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Starting point

Fixed points of uniform morphisms over a countable alphabet A

Let σ be a substitution over A.

∀a ∈ A, σ(a) = σ0(a)σ1(a) . . . σk−1(a)

Condition to ensure the existence of an infinite fixed point :

Some lettera0 satisfies σ0(a0) = a0.

The only restriction we make is : #
(
σ−1

i ({a})
)
<∞ for all i and a.
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An example...

σ : s 7→ s1
n 7→ (n − 1)(n + 1)

w = s1(0)(2)(1)(1)(1)(3)(2)(0)(0)(2)(0)(2)(2)(4)(3)(1)(1)(1)(1)(1) . . .

What about the supports of letters in this kind of words ?
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An example...

σ : s 7→ s1
n 7→ (n − 1)(n + 1)

w = s1(0)(2)

(1)(1)(1)(3)(2)(0)(0)(2)(0)(2)(2)(4)(3)(1)(1)(1)(1)(1) . . .

What about the supports of letters in this kind of words ?
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An example...

σ : s 7→ s1
n 7→ (n − 1)(n + 1)

w = s1(0)(2)(1)(1)(1)(3)

(2)(0)(0)(2)(0)(2)(2)(4)(3)(1)(1)(1)(1)(1) . . .

What about the supports of letters in this kind of words ?
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An example...

σ : s 7→ s1
n 7→ (n − 1)(n + 1)

w = s1(0)(2)(1)(1)(1)(3)(2)(0)(0)(2)(0)(2)(2)(4)

(3)(1)(1)(1)(1)(1) . . .

What about the supports of letters in this kind of words ?
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Let w be the infinite fixed point of some subsitution σ and consider a
finite set F ⊂ A.

IF = {n, wn ∈ F} can be generated by some countable
automata with finite final set.
If we define the projection ΠF : A→ F ∪ {0} and assume that
the graph of the substitution have bounded degree, then pΠF (w)

is at most polinomial.
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An example...

σ : s 7→ s1
n 7→ (n − 1)(n + 1)

m = Π{s,0}(w) = ab a b b b b b b a a b a b b b b b b b b b . . .

mn = a⇐⇒ n ∈
{

n ∈ N, |[n]2|0 = |[n]2|1
}
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from finite to countable case...

A set of integers S is k∞-recognizable if :

There exists a finite automata (E ,Φ,e0,F ) :
E is a finite or countable set,
Φ : E × [0, k − 1]→ E extended to E × [0, k − 1]∗

satisfying, for all e ∈ E ,
∣∣Φ−1 ({e})

∣∣ <∞,
e0 ∈ E ,
F ⊂ E is finite.

such that :
S = {n ∈ N, Φ([n]k ,e0) ∈ F} .
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About the reading direction choice

Reading from most to least significant digit or from least to most ?

Finite case
It does not really matter.
Countable or finite case
The two directions seem to capture really different properties...
A priori : Rec∞M`(k) 6= Rec∞`M(k).
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On the set of primes

P /∈ Rec∞M`(k) ∪ Rec∞`M(k)

M` direction
Existence of prefix sequences,
`M direction
Existence of suffix sequences.
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On the set of primes

M` direction

{{logk p}, p ∈ P} is dense in [0,1],

`M direction
For any fixed prime p > k , there exists infinitely many p′ ∈ P
such that :

p′ = p mod kblogk pc+1.
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Some general results

FA FA or CA reading M` FA or CA reading `M

RecM`(k) = Rec`M(k) Rec∞M`(k) \ Rec∞`M(k) 6= ∅ Rec∞`M(k) \ Rec∞M`(k) 6= ∅

co−Rec(k) = Rec(k) co−Rec∞(k) ∩ Rec∞(k) = Rec(k)

Stability by intersection

Definition up to a finite set

Stability by union Unstability by union

Rec(k) = Rec(kn) Rec∞M`(k) ( Rec∞M`(k
n) Rec∞`M(k) = Rec∞`M(kn)
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What about Cobham’s theorem ?

finite case
A set S is k - and `-automatic, for some multiplicatively
independent integers k and ` , if and only if

S =
⋃

aiN + bi , up to a finite set.

Countable or finite case
`M direction
This implication is no longer true.

{n!, n ∈ N} is recognizable in every bases

M` direction
Open question...
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Open problems & related questions...

Infinite words generated by substitutions over countable
alphabets,

What kind of properties for reals coded by these words ?
The n! case...

Recognizability in all bases,
Reading direction choice problem...

Big problem : Non-symmetrical notion.
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Open problems & related questions

Cobham extension,
Properties of numbers generated this wayS...
Characterization of sets recognizable in both directions.

Infinite words constructed using substitutions over monoı̈ds with
related graphs generated by finite graph grammars,

it gives a structure to considered automata,
its allows other type of terminal sets.

related to ets recognized by deterministic pushdown automata.
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