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Thanks ...

In this expository talk, we give an introduction to the Rosen
continued fractions, and sketch a geometric application of these
and related expansions.
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I. Simple Continued Fractions

I Each real x has SCF-expansion

x = a0 +
1

a1 +
1

a2 +
.. . +

1

an +
.. .

= [ a0; a1, a2, . . . , an, . . .] .

I

with convergents [ a0; a1, a2, . . . , an] =: pn/qn .

Numération 2009 Rosen and Veech



I. Simple Continued Fractions

I Each real x has SCF-expansion

x = a0 +
1

a1 +
1

a2 +
.. . +

1

an +
.. .

= [ a0; a1, a2, . . . , an, . . .] .

I

with convergents [ a0; a1, a2, . . . , an] =: pn/qn .

Numération 2009 Rosen and Veech



Underlying map is shift on continued fractions

T : [0, 1)→ [0, 1)

x 7→ 1

x
mod 1

=
1

x
−
⌊

1

x

⌋
, x 6= 0;

( T (0) = 0 ) .

Numération 2009 Rosen and Veech



Underlying map, Figure
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Matrices and Convergents

I The convergents of 8/3 are

2

1
,

3

1
,

8

3
.

I Consecutive convergents give determinant one matrices:(
−2 3
−1 1

)
,

(
3 8
1 3

)
I In general, (

ε pn−1 pn

ε qn−1 qn

)
gives a determinant one matrix, with ε = ±1.
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Related Words

I Continued fraction expansions can be constructed by
composing

S : x 7→ x + 1 and T : x 7→ −1/x .

I Formally,

[ a0 ; a1 , a2 , . . . ] = Sa0TS−a1TSa2T . . .

I Details of parity for finite expansions. The alternating sign is
related to:

Convergents alternate above and below x .
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Matrix group

I With möbius action(
a b
c d

)
x :=

ax + b

cx + d
,

S =

(
1 1
0 1

)
and T =

(
0 −1
1 0

)
.

I Projective Action(
aµ bµ
cµ dµ

)
x :=

ax + b

cx + d
.
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Modular Group

I S and T are determinant one, with integer entries.

I

Γ := PSL(2,Z)

is group of such 2× 2 integer matrices up to equivalence.

I Extend möbius action to complex z . Circles sent to circles;
real line preserved by any real 2× 2 matrix.

I Find all of PSL(2,R) acts on upper half-plane.

Numération 2009 Rosen and Veech



Modular Group

I S and T are determinant one, with integer entries.

I

Γ := PSL(2,Z)

is group of such 2× 2 integer matrices up to equivalence.
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Fundamental Domain

 1

S

T

i

ρ

−1/2 0 1/2−1

Hyperbolic metric ds2 = dx2 + dy2

y2
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II. Hecke groups

I The Hecke (triangle Fuchsian) group, Gq, with
q ∈ {3, 4, 5, . . . } is the group generated by

S =

(
1 λ
0 1

)
and T =

(
0 −1
1 0

)
,

λ = λq = 2 cosπ/q .

I Example: G3 = PSL(2,Z) .

I Let U = ST , so

U =

(
λ −1
1 0

)
.

Then Uq = Id , and Gq
∼= Z/2 ? Z/q .
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Word Problem

I Any (
a b
c d

)
, ad − bc = 1

with integral entries gives an element of the modular group.

I Question Which determinant one matrices with
a, b, c , d ∈ Z[λq] are in Gq ?

I Difficulty Gq is of infinite index in PSL(2,Z[λq])
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Rosen Continued Fractions

I 1952 Ph.D. dissertation, David Rosen proposed a new type of
continued fraction to resolve word problem.

I Determine ai with nearest integer multiple of λq

Need εi = ±1

α = a0λ+
ε1

a1λ+
ε2

a2λ+
ε3
. . .

α = [ a0 ; ε1 : a1λ , ε2 : a2λ , . . . ]
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Rosen Maps Figure

-0.5 0.5

-0.5

0.5

Figure: Approximate graph of fq(x), q=5
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Rosen’s Theorem

I For

A =

(
a b
c d

)

let

A · ∞ =
a

c
and A · 0 =

b
d
.

I Theorem Let M ∈ SL(2,Z[λq]). Then M ∈ Gq if and only
if, up to sign, the columns of M are made from consecutive
convergents of M · ∞, or of M · 0.
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Rosen’s Cusp Question

Rosen’s Cusp Challenge Determine the cusp set for each Gq:

M · ∞ with M ∈ Gq .

I Rosen ’54 cusp set exactly finite λCF-expansions

I q = 3 modular group: cusp set Q ∪ {∞}
I q = 4, 6 easily determined cusp set

I q = 5 Rosen ’63: Units of Z[λ5] are cusps
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Sometimes cusp set is field

I q = 5 Leutbecher ’67: G5 · ∞ = Q(λ5) ∪ {∞}

I Leutbecher, Borho, Rosenberger, Wolfart, Seibold through
’85: Only for q = 3 or q = 5 is the cusp set exactly
Q(λq) ∪ {∞}

I McMullen 2003, using techniques related to Veech groups,
determined cusp sets of certain ‘triangle groups’.
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Periodic Expansion

I Any real quadratic number, such as
√

2, or 1+
√

5
2 , has a

periodic ordinary continued fraction expansion. For example,

√
14 = [ 3; 1, 2, 1, 6 ]

I Rosen’s Periodic Expansions Question Which real
numbers have periodic expansion with respect to the λ
continued fractions?
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Orbits of elements of Q(λ)

Towse et al 2008, extending techniques of the “German school”,
show that

I For any even q, there are infinitely many Gq orbits of elements
of Q(λ) .

I For odd q, the number of orbits of the field elements must go
to infinity with q.
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Other Aspects

I Dynamics and Metric Theory

I Diophantine Approximation

I Various forms of Natural Extensions

I Geodesic Coding

I Modular forms, related arithmetic

I Today’s next talk!
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III. Veech Groups — flat torus is the touchstone

I The flat torus has optimal dynamics — when we follow a line,
we either return to starting point or get arbitrarily close to
every point.

I

irrationalrational

Figure: Indeed, have ergodic invariant measure for this “linear flow”
in the second case.
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Optimal Dynamics

I Say that a “flat” surface has optimal dynamics if dichotomy
as for flat torus holds.

I To each such surface, can associate a subgroup of SL(2,R) .

I Theorem
Veech 1989: A “flat surface” has optimal dynamics if its
associated group is appropriately large in SL(2,R) .

I Veech gave examples with this group isomorphic to (index 2
subgroup of) Hecke group, Gq .

Numération 2009 Rosen and Veech



Optimal Dynamics

I Say that a “flat” surface has optimal dynamics if dichotomy
as for flat torus holds.

I To each such surface, can associate a subgroup of SL(2,R) .

I Theorem
Veech 1989: A “flat surface” has optimal dynamics if its
associated group is appropriately large in SL(2,R) .

I Veech gave examples with this group isomorphic to (index 2
subgroup of) Hecke group, Gq .

Numération 2009 Rosen and Veech



Optimal Dynamics

I Say that a “flat” surface has optimal dynamics if dichotomy
as for flat torus holds.

I To each such surface, can associate a subgroup of SL(2,R) .

I Theorem
Veech 1989: A “flat surface” has optimal dynamics if its
associated group is appropriately large in SL(2,R) .

I Veech gave examples with this group isomorphic to (index 2
subgroup of) Hecke group, Gq .

Numération 2009 Rosen and Veech



Optimal Dynamics

I Say that a “flat” surface has optimal dynamics if dichotomy
as for flat torus holds.

I To each such surface, can associate a subgroup of SL(2,R) .

I Theorem
Veech 1989: A “flat surface” has optimal dynamics if its
associated group is appropriately large in SL(2,R) .

I Veech gave examples with this group isomorphic to (index 2
subgroup of) Hecke group, Gq .

Numération 2009 Rosen and Veech



Billiards on Square gives Torus

2

1

3

Figure: Unfolding; square table to torus surface.
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Billiards to Surfaces: Genus 2

I Triangle with angles (π/5, π/5, 3π/5) yields a genus two
surface: flat except for one point of angle 6π.

I

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
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� � � � � � � � � �
� � � � � � � � � �
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� � � � � � � � � �
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Translation Surfaces

x + i y  +  c_{U, V}    

U V

x + i y

Figure: Idea of translation surface
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SL2R- Action

Post-compose with A ∈ SL2R .

x + i y  +  c_{U, V}    

A A

U V

x + i y

New translation surface.
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Affine Diffeomorphisms

I

( x, y )    −−−−−−−−−−−−−−−−−>

A  =   
1      0

1      1

 ( x ,    x + y mod 1 )

I An affine diffeomorphism is some f : X → X whose derivative
(off of singularities) is constant A ∈ SL2R .

I Group of all these derivatives is the Veech group: SL(X , ω).
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Octagon: vertical direction has two cylinders

I Gives

(
1 0
µ 1

)
, µ = 2(1 +

√
2 ) .

I With rotation, get triangle group that is isomorphic to index 2
subgroup of G8 .
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Continued fractions give geometric information

I The set of periodic directions on octagon is given by slopes in
Q(
√

2) .

I For the 12-gon, find Q(
√

3) . But for decagon, find a proper

subfield of Q(µ10) := Q(2 cotπ/10) = Q(
√

5 +
√

5) .

I Rosen’s result that 1 has periodic expansion for even q gives
(1 + cosπ/q)/ sinπ/q is non-periodic direction on the 2q-gon.
In fact, there is a corresponding pseudo-Anosov
diffeomorphism.
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