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Me.Mo.Mat., Università di Roma La Sapienza and LIAFA, Université Denis-Diderot
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β-expansions

β-expansions are a particular class of representations in a non integer
base β > 1 and alphabet {0, 1, . . . , ⌊β⌋}.

The β-expansion of a real number x, dβ(x), is computed by the greedy
algorithm, based upon the iteration of the map Tβ(x) := βx − ⌊βx⌋.

The closure of the set of β-expansions is called β-shift.

Theorem (Parry)

The sequence x1x2 · · · belongs to the β-shift if and only if for each

n > 1
xnxn+1 · · ·6lexd

∗
β(1)

where

d
∗

β(1) :=

(

(d1d2 · · · dn−1(dn − 1))ω if dβ(1) = d1d2 · · · dn−1dn is finite

dβ(1) otherwise
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Representation in negative base

We consider a negative value −β with β > 1 and an alphabet with
integer digits A.
A (−β)-representation of a real number x with alphabet A is a
sequence (xi) in AN satisfying the equality

x = x−n(−β)n +x−n+1(−β)n−1 + · · ·+x1(−β)+x0 +
x1

−β
+

x2

(−β)2
+ · · · .

We also write

x = (x−nx−n+1 · · · x−1x0.x1x2 · · · )−β.
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Representability in base −b, b > 1 integer

Every real number admits a representation with base −b and digits in
{0, 1, . . . , b − 1}.
The representation of a real number is not necessarily unique.

Example. The greatest value representable in the form .x1x2 · · ·
admits two representations: (.(b− 1)ω)b = (1.)b. This is also true in the
case of −b representations:

1

(b + 1)
= (.(0(b − 1))ω)−b=(1.((b − 1)0)ω)−b.

If x is an integer (positive or negative), then the representation is
unique.
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Properties of representations in base −b, b > 1 integer

Example. Representation of the integers base −2

1. 1 11. -1
110. 2 10. -2
111. 3 1101. -3
100. 4 1100. -4
101. 5 1111. -5

11010. 6 1110. -6
11011. 7 1001. -7
11000. 8 1000. -8
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Grünwald (1885) showed that:

every number in N (resp. −N) is representable with an odd (resp.
even) number of digits;
if x = (w)−b = (v)b then |w| > |v|.

and he introduced the first algorithms for addition, multiplication,
square root operation.
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Ordering the −b-representations...

Definition. Two finite words of the same length satisfy:
w−n · · ·w0≺v−n · · · v0 if and only if exists k such that

wi = vi for every − n 6 i < k and (−1)k(wk − vk) < 0.

Example. (3)−2 = 111. ≺ 100. = (4)−2: in fact the first digits in which
the sequences differ, 1 and 0, are in an odd position.

In general, if w, v ∈ {0, . . . , b − 1}∗ and |w| = |v|:

w ≺ v ⇔ (w.)−b < (v.)−b
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Real negative bases

Ito and Sadahiro (2008) introduced an algorithm to represent any real
number with real base −β, β > 1 and with digits in A = {0, 1, . . . , ⌊β⌋}.

−β-transformation on I−β :=
[

− β
β+1

, 1
β+1

)

T−β(x) := −βx − ⌊−βx +
β

β + 1
⌋.

−β-expansion of x ∈ I−β: d−β(x)= x1x2 · · · with

xk := ⌊−βT k−1
−β

(x) +
β

β + 1
⌋.

By shifting every real number has a −β-expansion.
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Example: golden mean case

If β = G := 1+
√

5
2

then

I−β =

[

−
β

β + 1
,

1

β + 1

)

=

[

−
1

β
,

1

β + 1

)

−β-transformation on I−β

T−β(x) = −βx − ⌊−βx + β

β+1
⌋

Classical β-transformation on [0, 1)
Tβ(x) = βx − ⌊βx⌋
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The −β-shift

The −β-shift is the closure of the −β-expansions.
Definition. x1x2 · · · ≺y1y2 · · · if and only if there exists k > 1 such that:

xi = yi for 1 6 i < k and (−1)k(xk − yk) < 0.

Property. Set x, y ∈ Iβ.

d−β(x) ≺ d−β(y) ⇔ x < y
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Characterization of the −β-shift

d
∗
−β(

1

β + 1
) :=

(

(0d1 · · · d2n(d2n+1 − 1))ω if d−β(− β

β+1
) = (d1 · · · d2n+1)

ω;

d−β( 1
β+1

) = 0d1d2 · · · ; otherwise.

Theorem (Ito-Sadahiro)

The sequence x1x2 · · · belongs to the (−β)-shift if and only if for each n > 1

d−β(
−β

β + 1
)�xnxn+1 · · · �d

∗

−β(
1

β + 1
)

Example. d−G(− G
G+1

) = 10ω and d
∗

−G( 1

G+1
) = 010ω:

0

0

1
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Some recalls on symbolic dynamical systems

S ⊆ AN is a symbolic dynamical system if and only if

S is shift-invariant;

S is closed.

S is a sofic dynamical system if and only if the set of finite factors
F (S) is recognizable by a finite automaton.

S is of finite type if and only if

S can be defined by the interdiction of a finite set of words.

⇔

S is recognized by a local finite automaton.
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Example: classical β-shifts

The β-shift, i.e. the closure of the set of β-expansions, is a
symbolic dynamical system.

The G-shift is of finite type: 11 is forbidden.

1

0

0

The G2-shift is sofic but not of finite type: the finite automaton
recognizing it is not local.

2

0

0, 1 1
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Characterization of sofic −β-shifts

Theorem (Ito and Sadahiro)

The −β-shift is sofic if and only if d−β

(

− β
β+1

)

is eventually periodic.

Example. The −G-shift is sofic but not of finite type: the finite
automaton recognizing it is not local.

0

0

1

d−G

(

− G
G+1

)

= 10ω
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Characterization of −β-shifts of finite type

Theorem

The −β-shift is of finite type if and only if d−β

(

− β
β+1

)

is purely

periodic

Example. The −G2-shift is of finite type.

2

1

0, 1 2

d−G2

(

− G2

G2+1

)

= (21)ω and the set of minimal forbidden words is {20}.
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Entropy

The entropy of a symbolic dynamical system S is

h(S) := lim
n→∞

1

n
log Fn(S) (1)

with Fn(S) = ♯ factors of S of length n.

If S is sofic, h(S) is equal to the logarithm of the greatest eigenvalue of
the adjacency matrix of the automaton recognizing S.

Example. The G-shift and the −G-shift have the same entropy:

1

0

0

Automaton recognizing the G-shift

0

0

1

Automaton recognizing the −G-shift

() March 25, 2009 15 / 21



Entropy of the −β-shift

The entropy of the classical β-shift is known to be log β .

In our case, it follows from Fotiades and Boudourides (2001)

Proposition

The entropy of the −β-shift is log β.
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A particular class of bases: Pisot numbers

A Pisot number is a positive algebraic integer greater than 1 all of
whose conjugate elements have absolute value less than 1.

Examples

all integers are Pisot numbers;

G is a Pisot number;

all the positive zeros of the polynomial:

X2 − aX − b ∈ Z[X]

with 0 < b 6 a or −a + 1 < b < 0 are Pisot numbers.
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The Pisot case

Theorem

If β is a Pisot number, then for every x in Q(β) ∩ I−β the sequence

d−β(x) is eventually periodic.

Corollary If β is Pisot the −β-shift is sofic.
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Normalization with Pisot bases

The normalization on an alphabet C ⊃ A is the partial function

ν−β,C : CN 7→ AN

(c1c2 · · · ) 7→ d−β(
∑

i>1 ci(−β−i)),

if
∑

i>1 ci(−β−i) ∈ I−β

Proposition

If β is a Pisot number, for every C ⊃ A the normalization is realizable

by a finite transducer.
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Addition with Pisot bases

Corollary

If x, y and x + y ∈ I−β the addition is realizable by a finite transducer.

In fact if d−β(x) = x1x2 · · · and d−β(y) = y1y2 · · · then:

zi := xi + yi ∈ C := {0, 1, . . . , 2⌊β⌋},

the normalization on the alphabet C yields:

d−β(x + y) = ν−β,C(z1z2 · · · )
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Integer

Unique representation a.e.

Monotonicity w.r.t. <lex

Unique representation a.e.

Monotonicity w.r.t ≺

General

Iβ = [0, 1) and Tβ = βx − ⌊βx⌋

Monotonicity w.r.t. <lex

Characterization lays on dβ(1)

Entropy = log β

I
−β = [− β

β+1
, 1

β+1
) and

T
−β = −βx − ⌊−βx + β

β+1
⌋

Monotonicity w.r.t. ≺

Characterization lays on d
−β( −β

β+1
)

Entropy = log β

Pisot

β-shift is sofic

Normalization and addition are

rational

−β-shift is sofic

Normalization and addition are

rational
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