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PROBLEMATIC



Definition of CA

Cellular automata (CA) were introduced by von Neumann-1951 as
simplified models of biological systems.

A cellular automaton is defined
by :

@ a finite alphabet : A

@ a semi-group : M (here Z),

@ a neighborhood :
U=][rs] CM,
@ a local function : F': AV — A.

Definition

O wm om0 mm o m o Onedefines F: AM — AM py

F(2)m = F((Tmtu)uecv)

for allm € M and x € AM.
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A cellular automaton is defined
by :
@ a finite alphabet : A
@ a semi-group : M (here Z),
@ a neighborhood :
U=|rs] CM,
@ a local function : F': AV — A.

Definition
One defines F : AM — AM py -
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F(2)m = F((Tmtu)uecv)

for allm € M and x € AM.




examples of space-time diagrams




Topological characterisation

e A% is compact for the product topology. One define the cantor distance

as .
do(z,y) =2~ min{|i| : 2,7y} H

et

e 7 acts on AZ by shift defined for all m € Z by :

o™ A~ — AZ
(xz‘)iez — ($i+m)iez-

A CA is a continuous function F : AZ — AZ which commutes with the
shift o.

Applications :
o Give a topological framework to study CA.
@ Allows to show easly combinatory results.

@ Allows to consider CA as dynamical systems...



Dynamics for the action of a semi-group M

Definition

A dynamical system is a metric space (X, d) and a continuous M-action
T on X.

Let B(z,d) ={y € X : d(z,y) < ¢} and
EM(z,e) ={y e X :d(T™(x), T™(y)) < &, Ym € M}.
Definitions around the equicontinuity :

o v € E¢™(X,T) < Ve > 0,36 >0, B(z,6) C EM(x,¢);
e (X,T) is M-equicontinuous if

Ve > 0,36 > 0Vz € X, B(xz,6) C EM(z,¢);




Dynamics for the action of a semi-group M

Definition

A dynamical system is a metric space (X, d) and a continuous M-action
T on X.

Let B(z,0) ={y € X :d(z,y) < d} and

EM(z,e) ={y € X : d(T™(z), T™(y)) < &, Ym € M}.
Definitions around the sensitivity :
e (X,T) is M-sensitive if

Je > 0,Vx € X,¥6 >0, Iy € B(z,6)\ EM(x,¢);
e (X,T) is M-expansive if

Je > 0,Ve € X, EM(z,¢) = {z}.




Dynamic of the N-action F' on A%

Eﬁz(x,s) ={ye A% do(F™(x), F™(y)) < e Vn €N

Bua(z,8) = {y € AZ : de(z,y) <6}

Theorem : Classification of CA of

o (A% F)
equicontinuous

e ) G Eq°(A%, F) ¢ A”

o (A% F) sensitive

T
o (A%, F) expansive m




DIRECTIONAL DYNAMICS FOR
UNIDIMENSIONAL CA



Study of the Z x N-action (o, F))

It is possible to consider the Z x N-action (o, F').
Classification of P. Kiirka : restriction of (o, F') at {0} x N-action !
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Study of the Z x N-action (o, F))

It is possible to consider the Z x N-action (o, F').
Classification of P. Kiirka : restriction of (o, F') at {0} x N-action !

Which sub-semi-group we must consider to study the Z x N-action (o, F') ?

Let M be a sub-semi-group of Z x N. There is two options :

@ M contains a sub-semi-group of Z x {0} : the M-action (o, F)
contains the dynamic of a power of o,

The dynamic is so strong;

o M = pZ x gN with ¢ # 0 : dynamics according to the slope a = %.

How is it possible to define dynamics according to every direction o € R? \




Dynamic of slope «

Consider the suspension of (o, F') defined for all (m,n) € R x Rt by :

Tmn) . AZ w TxT — AZXTxT
(z,51,02) +— (ol o FlrtBel(a) {m + B}, {n + Ba})

Eg(z,e)={yex: do (ol o F™(z), 0" o F™(y)) < e Vn € N}
By (z,9) = {y €Y :do(z,y) < 5}

Definition

x € Eq*(X,F)<=Ve >0, 30 >0 Byx(z,0) C E¥(x,¢)




Dynamic of slope «

u € Ly is a 2-blocking word of slope « if :

Vz € [u]p NY, one has [u]p C Ex(z, 9~ max{|u|+|afuel

Characterisation of equicontinuous points

If ¥ is a transitive subshift then :
x € Eq*(X, F) <= Ju € Ly, which is a blocking word.

e Some recall :
-(X,0) is transitive if Vu,v € Ly, Jw € Ly such that vwv € L.

-(X, 0) is weakly-specified if 3N € N such that Yu,v € Ly, I3n < N and
Jw € Lx(n) such that uwv € Ly.



Dynamic of slope «

Ei(z,e)={yeX: de (ol o F™(2),0" o F™(y)) < € ¥n € N}

Y 4 Bg(az,é):{yezid()(%y)<5}

Theorem : Classification of CA under the slope «
Let X be a transitive subshift. One of the following case holds

e (X, F') equicontinuous
of slope «

o) C Eq™(Z,F) ¢ A%

e (X, F) sensible of
slope «

e (X, F') expansive of
slope «

m-ﬂ=




Convexity of A(X, F)

AXF)={aeR: Eq“(Z, F) # 0}

/

3 /
N
Let o/, 0" € A(%, F).

If 3 is transitive we can stick blocking word of slope o’ and o”.




Convexity of A(X, F)

AX,F)={aeR:Eq*(X,F)#0}

/

X

o

Then [o/, "] C A(Z, F).



AX F)C]—s,—r|

AXF)={aeR: E¢*(Z, F) # 0}

/
A/

N

SN
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Let U = [r, s] the neighbourhood of F'.
Let &« > —r such that o € A(X, F).




AX F)C]—s,—r|

AX,F)={aeR:Eq*(X,F)#0}

4h
Let NV be the constant of weakly-specification. Let n
We consider the local rule of the CA F"™ of neighborhood [nr, sn).

>|u|—|—N
— oa+r -’

For every word u € Alrmsnl one obtains .



AX F)C]—s,—r|

A F)={aeR: Eq*(%, F) # 0}

N
||

N

/
/

/
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By weakly-specification, it is possible to stick every word of __with

> sufisently near thanks to of maximum length N.
Then F is “nilipotent” (3c € A% o-periodic and n € N such that Vz € A%
there exists k which verifies F™(z) = o¥(c))



Directions with equicontinuous points

Theorem

Let ¥ be a weakly specified subshift and (A%, F) be a CA of
neighborhood U = [r, s].

Four cases are possible for A(X, F) = {a € R: Eq*(2,F) # 0} :
e AX,F)=R o AX,F)=(d,0") C[~s,—T]

F(z)m =1

e A F)={a}aeQ? o A(X,F)=

T e

F(Z)m = Zm—1 + Tm + Tm4+1 mod 2

v



What happen if X is not weakly specified ?

Let A= {0,1} and F(x); = x;_1 - x; - 7;41. Consider ¥ C A? such that
L0 ({0™17 : f(n) > m} U {1707 ; f(n) = m}) = 0.
For all h: N — N such as f(n) > h(n) > f(n), one has
[100001] C E"(>0%°,272)
where

Eh(ooooo’ 2—2) — {y ey dc(o_h,('n,)an(ooOOO)’Uh,(n/)an(y)) <eVne N}

It is possible to define dynamics of slope i : N — N considering the
following tube around the orbit of x :

EMz,¢e) = {yex: do(o"™ o F™(x),0™™ o F(y)) < e Vn € N}




Equicontinuous directions
A'(X,F)={aecR: E¢®(%,F) =%} Cc A(%, F)

Theorem
Let ¥ be a weakly specifed subshift and F' of neighborhood U = [r, s].

Three case are possible :
e A(X,F)=R o AN F)={a} e A'X,F)=10

a€QnNil—s,—7]

F(z)m =
majority (Tm—1, Tm, Tm+1)

HE 7 ”:

F(z)m =
Tm—1~+ Tm + Tm+y1 mod 2)




Cone of expansivity

BY(X, F) = {a € R: (%, F) expansive of slope a}

(3, F) expansive <= codes




Cone of right expansivity

BY (X, F) = {a € R: (%, F) right expansive of slope a}

\

_

(3, F') right expansive <= codes ___



Cone of right expansivity

BY(Z, F) = {a € R: (%, F) right expansive of slope a}

\

_

Vo/ > o one has o € BY (X, F) since codes



Cone of right expansivity
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B (X, F) is open
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Cone of right expansivity

BY(Z, F) = {a € R: (%, F) right expansive of slope a}

B (X, F) is open



Directions of expansivity

. B?(Z, F)={a eR: (%, F) expansive of slope a}.
e BY(Z,F)={acR: (%, F) left expansive of slope a}.
e BY(X, F)={ae€R: (3, F) right expansive of slopea}.

Theorem

Let ¥ be a subshift and (A%, F) of neighborhood U = [, 5].
e BY(Z,F)=la/,+o0[C] —5,+0[. o €Q7?

N _1_ " _ . " 5
e B (%, F)=]-00,a"[C] —00,~r[. a"€Q"

BY(Z, F) = BY (S, F) N B} (3, F) =]/, a”[C] — 5, —7].

Example : F is right permutative if

Vu € A1 F(u) : A — A s bijective.
e One has BN(AZ F)=]—s,+o0].

There is other type of propagation of |nformat|ons7




A={aeR:0¢ Eq®(F) ¢ A%}
A" ={a € R: (A%, F) equicontinuous of slope a}
B = {a € R: (A%, F) expansif of slope o}
right or left expansive directions

Theorem
Let ¥ be a weakly-specified subshift and (A%, F) be a CA.

A'=R
A= [a/,a//]




A={aeR:0¢ Eq*(F) ¢ A%}
A" ={a € R: (A%, F) equicontinuous of slope a}
B = {a € R: (A%, F) expansif of slope a}

Theorem
Let ¥ be a weakly-specified subshift and (A%, F) be a CA.




SOME APPLICATIONS



Different sight about directional dynamics

@ Notion of directional attractors

@ Notion of directional entropy

e (F,o)-invariant measures



Notion of attractor

o Limit set of Y Cc AZ is :

Ap(Y) =[] UnznF™(Y).
neN

e Y C A% is an attractor if there exists an open set U C A% such
that :

F'U)cUV¥neN and Y =Ap(U).

Theorem : Attractor’s classification of

A? (A%, F) has a pair of disjoint attractors;

AY ( ) has a unique minimal quasi-attractor;

AY (AZ, F) has a unique minimal attracteur different from Az (A%);
( )

AY has a unique attracteur : Ap(A%);




Directional attractor

o Limit set of Y C A% of slope o is :

Aa ﬂ Um>nFm ° O-Lmuj( )
neN

e Y C A% is an attractor of slope « if there exists an open set
U c A% such that :

Frool"()ycUVneN and Y =A%(U).

Theorem : Classification according a direction

A (AZ,F) has a pair of disjoint attractors of slope «;
1

AS (A%, F) has a unique minimal quasi-attractor of slope a;
A$ (A% F) has a unique minimal attracteur of slope « different from
A& (AZ)

A§ (AZ,F) has a unique attracteur de pente o : A%(A%);




Links between sensitivity to initial conditions and attractors

Links according a direction

A} | AS | A5 | A

(A%, F) equicontinuous || OK | () | OK

0 ¢ Eq°(F) ¢ A” OK | OK | OK | OK

(A%, F) sensitive OK | OK | OK | OK

(A%, F) expansive 0 0 fp | OK




Links between sensitivity to initial conditions and attractors

Ad A4\ A4 f}\}/ A4

TTTTTITTTITTTTIITITITTTITITITT [TTTTTTTTTTT T TTITITTITTTITTTT

A =R A={a}cQ A=0, B=|d,a"|

)
A4?Q2A3/'?A4A T A4

[TTTTTIT T I T TTTTTTTTTT 00T [TTTTTTTTTTTTTITITITTITITTITTTT
A=[d,d] A={a} A=0, 5=0 J
, -




Different sight about directional dynamics

@ Notion of directional attractors

@ Notion of directional entropy

e (F,o)-invariant measures



Directionnal entropy

Definition and study of av — hyop(F, ) by Milnor-96 and Boyle-Lind-97.
Let P = {U1,...,U,} be a partition :

Hyop(P) = log(min{n € N: Jiy, ...i,, € [1,p], A = U;; U...UU,, }).

Definition

Let P|_;; be the partition on centred words of length [.

N-1
: : 1 -n —|na
htop(F, a) = lliglo ]\;1_120 NHtOp < \/ F ool JP[—Z,I])

n=0




Liens avec la dynamique directionnelle

Majoration

hiop(F, ) < (max(s + ) — min(r + «,0)) heop(o) where U = [r, s] is the
neighbour of (A%, F).

We have equality if F' is bipermutative.

There is other case of equality ?

Some links with directional dynamics
o If a € A’(X, F) then hyop(F, ) = 0.
@ o — hiop(F, ) is convexe on B?(.AZ,F) UBL(AZ, F).
® hiop(0) > 0 iff hyop(F, ) > 0 Vo € By (F) UBY(F).




Different sight about directional dynamics

@ Notion of directional attractors

@ Notion of directional entropy

e (F,o)-invariant measures



(F, o)-invariant measures

A={aeR:0¢ Eq*(F) ¢ A%}
= {a € R: (4%, F) équicontinue de pente o}
B = {a € R: (A% F) expansif de pente o}
right or left expansive directions

Soit 1 € M%E (A%)

= Joogoo Mpo =20 F" "My Ahyu(0) < hu(F,a) < Bhy(o

MMWXQ

B) > 0= p = doogee hu(F,a) =0 777

L




The case of algebraic CA

A CA is said algebraic if A% is a group and F : AZ — AZ is a morphism.

An algebraic CA is in the class . Moreover, one has :

hu(F,a) = (max(s + o, 0) — min(r 4+ «, 0)) hy(0)
There is a lot of rigidity results :

@ General agebraic action : Furstenberg-67, Schmidt-95, Eisiendler-05
@ Cellular automata : Host-Maass-Martinez-03,Pivato-05

Let (AZ, F) be an algebraic CA, ¥ C A% a subgroup and 1 € M, ¢(X).
o u (F,o)-ergodic and Z,,(0) = Z,,(cAlP1)
° hy(F)>0

@ Doo(F) = UpenKer(F™) has dense infinite subgroupes o-invariants

Then = A 4z.

It is possible to obtain rigidity results for the class 1 ?



(F, o)-invariant measures

A={aeR:0¢ Eq*(F) ¢ A%}
= {a € R: (4%, F) équicontinue de pente o}
B = {a € R: (A% F) expansif de pente o}
right or left expansive directions

Soit 1 € M%E (A%)

= Joogoo Mpo =20 F" "My Ahyu(0) < hu(F,a) < Bhy(o
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(F, o)-invariant measures

A={aeR:0¢ Eq*(F) ¢ A%}
= {a € R: (4%, F) équicontinue de pente o}
B = {a € R: (A% F) expansif de pente o}
right or left expansive directions

Soit 1 € M%E (A%)

j(B) > 0= p = doogoe hu(F,a) =0 M. ({0, m}%) U M, ({0, W}

v




WHAT HAPPEN IN OTHER
DIMENSIONS 7

Joint work with G. Theyssier



Action of F sur A%

EN(z,¢) = {yeX:VneNonadc(F'(z),F"(y)) <e}

A=A

BZ(Q:75){y SO dC(:Uay) < 6}



d d .
F : A — A% cannot be expansive




d d .
F : A — A% cannot be expansive




d d .
F : A — A% cannot be expansive




Expansivity as a Z¢ x N-action

Let ' be a sub-vectorial space of R x R_.
Denote I'" = {t ¢ RY x Ry : 3t' € T tel que ||t — || < 1}.

Ey(z,e) = {y ex:¥nelTnzZixN do((o,F)*(z), (0, F)"(y)) < 6}

Definition

(X, F) is expansive of slope I if
Jde > 0 such that

Vz €Y EL(z,e) = {z}.

The direction of expansivity is defined by :
o the base, denoted Ty = T NR? x {0}
@ the angle according the direction of the CA



Some properties

Such examples :
A=7/pZ and F : AZ* — AZ" s defined as the addition according the
following neighborhood :

I+ .

Some properties
@ If a base is fixed, one obtains the results of unidimensional CA.

@ Expansivity is possible just according a slpoe of codim 1

@ The set of expansive direction is open.

Which directions are possible for the bases ?



CA with equicontinuous points and sensitive CA

ES(z,e)={yeX:YneclTNZIx N do((o, F)"(x), (0, F)"(y)) < €}

Bgo(xﬁ) ={yeX:vnel¥ NZYx N do((o, F)"(z), (0, F)"(y)) < 6§}

Définition

e r € Eq' (3, F) <= Ve > 0 36 such that B'(z,d) C EL(x,¢).
e (X, F) is sensitive if 3¢ >0, V> 0,3y € B'o(z,8) N EL(z,¢).




Some properties

Let I" be a sub-vectorial space. One defines :
o &' the set of CA which have equicontinuous points according to T,
o ST the set of sensitive CA according to I,
o NT the set of CA which are neither in ' nor in ST.

codim(T") =1 codim(T") > 2

e NT =10 e NT £0)

e £V and ST are neither r.e. nor | ¢ EL, ST and N1 are neither r.e.
co-r.e. nor co-r.e.

o If I € S then the sensitivity | ® If F' € S then the sensitive
constant is recursive. constant cannot be recursive.




Equicontinuous CA as a Z¢ x N-action

Ei(ze)={yeX:YnelTnNZIx N do((o,F)"(x), (0, F)"(y)) < €}

- 4

y A

y
B (z,0) ={yeX:Vn e T NZx N do((o, F)"(z), (0, F)"(y)) < &}

Définition
e (X, F') equicontinuous of slope I' if and only if
< Ve>0 3FdtelqueVreX BT(z,68) C EL(z,e).

.

Some properties for equicontinuity of slope I :
e If (3, F) is equicontinuous of slope I' then (X, F) is equicontinuous
of slope I for every sub-vectorial space IV D I'.
e If F' is an equicontinuous CA according to a I' (I maximal) then T is
a rational subvectorial space.

A




Some examples

N 22

(ZC)m = ITm F(m)m e

L

E s EsEEEEE mnEEE o I COTT T T O T O O PO T I P I
F(x)m = Tm—1"Tm * Tm+1 F(w)m = F(:E)m =
max(Tm—1, Tm, Tm+1) max(Tum, Tm—1, Tm—2)
E .
-
"
F(2)m = Tm + Tm+1 F(2)m = Tm—1+ Tm + Tmi

mod 2 it
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