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The world of real numbers

The sequence of digits of the b-ary expansion of real numbers like:

√
2 := 1.0110101001 · · · or π := 3.14159265358 · · ·

is a source of difficult questions. Are there any simple “rules” or any evident

patterns? Or is this “random”?

I The b-ary expansion of a rational number is eventually periodic. In particular,

the structure of its sequence of digits is very simple.

I What about the real irrational algebraic numbers?
I The sequence of digits of an irrational algebraic number cannot be generated by a

finite automaton.
I Conjecture: every irrational algebraic number is normal.

I What about the classical transcendental constants like π or e?

I Many problems related to this topic are open!

2 / 16



Formal power series with coefficients in a finite field

I Finite fields⇒ no more carry-over difficulties.
I There is a well-known analogy:

Z Fp[T]
∩ ∩
Q ≈ Fp(T)
∩ ∩
R Fp((1/T))
∩ ∩
C C

I We replace the real number ∑
n≥−k

an

pn

by the formal power series

f (T) =
∑

n≥−k

an

Tn ∈ Fp((1/T)).
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Objective

I Purpose: Study the subword complexity of formal power series with coefficients
in a finite field in function of their arithmetic properties.

I What can we say about the Laurent series expansion of analogs of real numbers
like
√

2, π, ζ(s), e?

I Study the effect of usual operations over formal power series. Closure
properties of formal power series of “low” complexity (addition, multiplication,
Hadamard product, derivative, Cartier operator,...).
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Complexity

Let a = a0a1a2 · · · ∈ AN. (A finite alphabet)
I The subword complexity function is defined as follows:

p(a,m) = Card {(aj, aj+1, . . . , aj+m−1) : j ≥ 0} .

I Example 1. If a = aaa · · · then p(a,m) = 1 for every nonnegative integer m.

I Example 2. Champernowne’s word: c = 01234567891011121314 · · · verifies
p(c,m) = 10m.

I Remark: 1 ≤ p(a,m) ≤ (Card A)m, for every integer m ≥ 0.

I Let f (T) =
∑

anT−n ∈ Fp[[T−1]]. We define the complexity function of f :

p(f ,m) := p(a,m)

I If α is a real number whose b-ary expansion

α = a0.a1a2 · · · ,

then the complexity of α in base b: p(α, b,m) := p(a,m).
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Rational formal power series

Theorem (Morse–Hedlund, 1938)

a is eventually periodic if and only if p(a,m) is bounded. If not, the complexity

function is strictly increasing. In particular,

p(a,m) ≥ m + 1,

for every nonnegative integer m.

I f ∈ Fp(T) ⇐⇒ p(f ,m) = O(1).

I α ∈ Q ⇐⇒ p(α, b,m) = O(1).

I p(π, b,m) ≥ m + 1. Conjecture: p(π, b,m) = bm.
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Algebraic formal power series

I Example: f (T) =
∑

n≥0 T−2n
∈ F2[[T−1]]. We have:

Tf 2(T) + Tf (T) + 1 = 0.

I The sequence of coefficients of f :

an =

{
1 if n is a power of 2;

0 otherwise

is generated by a finite automaton.

J.-P. Allouche & J. Shallit
Automatic Sequences: Theory, Applications, Generalizations
Cambridge University Press, Cambridge, 2003.

I Moreover p(f ,m) = O(m).
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Algebraic formal power series

Theorem (Christol, 1979)

Let f (T) =
∑

n≥0 an(1/T)n be a formal power series with coefficients in Fq. Then f

is algebraic over Fq(T) if, and only if, the sequence (an)n≥0 is q-automatic.

Cobham, 1972: If a is an automatic sequence then p(a,m) = O(m).

Theorem
Let f ∈ Fp((1/T)) algebraic over Fp(T). Then

p(f ,m) = O(m).

I Real numbers: If α is an irrational algebraic number and b ≥ 2 then:

lim
m→+∞

p(α, b,m)

m
= +∞.

B.Adamczewski & Y.Bugeaud
On the complexity of algebraic numbers I. Expansions in integer bases
Annals of Math. 165 (2007), 547–565.
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Carlitz’ analogs

I Carlitz module over Fq[T]⇒ an unique exponential eC(z) defined over C by:

eC(z) = z
∏

a∈Fq[T],a 6=0

(1− z

aΠ̃q
)

where

Π̃q = (−T)
q

q−1

∞∏
j=1

(
1− 1

Tqj−1

)−1

.

I Remark: ker eC = Fq[T]Π̃q.

I Remark: Π̃q is an analogue of 2iπ.
Indeed, it is easy to verify that Π̃q is a period of eC(z) (as 2iπ is the period of
e(z)).

I In order to obtain a formal power series associated to Π̃q we take its real part:

Πq =
∞∏
j=1

(
1− 1

Tqj−1

)−1

.
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Complexity of 1
Πq

The power series expansion of

Πq =
∞∏
j=1

(
1− 1

Tqj−1

)−1

=
∑
n≥0

pnT−n,

pn = number of partitions of n whose parts take values in I = {qj − 1, j ≥ 1}mod p.

BUT the power series expansion of:

1
Πq

=
∞∑

n=0

anT−n

an =

{
(−1)card J if n can be written as

∑
j∈J (qj − 1);

0 if n cannot be represented as a sum
∑

j∈J (qj − 1) for no finite set J.

J.-P. Allouche
Sur la transcendance de la série formelle Π
J. Théor. Nombres Bordeaux 2 (1990), 103–117.

10 / 16



Results

Theorem
If q = 2 then p( 1

Π2
,m) = Θ(m2). More precisely:

(m− log m)(m− log m + 1)

2
≤ p(

1
Π2
,m) ≤ m2

2
+

5m
2
.

If q ≥ 3 then p( 1
Πq
,m) = Θ(m). More precisely:

p(
1

Πq
,m) ≤ 6qm.

Corollary
Π2 is transcendental over F2(T).
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Sketch of the proof for q = 2
Let us recall the first terms of the sequence:

n n an

0 0 0

1 21 − 1 1
2 2 0

3 22 − 1 1
4 22 − 1 + 2− 1 1
5 5 0
6 6 0

7 23 − 1 1
8 23 − 1 + 2− 1 1
9 9 0

10 23 − 1 + 22 − 1 1
11 23 − 1 + 22 − 1 + 2− 1 1
12 12 0
13 13 0
14 14 0

15 24 − 1 1
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Sketch of the proof for q = 2

I We denote, for n ≥ 1, wn the subword of a defined as:

wn = a2n−1 · · · a2n+1−2.

I Convention: w0 = 0.
I Examples: w1 = 10, w2 = 1100, w3 = 11011000 etc.
I Under these notations, the infinite word a may be written as:

a = 0︸︷︷︸
w0

10︸︷︷︸
w1

1100︸︷︷︸
w2

11011000︸ ︷︷ ︸
w3

· · · = w0w1w2 · · · .

Lemma
For every n ≥ 2 we have the relation: wn = 1w1w2 · · ·wn−10.

I We denote un the subword: wn = un0, for n ≥ 0. For example u0 is the empty
word, u1 = 1, u2 = 110 etc.

I |un| = 2n − 1
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Sketch of the proof for q = 2
For m ∈ N fix there exists an integer n (greater or equal to 1):

2n−1 < m ≤ 2n.

Goal: calculate p(a,m)

I Main idea: We denote An = {u2
n0k, k ≥ 1}. We prove that a ∈ AN

n .

I Next step: All distinct words of length m occur in the prefix of length 2n+1 − 1
of a, more precisely in:

un un0︸︷︷︸
wn

unun00︸ ︷︷ ︸
wn+1

unun0unun000︸ ︷︷ ︸
wn+2

· · ·wm.

Upper bound: We look in all the words of the form: unun (-> 2m) and in all the
overlaps un0kun where 1 ≤ k ≤ m (-> m− k + 1).

Lower bound: It is sufficient to find

(m− log m)(m− log m + 1)

2

distinct words in a.
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A vector space over Fp(T)
The set of formal power series of polynomial complexity:

P = {f ∈ Fp[[T−1]], there exists K such that p(f ,m) = O(mK)}

Remark: Algebraic power series belong to P; 1
Πq
∈ P .

Theorem
P is a vector space over Fp(T).

Remark:
I Moreover P is closed under Hadamard product, (formal) derivative, Cartier

operator...
I The same properties are satisfied by the set of formal power series of entropy 0.
I Consequence: This leads to a criterion of linear independence.

Subword complexity↔ Space, time complexity

D.Thakur & R. Beals
Computational classification of numbers and algebraic properties
International Mathematics Research Notices, 15 (1998), 799–818.
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Conclusion and perspectives

I Study other closure properties of formal power series of low complexity, such as
multiplication or inverse. Stability under these operations could imply in
particular algebraic independence over Fq(T).

I There is some particular cases of formal power series belonging to P stable by
multiplication (some lacunary power formal series, automatic series). But see
for example Jacobi theta function:
θ3(T) = 1 + 2

∑
n≥1 T−n2

∈ Fq((1/T)), q ≥ 3

θ2
3(T) =

∑
n≥1 r2(n)T−n where r2(n) = 4(d1(n)− d3(n))mod q

.

It is not difficult to prove that θ3(T) ∈ P . But what about θ2
3(T) ?

Difficulty: Study the complexity of θ2
3(T)⇒ study additive properties of the

multiplicative sequence (r2(n))n.

I Place other well-known transcendental finite characteristic numbers such as e or
Carlitz ζ values in the computational hierarchy.

I Formal power series of low complexity⇒ diophantine properties.
(linear complexity⇒ irrationality measures)
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