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Elliptic curve cryptography

Elliptic Curve E : y 2 = x3 + ax2 + bx + c
For P ∈ E and n ∈ Z, nP can be calculated
easily.
No efficient algorithm to calculate n from P and
nP?
Fast calculation of nP desirable!

Methods also apply to Abelian groups (e.g., the
Jacobian of a hyperelliptic curve) where
subtracting a point is as cheap as addition.
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Double-and-Add Algorithm

Calculating 27P via a doubling and adding scheme using the
standard binary expansion of 27:

27 =(11011)2,

27P =2(2(2(2(P) + P) + 0) + P) + P.

Number of additions ∼ Hamming weight of the binary expansion
(Number of nonzero digits)
Number of doublings ∼ length of the expansion
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Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 =(1001̄01̄)2,

27P =2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

(1̄ := −1)
=⇒ Use of signed digit expansions
Number of additions/subtractions ∼ Hamming
weight of the binary expansion
Number of multiplications ∼ length of the
expansion
There are (infinitely) many signed binary
expansions of an integer (Redundancy) =⇒ find
expansion of minimal Hamming weight.
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Deriving a Low-Weight Representation

Take an integer n.

If n is even, we have to take 0 as least significant digit and
continue with n/2.

If n ≡ 1 (mod 4), we take 1 as least significant digit and
continue with (n− 1)/2. This is even and guarantees a zero in
the next step.

If n ≡ 3 ≡ −1 (mod 4), we take −1 as least significant digit
and continue with (n + 1)/2. This is even and guarantees a
zero in the next step.

This procedure yields a zero after every non-zero, which should
yield a low weight expansion. There are no adjacent non-zeros.
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Non-Adjacent Form

Theorem (Reitwiesner 1960)

Let n ∈ Z, then there is exactly one signed binary expansion
ε ∈ {−1, 0, 1}N0 of n such that

n =
∑
j≥0

εj2
j , (ε is a binary expansion of n),

εjεj+1 = 0 for all j ≥ 0.

It is called the Non-Adjacent Form (NAF) of n.
It minimises the Hamming weight amongst all signed binary
expansions with digits {0,±1} of n.
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Non-Adjacent Form: Applications

Efficient arithmetic operations (Reitwiesner 1960)

Coding Theory

Jump interpolation search trees (Güntzer and Paul 1987)

Exponentiation (Jedwab and Mitchell 1989)

Elliptic Curve Cryptography (Morain and Olivos 1990)
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Transducer Automaton Unsigned → NAF

Conversion of the unsigned binary expansion in nonadjacent form
from right to left.

0 odd carry

0|0 1|ε
0|01

1|01̄

0|ε

1|0
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Transducer Automaton Any Signed Expansion → NAF

Conversion of any signed binary expansion in nonadjacent form
from right to left.

0 odd1odd1̄

car1car1̄

0|0

1|ε
1̄|ε 0|01, 1̄|01̄

1|01̄

0|01̄, 1|01

1̄|01

1̄|0

0|ε

1|0

1|00|ε

1̄|0

There is no cycle of increasing weight ⇒ NAF is optimal.
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Analysis of the NAF — Known Results

Theorem

E(H`) =
1

3
`+

2

9
+ O(2−`),

V(H`) =
2

27
`+

8

81
+ O(`2−`),

lim
`→∞

P
(

H` ≤ `

3
+ h

√
2`

27

)
=

1√
2π

∫ h

0
e−t2/2 dt,

where H` is the Hamming weight of a random NAF of length ≤ `
(all NAFs of length ≤ ` are considered to be equally likely).
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Subblock Occurrences without Restricting to Full Blocks

Let b = (br−1, . . . , b0) 6= 0 be an admissible block,
(. . . ε2(n)ε1(n)ε0(n)) the NAF of n.
We consider

Sb(N) :=
∑
n<N

∞∑
k=0

[(εk+r−1(n), . . . , εk(n)) = b],

i.e. the number of occurrences of the block b in the NAFs of the
positive integers less than N.
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Subblock Occurrences

Theorem (Grabner-H.-Prodinger 2003)

If br−1 = 0, then Sb(N) =

Q(b0)

3 · 2r
N log2 N + Nh0(b) + NHb(log2 N) + o(N),

where

Q(η) =2 + 2 [η = 0]

Hb(x) =
∑

k∈Z\{0}

hk(b)e2kπix

for explicitly known constants hk(b), k ∈ Z.
Hb(x) is a 1-periodic continuous function.
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NAF: Counting Subblocks — Explicit constants

hk(b) =
ζ
(

2kπi
log 2 , αmin(b)

)
− ζ

(
2kπi
log 2 , αmax(b)

)
2kπi(1 + 2kπi

log 2 )
for k 6= 0,

h0(b) = log2 Γ(αmin(b))− log2 Γ(αmax(b))

− Q(b0)

3 · 2r

(
r +

1

6
+

1

log 2

)
+

1

3 · 2r−1
,

αmin(b) = [value(b) < 0] + 2−r value(b)− 1 + [b0 even]

3 · 2r

αmax(b) = [value(b) < 0] + 2−r value(b) +
1 + [b0 even]

3 · 2r

ζ(s, x) denotes the Hurwitz ζ-function.
The case r = 1 is contained in Thuswaldner (1999).
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Further Results

Dynamical Aspects (Dajani-Kraaikamp-Liardet 2006)

Analysis of von Neumann addition (H.-Prodinger 2003)

Number of optimal expansions (Grabner-H. 2006)

Alternative digit sets (Muir-Stinson 2004, 2005;
Avoine-Monnerat-Peyrin 2004; H.-Prodinger 2006)

. . .
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Right-to-Left vs. Left-to-Right

Left-To-Right scalar multiplication:

27 =(11011)2,

27P =2(2(2(2(P) + P) + 0) + P) + P.

Right-To-Left scalar multiplication:

27P = 24P + (23P + (220 + (21P + 20P))),

where 2kP = 2(2k−1P).
In our case (addition of ±P), both methods are available.
Joye and Yen 2000 give an algorithm for computing a
{0, 1,−1}-expansion of minimal weight (i.e., weight is equal to
that of the NAF) from left to right.
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Windows and Higher Bases

Let
n = ( 101̄ 001 01̄0 010 101 )2.

Take “windows” of length w . Gives expansion to the base of 2w

with many digits d ∈ {0} ∪ D.
Precompute dP for d ∈ D (with d > 0).
Left-to-right scalar multiplication:

nP = 23(23(23(23( 101̄ P) + 001 P)− 010 P) + 010 P) + 101 P.

Right-to-left scalar multiplication in general not efficient: One
would have to compute 2kw dP for all d ∈ D with d > 0.

Clemens Heuberger Digital Expansions in Cryptography
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Sliding Windows

Let
z = ( 101̄ 00 101̄ 001 0 101 )2.

Sliding windows of length w = 3.
Can be seen as an expansion with digits{

0,±1,±3, . . . ,±4 · 2n − (−1)n

3

}
.

Apart from 0, only odd digits are used.
Expected Hamming weight (Grabner-H.-Prodinger-Thuswaldner
2005):

1

w + (4− 4(−2)−w )/3
`+ O(1)

Clemens Heuberger Digital Expansions in Cryptography
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w -NAF

If one does not start with the NAF and forms windows out of it,
but directly creates a suitable expansion, another approach is
possible (cf. Cohen 2005):
We set D = {±1,±3, . . . ,±(2w−1− 1)}. Then every n ∈ Z admits
a unique expansion

n =
∑̀
j=0

dj2
j dj ∈ {0} ∪ D

with the w -NAF condition:

If dj 6= 0, then dj+1 = dj+2 = · · · = dj+w−1 = 0.

Expected Hamming weight of a w -NAF of length `:

1

w + 1
`− (w − 1)(w + 2)

2(w + 1)2
+ o(1).
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Fractional Windows

Möller 2003, 2005: In restricted memory environments (e.g.,
smartcards), the required stored data for sliding width w
windows or w -NAF may not fit with the available storage
area. Use fractional windows: odd digits from −m, . . . , m.

Phillips and Burgess (2004) suggest odd digits from the set
D`,u = {`, . . . , u} with ` ≤ 0 and u ≥ 1.
Common generalisation of all representations presented so far,
including unsigned expansions.

Clemens Heuberger Digital Expansions in Cryptography
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Computing Fractional Windows Expansions

Choose w maximally such that D contains at least one
representative of every odd residue class modulo 2w−1. Some
residue classes modulo 2w−1 will have two representatives.

If n is even, the last digit is 0 and we continue with n/2.

If n ≡ d ∈ D`,u (mod 2w−1) such that d is the unique
representative of its residue class modulo 2w−1, the last digit
is d , then we have w − 2 zeros and we continue with
(n − d)/2w−1.

If n ≡ d1 ≡ d2 ∈ D`,u (mod 2w−1) for distinct d1 and d2, then
for n ≡ dj (mod 2w ) for one j ∈ {1, 2}. The last digit is dj ,
then we have w − 1 zeros, and we continue with (n − d)/2w .

This construction minimises the Hamming weight over all
expansions with digits from D`,u (Phillips and Burgess).

Clemens Heuberger Digital Expansions in Cryptography
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Analysis

Let Wn be a random expansion of length n, constructed according
to the above algorithm. Then

E(Wn) =
1

w − 1 + λ
n+O(1) and Var(Wn) =

(3− λ)λ

(w − 1 + λ)3
n+O(1),

where

λ =
u − `+ 2

2w−1
.

Furthermore, the random variable Wn satisfies the central limit law

lim
n→∞

Pr
(

Wn ≤ E(Wn) + x
√

Var(Wn)
)

=
1√
2π

∫ x

−∞
e−

t2

2 dt.
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Left-To-Right

w -NAF: Muir-Stinson 2005; Avanzi 2005;
Okeya-Schmidt-Samoa-Spahn-Takagi 2004;
Khabbazian-Gulliver-Bhargava 2005; H.-Katti-Prodinger-Ruan
2005.

{−m, . . . ,m}: Möller 2004

D`,u = {`, . . . , u}: H.-Muir 2009.

In all these cases, an expansion of minimal weight with the same
digit set is constructed (but not satisfying the respective
syntactical conditions), it can be calculated from left to right.

Clemens Heuberger Digital Expansions in Cryptography
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Left-To-Right by Approximation

Consider the digit set D`,u = {`, . . . , u}.
Idea: Approximate given integer n by the “closest” weight-one
integer c1. Continue the process with n − c1.
The notion of “closest” has to take into account the lack of
symmetry of the digit set: If c1 < n < c2 and c1 and c2 are
successive weight-one integers, then c1 is “closest” to n if and only
if

n − c1 <
u

u + |`|(c2 − c1).

In general, this decision cannot be made by an automaton reading
the standard binary expansion from left to right.
Luckily, some “tolerance” can be allowed: Always choosing the
“almost closest” (closest up to a fixed error, depending on ` and
u) yields a minimal weight expansion, computable by a transducer
automaton from the standard binary expansion (for fixed ` and u).
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Double Base

Dimitrov-Jullien-Miller 1998:

n =
h−1∑
i=0

ci2
ai 3bi with ci ∈ {±1}

and sequences ai and bi . Fewer additions
(O(log(n)/ log log n)), but precomputation is more expensive.

Dimitrov-Imbert-Mishra 2005: Impose additional condition
a0 ≤ a1 ≤ · · · ≤ ah−1 and b0 ≤ b1 ≤ · · · ≤ bh−1. More
additions, but successive computation of 2ai 3bi feasible.

Doche and Imbert 2006: Allow larger digit set.
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Joint expansions

Let n1, n2 ∈ Z and consider a signed binary joint expansion

ε = (ε
(i)
j )i=1,2

j≥0
∈ {−1, 0, 1}{1,2}×N0 of n1 and n2, i.e.,

ni =
∑
j≥0

ε
(i)
j 2j .

(The ith row is an expansion of ni .)
Example: Compute 30P+21Q on Curve.
Precompute P + Q,P − Q.

30 =(10001̄0)2, 1̄ := −1

21 =(101̄01̄1̄)2,

30P + 21Q =2(2(2(2(2(P + Q) + 0)− Q) + 0)− (P + Q))− Q.

Joint Hamming weight: number of nonzero columns (corresponds
to the number of additions).
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Simple Joint Sparse Form

We define
Aj(ε) = {i ∈ {1, 2} : ε

(i)
j 6= 0}.

(Positions of nonzero digits in “column” j .)

Theorem (Grabner-H.-Prodinger 2004)

There is a unique simple joint sparse form of (n1, n2) such that

Aj+1(ε) ) Aj(ε) or Aj+1(ε) = ∅

for all j ≥ 0.
The simple joint sparse form minimises the joint Hamming weight
over all joint expansions of n1, n2.

Clemens Heuberger Digital Expansions in Cryptography
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Simple Joint Sparse Form

Aj+1(ε) ) Aj(ε) or Aj+1(ε) = ∅

Regular expression (main term only; all sign combinations are
allowed):

(· · · ) ·
(

0

0
+

0

0

±1

0
+

0

0

0

±1
+

0

0

±1

±1
+

0

0

±1

±1

±1

0
+

0

0

±1

±1

0

±1

)∗
Similar Joint Sparse Form: Solinas 2001.

Clemens Heuberger Digital Expansions in Cryptography



Introduction
Windows and Precomputation

Linear Combinations and Joint Expansions
Endomorphisms and Complex Bases

Linear Combinations and Joint Expansions
Simple Joint Sparse Form
Colexicographically Minimal Expansions
Left-To-Right

Simple Joint Sparse Form: Characteristic Sets

Digit (xk , yk) of SJSF of
(m, n) given by set
containing
(
{

m/2k+2
}
,
{

n/2k+2
}

)

Colour xk yk

0 0
0 1
0 −1
1 0
−1 0
1 1
1 −1
−1 1
−1 −1
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Analysis

Theorem (Grabner-H.-Prodinger 2004)

The Hamming weight of the Joint Sparse Form of two positive
integers satisfies the following asymptotic formula

S(N) =
∑

m,n<N

h(m, n) =
N2

2
log2 N + N2Φ(log2 N) + O(Nα),

where Φ is a continuous periodic function of period 1 and
α = 1.2107605332885233950 . . ..

Clemens Heuberger Digital Expansions in Cryptography
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9.5 10 10.5 11

0.62

0.64

0.66

0.68

0.72

0.74

Plot of S(N)/N2 − 1
2 log2 N over log2 N for N = 512, . . . , 2048.
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Larger Digit Set

Take the digit set

D`,u := {j ∈ Z : ` ≤ j ≤ u}, where ` ≤ 0 ≤ 1 ≤ u.

Note that we now allow even digits, too.
Choose w such that

2w−1 < #D`,u = u − `+ 1 ≤ 2w .

Then, for every residue class modulo 2w−1, the set D`,u contains
one or two representatives.
Task: Given an integer vector n ∈ Zd , find a binary D`,u-expansion
of n minimising the joint Hamming weight!
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Colexicographically Minimal Expansions

Consider the binary D−3,5-expansions(
1
5

)
=

(
0001
0005

)
2

=

(
0001
1003̄

)
2

.

Attach the 0-1-word where 0 stands for a zero column and 1 for
column containing a nonzero entry:

0001 1001.

The first word is called colexicographically smaller than the second
one (the words are compared lexicographically from right to left).

Clemens Heuberger Digital Expansions in Cryptography
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Colexicographically Minimal vs. Minimal Joint Hamming
Weight

Questions:

Do colexicographically minimal expansions minimise the joint
Hamming weight over all D`,u-expansions?

How to find colexicographically minimal expansions?

Both the NAF and the Simple Joint Sparse Form are
D−1,1-colexicographically minimal expansions.
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Computing Colexicographically Minimal Expansions

Consider D−1,3 and n = (12,−10)

Since both numbers are even, we have to write a zero-column
and continue with (6,−5).

One of the numbers is odd, so we have to write a
nonzero-column now. Column 2 will be a zero column iff we
choose digits congruent to the numbers modulo 4.
One choice for first digit: 6 ≡ 2 (mod 4). (Number for
column 3 will be 1).
Two choices for the second digit: −5 ≡ −1 (mod 4) (Number
for column 3 will be −1) or −5 ≡ 3 (mod 4) (Number for
column 3 will be −2).
We therefore cannot avoid a nonzero column 3. We only have
one representative ≡ −2 (mod 4), thus choosing digit vector
( 2
−1 ) leads to more flexibility in the next step.
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Computing Colexicogr. Minimal Expansions (Cont.)

Result: (
12
−10

)
=

(
1020
1̄01̄0

)
2

This leads to an online algorithm for computing a
colexicographically minimal expansion. Can be realized by a
transducer automaton (for fixed `, u).
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Uniqueness?

D−3,5: 1
5
9

 =

0001
0005
1001


2

=

0001
1003̄
1001


Both are colexicographically minimal. Not unique.
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What about the Joint Hamming Weight

Among all optimal expansions (with respect to the joint Hamming
weight), take one which is colexicographically minimal.
Repeat the above argument to see that it has essentially the same
shape as a colexicographically minimal expansion.

Theorem (H., Muir 2007)

Let `, u be given. There is an online algorithm for computing a
colexicographically minimal expansion.
Every colexicographically minimal expansion minimises the joint
Hamming weight among all D`,u-expansions of the given integer
vector.
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Digit set {0, 1, 3}

Consider binary expansions with digits {0, 1, 3}.(
5
9

)
=

(
0101
1001

)
2

=

(
0013
0033

)
2

The second expression has lower joint Hamming weight, but is
colexicographically greater.
The precise structure of D`,u cannot be arbitrarily relaxed.
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Left-To-Right Joint Expansion

An algorithm for computing a joint expansion with digits
{0, 1,−1} of minimal weight fromleft to right is available:
H.-Katti-Prodinger-Ruan 2005.
Uses intermediate expansion with the property that nonzero digits
alternate in sign (cancels carries).
Then lexicographically minimal expansions (from left to right) have
minimal joint weight.
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Frobenius Endomorphism

Let a ∈ {0, 1}. We consider the Koblitz Curve

Ea : y 2 + xy = x3 + ax2 + 1,

over some finite field F2m of characteristic 2. These are the only
non-supersingular curves defined over F2.
Consider the Frobenius automorphism τ : F2m → F2m ; x 7→ x2 and
extend it to an endomorphism of Ea(F2m).
For all P ∈ Ea(F2m), we have

τ(τ(P)) + 2P = µτ(P), where µ = (−1)1−a.

In the endomorphism ring of Ea, this yields the equation

τ2 + 2 = µτ.

The endomorphism τ can be identified with µ+
√
−7

2 .
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τ -Expansions and Scalar Multiplication

Assume that a digit expansion of n to the base of τ is known, e.g.,
n =

∑`−1
j=0 cjτ

j (cj ∈ {0, 1}, c`−1 6= 0). Then

(c`−1τ
`−1 + c`−2τ

`−2 + c`−3τ
`−3 + · · ·+ c1τ + c0)P =

τ(τ(τ(τ(τ(c`−1P) + c`−2P) + c`−3P) · · · ) + c1P) + c0P

(Horner’s scheme; Frobenius-and-Add-Algorithm). This is a
generalisation of the binary Double-and-Add-Algorithm, but an
application of the Frobenius endomorphism is much faster than
doubling.

Number of (fast) Frobenius applications: length of the
expansion.

Number of Additions/Subtractions: Hamming weight
(number of nonzero digits) of the expansion (minus one).
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τ -Expansions

Does every n ∈ Z admit a base-τ -expansion n =
∑`−1

j=0 cjτ
j

(cj ∈ {0, 1}, c`−1 6= 0)? Yes.

Theorem (Kátai and Kovács 1981)

τ is a base of a canonical number system in Z[τ ], i.e., every
z ∈ Z[τ ] can be represented by a unique τ -expansion

n =
`−1∑
j=0

cjτ
j , cj ∈ {0, 1}, c`−1 6= 0.
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Introducing Redundancy

Increase the digit set D ⇒ Introduce Redundancy in the digital
expansion ⇒ Decrease Hamming weight at the cost of
precomputations.

Problem

Choose the τ -expansion of n with digits from {0} ∪ D of minimum
weight.

Simplest case: digit set D = {±1} (here, no precomputation is
necessary as (−1) · P = −P is free).

Example

10 = −1 ·τ8 +0 ·τ7−1 ·τ6 +0 ·τ5−1 ·τ4 +0 ·τ3 +0 ·τ2 +1 ·τ+0 ·τ0

(µ = −1).

Clemens Heuberger Digital Expansions in Cryptography



Introduction
Windows and Precomputation

Linear Combinations and Joint Expansions
Endomorphisms and Complex Bases

Frobenius Endomorphism and τ -NAF
w -NAFs and Non-Adjacent Digit Sets
Non-Optimality and Chaotic Behaviour
Joint Expansions

τ -NAF

Theorem (Solinas 1997, 2000)

For each z ∈ Z[τ ], there is a unique word c`−1 . . . c0 ∈ {0,±1}∗
with c`−1 6= 0 such that

z = valueτ (c`−1 . . . c0) :=
∑
j≥0

cjτ
j , (c`−1 . . . c0 is a τ -expansion of z),

cjcj+1 = 0 for all j ≥ 0.

“τ -Non-Adjacent-Form (τ -NAF)”.

Theorem (Gordon 1998)

The τ -NAF minimises the Hamming weight over all
{0,±1}-τ -expansions of n.
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Computation of the τ -NAF

10 ≡ 0 (mod τ) 10
τ = − 5− τ

− 5− 5τ ≡ 1 (mod τ2) (−5−τ)−1
τ = − 2 + 3τ

− 2 + 3τ ≡ 0 (mod τ) −2+3τ
τ = 4 + τ

4 + τ ≡ 0 (mod τ) 4+τ
τ = − 1− 2τ

− 1− 2τ ≡ − 1 (mod τ2) (−1−2τ)+1
τ = − 2

− 2 ≡ 0 (mod τ) −2
τ = 1 + τ

1 + τ ≡ − 1 (mod τ) (1+τ)+1
τ = − τ

− τ ≡ 0 (mod τ) −τ
τ = − 1

− 1 ≡ −1 (mod τ) (−1)+1
τ = 0

10 = 0 + 1τ + 0τ2 + 0τ3 + (−1)τ4 + 0τ5 + (−1)τ6 + 0τ7 + (−1)τ8
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Computing the τ -NAF from any Expansion

10 = 0 0 1 −1 1 −1 −1 −1 0 (original)
0 = −1 0 −2 1 −2 1 1 2 0 (carries)
0 = (MinPoly)

10 = −1 0 −1 0 −1 0 0 1 0 (result)

Clemens Heuberger Digital Expansions in Cryptography



Introduction
Windows and Precomputation

Linear Combinations and Joint Expansions
Endomorphisms and Complex Bases

Frobenius Endomorphism and τ -NAF
w -NAFs and Non-Adjacent Digit Sets
Non-Optimality and Chaotic Behaviour
Joint Expansions

Transducer for computing the τ -NAF

Transducer to compute
the τ -NAF from any
signed τ -expansion from
right to left, where
µ = −1.

0.1 .1̄

1̄

10 1̄0

1

1̄01̄

1̄0.1̄

1̄00.1

100.1̄

10.1

101

0|0

1|ε 1̄|ε
0|01

1|0
1̄

1̄|01̄

0|01̄

1|01

1̄|0
1

1|0

0|ε 1̄|0

0|0

1|ε

1̄|ε

0|0

1|ε

1̄|ε

1̄|00|ε1|0

1|0

1̄|0

0|ε

1̄|01

0|01̄
1|0

1

1̄|0
1̄

0|011|01̄

1|0
1

0|01̄ 1̄|01

1|01̄

0|01

1̄|0̄
1

1|0

1̄|0

0|ε
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D-w -NAF

Choose D ⊂ Z[τ ] such that D is a reduced residue system modulo
τw and such that every z ∈ Z[τ ] admits a D-w -NAF, i.e., an
expansion

z =
∑
j≥0

cjτ
j , cj ∈ {0} ∪ D

with
cj 6= 0 implies cj+w−1 = · · · = cj+1 = 0.

(every block of w digits contains at most one non-zero).
Such a D is called a w -Non-Adjacent-Digit-Set (w -NADS).
Computation of a w -NAF is analogous to that of the τ -NAF.
Termination!
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Examples for w -NADS

w = 1 D = {1} Canonical Number System,

w = 2 D = {±1} τ -NAF,

w = 3 D = {±1,±(τ2 + 1)},
...
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Representatives of Minimal Norm

Solinas (1997, 2000): For each residue class modulo τw coprime to
τ , choose the representative of minimal norm (MNR(w)). This
digit set is uniquely determined.

Theorem (Solinas 1997, 2000)

MNR(w) is a w-Non-Adjacent-Digit-Set.

Theorem (Blake-Kumar Murty-Xu 2005)

A symmetric (i.e., d ∈ D =⇒ −d ∈ D) digit set D with 1 ∈ D
such that |d | < 2w/2 for d ∈ D is a w-Non-Adjacent-Digit-Set.
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Short τ -NAF representatives

SNR(w) = { 0 } ∪
{

value(cw−1 . . . c0) : cw−1 . . . c0 is a τ -NAF

with c0 6= 0 and cw−1 ∈ {0, c0}
}

Theorem (Avanzi, CH, Prodinger 2009+)

SNR(w) is a w-NADS.

Main Advantage:

Easy Computation
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Point Halving (w = 3)

For w = 3, the digit set of minimal norm representatives (and the
only symmetric digit set of short τ -NAF representatives) is

D = {±1,±τ̄},

where τ̄ = µ− τ = −µ(τ2 + 1) denotes the complex conjugate of
τ . Note that we have τ τ̄ = 2.
We want to compute zP = (τ̄z)(τ(1/2P)).
Set Q := τ(1/2P) (which can be computed easily from P).
Thus P = τ̄Q.

Theorem (Avanzi, H., Prodinger 2006)

zP can be computed by forming the {±1,±τ̄}-3-NAF of τ̄z and
applying it to Q = τ(1/2P). The only precomputation is one point
halving and one Frobenius application.
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Optimality (w = 3)

Theorem (Avanzi, H., Prodinger 2006)

The {±1,±τ̄}-3-NAF of a z ∈ Z[τ ] has minimal Hamming weight
amongst all τ -expansions of z with digits {0,±1,±τ̄}.

The proof uses 15 non deteriorating transformation rules or a
transducer with 153 states.
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Point Halving, General w

Digit set: D = {±τ̄k : 0 ≤ k < 2w−2}.
D is always a reduced residue system modulo τw .

For w ≤ 6, D is proven to be a w -NADS.

For w ∈ {7, 8, 9, 10, 11, 12}, the set D is not a w -NADS.

For a number with m digits, choose w ≈ log2 m − log2 log2 m
for the first ≈ m(1− 1

log2 m ) digits and choose w = 6 for the

remaining ≈ m/ log2 m digits.

Expected number of expensive curve operations: O(m/ log m).

Only point halvings are used in precomputations, no addition.
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Avoiding Stored Precomputations

We want to compute zP. Fix w and D = {±τ̄k : 0 ≤ k < 2w−2}.
Assume that normal bases are used, i.e., Frobenius applications are
for free.
Write y = τ̄2w−1−1z and consider its D-w -NAF y =

∑
j≥0 εjτ

j .

Each nonzero digit εj can be written as εj = sj τ̄
kj for suitable kj

and signs sj ∈ {±1}.
For each k , we collect the contribution of digits ±τ̄k in y (k),

y (k) =
∑

j
εj =±τ̄k

sjτ
j ,

which results in the decomposition

y =
2w−2−1∑

k=0

y (k)τ̄k .
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Avoiding Stored Precomputations (2)

So far, we have

y (k) =
∑

j
εj =±τ̄k

sjτ
j , y =

2w−2−1∑
k=0

y (k)τ̄k .

We get

zP = τ̄−(2w−2−1)yP =
2w−2−1∑

m=0

(τ
2

)2w−2−1−m
y (m)P.

This is evaluated by a Horner scheme in τ/2, whose inner loop
consists of the computation of y (m)P by a Horner scheme in τ ,
i.e., by a Frobenius-and-Add loop.
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Algorithm for Normal Bases and Point Halving

INPUT: A Koblitz curve Ea, a point P of odd order on it, and a scalar z .

OUTPUT: zP

1. y ← τ̄ 2w−2−1z

Write y =
∑`

j=0 εjτ
j where εj ∈ D := {0} ∪ ±{τ̄ k : 0 ≤ k < 2w−2}

Write εj = sj τ̄
kj with sj ∈ {0,±1}

2. `k ← max
({−1} ∪ {j : εj = ±τ̄ k for some k})

3. X ← 0

4. for k = 0 to 2w−2 − 1 do

5. if k > 0 then X ← τm−`k X , X ← 1
2 X

6. for j = `k to 0 do

7. X ← τX

8. if εj = ±τ̄ k then X ← X + sjP

9. return X

Clemens Heuberger Digital Expansions in Cryptography



Introduction
Windows and Precomputation

Linear Combinations and Joint Expansions
Endomorphisms and Complex Bases

Frobenius Endomorphism and τ -NAF
w -NAFs and Non-Adjacent Digit Sets
Non-Optimality and Chaotic Behaviour
Joint Expansions

Example for Non-Optimality

Let µ = −1, w = 4, D = MNR(4) = {0,±1,±1± τ,±(3 + τ)}
(all signs are independent). Then

value(1000(−1− τ)000(1− τ)) = −9 = value((−3− τ)00(−1)).

The D-w -NAF has Hamming weight 3, the other expansion has
Hamming weight 2 and is even shorter.
⇒ the MNR(4)-4-NAF is not optimal!
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Chaotic Behaviour

Theorem (CH 2009+)

Consider µ = −1, w = 4,
D = MNR(4) = {0,±1,±1± τ,±(3 + τ)}, and

z` := value
(

0000(−1− τ)
(
000(3 + τ)

)(`)
0000(1 + τ)000(−1)

)
,

z ′` := value
(

1000(−1− τ)
(
000(3 + τ)

)(`)
0000(1 + τ)000(−1)

)
,

Here,
(
000(3 + τ)

)(`)
means repetition of the block.

z` ≡ z ′` (mod τ4`+13).
All optimal expansions of z` start with −1.
All optimal expansions of z ′` start with (1− τ).
It is impossible to compute optimal expansions by a finite state
transducer, it may be necessary to read the whole expansion.
“Chaotic behaviour”
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Chaotic Behaviour

Known for . . .

µ = ±1, τ2 − µτ + 2 = 0, D ∈ {MNR(4), SNR(4), MNR(5),
SNR(5), MNR(6), SNR(6), Pτ̄(4), Pτ̄(5)} (CH 2009+),

µ = ±1, τ2 − µτ + 2 = 0, Joint expansions, D = {0,±1} (CH
2009+)

Base β = −a±√−1, a ∈ Z, a > 0, D = Z. (Cost function:
Sum of absolute values of the digits) (CH 2002)
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Determining all Expansions of z` (1)

Consider w = 4, µ = −1, D = MNR(4) and

z` := value
(

000(−1− τ)
(
000(3 + τ)

)(`)
0000(1 + τ)000(−1)

)
.

z` is given by its 4-NAF.

The language of the 4-NAFs of all z`, ` ≥ 0, is the language
accepted by the finite state automaton AR .

0000(1 + τ)000(−1)000(−1− τ)

000(3 + τ)0
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Determining all Expansions of z` (2)

There is a transducer automaton AC converting arbitrary
MNR(4)-expansions to the 4-NAF.

It has 575 states. ⇒ No Picture!

Concatenating this conversion transducer AC with the
recognition automaton AR yields a huge automaton AH

recognising all expansions of some z` (` ≥ 0) (the output of
AC is the input of AR).

2003 states, simplifying (pruning states from which the
terminal state is not reachable) 608 states.

Input Labels of AH : Input Labels of AC , i.e., arbitrary
expansion of z`.

Output Labels of AH : Output Labels of AC = Labels of AR ,
i.e., 4-NAF of z`.
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Determining Optimal Expansions of z`

Assign weights to the transitions of AH : Hamming weight of
the input expansion minus Hamming weight of the output
expansion (4-NAF).

Weight of a successful path (input label: expansion of some
z`): Hamming weight of the input expansion minus Hamming
weight of the 4-NAF = Deterioration of the arbitrary
expansion compared to the 4-NAF.

Optimal Expansion = Minimal Deterioration = Shortest Path.

Shortest Path Computation (Bellman-Ford-Algorithm)
(special structure of the digraph: several layers ⇒ efficient)

No Negative Cost Cycle, length of shortest path: 0 (4-NAF of
z` is optimal, but there are other optimal expansions, too).

Remove transitions not contained in any shortest path (using
vertex potentials).

Clemens Heuberger Digital Expansions in Cryptography



Introduction
Windows and Precomputation

Linear Combinations and Joint Expansions
Endomorphisms and Complex Bases

Frobenius Endomorphism and τ -NAF
w -NAFs and Non-Adjacent Digit Sets
Non-Optimality and Chaotic Behaviour
Joint Expansions

Determining Optimal Expansions of z` (2)

Resulting transducer:

0000(1+τ)000(−1)
0000(1+τ)000(−1)

00(−1−τ)
ε

000(3+τ)
000(3+τ)

0
000(−1−τ)

000(3+τ)
000(3+τ)

0
0

All optimal expansions of all z` start with −1.
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Optimal Expansions of z ′`

z ′` := value
(

1000(−1− τ)
(
000(3 + τ)

)(`)
0000(1 + τ)000(−1)

)
.

. . .

No Negative Cost Cycle, length of shortest path: −1 (4-NAF
is optimal up to one).

Resulting transducer:

000(−3−τ)0000(3+τ)00(1−τ)
0000(1+τ)000(−1)

000(−3−τ)
000(3+τ)

00000
0001000(−1−τ)

0
0

All optimal expansions of all z ′` start with (1− τ).
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Other Digit Sets
8 Clemens Heuberger

w µ D
4 µ MNR NAF(zℓ) = 0ω(µ− τ) (000(−3µ + τ))(ℓ) 0000(1− µτ)000(−1)

(ℓ ≥ 0) opt(zℓ) = {0ω (000(3− µτ))(ℓ2) 00(µ− τ) (000(−3µ + τ))(ℓ1)

0000(1− µτ)000(−1) | ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 = ℓ}
NAF(z′

ℓ) = 0ω(−µ)000(µ− τ) (000(−3µ + τ))(ℓ) 0000(1− µτ)
000(−1)

opt(zℓ) = {0ω (000(−3 + µτ))(ℓ+1) 0000(−3µ + τ)00(1 + µτ)}
4 −1 SNR NAF(zℓ) = 0ω(−1) (0000(−3 + τ)0)(ℓ) 00(3− τ)

(ℓ ≥ 0) opt(zℓ) = 0ω (00000(−3 + τ))(ℓ) 001
NAF(z′

ℓ) = 0ω (00000(−3 + τ))(ℓ) 000(3− τ)
opt(zℓ) = 0ω (00000(−3 + τ))(ℓ) 000(3− τ)

5 −1 MNR NAF(zℓ) = 0ω(1− 2τ) (00000(−3− τ))(ℓ) 0000(1 + 3τ)
(ℓ ≥ 1) opt(zℓ) = {0ω(1− 2τ) (00000(−3− τ))(ℓ) 0000(1 + 3τ)}

NAF(z′
ℓ) = 0ω(−1) (0000(−3− τ)0)(ℓ) 000(1 + 3τ)

opt(z′
ℓ) = {0ω (00000(1 + 3τ))(ℓ) 000(−1)}

5 1 MNR NAF(zℓ) = 0ω(−1 + 2τ)00 (00000(3− τ))(ℓ) 0000(1− 3τ)
(ℓ ≥ 1) opt(zℓ) = {0ω(−1 + 2τ)00 (00000(3− τ))(ℓ) 0000(1− 3τ)}

NAF(z′
ℓ) = 0ω(−1) (0000(3− τ)0)(ℓ) 000(1− 3τ)

opt(z′
ℓ) = {0ω (00000(1− 3τ))(ℓ) 000(−1)}

5 −1 SNR NAF(zℓ) = 0ω(−1− τ) (0000(−5− 4τ)000000(−5− 4τ))(ℓ)

(ℓ ≥ 0) 0000(−5− 4τ)0000(3 + 3τ)
opt(zℓ) = {0ω (000000(−5− 4τ)0000(−5− 4τ))(ℓ)

000000(−3− 3τ)0001}
NAF(z′

ℓ) = 0ω (0000(−5− 4τ)000000(−5− 4τ))(ℓ)

0000(−5− 4τ)0000(3 + 3τ)
opt(z′

ℓ) = {0ω (0000(−5− 4τ)000000(−5− 4τ))(ℓ)

0000(−5− 4τ)0000(3 + 3τ)}
5 1 SNR NAF(zℓ) = 0ω1 (000000(5− 4τ)0000(−5 + 4τ))(ℓ)

(ℓ ≥ 1) 0000(−3 + τ)0000(3− 3τ)
opt(zℓ) = {0ω (0000000(−5 + 4τ)000(−5 + 4τ))(ℓ)

0000000(−5 + 4τ)00(3 + τ)}
NAF(z′

ℓ) = 0ω(−1 + τ) (0000(5− 4τ)0000(−5 + 4τ)00)(ℓ)

00(−3 + τ)0000(3− 3τ)
opt(z′

ℓ) = {0ω(1− τ) (0000000(−5 + 4τ)000(−5 + 4τ))(ℓ)

0000(3− 3τ)}
5 −1 Pτ̄ NAF(zℓ) = 0ω(1 + τ) (00000(5− τ))(ℓ) 0000(−1− 3τ)

(ℓ ≥ 0) opt(zℓ) = {0ω (00000(−1− 3τ))(ℓ2) 000(1 + τ)
(00000(5− τ))(ℓ1) 0000(−1− 3τ)

Table 1. Explicit elements zℓ and z′
ℓ for Theorem 1. For w = 4,

µ = 1 we have SNR(4) = MNR(4). For w = 5, µ = 1, D =
Pτ̄ (5), opt(zℓ) is given by a regular expression, where “‖” denotes
alternatives and ∗ denotes the Kleene star.
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w µ D
| ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 = ℓ}

NAF(z′
ℓ) = 0ω(1 + τ)0000(1 + τ) (00000(5− τ))(ℓ)

0000(−1− 3τ)
opt(z′

ℓ) = {0ω (00000(−3 + 7τ))(ℓ) 00000(−3 + 7τ)00(−1 + τ)}
5 1 Pτ̄ NAF(zℓ) = 0ω(−1) (000000(−7 + 5τ))(ℓ+1)

00000(−3 + τ)0000(−1 + 3τ)
(ℓ ≥ 0) opt(zℓ) = {η ∈ 0ω

(
0000000000(5+ τ)00(3− τ)

‖ 000000000(3− τ)000(−5− τ)
‖ 000000000000(−3+ τ)(−3 − 7τ)
‖ 000000(−1 + τ)

)∗
0000000000000(−3− 7τ)00000(−3− 7τ)(−1)
| length(η) = 23 + 7ℓ}

NAF(z′
ℓ) = 0ω (000000(−7 + 5τ))(ℓ) 00000(−3 + τ)

0000(−1 + 3τ)
opt(z′

ℓ) = {0ω (000000(−7 + 5τ))(ℓ) 000000000(3 + 7τ)(−3 + τ),
0ω (000000(−7 + 5τ))(ℓ) 00000(−3 + τ)

0000(−1 + 3τ)}
6 −1 MNR NAF(zℓ) = 0ω100000(1 + 3τ) (00000(5 + 3τ))(ℓ) 00000(3 + 4τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(3 + 4τ) (00000(5 + 3τ))(ℓ) 0000(−1− 2τ)}
NAF(z′

ℓ) = 0ω(1 + 3τ) (00000(5 + 3τ))(ℓ) 00000(3 + 4τ)
opt(z′

ℓ) = {0ω(1 + 3τ) (00000(5 + 3τ))(ℓ) 00000(3 + 4τ)}
6 1 MNR NAF(zℓ) = 0ω(1− 3τ) (00000(5− 3τ))(ℓ) 00000(3− 4τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(1− 3τ) (00000(5− 3τ))(ℓ) 00000(3− 4τ)}
NAF(z′

ℓ) = 0ω100000(1− 3τ) (00000(5− 3τ))(ℓ) 00000(3− 4τ)
opt(z′

ℓ) = {0ω(−3 + 4τ) (00000(−5 + 3τ))(ℓ) 0000(−1 + 2τ)}
6 −1 SNR NAF(zℓ) = 0ω (000000(1− 2τ))(ℓ) 00000(−5− τ)

(ℓ ≥ 1) opt(zℓ) = {0ω (000000(1− 2τ))(ℓ) 00000(−5− τ)}
NAF(z′

ℓ) = 0ω(−1)(00000(1− 2τ)0)(ℓ)0000(−5− τ)
opt(z′

ℓ) = {0ω (000000(−5− 4τ))(ℓ) 00001}
6 1 SNR NAF(zℓ) = 0ω(3− τ) (00000000900000000(−9))(ℓ)

(ℓ ≥ 1) 000000(1− 3τ)00000(7− τ)
opt(zℓ) = {0ω(3− τ) (00000000900000000(−9))(ℓ)

000000(1− 3τ)00000(7− τ)}
NAF(z′

ℓ) = 0ω100000(1− 3τ) (0000000900000000(−9)0)(ℓ+1)

00000(1− 3τ)00000(7− τ)
opt(z′

ℓ) = {0ω(−9) (00000000(9− 2τ)00000000(−9 + 2τ))(ℓ)

00000000(9− 2τ)000000(3 + τ)
0000000(−9 + 2τ)000(−1 + 3τ)}

Table 1. Explicit elements zℓ and z′
ℓ for Theorem 1 (continued).
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Symbolic Computations with Automata

Guess critical pairs z`, z ′` from experiments (depth search) and
rewrite them manually as regular expressions.

Construct all automata in Mathematica (automatically)

Interpret resulting transducer manually.

Largest case: w = 6, µ = 1, D = SNR(6), AH has 235 138
states, 65 days on a Intel R© CoreTM 2 Duo CPU E6850 at
3.00 GHz running Mathematica R© 5.2 under Linux 2.6.22.

Clemens Heuberger Digital Expansions in Cryptography



Introduction
Windows and Precomputation

Linear Combinations and Joint Expansions
Endomorphisms and Complex Bases

Frobenius Endomorphism and τ -NAF
w -NAFs and Non-Adjacent Digit Sets
Non-Optimality and Chaotic Behaviour
Joint Expansions

Joint expansions

Let n1, n2 ∈ Z[τ ] and consider a signed joint expansion

(c
(i)
j )i=1,2

j≥0
∈ {−1, 0, 1}{1,2}×N0 of n1 and n2, i.e.,

ni =
∑
j≥0

c
(i)
j τ i .

Joint Hamming weight: number of nonzero columns
(corresponds to the number of additions when computing a
linear combination n1P1 + n2P2 of two points P1, P2 using
the precomputed points P1 ± P2 on an elliptic curve).
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τ -Joint Sparse Form

τ -Joint-Sparse-Form (Ciet, Lange, Sica, Quisquater 2003):
Syntactically defined expansion, analogous to binary case, not
optimal. Expected density: 0.5.

various proposals . . .

E.g., transducer with 14889 states (CH, unpublished),
expected density 0.475102

Chaos proved.
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