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Wang tiles

• SetW of 2-dimensional square dominos.
• with “colored" (or numbered) edges.

• In a valid tiling, colors of adjacent edges must match.
• Essentialy a 2-dimensional SFT,

• (any 2-d SFT can be coded in terms of Wang tiles by using
higher block code).



Example: 2-d Fibonacci setW

Figure: A Wang tile setW with two edge color (pink and blue) that
enforce a rule on center colors (black and white): in a valid tiling two
black tiles cannot be adjacent.



Fibonacci Wang tiling

Figure: Patch of 2-d Fibonacci tiling. If edge colors are erased then
tiling by black and white tiles is 2-d Fibonacci SFT.



Finite state machine

Figure: Here 0,0′=pink and 1,1′=blue. "Primes" higlight difference
between vertical and horizontal sides.



Hao Wang, 1961

• Studied problem of existence of a valid tiling

Theorem (Wang’s Theorem)
If for every r , s ∈ N, a Wang tile setW admits a valid tiling of an
r × s rectangle, thenW admits a valid tiling of the plane.

• Essentially a compactness theorem. Equivalent to König’s
lemma.
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Wang’s Conjecture

Conjecture (Wang’s Conjecture)
Every valid Wang tile setW admits a valid periodic tiling of the
plane.

• Equivalently: every nonempty 2-dimensional SFT has a
periodic orbit.

• (Wang did not use the language of “SFT”.)
• This conjecture is true for 1-dimensional SFT,

• (and easy).



Tiling Theorem

“Theorem”
Assuming Wang’s conjecture is true, given a setW of Wang
tiles, there is an algorithm to determine whether or notW is
valid.

• i.e., Wang conjectured that the question of whether or not
W is valid is decidable.
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Proof

• Proof:
• For each r , s = 1,2,3, . . . , construct at all valid tilings of an

r × s rectangle.
• If some rectangle cannot be tiled, thenW is not valid.
• Output: “No”.

• (GivenW, the question of whether an r × s block can be
validly tiled byW is known to be NP-complete.)

• Then check each valid tiling of an r × s block for periodic
boundary conditions. If a periodic tiling is found:

• Output: “Yes”.



Proof (continued)

• Proof (continued).
• The algorithm must stop in finite time.

• IfW is not valid, then by Wang’s Theorem, some r × s block
cannot be validly tiled.

• IfW is valid, then by Wang’s Conjecture, some r × s block
can be validly tiled periodically.

• �



Aperiodic Tilings

• But!

Wang’s Conjecture is FALSE!

• Robert Berger, 1966:
• In general, it is undecidable whetherW is valid.
• There exist setsW that admit tilings, but only aperiodic

ones.
• Call such aW aperiodic.

• In Berger’s aperiodic example, #(W) ∼ 20,000.
• …there is a big difference between d = 1 and d = 2.



Aperiodic Tilings

• But! Wang’s Conjecture is FALSE!

• Robert Berger, 1966:
• In general, it is undecidable whetherW is valid.
• There exist setsW that admit tilings, but only aperiodic

ones.
• Call such aW aperiodic.

• In Berger’s aperiodic example, #(W) ∼ 20,000.
• …there is a big difference between d = 1 and d = 2.



Types ofW:
Possibilities for SFT, d = 1:

• Empty.
• Periodic points only.
• Periodic and aperiodic points both.

Non-emptiness problem is decidable.

Possibilities forW, d = 2:
• No valid tilings.
• All valid tilings periodic.
• Periodic and aperiodic valid tilings both.
• All valid tilings are aperiodic*.

* Call suchW aperiodic.
Non-emptiness problem is undecidable.



AperiodicW milestones

• Breger (1966): #(W) = 20,426.
• Breger (1966): #(W) = 104.
• D. E. Knuth (1966): #(W) = 92.
• R. Pensose (1976): #(W) = 20 (only 2 if counted

differently, but tiles not squares).
• R. M. Robinson (1977): #(W) = 18. (6 if counted

differently).
• R. Ammann (1978): #(W) = 16 (2 if counted differently,

but not squares).

• Kari (1996): #(W) = 14.
• Culick (1996): #(W) = 13.

• (Based on idea of Kari; Holds current record.)
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Hierarchy

• All the known examples of aperiodicW, before 1996, are
based on hierarchy.

• Penrose tilings are a substitution.

• Essentially all substitution tilings give rise to aperiodic
Wang tiles (S. Mozes, 1989).

• R. M. Robinson tilings are essentially 2-dimensional
Töeplitz sequences.



Penrose tilings & Beatty
sequences

• However, Penrose tilings are also based on 2-dimensional
Beatty (or Sturmian) sequences (deBruijn, 1981, R).

• Also known as model sets (see Meyer, 1972) or cut and
project tilings.

• Some model set tilings come from aperiodicW*,
• …but others do not (see e.g., T. Le. 1995)

• *Conjecture: All these are hierarchical.

Question: Are the KC tilings hierarchical?
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The 13 KC tiles

Figure: Note the two types of tiles: Top are called type λ = 1
3 ; bottom

are called type λ = 2. This version of KC tiles due to Eigen, Navarro
& Prasad.



The 13 KC tiles

Figure: KC tiles as color tiles



KC tiling patch



KC tiling patch



KC tiling patch
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KC tilesW are aperiodic set

Theorem (Aperiodicity)
Any tiling of the plane by the 13 Kari-Culik Wang tilesW must
be aperiodic.

Theorem (Valid tilings exist)
There exists a valid tiling by the Kari-Culik Wang tilesW.
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Alternating rows
Lemma
Any rows in a valid tiling byW must all be either all type λ = 1

3
or all type λ = 2. Moreover, any valid tiling contains rows of
both types.

Proof:
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Lemma
Any rows in a valid tiling byW must all be either all type λ = 1

3
or all type λ = 2. Moreover, any valid tiling contains rows of
both types.
Proof:



Multiplication tiles

Definition
A tile with numbered edges n, s,e,w is called a λ multiplication
tile if

λn + w = s + e.

Lemma
All KC tiles are multiplication tiles of their type λ.



Clumping

• Now consider a valid u × v block. Let λ1, . . . , λv be the
multipliers of the rows.

• By induction, the block is a multiplier tile:
• λ = λ1λ2 . . . λu ,
• n = n1,1 + n1,2 + · · ·+ n1,v ,
• s = su,1 + su,2 + · · ·+ su,v ,
• e = e1,1 + λ1(e2,1 + λ2(e3,1 + . . . λu−1eu,1) . . . )
• w = w1,v + λ1(e2,v + λ3(e3,v + . . . λu−1eu,v ) . . . )



Proof of aperiodicity

• If the tiling is periodic, then there exists a periodic u × v
block.

• This block has a periodic boundary: n1,j = su,j and
ei ,1 = wi ,v .

• Thus we have n = s and e = w .
• Then λn + w = e + s =⇒ λ = 1.
• But λ = λ1λ2 . . . λu = 2k (1

3

)u−k
.

• Thus 2k = 3u−k where k ,u − k ≥ 1.

Contradiction! �
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Horizontal h and ~n

• Let α ∈ [1
3 ,2], β ∈ R, λ ∈ {1

3 ,2}.
• Define h(α, β) = bα+ βc − bβc.
• Define ~n = ~n(α, β) = (. . . n−1,n0,n1 . . . ) by

nk = h(α, β + kα) = b(k + 1)α+ βc − bkα+ βc.

• This is a Beatty difference sequence.
• nk ∈ {a,a + 1} where a = bαc, so

• nk ∈ {0,1} for α ∈ [ 1
3 ,1].

• nk ∈ {1,2} for α ∈ [1,2].



Properties

• ~n(α, β) = ~n(α, {β}).
(it only depends on β mod 1).

• If α < 1 then ~n(α, β) ∈ {0,1}Z is a Sturmian sequence.

• If α > 1 then ~n(α, β)− bαc = ~n(α− bαc, β).
(i.e., ~n is Sturmian, but in the wrong alphabet.)

• There exists A : {a,a + 1} → R, so that:
• A(~n(α, β)) = α,

(essentially the ergodic theorem).



Numeration
Now let us think of ~n(α, β) as a “numeration” of β in “base” α.

• First suppose α ∈ [1
3 ,1)

• Consider the piecewise linear mapping g : [0,1)→ R≥0
defined g(x ) = x + α.

• Initially define n0 = bg(β)c,
• and b0 = {g(β)}.

• Then for k > 0, define by induction, nk = bg(bk−1)c,
• and bk = {g(bk−1)},
• (with a similar definition for k < 0).

• Note that {g(β)} = Rα(β), i.e., the irrational rotation map.

Call this the Sturmian numeration system.



Numeration (continued)

Sturmian numeration is not quite so nice as other numeration
systems. However, there exists B : {0,1} → R so that:

• B(~n(α, β)) = {β} if α 6∈ Q,

• B(~n(α, β)) = bq{β}c
q if α = p

q ∈ Q.

In the case α ∈ [1,2] use α′ = α− 1, and replace nk with
nk + 1. Call this a Beatty numeration system.
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Vertical v

• Fix λ ∈ Q, λ > 0.
• Define v (β, λ) = λbβc − bλβc.
• Think of v : R→ R.

Lemma
For λ = p

q , v has period q, and

v (β, λ) ∈
{
−1− p

q
,−2− p

q
, . . . ,

q − 1
q

}
.

• If λ = p ∈ N then v (β, λ) ∈ {1− p, . . . ,0}.

• If λ = 1
q then v (β, λ) ∈

{
0
q , . . . ,

q−1
q

}
.



The case λ = 2

1 2 3 4
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Figure: v (β,2) has period 1, and values in {−1,0}.



The case λ = 1
3

1 2 3 4 5 6

-0.2
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0.6

0.8

1.0

Figure: v
(
β, 1

3

)
has period 3, and values in { 0

3 ,
1
3 ,

2
3}.



A typical general case: λ = 4
9

2 4 6 8

-0.2

0.2
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0.6

0.8

Figure: In general, v (β, λ) can be quite complicated.



A map of the interval
• Define f : [1

3 ,2]→ [1
3 ,2] by

f (x ) =

{
2x if x ∈ [1

3 ,1),
1
3x if x ∈ [1,2].

0.5 1.0 1.5 2.0

0.5
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Aperiodicity of f

Proposition
The mapping f has no periodic points.

Proof.
Suppose f u(x ) = x . Then 2k = 3u−k for some 0 < k < u.
Contradiction.
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The basic tile

• Let α ∈ [1
3 ,2], β ∈ R.

• Let λ = f ′(α) ∈ {1
3 ,2}.

• Define a Wang tile T (α, β) to have side colors:
• n = h(α, β),

• s = h(λα, λβ),

• e = v (β + α, λ),

• w = v (β, λ).
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• Let λ = f ′(α) ∈ {1
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• Define a Wang tile T (α, β) to have side colors:
• n = h(α, β),

• s = h(λα, λβ),

• e = v (β + α, λ),
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Multiplication property

Proposition
The tile T (α, β) is a λ-multiplication tile.

Proof.

λn + w − e − s = λh(α, β) + v (β, λ)− v (β + α, λ)− h(λα, λβ)

= λ(bα+ βc − bβc) + (λbβc − bλβc)
−(λbβ + αc − bλβ + λαc)
−(bλα+ λβc − bλβc)

= 0.



The “modified” tile

• The modified Wang tile T̃ (α, β) is the same as the basic
tile T (α, β), except:

• If α ∈ [ 1
3 ,

1
2 ), then n = 0 is replaced with n′ = 0′, and

• If λα ∈ [ 1
3 ,

1
2 ), then s = 0 is replaced with s′ = 0′.

• Comment: For the purpose of arithmetic we think of
0′ = 0, but for matching we think of 0′ 6= 0. This is
necessary for aperiodicity.

Theorem (Kari, Culik, Eigen/Navarro/Prasad,R)
The setW = {T̃ (α, β) : α ∈ [1

3 ,2], β ∈ R} is precisely the set of
13 KC Wang tiles.
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The 13 KC tiles

Figure: W = {T̃ (α, β) : α ∈ [ 1
3 ,2], β ∈ R}.



Some definitions

• Let λk = f ′(f k (α)).

• Define µk as follows:
• µ0 = 1,
• µk = λkλk−1 . . . λ1, for k > 0,
• µk = λ−1λ−2 . . . λk , for k < 0.
• (Note that µk = (f k )′(α).

• Define ~α by αk = µkα = f k (α).

• Define ~β by βk = µkβ.
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Constructing a valid tiling
• Index Z2 ⊆ R2 like a matrix:
• …by (k , `), where k is the row (↓), and ` is the column (→).
• Fix α ∈ [1

3 ,2] and β ∈ R.
• Define a tiling T = T(α, β) by placing the the tile

T̃ (k , `) = T̃ (αk , βk + `αk )

at (k , `) in Z2.

Theorem (Kari, Culik, Eigen/Navarro/Prasad,R)
The tiling T is a valid tiling byW. (The existence theorem is
true).

• Proof:
• n(`+ 1, k ) = s(`, k ),
• e(`, k ) = w (`, k + 1). �
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Tile tops
• Row k is type λk ∈ {1

3 ,2} (read from alphabet).
• The tops of row k are Beatty difference sequence
~n(αk , βk ).
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Figure: Blue= 0 = 0′, Purple=1, Red=2.
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The map f …
• Recall that

f (x ) =

{
2x if x ∈ [1

3 ,1),
1
3x if x ∈ [1,2].
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…is conjugate to a rotation

Theorem (Liousse, 2004)
A 2-piece, piecewise-linear homeomorphism of the circle (like
f ), with (left & right) slopes λ > 1 > λ′, is topologically
conjugate to the rotation on the circle with rotation number

α′ =
logλ

logλ− logλ′
.

• In the case of f as above,
ϕ ◦ f = Rα′ ◦ ϕ, where ϕ : [1

3 ,2]→ [0,1] is given by

ϕ(x ) =
log(x ) + log 3
log 2 + log 3

.
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log(x ) + log 3
log 2 + log 3

.



…is conjugate to a rotation

Theorem (Liousse, 2004)
A 2-piece, piecewise-linear homeomorphism of the circle (like
f ), with (left & right) slopes λ > 1 > λ′, is topologically
conjugate to the rotation on the circle with rotation number

α′ =
logλ

logλ− logλ′
.

• In the case of f as above,
ϕ ◦ f = Rα′ ◦ ϕ, where ϕ : [1

3 ,2]→ [0,1] is given by

ϕ(x ) =
log(x ) + log 3
log 2 + log 3

.



Nearly Sturmian

• As before, define λk ∈ {1
3 ,2} by λk = f ′(f k (α)),

• and let ~s(α) by

sk =

{
0 if λk = 1

3 ,
1 if λk = 2.

Corollary
The sequence ~s is Sturmian. In particular,

~s(α) = ~n
(

log 2
log 2 + log 3

,
3
5
α− 1

5

)
.



Sturmian row alteration

1 20 40 60 80 101

1

20

40

60

80

101

1 20 40 60 80 101

1

20

40

60

80

101

Figure: The row alteration pattern is Sturmian with
α′ = log 2

log 3+log 2 ≈ 0.38685280723.



Some basic tiles

Figure: Line for typical λ = 2 tile, α < 1
2 . Sides n,e and w read

directly off. Side s is n for line to right (next tile down in T).



Part of a column



A different column



Part of a row



The next row



The KC tiles again



Automaton: type λ = 1/3



Automaton: type λ = 2



The case λ = 2

• Consider the irrational rotation maps Rα : [0,1)→ [0,1)
and R2α : [0,1)→ [0,1).

• These maps are connected:

[0,1)
Rα−−−−→ [0,1)

2x mod 1

y y2x mod 1

[0,1)
R2α−−−−→ [0,1).



The case λ = 1
3

• Consider the irrational rotation maps Rα : [0,1)→ [0,1)
and R 1

3α
: [0,1)→ [0,1).

• These maps are connected:

[0,1)
Rα−−−−→ [0,1)

3x mod 1

x x3x mod 1

[0,1)
R 1

3 α

−−−−→ [0,1).



λ = 1
3 (continued)

Note
[0,1)

Rα−−−−→ [0,1)

y= 1
3 x+v (y )

y yy= 1
3 x+v (y )

[0,1)
R 1

3 α

−−−−→ [0,1),

where v ∈ {0
3 ,

1
3 ,

2
3}.

Here there are three different maps, depending on the choice of
v .



λ = 1
3 (continued)

Note
[0,1)

Rα−−−−→ [0,1)

y= 1
3 x+v (y )

y yy= 1
3 x+v (y )

[0,1)
R 1

3 α

−−−−→ [0,1),

where v ∈ {0
3 ,

1
3 ,

2
3}.

Here there are three different maps, depending on the choice of
v .



λ = 2 (again)

Note
[0,1)

Rα−−−−→ [0,1)

2x+v (x )

y y2x+v (x )

[0,1)
R2α−−−−→ [0,1),

where v (x ) ∈ {0,−1} is defined

v (x ) =

{
0 if x ∈ [0, 1

2),

−1 if x ∈ [1
2 ,1).

Here, both values of v are used in defining a single map,
namely h(x ) = 2x mod 1.



A “solenoid”

• Consider the group TZ = ⊕k∈ZTk = ⊕k∈Z[0,1)k .
• Fix α ∈ [1

3 ,2] and β ∈ R.
• Let µk be as above (i.e. µk = λ1λ2 . . . λk , k ≥ 0).
• Define ϕ : R→ TZ by ϕ(β) = ~x where xk = {µkβ}.

• Define a subgroup Sα ⊆ ZT to be the set of all ~x ∈ TZ so
that

• xk+1 = 2xk if λk = 2, and
• 3xk+1 = xk is λk = 1

3 .



Results

Lemma
For all β ∈ R, ϕ(β) ∈ Sα. Moreover, ϕ is an embedding of R into
Sα.

Theorem
Each ~x ∈ Sα determines a valid tiling S(α, ~x ) of R2 byW. If
~x = ϕ(β) then S(α, ~x ) = T(α, β).
Comments.

• Essentially these are all tilings in the closure of
{T(α, β) : α ∈ [1

3 ,2], β ∈ R}.
• From the tile T(α, β) it is possible to read the exact value of
α and β (even if α ∈ Q).



Idea of proof of theorem
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