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Problematic



Definition of CA

Cellular automata (CA) were introduced by von Neumann-1951 as
simplified models of biological systems.
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A cellular automaton is defined
by :

a finite alphabet : A
a semi-group : M (here Z),

a neighborhood :
U = [r, s] ⊂M,

a local function : F : AU → A.

Definition

One defines F : AM −→ AM by :

F (x)m = F ((xm+u)u∈U)

for all m ∈M and x ∈ AM.
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Some examples of space-time diagrams

Classification of Wolfram (1982) :



Topological characterisation

• AZ is compact for the product topology. One define the cantor distance
as :

dC(x, y) = 2−min{|i| : xi 6=yi}

• Z acts on AZ by shift defined for all m ∈ Z by :

σm : AZ −→ AZ

(xi)i∈Z 7−→ (xi+m)i∈Z.

Hedlund-69

A CA is a continuous function F : AZ → AZ which commutes with the
shift σ.

Applications :

Give a topological framework to study CA.

Allows to show easly combinatory results.

Allows to consider CA as dynamical systems...



Dynamics for the action of a semi-group M

Definition

A dynamical system is a metric space (X, d) and a continuous M-action
T on X.

Let B(x, δ) = {y ∈ X : d(x, y) < δ} and

EM(x, ε) = {y ∈ X : d(Tm(x), Tm(y)) < ε, ∀m ∈M}.

Definitions around the equicontinuity :

x ∈ EqM(X, T ) ⇐⇒ ∀ε > 0,∃δ > 0, B(x, δ) ⊂ EM(x, ε) ;

(X, T ) is M-equicontinuous if

∀ε > 0,∃δ > 0∀x ∈ X, B(x, δ) ⊂ EM(x, ε);



Dynamics for the action of a semi-group M

Definition

A dynamical system is a metric space (X, d) and a continuous M-action
T on X.

Let B(x, δ) = {y ∈ X : d(x, y) < δ} and

EM(x, ε) = {y ∈ X : d(Tm(x), Tm(y)) < ε, ∀m ∈M}.
Definitions around the sensitivity :

(X, T ) is M-sensitive if

∃ε > 0,∀x ∈ X, ∀δ > 0, ∃y ∈ B(x, δ) \ EM(x, ε);

(X, T ) is M-expansive if

∃ε > 0,∀x ∈ X, EM(x, ε) = {x}.



Dynamic of the N-action F on AZ

EN
AZ(x, ε) =

{
y ∈ AZ : dC(Fn(x), Fn(y)) < ε ∀n ∈ N

}
BAZ(x, δ) =

{
y ∈ AZ : dC(x, y) < δ

}
Theorem : Classification of CA of Kůrka-97

• (AZ, F )
equicontinuous

• ∅  Eq0(AZ, F )  AZ

• (AZ, F ) sensitive

• (AZ, F ) expansive



Directional dynamics for
unidimensional CA



Study of the Z× N-action (σ, F )

It is possible to consider the Z× N-action (σ, F ).
Classification of P. Kůrka : restriction of (σ, F ) at {0} × N-action !

Question

Which sub-semi-group we must consider to study the Z×N-action (σ, F ) ?

Let M be a sub-semi-group of Z× N. There is two options :

M contains a sub-semi-group of Z× {0} : the M-action (σ, F )
contains the dynamic of a power of σ,

The dynamic is so strong ;

M = pZ× qN with q 6= 0 : dynamics according to the slope α = p
q .

Question

How is it possible to define dynamics according to every direction α ∈ R ?
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Dynamic of slope α

Consider the suspension of (σ, F ) defined for all (m,n) ∈ R× R+ by :

T (m,n) : AZ × T× T −→ AZ × T× T
(x, β1, β2) 7−→ (σbm+β1c ◦ F bn+β2c(x), {m + β1}, {n + β2})

.

Eα
Σ(x, ε) =

{
y ∈ Σ : dC(σbnαc ◦ Fn(x), σbnαc ◦ Fn(y)) < ε ∀n ∈ N

}
BΣ(x, δ) =

{
y ∈ Σ : dC(x, y) < δ

}
Definition

x ∈ Eqα(Σ, F ) ⇐⇒ ∀ε > 0, ∃δ > 0 BΣ(x, δ) ⊂ Eα
Σ(x, ε)



Dynamic of slope α

u ∈ LΣ is a Σ-blocking word of slope α if :

∀x ∈ [u]0 ∩ Σ, one has [u]0 ⊂ Eα
Σ(x, 2−max{|u|+|α|:u∈U})

Characterisation of equicontinuous points

If Σ is a transitive subshift then :
x ∈ Eqα(Σ, F ) ⇐⇒ ∃u ∈ LΣ which is a blocking word.

• Some recall :
-(Σ, σ) is transitive if ∀u, v ∈ LΣ, ∃w ∈ LΣ such that uwv ∈ LΣ.

-(Σ, σ) is weakly-specified if ∃N ∈ N such that ∀u, v ∈ LΣ, ∃n ≤ N and
∃w ∈ LΣ(n) such that uwv ∈ LΣ.



Dynamic of slope α

Eα
Σ(x, ε) =

˘
y ∈ Σ : dC(σbnαc ◦ F n(x), σbnαc ◦ F n(y)) < ε ∀n ∈ N

¯
BΣ(x, δ) =

{
y ∈ Σ : dC(x, y) < δ

}
Theorem : Classification of CA under the slope α

Let Σ be a transitive subshift. One of the following case holds :

• (Σ, F ) equicontinuous
of slope α

• ∅  Eqα(Σ, F )  AZ

• (Σ, F ) sensible of
slope α

• (Σ, F ) expansive of
slope α



Convexity of A(Σ, F )

A(Σ, F ) = {α ∈ R : Eqα(Σ, F ) 6= ∅}

Let α′, α′′ ∈ A(Σ, F ).
If Σ is transitive we can stick blocking word of slope α′ and α′′.



Convexity of A(Σ, F )

A(Σ, F ) = {α ∈ R : Eqα(Σ, F ) 6= ∅}

Then [α′, α′′] ⊂ A(Σ, F ).



A(Σ, F ) ⊂]− s,−r[

A(Σ, F ) = {α ∈ R : Eqα(Σ, F ) 6= ∅}

Let U = [r, s] the neighbourhood of F .
Let α > −r such that α ∈ A(Σ, F ).



A(Σ, F ) ⊂]− s,−r[

A(Σ, F ) = {α ∈ R : Eqα(Σ, F ) 6= ∅}

Let N be the constant of weakly-specification. Let n ≥ |u|+N
α+r .

We consider the local rule of the CA Fn of neighborhood [nr, sn].

For every word u ∈ A[rn,sn], one obtains .



A(Σ, F ) ⊂]− s,−r[

A(Σ, F ) = {α ∈ R : Eqα(Σ, F ) 6= ∅}

By weakly-specification, it is possible to stick every word of with

sufisently near thanks to of maximum length N .
Then F is “nilipotent” (∃c ∈ AZ σ-periodic and n ∈ N such that ∀x ∈ AZ

there exists k which verifies Fn(x) = σk(c))
So A(Σ, F ) = R.



Directions with equicontinuous points

Theorem

Let Σ be a weakly specified subshift and (AZ, F ) be a CA of
neighborhood U = [r, s].
Four cases are possible for A(Σ, F ) = {α ∈ R : Eqα(Σ, F ) 6= ∅} :
• A(Σ, F ) = R

F (x)m = 1

• A(Σ, F ) = (
?

α′, α′′)
?

⊂ [−s,−r]

F (x)m = xm−1 · xm · xm−1

• A(Σ, F ) = {α} α ∈ Q ?

F (x)m = xm+1

• A(Σ, F ) = ∅

F (x)m = xm−1 + xm + xm+1 mod 2



What happen if Σ is not weakly specified ?

Let A = {0, 1} and F (x)i = xi−1 · xi · xi+1. Consider Σ ⊂ AZ such that

LΣ ∩ ({0m1n : f(n) ≥ m} ∪ {1n0m : f(n) ≥ m}) = ∅.

For all h : N→ N such as f(n) ≥ h(n) ≥ f(n), one has

[100001] ⊂ Eh(∞0∞, 2−2)

where

Eh(∞0∞, 2−2) =
{
y ∈ Σ : dC(σh(n)◦Fn(∞0∞), σh(n)◦Fn(y)) < ε ∀n ∈ N

}
Remark

It is possible to define dynamics of slope h : N→ N considering the
following tube around the orbit of x :

Eh(x, ε) =
{
y ∈ Σ : dC(σh(n) ◦ Fn(x), σh(n) ◦ Fn(y)) < ε ∀n ∈ N

}



Equicontinuous directions

A’(Σ, F ) = {α ∈ R : Eqα(Σ, F ) = Σ} ⊂ A(Σ, F )

Theorem

Let Σ be a weakly specifed subshift and F of neighborhood U = [r, s].
Three case are possible :
• A’(Σ, F ) = R • A’(Σ, F ) = {α}

α ∈ Q ∩ [−s,−r]
• A’(Σ, F ) = ∅

F (x)m = 1
F (x)m = xm

F (x)m = xm+1

F (x)m =
majority(xm−1, xm, xm+1)

F (x)m =
xm−1 + xm + xm+1 mod 2



Cone of expansivity

BN(Σ, F ) = {α ∈ R : (Σ, F ) expansive of slope α}

(Σ, F ) expansive ⇐⇒ codes



Cone of right expansivity

BN
d (Σ, F ) = {α ∈ R : (Σ, F ) right expansive of slope α}

(Σ, F ) right expansive ⇐⇒ codes



Cone of right expansivity

BN
d (Σ, F ) = {α ∈ R : (Σ, F ) right expansive of slope α}

∀α′ ≥ α one has α′ ∈ BN
d (Σ, F ) since codes .
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Directions of expansivity

• BN
g (Σ, F ) = {α ∈ R : (Σ, F ) expansive of slope α}.

• BN
d (Σ, F ) = {α ∈ R : (Σ, F ) left expansive of slope α}.

• BN(Σ, F ) = {α ∈ R : (Σ, F ) right expansive of slopeα}.

Theorem

Let Σ be a subshift and (AZ, F ) of neighborhood U = [r, s].
• BN

d (Σ, F ) =]α′,+∞[⊂]− s,+∞[. α′ ∈ Q ?
• BN

g (Σ, F ) =]−∞, α′′[⊂]−∞,−r[. α′′ ∈ Q ?

BN(Σ, F ) = BN
d (Σ, F ) ∩ BN

g (Σ, F ) =]α′, α′′[⊂]− s,−r[.

Example : F is right permutative if
∀u ∈ A[r,s−1], F (u·) : A → A is bijective.
One has BN

d (AZ, F ) =]− s,+∞[.
There is other type of propagation of informations ?



In short

A = {α ∈ R : ∅  Eqα(F )  AZ}
A′ = {α ∈ R : (AZ, F ) equicontinuous of slope α}

B = {α ∈ R : (AZ, F ) expansif of slope α}
right or left expansive directions

Sensitive directions

Theorem

Let Σ be a weakly-specified subshift and (AZ, F ) be a CA.

A′ = R A′ = {α} ⊂ Q A = ∅, B =]α′, α′′[

A = [α′, α′′] A = {α} A = ∅, B = ∅



In short

A = {α ∈ R : ∅  Eqα(F )  AZ}
A′ = {α ∈ R : (AZ, F ) equicontinuous of slope α}

B = {α ∈ R : (AZ, F ) expansif of slope α}

Theorem

Let Σ be a weakly-specified subshift and (AZ, F ) be a CA.

A′ = R A′ = {α} ⊂ Q A = ∅, B =]α′, α′′[

A = [α′, α′′] A = {α} A = ∅, B = ∅



Some applications



Different sight about directional dynamics

Notion of directional attractors

Notion of directional entropy

(F, σ)-invariant measures



Notion of attractor

Limit set of Y ⊂ AZ is :

ΛF (Y ) =
⋂
n∈N

∪m≥nFm(Y ).

Y ⊂ AZ is an attractor if there exists an open set U ⊂ AZ such
that :

Fn(U) ⊂ U ∀n ∈ N and Y = ΛF (U).

Theorem : Attractor’s classification of Kůrka and Hurley

A0
1 (AZ, F ) has a pair of disjoint attractors ;

A0
2 (AZ, F ) has a unique minimal quasi-attractor ;

A0
3 (AZ, F ) has a unique minimal attracteur different from ΛF (AZ) ;

A0
4 (AZ, F ) has a unique attracteur : ΛF (AZ) ;



Directional attractor

Limit set of Y ⊂ AZ of slope α is :

Λα
F (Y ) =

⋂
n∈N

∪m≥nFm ◦ σbmαc(Y ).

Y ⊂ AZ is an attractor of slope α if there exists an open set
U ⊂ AZ such that :

Fn ◦ σbnαc(U) ⊂ U ∀n ∈ N and Y = Λα
F (U).

Theorem : Classification according a direction

Aα
1 (AZ, F ) has a pair of disjoint attractors of slope α ;

Aα
2 (AZ, F ) has a unique minimal quasi-attractor of slope α ;

Aα
3 (AZ, F ) has a unique minimal attracteur of slope α different from

Λα
F (AZ) ;

Aα
4 (AZ, F ) has a unique attracteur de pente α : Λα

F (AZ) ;



Links between sensitivity to initial conditions and attractors

Links according a direction Kůrka

A0
1 A0

2 A0
3 A0

4

(AZ, F ) equicontinuous OK ∅ ∅ OK

∅  Eq0(F )  AZ OK OK OK OK

(AZ, F ) sensitive OK OK OK OK

(AZ, F ) expansive ∅ ∅ ∅ OK



Links between sensitivity to initial conditions and attractors

Theorem

A′ = R A′ = {α} ⊂ Q A = ∅, B =]α′, α′′[

A = [α′, α′′] A = {α}
A = ∅, B = ∅



Different sight about directional dynamics

Notion of directional attractors

Notion of directional entropy

(F, σ)-invariant measures



Directionnal entropy

Definition and study of α → htop(F, α) by Milnor-96 and Boyle-Lind-97.
Let P = {U1, ..., Up} be a partition :

Htop(P) = log(min{n ∈ N : ∃i1, ...in ∈ [1, p],AZ = Ui1 ∪ ... ∪ Uip}).

Definition

Let P[−l,l] be the partition on centred words of length l.

htop(F, α) = lim
l→∞

lim
N→∞

1
N

Htop

(
N−1∨
n=0

F−n ◦ σ−bnαcP[−l,l]

)



Liens avec la dynamique directionnelle

Majoration

htop(F, α) ≤ (max(s + α)−min(r + α, 0))htop(σ) where U = [r, s] is the
neighbour of (AZ, F ).
We have equality if F is bipermutative.

Ask

There is other case of equality ?

Some links with directional dynamics

If α ∈ A’(Σ, F ) then htop(F, α) = 0.

α → htop(F, α) is convexe on BN
g (AZ, F ) ∪ BN

d (AZ, F ).

htop(σ) > 0 iff htop(F, α) > 0 ∀α ∈ BN
g (F ) ∪ BN

d (F ).



Different sight about directional dynamics

Notion of directional attractors

Notion of directional entropy

(F, σ)-invariant measures



(F, σ)-invariant measures

A = {α ∈ R : ∅  Eqα(F )  AZ}
A′ = {α ∈ R : (AZ, F ) équicontinue de pente α}

B = {α ∈ R : (AZ, F ) expansif de pente α}
right or left expansive directions

Sensitive directions

Soit µ ∈Merg
F,σ(AZ)

µ = δ∞a∞ MF,σ =
Pp−1

i=0 F m+iMσ Ahµ(σ) ≤ hµ(F, α) ≤ Bhµ(σ)

µ(B) > 0 ⇒ µ = δ∞a∞ hµ(F, α) = 0 ? ? ?



The case of algebraic CA

A CA is said algebraic if AZ is a group and F : AZ → AZ is a morphism.

An algebraic CA is in the class . Moreover, one has :

hµ(F, α) = (max(s + α, 0)−min(r + α, 0))hµ(σ)

There is a lot of rigidity results :

General agebraic action : Furstenberg-67, Schmidt-95, Eisiendler-05

Cellular automata : Host-Maass-Mart́ınez-03,Pivato-05

Theorem Sablik-06

Let (AZ, F ) be an algebraic CA, Σ ⊂ AZ a subgroup and µ ∈Mσ,F (Σ).
µ (F, σ)-ergodic and Iµ(σ) = Iµ(σ|A|p1)
hµ(F ) > 0
D∞(F ) = ∪n∈NKer(Fn) has dense infinite subgroupes σ-invariants

Then µ = λAZ .

It is possible to obtain rigidity results for the class ?



(F, σ)-invariant measures

A = {α ∈ R : ∅  Eqα(F )  AZ}
A′ = {α ∈ R : (AZ, F ) équicontinue de pente α}

B = {α ∈ R : (AZ, F ) expansif de pente α}
right or left expansive directions

Sensitive directions

Soit µ ∈Merg
F,σ(AZ)

µ = δ∞a∞ MF,σ =
Pp−1

i=0 F m+iMσ Ahµ(σ) ≤ hµ(F, α) ≤ Bhµ(σ)

µ(B) > 0 ⇒ µ = δ∞a∞ hµ(F, α) = 0 ? ? ?



(F, σ)-invariant measures

A = {α ∈ R : ∅  Eqα(F )  AZ}
A′ = {α ∈ R : (AZ, F ) équicontinue de pente α}

B = {α ∈ R : (AZ, F ) expansif de pente α}
right or left expansive directions

Sensitive directions

Soit µ ∈Merg
F,σ(AZ)

µ = δ∞a∞ MF,σ =
Pp−1

i=0 F m+iMσ Ahµ(σ) ≤ hµ(F, α) ≤ Bhµ(σ)

µ(B) > 0 ⇒ µ = δ∞a∞ hµ(F, α) = 0 Mσ({�, �}Z) ∪Mσ({�, �}Z)



What happen in other
dimensions ?
Joint work with G. Theyssier



Action of F sur AZd

EN
Σ(x, ε) =

{
y ∈ Σ : ∀n ∈ N on a dC(Fn(x), Fn(y)) < ε

}

BΣ(x, δ){y ∈ Σ : dC(x, y) < δ}



F : AZd → AZd

cannot be expansive



F : AZd → AZd

cannot be expansive



F : AZd → AZd

cannot be expansive



Expansivity as a Zd × N-action

Let Γ be a sub-vectorial space of Rd × R+.
Denote ΓT = {t ∈ Rd × R+ : ∃t′ ∈ Γ tel que ||t− t′|| < 1}.

EΓ
Σ(x, ε) =

{
y ∈ Σ : ∀n ∈ ΓT ∩Zd×N dC((σ, F )n(x), (σ, F )n(y)) < ε

}

Definition

(Σ, F ) is expansive of slope Γ if
∃ε > 0 such that

∀x ∈ Σ EΓ
Σ(x, ε) = {x}.

The direction of expansivity is defined by :

the base, denoted Γ0 = Γ ∩ Rd × {0}
the angle according the direction of the CA



Some properties

Such examples :

A = Z/pZ and F : AZd → AZd
is defined as the addition according the

following neighborhood :

Some properties

If a base is fixed, one obtains the results of unidimensional CA.

Expansivity is possible just according a slpoe of codim 1
The set of expansive direction is open.

Which directions are possible for the bases ?



CA with equicontinuous points and sensitive CA

EΓ
Σ(x, ε) = {y ∈ Σ : ∀n ∈ ΓT ∩ Zd × N dC((σ, F )n(x), (σ, F )n(y)) < ε}

BΓ0
Σ (x, δ) = {y ∈ Σ : ∀n ∈ ΓT

0 ∩Zd×N dC((σ, F )n(x), (σ, F )n(y)) < δ}

Définition

• x ∈ EqΓ(Σ, F ) ⇐⇒ ∀ε > 0 ∃δ such that BΓ0(x, δ) ⊂ EΓ
Σ(x, ε).

• (Σ, F ) is sensitive if ∃ε > 0, ∀δ > 0,∃y ∈ BΓ0(x, δ) ∩ EΓ
Σ(x, ε).



Some properties

Let Γ be a sub-vectorial space. One defines :

EΓ the set of CA which have equicontinuous points according to Γ,

SΓ the set of sensitive CA according to Γ,

N Γ the set of CA which are neither in EΓ nor in SΓ.

codim(Γ) = 1 codim(Γ) ≥ 2

• N Γ = ∅ • N Γ 6= ∅
• EΓ and SΓ are neither r.e. nor
co-r.e.

• EΓ, SΓ and N Γ are neither r.e.
nor co-r.e.

• If F ∈ SΓ then the sensitivity
constant is recursive.

• If F ∈ SΓ then the sensitive
constant cannot be recursive.



Equicontinuous CA as a Zd × N-action

EΓ
Σ(x, ε) = {y ∈ Σ : ∀n ∈ ΓT ∩ Zd × N dC((σ, F )n(x), (σ, F )n(y)) < ε}

BΓ0
Σ (x, δ) = {y ∈ Σ : ∀n ∈ ΓT

0 ∩Zd×N dC((σ, F )n(x), (σ, F )n(y)) < δ}

Définition

• (Σ, F ) equicontinuous of slope Γ if and only if
⇐⇒ ∀ε > 0 ∃δ tel que ∀x ∈ Σ BΓ0(x, δ) ⊂ EΓ

Σ(x, ε).

Some properties for equicontinuity of slope Γ :

If (Σ, F ) is equicontinuous of slope Γ then (Σ, F ) is equicontinuous
of slope Γ′ for every sub-vectorial space Γ′ ⊃ Γ.

If F is an equicontinuous CA according to a Γ (Γ maximal) then Γ is
a rational subvectorial space.



Some examples

F (x)m = 1 F (x)m = xm F (x)m = xm−1

F (x)m = xm−1 · xm · xm+1
F (x)m =

max(xm−1, xm, xm+1)
F (x)m =

max(xm, xm−1, xm−2)

F (x)m = xm + xm+1

mod 2
F (x)m = xm−1 +xm +xm+1

mod 2
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