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Set W of 2-dimensional square dominos.
with “colored" (or numbered) edges.

In a valid tiling, colors of adjacent edges must match.
Essentialy a 2-dimensional SFT,

(any 2-d SFT can be coded in terms of Wang tiles by using
higher block code).



Example: 2-d Fibonacci set \V

' '
L\
Figure: A Wang tile set W with two edge color (pink and blue) that

enforce a rule on center colors (black and white): in a valid tiling two
black tiles cannot be adjacent.



Fibonacci Wang tiling

Figure: Patch of 2-d Fibonacci tiling. If edge colors are erased then
tiling by black and white tiles is 2-d Fibonacci SFT.






Hao Wang, 1961

- Studied problem of existence of a valid tiling




Hao Wang, 1961

- Studied problem of existence of a valid tiling

Theorem (Wang’s Theorem)

If forevery r,s € N, a Wang tile set W admits a valid tiling of an
r x s rectangle, then VW admits a valid tiling of the plane.

- Essentially a compactness theorem. Equivalent to Kénig’s
lemma.



Wang’s Conjecture

Conjecture (Wang’s Conjecture)

Every valid Wang tile set VW admits a valid periodic tiling of the
plane.

- Equivalently: every nonempty 2-dimensional SFT has a
periodic orbit.

- (Wang did not use the language of “SFT”.)
- This conjecture is true for 1-dimensional SFT,
- (and easy).



Tiling Theorem

“Theorem”
Assuming Wang’s conjecture is true, given a set W of Wang

tiles, there is an algorithm to determine whether or not WV is
valid.




Tiling Theorem

“Theorem”
Assuming Wang's conjecture is true, given a set VW of Wang

tiles, there is an algorithm to determine whether or not W is
valid.

- i.e., Wang conjectured that the question of whether or not
W is valid is decidable.



Proof:

Foreachr,s =1,2,3,..., construct at all valid tilings of an

r x s rectangle.

If some rectangle cannot be tiled, then W is not valid.
Output: “No”.

(Given W, the question of whether an r x s block can be
validly tiled by W is known to be NP-complete.)

Then check each valid tiling of an r x s block for periodic
boundary conditions. If a periodic tiling is found:

Output: “Yes”.



Proof (continued)

- Proof (continued).
- The algorithm must stop in finite time.

- If Wis not valid, then by Wang’s Theorem, some r x s block
cannot be validly tiled.

- If W is valid, then by Wang’s Conjecture, some r x s block
can be validly tiled periodically.

- U



Aperiodic Tilings

- But!




Aperiodic Tilings

- But! Wang’s Conjecture is FALSE!

- Robert Berger, 1966:

- In general, it is undecidable whether W is valid.

- There exist sets W that admit tilings, but only aperiodic
ones.

- Call such a W aperiodic.

- In Berger’s aperiodic example, #(W) ~ 20, 000.
...there is a big difference between d =1 and d = 2.



Possibilities for SFT, d = 1:

Empty.

Periodic points only.

Periodic and aperiodic points both.
Non-emptiness problem is decidable.

Possibilities for W, d = 2:
No valid tilings.
All valid tilings periodic.
Periodic and aperiodic valid tilings both.

All valid tilings are aperiodic™.
* Call such W aperiodic.

Non-emptiness problem is undecidable.



Aperiodic ¥V milestones

- Breger (1966): #(W) = 20, 426.

- Breger (1966): #(WV)

« D. E. Knuth (1966): #(W )
#W

- R. Pensose (1976): ) =20 ( onIy 2 if counted
differently, but tiles not squares).

+ R. M. Robinson (1977): #(W) = 18. (6 if counted
differently).

+ R. Ammann (1978): #(WW) = 16 (2 if counted differently,
but not squares).



Aperiodic ¥V milestones

- Breger (1966): #(W) = 20, 426.

- Breger (1966): #(WV)

- D. E. Knuth (1966): #(W )

- R. Pensose (1976): #(W) = 20 ( only2|f counted
differently, but tiles not squares).

+ R. M. Robinson (1977): #(W) = 18. (6 if counted
differently).

+ R. Ammann (1978): #(WW) = 16 (2 if counted differently,
but not squares).

- Kari (1996): #(W) = 14.

+ Culick (1996): #(W) = 13.

- (Based on idea of Kari; Holds current record.)



All the known examples of aperiodic W, before 1996, are
based on hierarchy.

Penrose tilings are a substitution.

Essentially all substitution tilings give rise to aperiodic
Wang tiles (S. Mozes, 1989).

R. M. Robinson tilings are essentially 2-dimensional
Téeplitz sequences.



Penrose tilings & Beatty
sequences

- However, Penrose tilings are also based on 2-dimensional
Beatty (or Sturmian) sequences (deBruijn, 1981, R).

- Also known as model sets (see Meyer, 1972) or cut and
project tilings.

- Some model set tilings come from aperiodic W*,

- ...but others do not (see e.g., T. Le. 1995)

- *Conjecture: All these are hierarchical.

Question: Are the KC tilings hierarchical?
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Note the two types of tiles: Top are called type A = %; bottom
are called type A\ = 2. This version of KC tiles due to Eigen, Navarro
& Prasad.



<

1<

The 13 KC tiles



KC tiling patch
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KC tiling patch
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KC tiles )V are aperiodic set

Theorem (Aperiodicity)
Any tiling of the plane by the 13 Kari-Culik Wang tiles YW must
be aperiodic.

Theorem (Valid tilings exist)
There exists a valid tiling by the Kari-Culik Wang tiles W .
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Alternating rows

Lemma
Any rows in a valid tiling by W must all be either all type \ = 3
or all type \ = 2. Moreover, any valid tiling contains rows of

both types.




Any rows in a valid tiling by W must all be either all type X = }

or all type A = 2. Moreover, any valid tiling contains rows of
both types.

Proof:




Multiplication tiles

Definition
A tile with numbered edges n, s, e, w is called a \ multiplication
tile if

AN+ w=s+e.

Lemma

All KC tiles are multiplication tiles of their type \.



Now consider a valid u x v block. Let Aq,..., )\, be the
multipliers of the rows.

By induction, the block is a multiplier tile:
A=XMA2... Ay,
N=mis+Ma+--+ My,
S = su,1 + Su,2 oo SF su,v;
e=¢6e11+ /\1(62,1 aF )\2(9371 Fooo )\,_,_1eu,1) o)
wW=Ww,+ )\1(6‘2,\, == )\3(63,\, + Ay eu7v) ce )



Proof of aperiodicity

- If the tiling is periodic, then there exists a periodic u x v
block.

« This block has a periodic boundary: n; j = s, ; and
€1 = Wy.

« Thus we have n = s and e = w.

c ThenAn+w=e+s = A=1.

S BUEA = MAa... Ay = 2K (1)K,

- Thus 2k = 3=k where k,u — k > 1.

Contradiction! O
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Horizontal h and n

- Leta e [3,2], BeR, A€ {],2}.
- Define h(a, 8) = |a+ 8] — | 8].

- Define i = n(a,8) =(...n_1,Mg, Ny ...) by
nk = h(a, B+ ka) = [(k+1)a+ 3] — |ka + 3].

- This is a Beatty difference sequence.
- ng € {a,a+ 1} where a= |«a], so

- ne €{0,1} fora € [§,1].

- ng e {1,2} fora € [1,2].



Properties

« ri(a, B) = ni(a, {B})
(it only depends on 3 mod 1).

- If @ < 1 then ii(«, B) € {0,1}% is a Sturmian sequence.

« If a > 1then A(a, 8) — |a) = A(a — |af, B).
(i.e., ni is Sturmian, but in the wrong alphabet.)
+ There exists A: {a,a+ 1} — R, so that:
< A(i(e, B)) = a,
(essentially the ergodic theorem).



Now let us think of ri(«, 3) as a “numeration” of 3 in “base” «.

First suppose a € [§,1)
Consider the piecewise linear mapping g : [0,1) — Rxg
defined g(x) = x + .

Initially define np = |g(3)],
and by = {g(5)}.

Then for k > 0, define by induction, nx = | g(bx—1)],

and bx = {g(bk_1)},
(with a similar definition for k < 0).

Note that {g(5)} = R.(0), i.e., the irrational rotation map.

Call this the Sturmian numeration system.



Numeration (continued)

Sturmian numeration is not quite so nice as other numeration
systems. However, there exists B : {0,1} — R so that:

* B(i(a, 8)) = {B}ifa g Q,
« B(fi(a, ) = U ifa =2 € Q.




Numeration (continued)

Sturmian numeration is not quite so nice as other numeration
systems. However, there exists B : {0,1} — R so that:

* B(fi(a, ) = {8} ifa ¢ Q,
+ B(A(a,B)) = % ifa=2¢€Q

In the case a € [1,2] use &' = a — 1, and replace ni with
ni + 1. Call this a Beatty numeration system.



Vertical v

- Fix A€ Q, \> 0.

- Define v(5,A) = A\ 5] — [A\G].
« Thinkof v:R — R.

Lemma
For \ = p , V has period q, and

V(ﬂaA)e{ p) - p?aq—_“}

q q q




v(0,2) has period 1, and values in {—1,0}.



v (8,3) has period 3, and values in {3, 3, 2}.



In general, v(53, \) can be quite complicated.



A map of the interval

- Define f : [§,2] — [§.2] by

() {Zx if x € [,1),

Ix ifxe[1,2].




Define f : [3,2] — [3,2] by

(x) = {2x if x € [, 1),

Ix ifxe[1,2.




Aperiodicity of f

Proposition
The mapping f has no periodic points.




Aperiodicity of f

Proposition
The mapping f has no periodic points.

Proof.
Suppose fY(x) = x. Then 2k = 3=k for some 0 < k < u.
Contradiction. O




The basic tile




The basic tile

- Letae[$,2], BeR.
- Let A = f'(a) € {},2}.




The basic tile

- Letae[$,2], BeR.
- Let A = f'(a) € {},2}.

- Define a Wang tile T(«, 3) to have side colors:
© n=h(a,B),

© s = h(Aa, AB),




Multiplication property

Proposition
The tile T («, B) is a \-multiplication tile.

Proof.

Ah(e, B) + v(B,A) — V(B + a, \) — h(Aa, AB)
Ala+ 8] = 18]) + (ALB] = [A8])
—(ALB+a] = A8+ M)

AN+w-—e—S8




The “modified” tile

+ The modified Wang tile ?(a, B) is the same as the basic
tile T(«, ), except:

s fae [3, 2) then n = 0 is replaced with n’ = 0’, and
- If A € [, 1), then s = 0 is replaced with s’ = 0'.
- Comment: For the purpose of arithmetic we think of
0’ = 0, but for matching we think of 0’ # 0. This is
necessary for aperiodicity.



The “modified” tile

+ The modified Wang tile ?(a, B) is the same as the basic
tile T(«, ), except:

s lfae [3, 2) then n = 0 is replaced with n’ = 0’, and
- If A € [, 1), then s = 0 is replaced with s’ = 0'.
- Comment: For the purpose of arithmetic we think of
0’ = 0, but for matching we think of 0’ # 0. This is
necessary for aperiodicity.

Theorem (Kari, Culik, Eigen/Navarro/Prasad,R)

The setW = {T(a, B) : a € [},2], 5 € R} is precisely the set of
13 KC Wang tiles.



W= {T(a,B):a €[} 2],8€R]}.



Some definitions

- Let A = F/(F¥()).

- Define u as follows:
© po =1,
° Uk = Ak Ak—1 ...)\1,fOI'k > 0,
o Lk = A_1A_2... Ak, for k < 0.
(Note that px = (%) ().




Some definitions

- Let A = F/(F¥()).

- Define u as follows:
© po =1,
° Uk = Ak Ak—1 ...)x1,f0l’k > 0,
o Lk = A_1A_2... Ak, for k < 0.
(Note that px = (%) ().

= k




Constructing a valid tiling

- Index Z2 C RR? like a matrix:

. ...by (k,?), where k is the row (]), and ¢ is the column (—).
- Fixa e[},2]and 3 € R.

- Define a tiling T = T(«, 3) by placing the the tile

(k 0) = (ak, Bk + Lak)

at (k, /) in Z2.



Constructing a valid tiling

- Index Z2 C RR? like a matrix:

. ...by (k,?), where k is the row (]), and ¢ is the column (—).
- Fixa e[},2]and 3 € R.

- Define a tiling T = T(«, 3) by placing the the tile

(k 0) = (ozk,ﬂk + o)
at (k, /) in Z2.

Theorem (Kari, Culik, Eigen/Navarro/Prasad,R)

The tiling T is a valid tiling by W. (The existence theorem is
true).

- Proof:
n(¢+1,k) = s(¢, k),
ce(l,k)=w(,k+1). O
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Tile tops
- Row k is type \x € {3,2} (read from alphabet).
- The tops of row k are Beatty difference sequence

ni(ax, Bk)-




Tile tops

- Row Kk is type \x € {3,2} (read from alphabet).
- The tops of row k are Beatty difference sequence

(o, Br)-

Figure: Blue= 0 = 0/, Purple=1, Red=2.






Recall that

~Jex ifx e[, ),
f(x)_{;x fx ez




...Is conjugate to a rotation




...IS conjugate to a rotation

Theorem (Liousse, 2004)

A 2-piece, piecewise-linear homeomorphism of the circle (like
f), with (left & right) slopes A > 1 > X, is topologically
conjugate to the rotation on the circle with rotation number

o — log A .
log A — log N



...IS conjugate to a rotation

Theorem (Liousse, 2004)

A 2-piece, piecewise-linear homeomorphism of the circle (like
f), with (left & right) slopes A > 1 > X, is topologically
conjugate to the rotation on the circle with rotation number

o — log A
log A — log \*

- In the case of f as above,
pof =Ry op where ¢ :[},2] — [0,1] is given by

_ log(x) +log3
(x) = log2 +log3



Nearly Sturmian

- As before, define A\, € {3,2} by A\ = f/(f¥(a)),
- and let §(«) by
0 if =1,

S =
KTV it =2

Corollary
The sequence s is Sturmian. In particular,

log 2 K} 1




Sturmian row alteration

Figure: The row alteration pattern is Sturmian with

o = Ioglg+lig;2 ~ 0.38685280723.



Some basic tiles

1/3<a<1/2 - 2/3<0<1
| A=2 9
v=0

Figure: Line for typical A = 2 tile, a < % Sides n, e and w read
directly off. Side s is n for line to right (next tile down in T).




[
v=0
1/3<a<1/2 v=-1 2/3<a<1 m=1
A=2 4
- G h=2 T y=2ax+2f3
v=0
n=0"' =0
s=1
o
o
0 -1
0 -1 1
1 1
0 0
2




A different column

1/3<a<2/3
A=2

y=(1/3)ox+(1/3)p

2/3




Part of a row

y=ox+f

1/3<a<1/2
A=2

v=0




The next row

y=ox+f

1/3<a<1/2
A=2

v=0













The case \ =2

- Consider the irrational rotation maps R, : [0,1) — [0, 1)
and Ry, : [0,1) — [0, 1).
- These maps are connected:

[0,1) —— [0,1)

2x mod 1‘[ l2x mod 1




The case )\ = ;

- Consider the irrational rotation maps R, : [0,1) — [0, 1)
and Fn’%a :[0,1) — [0, 1).

- These maps are connected:

[0,1) —— [0,1)

3x mod 1T Tsx mod 1
Ry




1 .
= 5 (continued)

Note
[0,1) —— [0,1)

y=%X+v(y)l ly=§X+V(y)

R1a
[0,1) —— [0, 1),

where v € {3, 1,5}




1 .
= 5 (continued)

Note
[0,1) —— [0,1)

y=%X+v(y)l ly=§X+V(y)

R1a
[0’1) L) [0’1)’

where v € {3, 1,5}




A = 2 (again)

Note
[0,1) —— [0,1)

2x+v( x)l l2X+V(X)

[0,1) —— [0, 1),
where v(x) € {0,—1} is defined

_Jo  ifxelo, ),
V(X)_{—1 fx € [3,1).

Here, both values of v are used in defining a single map,
namely h(x) =2x mod 1.



A “solenoid”

- Consider the group T% = ©xez Tk = ®kez[0, 1)k

- Fixa € [},2]and 3 € R.

 Let ux be as above (i.e. ux = AA2... A\, kK > 0).

- Define ¢ : R — T% by () = X where xx = {ux3}.

- Define a subgroup S, C Z" to be the set of all X € T% so
that
* Xk+1 = 2x if \x =2, and
J 3Xk+1 = Xk is Ay = %



Results

Lemma
Forall g € R, () € So. Moreover, ¢ is an embedding of R into

Se-

Theorem
Each X € S,, determines a valid tiling S(a, X) of R2 by W. If
X = p(B) then S(a, X) = T(a, B).
Comments.
- Essentially these are all tilings in the closure of
{T(e,8) 1 a € [$,2],8 € R}.
- From the tile T(«, ) it is possible to read the exact value of
aand g (even if a € Q).



Idea of proof of theorem

h=2 )
iz
Aie1= 1/3[4)(‘,\ﬁ

T Xir1= 3 X2~ 1
XI\+Z=( 1/3)X1\+1+ 1/3

Xir1= 2X+0

3
0 -1 -2
hiw=1/3 o
3
[ 0 -1 -2
Xi+3

Xir2= 3 XI\+3'O

Xis=(1/3)Xi2+0/3
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