Results

Theorem
If
$$q = 2$$
 then $p(\frac{1}{\Pi_2}, m) = \Theta(m^2)$. More precisely:

$$\frac{(m - \log m)(m - \log m + 1)}{2} \le p(\frac{1}{\Pi_2}, m) \le \frac{m^2}{2} + \frac{5m}{2}.$$
If $q \ge 3$ then $p(\frac{1}{\Pi_q}, m) = \Theta(m)$. More precisely:
 $p(\frac{1}{\Pi_q}, m) \le 6qm.$

Corollary

-

 Π_2 is transcendental over $\mathbb{F}_2(T)$.

Sketch of the proof for q = 2

Let us recall the first terms of the sequence:

п	n	a_n
0	0	0
1	$2^1 - 1$	1
2	2	0
3	$2^2 - 1$	1
4	$2^2 - 1 + 2 - 1$	1
5	5	0
6	6	0
7	$2^3 - 1$	1
8	$2^3 - 1 + 2 - 1$	1
9	9	0
10	$2^3 - 1 + 2^2 - 1$	1
11	$2^3 - 1 + 2^2 - 1 + 2 - 1$	1
12	12	0
13	13	0
14	14	0
15	$2^4 - 1$	1

Sketch of the proof for q = 2

• We denote, for $n \ge 1$, w_n the subword of **a** defined as:

$$w_n = a_{2^n-1} \cdots a_{2^{n+1}-2}.$$

- Convention: $w_0 = 0$.
- Examples: $w_1 = 10$, $w_2 = 1100$, $w_3 = 11011000$ etc.
- Under these notations, the infinite word **a** may be written as:

$$\mathbf{a} = \underbrace{0}_{w_0} \underbrace{10}_{w_1} \underbrace{1100}_{w_2} \underbrace{11011000}_{w_3} \cdots = w_0 w_1 w_2 \cdots .$$

Lemma

For every $n \ge 2$ we have the relation: $w_n = 1w_1w_2\cdots w_{n-1}0$.

- We denote u_n the subword: $w_n = u_n 0$, for $n \ge 0$. For example u_0 is the empty word, $u_1 = 1$, $u_2 = 110$ etc.
- ▶ $|u_n| = 2^n 1$

Sketch of the proof for q = 2

For $m \in \mathbb{N}$ fix there exists an integer *n* (greater or equal to 1):

$$2^{n-1} < m \le 2^n.$$

Goal: calculate $p(\mathbf{a}, m)$

- Main idea: We denote $A_n = \{u_n^2 0^k, k \ge 1\}$. We prove that $\mathbf{a} \in A_n^{\mathbb{N}}$.
- Next step: All distinct words of length *m* occur in the prefix of length $2^{n+1} 1$ of **a**, more precisely in:

$$u_n \underbrace{u_n 0}_{w_n} \underbrace{u_n u_n 0 0}_{w_{n+1}} \underbrace{u_n u_n 0 u_n u_n 0 0 0}_{w_{n+2}} \cdots w_m$$

Upper bound: We look in all the words of the form: $u_n u_n$ (-> 2*m*) and in all the overlaps $u_n 0^k u_n$ where $1 \le k \le m$ (-> m - k + 1).

Lower bound: It is sufficient to find

$$\frac{(m-\log m)(m-\log m+1)}{2}$$

distinct words in a.

A vector space over $\mathbb{F}_p(T)$

The set of formal power series of polynomial complexity:

$$\mathcal{P} = \{f \in \mathbb{F}_p[[T^{-1}]], \text{ there exists } K \text{ such that } p(f, m) = O(m^K)\}$$

Remark: Algebraic power series belong to \mathcal{P} ; $\frac{1}{\Pi_a} \in \mathcal{P}$.

Theorem \mathcal{P} is a vector space over $\mathbb{F}_p(T)$.

Remark:

- Moreover P is closed under Hadamard product, (formal) derivative, Cartier operator...
- ▶ The same properties are satisfied by the set of formal power series of entropy 0.
- **Consequence:** This leads to a criterion of linear independence.

Subword complexity \leftrightarrow Space, time complexity

D.Thakur & R. Beals

Computational classification of numbers and algebraic properties International Mathematics Research Notices, 15 (1998), 799–818.

Conclusion and perspectives

- Study other closure properties of formal power series of low complexity, such as multiplication or inverse. Stability under these operations could imply in particular algebraic independence over $\mathbb{F}_q(T)$.
- There is some particular cases of formal power series belonging to P stable by multiplication (some lacunary power formal series, automatic series). But see for example Jacobi theta function:

$$\theta_3(T) = 1 + 2 \sum_{n \ge 1} T^{-n^2} \in \mathbb{F}_q((1/T)), \ q \ge 3$$

$$\theta_3^2(T) = \sum_{n \ge 1} r_2(n) T^{-n}$$
 where $r_2(n) = 4(d_1(n) - d_3(n)) \mod q$

It is not difficult to prove that $\theta_3(T) \in \mathcal{P}$. But what about $\theta_3^2(T)$?

Difficulty: Study the complexity of $\theta_3^2(T) \Rightarrow$ study additive properties of the multiplicative sequence $(r_2(n))_n$.

- Place other well-known transcendental finite characteristic numbers such as *e* or Carlitz ζ values in the computational hierarchy.
- ► Formal power series of low complexity ⇒ diophantine properties. (linear complexity ⇒ irrationality measures)