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Joint work with Julien Clément, Jim Fill and Philippe Flajolet



Plan of the talk.

– Presentation of the study

– Statement of the results

– The general model of source

– The main steps of the method

– Sketch of the proof.

– What is a tamed source ?



Plan of the talk.

– Presentation of the study

– Statement of the results

– The general model of source

– The main steps of the method

– Sketch of the proof

– What is a tamed source ?



The classical framework for sorting.

The main sorting algorithms or searching algorithms

e.g., QuickSort, BST-Search, InsertionSort,...

deal with n (distinct) keys U1, U2, . . . , Un of the same ordered set Ω.

They perform comparisons and exchanges between keys.

The unit cost is the key–comparison.

The behaviour of the algorithm (wrt to key–comparisons)

only depends on the relative order between the keys.

It is sufficient to restrict to the case when Ω = [1..n].
The input set is then Sn, with uniform probability.

Then, the analysis of all these algorithms is very well known,

with respect to the number of key–comparisons performed

in the worst-case, or in the average case.
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Here, realistic analysis of the QuickSort algorithm

QuickSort (n, A): sorts the array A

Choose a pivot;

(k,A−, A+) := Partition(A);
QuickSort (k − 1, A−);
QuickSort (n− k,A+).

Mean number Kn of key–comparisons

Kn ∼ 2n log n
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A more realistic framework for sorting.

Keys are viewed as words. The domain Ω of keys is a subset of Σ∞.

Σ∞ = {the infinite words on some ordered alphabet Σ}.
The words are compared [wrt the lexicographic order].

The realistic unit cost is now the symbol–comparison.

The realistic cost of the comparison between two words A and B,

A = a1 a2 a3 . . . ai . . . and B = b1 b2 b3 . . . bi . . .

equals k + 1, where k is the length of their largest common prefix

k := max{i; ∀j ≤ i, aj = bj}= the coincidence
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We are interested in this new cost for each algorithm:

the number of symbol–comparisons...and its mean value Sn( for n words)

How is Sn compared to Kn? That is the question....

An initial question asked by Sedgewick in 2000...

... In order to also compare with text algorithms based on tries.

An example.
Sixteen words drawn from the memoryless source p(a) = 1/3, p(b) = 2/3.

We keep the prefixes of length 12.

A = abbbbbaaabab B = abbbbbbaabaa C = baabbbabbbba

D = bbbababbbaab E = bbabbaababbb F = abbbbbbbbabb

G = bbaabbabbaba H = ababbbabbbab I = bbbaabbbbbbb

J = abaabbbbaabb K = bbbabbbbbbaa L = aaaabbabaaba

M = bbbaaabbbbbb N = abbbbbbabbaa O = abbabababbbb

P = bbabbbaaaabb
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Case of QuickSort(n)[CFFV 08]

Theorem. For any tamed source, the mean number Sn of symbol com-

parisons used by QuickSort(n) satisfies

Sn ∼
1

hS
n log2 n.

and involves the entropy hS of the source S, defined as

hS := lim
k→∞

−1
k

∑
w∈Σk

pw log pw

 ,

where pw is the probability that a word begins with prefix w.

Compared to Kn ∼ 2n log n, there is an extra factor equal to 1/(2hS) log n

Compared to Tn ∼ (1/hS) n log n, there is an extra factor of log n.
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The (general) model of source

A general source S produces infinite words on an ordered alphabet Σ.

For w ∈ Σ?, pw := probability that a word begins with the prefix w.

Define aw :=
∑

w′, |w′| = |w|
w′ < w, p

w′ 6= 0

pw′ bw :=
∑

w′, |w′| = |w|
w′ ≤ w, p

w′ 6= 0

pw′

Then: ∀u ∈ [0, 1], ∀k ≥ 1, ∃w = Mk(u) ∈ Σk such that u ∈ [aw, bw[.

Example p0 = 1/3, p1 = 2/3 ⇒ M1(1/2) = 1,M1(1/4) = 0
p00 = 1/12, p01 = 3/12, p10 = 1/2, p11 = 1/6 ⇒ M2(1/2) = 10,M2(1/4) = 01

If pw → 0 for |w| → ∞, the sequences (aw) and (bw) are adjacent

They define an infinite word M(u) := limk→∞Mk(u).
Then, the source is alternatively defined by a mapping M : [0, 1] → Σ∞.

Fundamental interval [aw, bw] := {u, M(u) begins with prefix w}
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Natural instances of sources: Dynamical sources

With a shift map T : I → I and an encoding map τ : I → Σ,

the emitted word is M(x) = (τx, τTx, τT 2x, . . . τT kx, . . .)

xT xT x2 T x3

A dynamical system, with Σ = {a, b, c} and a word M(x) = (c, b, a, c . . .).
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Memoryless sources or Markov chains.
= Dynamical sources with affine branches....
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The dynamical framework leads to more general sources.

The curvature of branches entails correlation between symbols

Example : the Continued Fraction source



The dynamical framework leads to more general sources.

The curvature of branches entails correlation between symbols

Example : the Continued Fraction source



Fundamental intervals and fundamental triangles.
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Three main steps for the analysis

of the mean number Sn of symbol comparisons

(A) The Poisson model PZ does not deal with a fixed number n of keys.

The number N of keys is now a random variable which follows a Poisson

law of parameter Z.

We first obtain nice expressions for S̃Z ....

(B) It is now possible to returm to the model where the number of keys

is fixed. We obtain a nice exact formula for Sn ....

from which it is not easy to obtain the asymptotics...

(C) Then, the Rice formula provides the asymptotics of Sn ( n →∞), as

soon as the source is “tamed”.
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(A) Dealing with the Poisson Model.

In the PZ model, the number N of keys follows the Poisson law

Pr[N = n] = e−Z Zn

n!
,

the mean number S̃(Z) of symbol comparisons for QuickSort is

S̃(Z) =
∫
T

[γ(u, t) + 1]π(u, t) du dt

where T := {(u, t), 0 ≤ u ≤ t ≤ 1} is the unit triangle

γ(u, t):= coincidence between M(u) and M(t)
π(u, t) du dt := Mean number of key-comparisons between M(u′)

and M(t′) with u′ ∈ [u, u + du] and t′ ∈ [t− dt, t].



First Step in the Poisson model : The coincidence γ(u, t)
An (easy) alternative expression for

S̃(Z) =
∫
T

[γ(u, t) + 1]π(u, t) du dt

=
∑

w∈Σ?

∫
Tw

π(u, t) du dt

It involves the fundamental triangles

and separates the rôles of the source and the algorithm.

It is then sufficient to

– study the key–probability π(u, t) of the algorithm (the second step).

– take its integral on each fundamental triangle (the third step)



Fundamental intervals and fundamental triangles.
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Study of the key probability π(u, t) of the algorithm (I)

π(u, t) du dt := Mean number of key-comparisons between M(u′)
and M(t′) with u′ ∈ [u, u + du] and t′ ∈ [t− dt, t].

Case of QuickSort. M(u) and M(t) are compared

iff the first pivot chosen in {M(v), v ∈ [u, t]} is M(u) or M(t)

QuickSort (n, A): sorts the array A

Choose a pivot;

(k,A−, A+) := Partition(A);
QuickSort (k − 1, A−);
QuickSort (n− k,A+).
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π(u, t) du dt = Zdu · Zdt · E
[

2
2 + N[u,t]

]
Here, N[u,t] is the number of words M(v) with v ∈ [u, t],

It follows a Poisson law of parameter Z(t− u).

Then: π(u, t) = 2 Z2 f1(Z(t− u)) with f1(θ) := θ−2 [e−θ−1+θ]

Finally:

S̃(Z) = 2 Z2
∑

w∈Σ?

∫
Tw

f1(Z(t− u)) du dt
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(B) Return to the model where n is fixed.
With the expansion of f1, the mean value

S̃(Z) =
∞∑

k=2

(−1)k$(−k)
Zk

k!
,

is expressed with a series $(s) of Dirichlet type,

which depends both on the algorithm and the source.

$(s) = 2
∑

w∈Σ?

∫
Tw

(t− u)−(s+2)dudt

∫
Tw

(t− u)−(s+2)dudt =
p−s

w

s(s + 1)
=⇒ $(s) = 2

Λ(s)
s(s + 1)

where Λ(s) :=
∑

w∈Σ?

p−s
w is the Dirichlet series of probabilities.

Since
Sn

n!
= [Zn]

(
eZ · S̃(Z)

)
, there is an exact formula for Sn

Sn = 2
n∑

k=2

(−1)k

(
n

k

)
$(−k) = 2

n∑
k=2

(−1)k

(
n

k

)
Λ(−k)

k(k − 1)
.
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(C) Using Rice formula

As soon as $(s) is “weakly tamed” in <(s) < σ0 with σ0 > −2,

the residue formula transforms the sum into an integral:

Sn =
n∑

k=2

(−1)k

(
n

k

)
$(−k) =

1
2iπ

∫ d+i∞

d−i∞
$(s)

n!
s(s + 1) . . . (s + n)

ds,

with −2 < d < min(−1, σ0).
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As soon as $(s) is “weakly tamed” in <(s) < σ0 with σ0 > −2,

the residue formula transforms the sum into an integral:

Sn =
n∑

k=2

(−1)k

(
n

k

)
$(−k) =

1
2iπ

∫ d+i∞

d−i∞
$(s)

n!
s(s + 1) . . . (s + n)

ds,

with −2 < d < min(−1, σ0).

Where are the leftmost singularities for $(s) ?

Recall: $(s) = 2
Λ(s)

s(s + 1)

where Λ(s) :=
∑

w∈Σ?

p−s
w has always a singularity at s = −1.

What type of singularity? Is it the dominant singularity?



Plan of the talk.

– Presentation of the study

– Statement of the results

– The general model of source

– The main steps of the method

– Sketch of the proof

– What is a tamed source?



What can be expected about Λ(s)?

— For any source, Λ(s) has a singularity at s = −1.

— For a tamed source S, the dominant singularity of Λ(s) is located

at s = −1, this is a simple pôle, whose residue equals 1/hS .

— In this case, there is a triple pôle at s = −1 for
$(s)
s + 1

= 2
Λ(s)

s(s + 1)2

and
$(s)
s + 1

∼ 2
hS

1
(s + 1)3

s → −1
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For shifting the integral to the right, past... d = −1,

other properties of Λ(s) are needed on <s ≥ −1, –more subtle–

Different behaviours of Λ(s) for <s ≥ −1 where one can past d = −1...

In colored domains, Λ(s) is meromorphic and of polynomial growth for |s| → ∞.

For dynamical sources, we provide sufficient conditions

(of geometric or arithmetic type), under which these behaviours hold.

For a memoryless source, they depend on the approximability of ratios log pi/ log pj
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Conclusions.

If the source S is tamed, then Sn ∼
1

hS
n log2 n. We are done !

— QuickSort must be compared to the algorithm which uses tries for

sorting n words. We have studied its mean cost Tn in 2001.

For a tamed source, Tn ∼
1

hS
n log n.

— Our methods apply to all the QuickSelect algorithms, and the hy-

potheses needed for the source are different (less strong).

They are related to properties of Λ(s) for <s < −1.

— It is easy to adapt our results to the intermittent sources, which emits

“long” sequences of the same symbols. In this case,

Sn = Θ(n log3 n), Tn = Θ(n log2 n).
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Open problems.

— What about the distribution of the average search cost in a BST?

Is it asymptotically normal?

We know that is the case if one counts the number of key–comparisons.

We already know that, for a tamed source,

the average depth of a trie is asymptotically normal (Cesaratto-V, ’07).

Long term research projects...

— Revisit the complexity results of the main classical algorithms,

and take into account the number of symbol-comparisons...

instead of the number of key-comparisons.

— Provide a sharp “analytic” classification of sources:

Transfer geometric properties of sources into analytical properties of Λ(s)
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Natural instances of sources: Dynamical sources

With a shift map T : I → I and an encoding map τ : I → Σ,

the emitted word is M(x) = (τx, τTx, τT 2x, . . . τT kx, . . .)

xT xT x2 T x3

A dynamical system, with Σ = {a, b, c} and a word M(x) = (c, b, a, c . . .).
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Memoryless sources or Markov chains.
= Dynamical sources with affine branches....
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The dynamical framework leads to more general sources.

The curvature of branches entails correlation between symbols

Example : the Continued Fraction source
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Fundamental intervals and fundamental triangles.
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Case of QuickMin(n), QuickMax(n), [CFFV 08]

Theorem 2. For any weakly tamed source, the mean numbers

of symbol comparisons used by QuickMin(n) and QuickMax(n)

T (−)
n ∼ c

(−)
S n and T (+)

n ∼ c
(+)
S n,

involve the constants c
(ε)
S which depend on probabilities pw and p

(ε)
w , (ε = ±)

c
(ε)
S :=

X
w∈Σ?

pw

"
1− p

(ε)
w

pw
log

 
1 +

pw

p
(ε)
w

!#
.

Here p
(−)
w , p

(+)
w , pw are the probabilities that a word begins with a prefix w′,

with |w′| = |w| and w′ < w or w′ > w or w′ = w.



Case of QuickRand(n) [CFFV 08]

Theorem 3. For any weakly tamed source, the mean number of symbol

comparisons used by QuickRand(n) (randomized wrt rank), satisfies

Tn ∼ cS n, with

cS =
X

w∈Σ?

p2
w

"
2 +

1

pw
+
X
ε=±

"
log

 
1 +

p
(ε)
w

pw

!
−

 
p
(ε)
w

pw

!2

log

 
1 +

pw

p
(ε)
w

!##
,

Here p
(−)
w , p

(−)
w , pw are the probabilities that a word begins with a prefix w′,

with |w′| = |w| and w′ < w or w′ > w or w′ = w.



Case of QuickQuantα(n) [CFFV 09] Work yet in progress

Theorem 4. For any weakly tamed source, the mean number of symbol

comparisons used by QuickQuantα(n) satisfies q
(α)
n ∼ ρS(α) n with

ρS(α) = 2
X

w∈S(α)

pw + pw log pw − p(α,+)
w log p(α,+)

w − p(α,−)
w log p(α,−)

w

+ 2
X

w∈R(α)

pw

"
1 +

 
p
(α,−)
w

pw
− 1

!
log

 
1− pw

p
(α,−)
w

!#

+ 2
X

w∈L(α)

pw

"
1 +

 
p
(α,+)
w

pw
− 1

!
log

 
1− pw

p
(α,+)
w

!#
.

Three parts depending on the position of probabilities p
(ε)
w wrt α:

w ∈ L(α) iff p
(+)
w ≥ 1− α, w ∈ R(α) iff p

(−)
w ≥ α

w ∈ S(α) iff p
(−)
w < α < 1− p

(+)
w ,

p
(α,−)
w = 1− α− p

(+)
w , p

(α,−)
w = α− p

(−)
w


