The tilings of Kari and Culik

E. Arthur Robinson, Jr.

George Washington University Washington, DC

Numeration: Mathematics and Computer Science CIRM, Marseilles March 26, 2009

> Slides available at home.gwu.edu/~robinson

Outline

Wang tiles

KC tiles

Proof of aperiodicity

Proof of existence

How do these tilings work?

Outline

Wang tiles

KC tiles

Proof of aperiodicity

Proof of existence

How do these tilings work?

Wang tiles

- Set $\ensuremath{\mathcal{W}}$ of 2-dimensional square dominos.
 - with "colored" (or numbered) edges.
- In a *valid* tiling, colors of adjacent edges must match.
- Essentialy a 2-dimensional SFT,
 - (any 2-d SFT can be coded in terms of Wang tiles by using higher block code).

Example: 2-d Fibonacci set \mathcal{W}

Figure: A Wang tile set \mathcal{W} with two edge color (pink and blue) that enforce a rule on center colors (black and white): in a valid tiling two black tiles cannot be adjacent.

Fibonacci Wang tiling

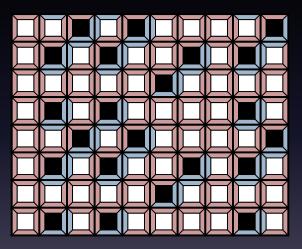
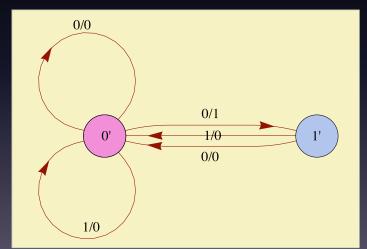


Figure: Patch of 2-d Fibonacci tiling. If edge colors are erased then tiling by black and white tiles is 2-d Fibonacci SFT.

Finite state machine



Hao Wang, 1961

Studied problem of existence of a valid tiling

Hao Wang, 1961

Studied problem of existence of a valid tiling

Theorem (Wang's Theorem)

If for every $r, s \in \mathbb{N}$, a Wang tile set \mathcal{W} admits a valid tiling of an $r \times s$ rectangle, then \mathcal{W} admits a valid tiling of the plane.

 Essentially a compactness theorem. Equivalent to König's lemma.

Wang's Conjecture

Conjecture (Wang's Conjecture)

Every valid Wang tile set W admits a valid periodic tiling of the plane.

- Equivalently: every nonempty 2-dimensional SFT has a periodic orbit.
 - (Wang *did not* use the language of "SFT".)
- This conjecture is true for 1-dimensional SFT,
 - (and easy).

Tiling Theorem

"Theorem" Assuming Wang's conjecture is true, given a set W of Wang tiles, there is an algorithm to determine whether or not W is valid.

Tiling Theorem

"Theorem"

Assuming Wang's conjecture is true, given a set W of Wang tiles, there is an algorithm to determine whether or not W is valid.

 i.e., Wang conjectured that the question of whether or not *W* is valid is *decidable*.

Proof

• Proof:

- For each r, s = 1, 2, 3, ..., construct at all valid tilings of an $r \times s$ rectangle.
- If some rectangle cannot be tiled, then $\ensuremath{\mathcal{W}}$ is not valid.
- Output: "No".
 - (Given \mathcal{W} , the question of whether an $r \times s$ block can be validly tiled by \mathcal{W} is known to be NP-complete.)
- Then check each valid tiling of an $r \times s$ block for periodic boundary conditions. If a periodic tiling is found:
- Output: "Yes".

Proof (continued)

Proof (continued).

- The algorithm must stop in finite time.
 - If W is not valid, then by Wang's Theorem, some r × s block cannot be validly tiled.
 - If W is valid, then by Wang's Conjecture, some $r \times s$ block can be validly tiled periodically.

•

Aperiodic Tilings

But!

Aperiodic Tilings

But! Wang's Conjecture is FALSE!

- Robert Berger, 1966:
 - In general, it is *undecidable* whether \mathcal{W} is valid.
 - There exist sets W that admit tilings, but only aperiodic ones.
 - Call such a *W* aperiodic.
- In Berger's aperiodic example, $\#(\mathcal{W}) \sim 20,000$.
- ...there is a big difference between d = 1 and d = 2.

Types of \mathcal{W} :

Possibilities for SFT, d = 1:

- Empty.
- Periodic points only.
- Periodic and aperiodic points both.

Non-emptiness problem is decidable.

Possibilities for W, d = 2:

- No valid tilings.
- All valid tilings periodic.
- Periodic and aperiodic valid tilings both.
- All valid tilings are aperiodic*.

* Call such \mathcal{W} aperiodic.

Non-emptiness problem is undecidable.

Aperiodic *W* milestones

- Breger (1966): #(W) = 20,426.
- Breger (1966): #(W) = 104.
- D. E. Knuth (1966): $\#(\mathcal{W}) = 92$.
- R. Pensose (1976): #(W) = 20 (only 2 if counted differently, but tiles not squares).
- R. M. Robinson (1977): #(W) = 18. (6 if counted differently).
- R. Ammann (1978): #(W) = 16 (2 if counted differently, but not squares).

Aperiodic *W* milestones

- Breger (1966): #(W) = 20,426.
- Breger (1966): #(W) = 104.
- D. E. Knuth (1966): #(𝒴) = 92.
- R. Pensose (1976): #(W) = 20 (only 2 if counted differently, but tiles not squares).
- R. M. Robinson (1977): #(W) = 18. (6 if counted differently).
- R. Ammann (1978): #(W) = 16 (2 if counted differently, but not squares).
- Kari (1996): #(W) = 14.
- Culick (1996): #(W) = 13.
 - · (Based on idea of Kari; Holds current record.)

Hierarchy

- All the known examples of aperiodic W, before 1996, are based on *hierarchy*.
 - Penrose tilings are a *substitution*.
 - Essentially all substitution tilings give rise to aperiodic Wang tiles (S. Mozes, 1989).
 - R. M. Robinson tilings are essentially 2-dimensional Töeplitz sequences.

Penrose tilings & Beatty sequences

- However, Penrose tilings are also based on 2-dimensional Beatty (or Sturmian) sequences (deBruijn, 1981, R).
 - Also known as model sets (see Meyer, 1972) or cut and project tilings.
 - Some model set tilings come from aperiodic W*,
 - ...but others do not (see e.g., T. Le. 1995)
- *Conjecture: All these *are* hierarchical.

Question: Are the KC tilings hierarchical?

Outline

Wang tiles

KC tiles

Proof of aperiodicity

Proof of existence

How do these tilings work?

The 13 KC tiles

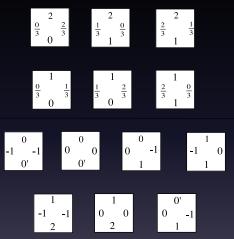
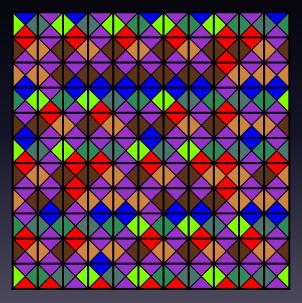


Figure: Note the two types of tiles: Top are called type $\lambda = \frac{1}{3}$; bottom are called type $\lambda = 2$. This version of KC tiles due to Eigen, Navarro & Prasad.

The 13 KC tiles

Figure: KC tiles as color tiles

KC tiling patch



KC tiling patch

XIXIX XXXXXXXXX XXX

KC tiling patch

$\begin{smallmatrix}&2&2\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&2&2\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{ccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$ \begin{array}{cccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array} $	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{cccc} 1 & 1 & 2 \\ \hline 3 & 0 & \overline{3} \end{array}$	$\begin{array}{ccc} 2 & 2 & 1 \\ \hline 3 & 1 & \overline{3} \end{array}$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$
0 -1 1	1 -1 0 1	0 -1 1	1 -1 0 1	0 -1 1	1 -1 0 1	0 -1 1	$\begin{pmatrix} 1 \\ -1 & 0 \\ 1 \end{pmatrix}$	0 0 0	0 -1 1	1 -1 0 1	0 -1 1
1 -1 -1 2	-1 0 1	$\begin{smallmatrix}&1\\0&&0\\&2\end{smallmatrix}$	1 0 0 2	1 0 0 2	$\begin{smallmatrix}&1\\0&&0\\&2\end{smallmatrix}$	$\begin{smallmatrix}&1\\0&&0\\&2\end{smallmatrix}$	1 0 0 2	0 -1 1	-1 -1 2	1 -1 -1 2	1 -1 -1 2
$\begin{array}{ccc}1&2\\-&&0\\3&1\end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$egin{array}{ccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&2&2\\0&&-\\&&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&2&2\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array} = 0$	$\begin{smallmatrix}&2&2\\0&&-\\&&3\end{smallmatrix}$
1 0 0 2	0 0 -1 1	1 -1 0 1	0 0 -1 1	1 -1 0 1	1 0 0 2	0 0 -1 1	1 -1 0 1	0 0 -1 1	1 -1 -1 2	1 -1 0 1	0 0 -1 1
$\begin{smallmatrix}&2&2\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&2&2\\0&&-\\&&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$
0 -1 1	-1 0 1	0 0 0 0	0 -1 1	1 -1 0 1	0 -1 1	-1 0 1	0 -1 1	0 -1 -1 0	-1 0 1	0 -1 1	1 -1 0 1
-1 0 1	1 0 0 2	0 -1 1	1 -1 -1 2	-1 -1 2	$\begin{pmatrix} 1 \\ -1 & 0 \\ 1 \end{pmatrix}$	1 0 0 2	1 0 0 2	0 -1 1	1 -1 -1 2	1 -1 -1 2	1 -1 0 1
$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$ \begin{array}{ccc} 1 & 2 \\ - & 0 \\ 3 & 1 \end{array} $	$\begin{smallmatrix}&2&2\\0&&-\\&&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&2&2\\0&&-\\&&3\end{smallmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$
0 -1 1	-1 0 1	0 -1 1	-1 -1 2	$\begin{pmatrix} 1 \\ -1 & 0 \\ 1 \end{pmatrix}$	0 -1 1	1 -1 0 1	0 -1 1	$\begin{pmatrix} 1 \\ -1 & 0 \\ 1 \end{pmatrix}$	0 -1 1	1 -1 0 1	0 -1 1
$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&2&2\\0&&-\\&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$	$\begin{smallmatrix}1&1&2\\-&&-\\3&0&3\end{smallmatrix}$	$\begin{array}{ccc} 2 & 1 \\ - & 0 \\ 3 & 1 \end{array}$	$\begin{smallmatrix}&1&1\\0&&-\\&0&3\end{smallmatrix}$
0 -1 1	-1 0 0	1 -1 0 1	0 -1 1	1 -1 0 1	0 0 0 0	0 -1 1	1 -1 0 1	0 -1 1	0 -1 -1 0	1 -1 0 1	0 -1 1

KC tiles \mathcal{W} are aperiodic set

Theorem (Aperiodicity)

Any tiling of the plane by the 13 Kari-Culik Wang tiles ${\cal W}$ must be aperiodic.

Theorem (Valid tilings exist) There exists a valid tiling by the Kari-Culik Wang tiles W.

Outline

Wang tiles

KC tiles

Proof of aperiodicity

Proof of existence

How do these tilings work?

Alternating rows

Lemma

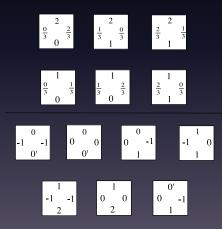
Any rows in a valid tiling by W must all be either all type $\lambda = \frac{1}{3}$ or all type $\lambda = 2$. Moreover, any valid tiling contains rows of both types.

Alternating rows

Lemma

Any rows in a valid tiling by W must all be either all type $\lambda = \frac{1}{3}$ or all type $\lambda = 2$. Moreover, any valid tiling contains rows of both types.

Proof:



Multiplication tiles

Definition A tile with numbered edges n, s, e, w is called a λ multiplication tile if

$$\lambda n + w = s + e.$$

Lemma All KC tiles are multiplication tiles of their type λ .

Clumping

- Now consider a valid *u* × *v* block. Let λ₁,..., λ_ν be the multipliers of the rows.
- By induction, the block is a multiplier tile:

•
$$\lambda = \lambda_1 \lambda_2 \dots \lambda_u$$
,
• $n = n_{1,1} + n_{1,2} + \dots + n_{1,v}$,
• $s = s_{u,1} + s_{u,2} + \dots + s_{u,v}$,
• $e = e_{1,1} + \lambda_1 (e_{2,1} + \lambda_2 (e_{3,1} + \dots + \lambda_{u-1} e_{u,1}) \dots)$
• $w = w_{1,v} + \lambda_1 (e_{2,v} + \lambda_3 (e_{3,v} + \dots + \lambda_{u-1} e_{u,v}) \dots)$

Proof of aperiodicity

- If the tiling is *periodic*, then there exists a periodic u × v block.
- This block has a *periodic boundary*: $n_{1,j} = s_{u,j}$ and $e_{i,1} = w_{i,v}$.
- Thus we have n = s and e = w.
- Then $\lambda n + w = e + s \implies \lambda = 1$.
- But $\lambda = \lambda_1 \lambda_2 \dots \lambda_u = 2^k \left(\frac{1}{3}\right)^{u-k}$.
- Thus $2^{k} = 3^{u-k}$ where $k, u k \ge 1$.

Contradiction!

Outline

Wang tiles

KC tiles

Proof of aperiodicity

Proof of existence

How do these tilings work?

Horizontal *h* and \vec{n}

- Let $\alpha \in [\frac{1}{3}, 2], \beta \in \mathbb{R}, \lambda \in \{\frac{1}{3}, 2\}.$
- Define $h(\alpha, \beta) = \lfloor \alpha + \beta \rfloor \lfloor \beta \rfloor$.
- Define $\vec{n} = \vec{n}(\alpha, \beta) = (\dots n_{-1}, n_0, n_1 \dots)$ by

 $n_{k} = h(\alpha, \beta + k\alpha) = \lfloor (k+1)\alpha + \beta \rfloor - \lfloor k\alpha + \beta \rfloor.$

- This is a *Beatty difference sequence*.
- $n_k \in \{a, a+1\}$ where $a = \lfloor \alpha \rfloor$, so $n_k \in \{0, 1\}$ for $\alpha \in [\frac{1}{3}, 1]$. $n_k \in \{1, 2\}$ for $\alpha \in [1, 2]$.

Properties

- $\vec{n}(\alpha, \beta) = \vec{n}(\alpha, \{\beta\}).$ (it only depends on $\beta \mod 1$).
- If $\alpha < 1$ then $\vec{n}(\alpha, \beta) \in \{0, 1\}^{\mathbb{Z}}$ is a *Sturmian sequence*.
- If $\alpha > 1$ then $\vec{n}(\alpha, \beta) \lfloor \alpha \rfloor = \vec{n}(\alpha \lfloor \alpha \rfloor, \beta)$. (i.e., \vec{n} is Sturmian, but in the wrong alphabet.)
- There exists $A : \{a, a + 1\} \rightarrow \mathbb{R}$, so that:
 - $A(\vec{n}(\alpha,\beta)) = \alpha$,

(essentially the ergodic theorem).

Numeration

Now let us think of $\vec{n}(\alpha, \beta)$ as a "numeration" of β in "base" α .

- First suppose $\alpha \in [\frac{1}{3}, 1)$
- Consider the piecewise linear mapping $g : [0, 1) \rightarrow \mathbb{R}_{\geq 0}$ defined $g(x) = x + \alpha$.
 - Initially define $n_0 = \lfloor g(\beta) \rfloor$,
 - and $b_0 = \{g(\overline{\beta})\}.$
 - Then for k > 0, define by induction, $n_k = \lfloor g(b_{k-1}) \rfloor$,
 - and $b_k = \{g(b_{k-1})\},$
 - (with a similar definition for k < 0).

• Note that $\{g(\beta)\} = R_{\alpha}(\beta)$, i.e., the *irrational rotation map*.

Call this the Sturmian numeration system.

Numeration (continued)

Sturmian numeration is not quite so nice as other numeration systems. However, there exists $B : \{0, 1\} \rightarrow \mathbb{R}$ so that:

•
$$B(\vec{n}(\alpha,\beta)) = \{\beta\}$$
 if $\alpha \notin \mathbb{Q}$,

•
$${\mathcal B}(ec n(lpha,eta))=rac{\lfloor q\{eta\}
floor}{q}$$
 if $lpha=rac{p}{q}\in{\mathbb Q}.$

Numeration (continued)

Sturmian numeration is not quite so nice as other numeration systems. However, there exists $B : \{0, 1\} \rightarrow \mathbb{R}$ so that:

•
$$B(\vec{n}(\alpha,\beta)) = \{\beta\}$$
 if $\alpha \notin \mathbb{Q}$,

•
$${\mathcal B}(ec n(lpha,eta))=rac{\lfloor q\{eta\}
floor}{q}$$
 if $lpha=rac{p}{q}\in{\mathbb Q}.$

In the case $\alpha \in [1, 2]$ use $\alpha' = \alpha - 1$, and replace n_k with $n_k + 1$. Call this a *Beatty numeration system*.

Vertical v

- Fix $\lambda \in \mathbb{Q}$, $\lambda > 0$.
- Define $v(\beta, \lambda) = \lambda \lfloor \beta \rfloor \lfloor \lambda \beta \rfloor$.
- Think of $v : \mathbb{R} \to \mathbb{R}$.

Lemma
For
$$\lambda = \frac{p}{q}$$
, v has period q , and
 $v(\beta, \lambda) \in \left\{-\frac{1-p}{q}, -\frac{2-p}{q}, \dots, \frac{q-1}{q}\right\}$.
• If $\lambda = p \in \mathbb{N}$ then $v(\beta, \lambda) \in \{1-p, \dots, 0\}$.

If
$$\lambda = \frac{1}{q}$$
 then $v(\beta, \lambda) \in \left\{ \frac{0}{q}, \dots, \frac{q-1}{q} \right\}$.

The case $\lambda = 2$

Figure: $v(\beta, 2)$ has period 1, and values in $\{-1, 0\}$.

The case $\lambda = \frac{1}{3}$

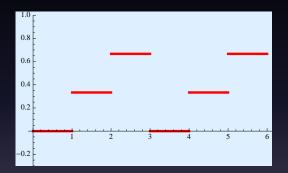


Figure: $v\left(\beta, \frac{1}{3}\right)$ has period 3, and values in $\left\{\frac{0}{3}, \frac{1}{3}, \frac{2}{3}\right\}$.

A typical general case: $\lambda = \frac{4}{9}$

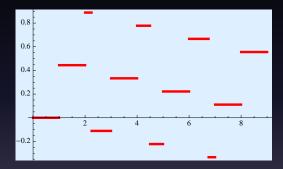
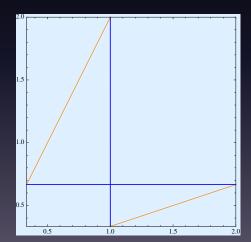


Figure: In general, $v(\beta, \lambda)$ can be quite complicated.

A map of the interval • Define $f : [\frac{1}{3}, 2] \rightarrow [\frac{1}{3}, 2]$ by $f(x) = \begin{cases} 2x & \text{if } x \in [\frac{1}{3}, 1), \\ \frac{1}{3}x & \text{if } x \in [1, 2]. \end{cases}$

A map of the interval • Define $f : [\frac{1}{3}, 2] \rightarrow [\frac{1}{3}, 2]$ by

$$f(x) = \begin{cases} 2x & \text{if } x \in [\frac{1}{3}, 1), \\ \frac{1}{3}x & \text{if } x \in [1, 2]. \end{cases}$$



Aperiodicity of f

Proposition *The mapping f has no periodic points.*

Aperiodicity of f

Proposition The mapping f has no periodic points.

Proof. Suppose $f^u(x) = x$. Then $2^k = 3^{u-k}$ for some 0 < k < u. Contradiction.

The basic tile

The basic tile

- Let $\alpha \in [\frac{1}{3}, 2], \beta \in \mathbb{R}$.
- Let $\lambda = f'(\alpha) \in \{\frac{1}{3}, 2\}.$

The basic tile

- Let $\alpha \in [\frac{1}{3}, 2], \beta \in \mathbb{R}$.
- Let $\lambda = f'(\alpha) \in \{\frac{1}{3}, 2\}.$
- Define a Wang tile $T(\alpha,\beta)$ to have side colors:
 - $n = h(\alpha, \beta),$
 - $\boldsymbol{s} = \boldsymbol{h}(\lambda \alpha, \lambda \beta),$
 - $\boldsymbol{e} = \boldsymbol{v}(\boldsymbol{\beta} + \boldsymbol{\alpha}, \boldsymbol{\lambda}),$
 - $\mathbf{W} = \mathbf{V}(\beta, \lambda).$

Multiplication property

Proposition The tile $T(\alpha, \beta)$ is a λ -multiplication tile.

Proof.

$$\lambda n + w - e - s = \lambda h(\alpha, \beta) + v(\beta, \lambda) - v(\beta + \alpha, \lambda) - h(\lambda \alpha, \lambda \beta)$$

= $\lambda(\lfloor \alpha + \beta \rfloor - \lfloor \beta \rfloor) + (\lambda \lfloor \beta \rfloor - \lfloor \lambda \beta \rfloor)$
 $-(\lambda \lfloor \beta + \alpha \rfloor - \lfloor \lambda \beta + \lambda \alpha \rfloor)$
 $-(\lfloor \lambda \alpha + \lambda \beta \rfloor - \lfloor \lambda \beta \rfloor)$
= 0.

The "modified" tile

- The modified Wang tile T(α, β) is the same as the basic tile T(α, β), except:
 - If $\alpha \in [\frac{1}{3}, \frac{1}{2})$, then n = 0 is replaced with n' = 0', and
 - If $\lambda \alpha \in [\frac{1}{3}, \frac{1}{2})$, then s = 0 is replaced with s' = 0'.
- **Comment:** For the purpose of arithmetic we think of 0' = 0, but for matching we think of $0' \neq 0$. This is necessary for aperiodicity.

The "modified" tile

- The modified Wang tile $T(\alpha, \beta)$ is the same as the basic tile $T(\alpha, \beta)$, except:
 - If $\alpha \in [\frac{1}{3}, \frac{1}{2})$, then n = 0 is replaced with n' = 0', and
 - If $\lambda \alpha \in [\frac{1}{3}, \frac{1}{2})$, then s = 0 is replaced with s' = 0'.
- Comment: For the purpose of arithmetic we think of 0' = 0, but for matching we think of 0' ≠ 0. This is necessary for aperiodicity.

Theorem (Kari, Culik, Eigen/Navarro/Prasad,R) The set $\mathcal{W} = \{\widetilde{T}(\alpha, \beta) : \alpha \in [\frac{1}{3}, 2], \beta \in \mathbb{R}\}$ is precisely the set of 13 KC Wang tiles.

The 13 KC tiles

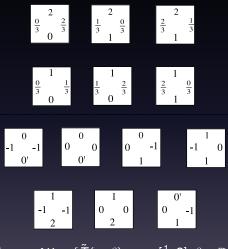


Figure: $\mathcal{W} = \{ \tilde{T}(\alpha, \beta) : \alpha \in [\frac{1}{3}, 2], \beta \in \mathbb{R} \}.$

Some definitions

- Let $\lambda_k = f'(f^k(\alpha))$.
- Define μ_k as follows:

Some definitions

- Let $\lambda_k = f'(f^k(\alpha))$.
- Define μ_k as follows:

$$\begin{array}{l} \mu_0 = 1, \\ \mu_k = \lambda_k \lambda_{k-1} \dots \lambda_1, \text{ for } k > 0, \\ \mu_k = \lambda_{-1} \lambda_{-2} \dots \lambda_k, \text{ for } k < 0. \\ \text{(Note that } \mu_k = (f^k)'(\alpha). \end{array}$$

- Define $\vec{\alpha}$ by $\alpha_k = \mu_k \alpha = f^k(\alpha)$.
- Define $\vec{\beta}$ by $\beta_k = \mu_k \beta$.

Constructing a valid tiling

- Index $\mathbb{Z}^2 \subseteq \mathbb{R}^2$ like a matrix:
- ...by (k, ℓ) , where k is the row (\downarrow) , and ℓ is the column (\rightarrow) .
- Fix $\alpha \in [\frac{1}{3}, 2]$ and $\beta \in \mathbb{R}$.
- Define a tiling $\mathbf{T} = \mathbf{T}(\alpha, \beta)$ by placing the the tile

$$\widetilde{T}(k,\ell) = \widetilde{T}(\alpha_k,\beta_k + \ell\alpha_k)$$

at (k, ℓ) in \mathbb{Z}^2 .

Constructing a valid tiling

- Index $\mathbb{Z}^2 \subseteq \mathbb{R}^2$ like a matrix:
- ...by (k, ℓ) , where k is the row (\downarrow) , and ℓ is the column (\rightarrow) .
- Fix $\alpha \in [\frac{1}{3}, 2]$ and $\beta \in \mathbb{R}$.
- Define a tiling $\mathbf{T} = \mathbf{T}(\alpha, \beta)$ by placing the the tile

$$\widetilde{T}(k,\ell) = \widetilde{T}(\alpha_k,\beta_k + \ell\alpha_k)$$

at (k, ℓ) in \mathbb{Z}^2 .

Theorem (Kari, Culik, Eigen/Navarro/Prasad,R) The tiling **T** is a valid tiling by W. (The existence theorem is true).

- Proof:
- $n(\ell+1,k) = s(\ell,k),$
- $e(\ell, k) = w(\ell, k+1)$. \Box

Outline

Wang tiles

KC tiles

Proof of aperiodicity

Proof of existence

How do these tilings work?

Tile tops

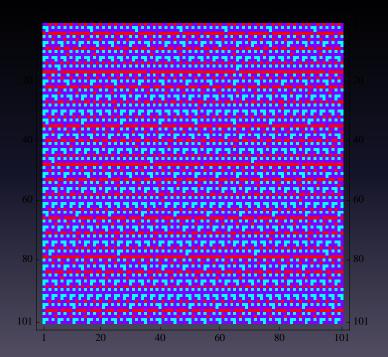
- Row k is type $\lambda_k \in \{\frac{1}{3}, 2\}$ (read from alphabet).
- The tops of row *k* are Beatty difference sequence $\vec{n}(\alpha_k, \beta_k)$.

Tile tops

- Row k is type $\lambda_k \in \{\frac{1}{3}, 2\}$ (read from alphabet).
- The tops of row k are Beatty difference sequence $\vec{n}(\alpha_k, \beta_k)$.



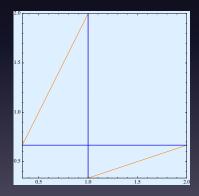
Figure: Blue= 0 = 0', Purple=1, Red=2.



The map *f* ...

Recall that

$$f(x) = \begin{cases} 2x & \text{if } x \in [\frac{1}{3}, 1), \\ \frac{1}{3}x & \text{if } x \in [1, 2]. \end{cases}$$



... is conjugate to a rotation

... is conjugate to a rotation

Theorem (Liousse, 2004)

A 2-piece, piecewise-linear homeomorphism of the circle (like f), with (left & right) slopes $\lambda > 1 > \lambda'$, is topologically conjugate to the rotation on the circle with rotation number

$$\alpha' = \frac{\log \lambda}{\log \lambda - \log \lambda'}$$

... is conjugate to a rotation

Theorem (Liousse, 2004)

A 2-piece, piecewise-linear homeomorphism of the circle (like f), with (left & right) slopes $\lambda > 1 > \lambda'$, is topologically conjugate to the rotation on the circle with rotation number

$$\alpha' = \frac{\log \lambda}{\log \lambda - \log \lambda'}$$

• In the case of f as above, $\varphi \circ f = R_{\alpha'} \circ \varphi$, where $\varphi : [\frac{1}{3}, 2] \to [0, 1]$ is given by $\varphi(x) = \frac{\log(x) + \log 3}{\log 2 + \log 3}.$

Nearly Sturmian

- As before, define $\lambda_k \in \{\frac{1}{3}, 2\}$ by $\lambda_k = f'(f^k(\alpha))$,
- and let $\vec{s}(\alpha)$ by

$$m{s}_k = egin{cases} m{0} & ext{if } \lambda_k = rac{1}{3}, \ m{1} & ext{if } \lambda_k = 2. \end{cases}$$

Corollary

The sequence s is Sturmian. In particular,

$$ec{s}(lpha) = ec{n}\left(rac{\log 2}{\log 2 + \log 3}, rac{3}{5}lpha - rac{1}{5}
ight).$$

Sturmian row alteration

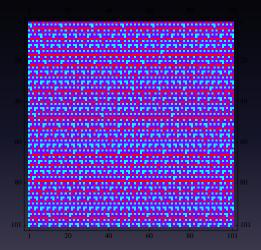


Figure: The row alteration pattern is Sturmian with $\alpha' = \frac{\log 2}{\log 3 + \log 2} \approx 0.38685280723.$

Some basic tiles

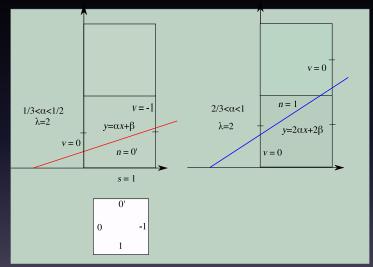
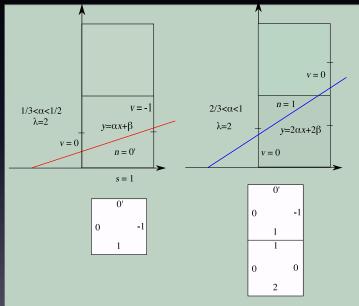
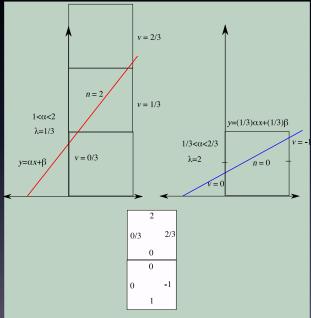


Figure: Line for typical $\lambda = 2$ tile, $\alpha < \frac{1}{2}$. Sides *n*, *e* and *w* read directly off. Side *s* is *n* for line to right (next tile down in **T**).

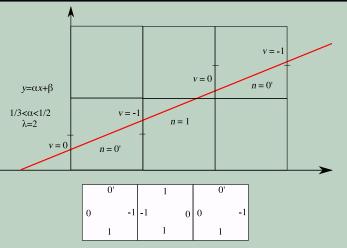
Part of a column



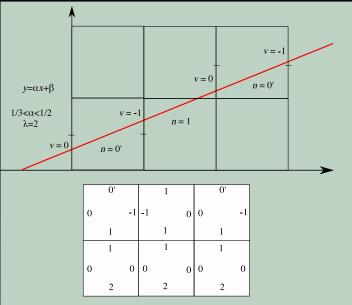
A different column



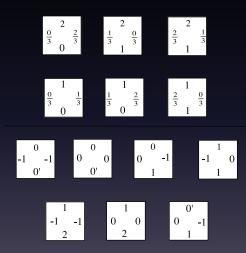
Part of a row



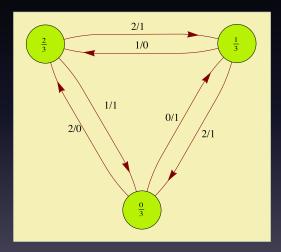
The next row



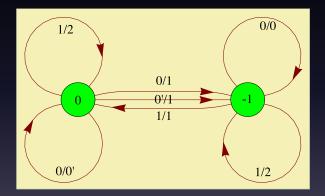
The KC tiles again



Automaton: type $\lambda = 1/3$



Automaton: type $\lambda = 2$



The case $\lambda = 2$

- Consider the irrational rotation maps $R_{\alpha} : [0, 1) \rightarrow [0, 1)$ and $R_{2\alpha} : [0, 1) \rightarrow [0, 1)$.
- These maps are connected:

$$\begin{array}{ccc} [0,1) & \xrightarrow{R_{\alpha}} & [0,1) \\ 2x \mod 1 & & \downarrow 2x \mod 1 \\ & & & [0,1) & \xrightarrow{R_{2\alpha}} & [0,1). \end{array} \end{array}$$

The case $\lambda = \frac{1}{3}$

- Consider the irrational rotation maps R_{α} : [0, 1) \rightarrow [0, 1) and $R_{\frac{1}{2}\alpha}$: [0, 1) \rightarrow [0, 1).
- These maps are connected:

$$[0,1) \xrightarrow{R_{\alpha}} [0,1)$$

$$3x \mod 1 \uparrow \qquad \uparrow 3x \mod 1$$

$$[0,1) \xrightarrow{R_{\frac{1}{3}\alpha}} [0,1).$$

$\lambda = \frac{1}{3}$ (continued)

Note

$\lambda = \frac{1}{3}$ (continued)

Note

Here there are *three* different maps, depending on the choice of v.

$\lambda = 2$ (again)

Note

where $v(x) \in \{0, -1\}$ is defined

$$v(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{2}), \\ -1 & \text{if } x \in [\frac{1}{2}, 1). \end{cases}$$

Here, both values of v are used in defining a single map, namely $h(x) = 2x \mod 1$.

A "solenoid"

- Consider the group $\mathbb{T}^{\mathbb{Z}} = \oplus_{k \in \mathbb{Z}} \mathbb{T}_k = \oplus_{k \in \mathbb{Z}} [0, 1)_k$.
- Fix $\alpha \in [\frac{1}{3}, 2]$ and $\beta \in \mathbb{R}$.
- Let μ_k be as above (i.e. $\mu_k = \lambda_1 \lambda_2 \dots \lambda_k$, $k \ge 0$).
- Define $\varphi : \mathbb{R} \to \mathbb{T}^{\mathbb{Z}}$ by $\varphi(\beta) = \vec{x}$ where $x_k = \{\mu_k \beta\}$.
- Define a subgroup $\mathbb{S}_{\alpha} \subseteq \mathbb{Z}^{\mathbb{T}}$ to be the set of all $\vec{x} \in \mathbb{T}^{\mathbb{Z}}$ so that
 - $x_{k+1} = 2x_k$ if $\lambda_k = 2$, and
 - $3x_{k+1} = x_k$ is $\lambda_k = \frac{1}{3}$.

Results

Lemma

For all $\beta \in \mathbb{R}$, $\varphi(\beta) \in \mathbb{S}_{\alpha}$. Moreover, φ is an embedding of \mathbb{R} into \mathbb{S}_{α} .

Theorem Each $\vec{x} \in S_{\alpha}$ determines a valid tiling $S(\alpha, \vec{x})$ of \mathbb{R}^2 by \mathcal{W} . If $\vec{x} = \varphi(\beta)$ then $S(\alpha, \vec{x}) = T(\alpha, \beta)$.

Comments.

- Essentially these are all tilings in the closure of $\{\mathbf{T}(\alpha,\beta): \alpha \in [\frac{1}{3}, 2], \beta \in \mathbb{R}\}.$
- From the tile $\mathbf{T}(\alpha, \beta)$ it is possible to read the exact value of α and β (even if $\alpha \in \mathbb{Q}$).

Idea of proof of theorem

