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Abstract. It has been a long standing problem to find good symbolic codings for translations

on the d-dimensional torus that enjoy the beautiful properties of Sturmian sequences like low
factor complexity and good local discrepancy properties. Inspired by Rauzy’s approach we con-

struct such codings in terms of multidimensional continued fraction algorithms that are realized

by sequences of substitutions. In particular, given any exponentially convergent continued frac-
tion algorithm, these sequences lead to renormalization schemes which produce symbolic codings

of toral translations and bounded remainder sets at all scales in a natural way.

The exponential convergence properties of a continued fraction algorithm can be viewed in
terms of a Pisot type condition imposed on an attached symbolic dynamical system. Using this

fact, our approach provides a systematic way to confirm purely discrete spectrum results for

wide classes of symbolic dynamical systems. Indeed, as our examples illustrate, we are able to
confirm the Pisot conjecture for many well-known families of sequences of substitutions. These

examples comprise classical algorithms like the Jacobi–Perron, Brun, Cassaigne–Selmer, and
Arnoux–Rauzy algorithms.

As a consequence, we gain symbolic codings of almost all translations of the 2-dimensional

torus having factor complexity 2n + 1 that are balanced for words, which leads to multiscale
bounded remainder sets. Using the Brun algorithm, we also give symbolic codings of almost all

3-dimensional toral translations having multiscale bounded remainder sets.

1. Introduction

One of the classical motivations of symbolic dynamics is to provide representations of dynami-
cal systems as subshifts made of infinite sequences which code itineraries through suitable choices
of partitions. In the present paper, we focus on symbolic models for toral translations. More
precisely, for a given toral translation, we provide symbolic realizations based on multidimen-
sional continued fraction algorithms. These realizations have strong dynamical and arithmetic
properties. In particular, they define bounded remainder sets for toral translations with a natural
subdivision structure governed by the underlying continued fraction algorithm. We recall that
bounded remainder sets are defined as sets having bounded local discrepancy. In ergodic terms,
these are sets for which the Birkhoff sums of their characteristic function have bounded deviations.
Their study started with the work of W. M. Schmidt in his series of papers on irregularities of
distributions (see for instance [Sch74]) and has led to many important contributions; see [GL15]
for references.

Our approach is inspired by the seminal example of Sturmian dynamical systems, introduced by
M. Morse and G. Hedlund in [MH40]. There is an impressive literature devoted to their study and
to possible generalizations in word combinatorics [Fog02], and also in digital geometry [RK01].
The importance of Sturmian dynamical systems is due to several reasons. For instance, they
provide symbolic codings for the simplest arithmetic dynamical systems, namely for irrational
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translations on the circle, they code discrete lines, and they are one-dimensional models of qua-
sicrystals [BG13]. Besides that, Sturmian dynamical systems are characterized as the minimal
shifts having 1-balanced language over a two-letter alphabet [MH40]. Balance is a classical notion
in word combinatorics and symbolic dynamics that has been widely studied from many view-
points, for instance in ergodic theory and word combinatorics (see e.g. [CFZ00]) and in number
theory in connection with Fraenkel’s conjecture [Fra73, Tij00]. The scale invariance of Sturmian
dynamical systems allows them to be described by using a renormalization scheme governed by
classical continued fractions, which in turn can be interpreted as Poincaré sections of the geodesic
flow acting on the modular surface. This admits important generalizations in the study of interval
exchange transformations in relation with the Teichmüller flow and renormalization schemes that
can often be interpreted as continued fractions [Yoc06]. The basic combinatorial elements for
the understanding of Sturmian dynamical systems together with their renormalization scheme are
substitutions which are symbolic versions of induction steps (i.e., of first return maps).

In order to get symbolic models, in the present work we rely on substitutive dynamical systems
as well as on the more general S-adic dynamical systems. A substitution is a rule, either combina-
torial or geometric, that replaces a letter by a word, or a tile by a patch of tiles. Substitutions are
used to define substitutive dynamical systems which play a fundamental role in symbolic dynamics,
as emphasized e.g. in the monographs [BG13, Fog02, Que10]. In particular, Pisot substitutions are
of importance in this context since they create hierarchical structures with a significant amount
of long range order [ABB+15]. Each substitutive dynamical system defined in terms of a Pisot
substitution is conjectured to have purely discrete spectrum, that is, to be isomorphic (in the
measure-theoretic sense) to a translation on a compact abelian group. The fact that this so-called
Pisot substitution conjecture is still open (even though it is solved for beta-numeration in [Bar18])
shows that important parts of the picture are still to be developed.

More generally, S-adic dynamical systems are defined in terms of words that are generated
by iterating sequences of substitutions, rather than iterating just a single substitution, much the
same way like multidimensional continued fraction algorithms in general produce sequences of
matrices, and not just powers of a single one. A survey on S-adic dynamical systems is provided
in [BD14]. The S-adic formalism offers representations similar to the Bratteli–Vershik systems
related to Markov compacta, and to representations by Rohlin towers as studied for instance in
[DHS99] or [BR10, Chapter 6]. In [BST19], we extend the Pisot conjecture to S-adic dynamical
systems, which enables us to go beyond algebraicity. Since S-adic dynamical systems are defined
in terms of sequences of substitutions, they can be regarded as nonabelian and combinatorial
versions of multidimensional continued fraction algorithms. The requirement of Pisot substitutions
in the substitutive case is replaced here by a more general condition, called Pisot condition,
which essentially is an exponential convergence condition imposed on this underlying continued
fraction algorithm (see Section 2.1 for precise definitions). Under this condition, S-adic dynamical
systems are conjectured to have purely discrete spectrum. In [BST19], we prove that this extended
Pisot conjecture holds for large families of three-letter S-adic dynamical systems based on well-
known continued fraction algorithms, such as the Brun or the Arnoux–Rauzy algorithm. As a
striking outcome, this yields symbolic codings for almost every translation of the torus T2 [BST19],
paving the way for the development of equidistribution results for the associated two-dimensional
Kronecker sequences.

In order to apply the results of [BST19] for a given family of S-adic dynamical systems, one
has to check quite tedious combinatorial conditions for the involved sequences of substitutions
(like the ones checked in [BBJS15] in case of the Brun algorithm; see [BST19, Proposition 9.7]).
These arguments crucially relied on the topology of the plane and were thus applicable only for
three-letter alphabets. This is why the results of [BST19] are not sufficient for setting up a general
theory that is easy to apply for a given family of S-adic dynamical systems.

In the present paper, we circumvent this problem by a new ergodic argument which ensures
that the required combinatorial conditions are generically satisfied under mild and natural assump-
tions. This enables us to formulate results that are easily applicable to any given class of S-adic
dynamical systems that satisfies the Pisot condition (see Definition 2.1) on any finite alphabet.
For instance, our new theory works for generalized continued fraction algorithms including the
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Arnoux–Rauzy algorithm in arbitrary dimension, the Jacobi–Perron algorithm (in dimension 3),
the Brun algorithm (in dimension 4), and the Cassaigne–Selmer algorithm in dimension 3. (Only
the case of Brun and Arnoux-Rauzy algorithms in dimension 3 were handled in [BST19].)

Another novelty we present in this paper builds on recent results from [BCBD+21]. In partic-
ular, we can refine the theory of bounded remainder sets established in [BST19] in the sense that
bounded remainder sets (for letters) admit natural subdivisions into subsets that form bounded
remainder sets (for words). This results in multiscale natural codings for almost all translations
on the torus; see Theorem 3.8, whose informal version is provided in Theorem B. Note that the
constructions of bounded remainder sets given in [GL15, HKK17] do not offer such a scalability.

To each continued fraction algorithm satisfying the Pisot condition, we attach a shift-invariant
set of S-adic sequences, which generically leads to S-adic dynamical systems having purely discrete
spectrum. This shows that S-adic dynamical systems are measurably conjugate to minimal trans-
lations on the torus. In other words, we provide symbolic representations of toral translations,
i.e., symbolic dynamical systems that code toral translations in the measure-theoretic sense, as
well as symbolic representations for multidimensional continued fractions. In particular, we gain
symbolic codings of almost all translations of the 2-dimensional torus having factor complexity
2n+1 that are balanced for words (and not only for letters). Thus they admit bounded remainder
sets at all scales; see Corollaries C and 6.3. Using the Brun algorithm, we also give symbolic
codings of almost all 3-dimensional toral translations with bounded remainder sets for all words;
see Corollaries D and 6.8.

In our results on purely discrete spectrum (see Theorems 3.1 and 3.5, and Theorem A for
an informal version), we use two main conditions. Firstly, the above-mentioned Pisot condition
(see Definition 2.1), which is formulated in terms of negativity of the second Lyapunov exponent.
Secondly, the existence of a single substitutive dynamical system that “behaves well” and corre-
sponds to a periodic sequence in the set of S-adic sequences under consideration. As mentioned
above, contrary to the results in [BST19], our results on the purely discrete spectrum of S-adic
dynamical systems do not require combinatorial conditions which are hard to verify. In fact, some
of our results do not need any combinatorial conditions to be verified, see Theorems 3.3 and 3.6.
Indeed, we can prove that each algorithm that satisfies the Pisot condition has an acceleration
that leads to toral translations almost surely by using the existence of arbitrarily large blocks of
Pisot substitutions in the set of S-adic sequences.

Figure 1. An (affine image of an) S-adic Rauzy fractal and its subdivision (cf.
Section 2.4) whose directive sequence (σn)n∈N starts with σ0 = · · · = σ7 and σ8 =
· · · = σ15, where σ0, defined by 1 7→ 13, 2 7→ 12, 3 7→ 2, is a Cassaigne–Selmer
substitution (see Section 6.2), and σ8 is the classical Tribonacci substitution 1 7→
12, 2 7→ 13, 3 7→ 1.

In our proofs, we also heavily rely on the theory of S-adic Rauzy fractals, which has been
developed in [BST19]. For an illustration of such a Rauzy fractal, see Figure 1. Rauzy fractals
have been introduced in [Rau82] for the so-called Tribonacci substitution; see also [Thu89]. One
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motivation for Rauzy’s construction was to exhibit explicit factors of the substitutive dynamical
system as translations on compact abelian groups, under the Pisot hypothesis. The formalism of
S-adic Rauzy fractals allows us to verify the Pisot conjecture on sequences of substitutions for wide
families of systems satisfying the Pisot condition, thereby extending the results in [BST19, FN20];
see Theorems 3.1 and 3.5. Already in [BST19], for the Brun algorithm as well as the Arnoux–Rauzy
algorithm, purely discrete spectrum results have been shown. Parallel to our work, [FN20] proved
results on purely discrete spectrum of S-adic dynamical systems coming from continued fraction
algorithms with special emphasis on the Cassaigne–Selmer algorithm. However, the conditions
we have to assume in our main results are easy to check effectively and our results (stated in
Section 3) are more general than the ones in [BST19, FN20]. This allows us to treat the Arnoux–
Rauzy algorithm in arbitrary dimensions as well as multiplicative continued fraction algorithms
like the Jacobi–Perron algorithm (which requires to work with S-adic dynamical systems based
on infinitely many substitutions).

In order to state our results in full mathematical precision, we require several concepts and
notation that will be introduced in Section 2. Nevertheless, for the convenience of the reader, we
provide already here an informal “prototype” of our theorems on purely discrete spectrum; for the
exact statements, we refer to Theorems 3.1, 3.3, 3.5, and 3.6.

Theorem A. If (D, ν) is an S-adic version of a (d−1)-dimensional continued fraction algorithm
satisfying the Pisot condition, then, under mild conditions that are easy to check, the S-adic
dynamical system (Xσ,Σ) has purely discrete spectrum for ν-almost every σ ∈ D. Moreover, Xσ
is a bounded natural coding of an explicitly given translation on Td−1.

The next result, which can be considered as a partial converse of Theorem A, is an infor-
mal statement of Theorem 3.8, which shows that S-adic Rauzy fractals essentially are the only
candidates of bounded remainder sets for S-adic dynamical systems.

Theorem B. Assume that the S-adic dynamical system (X,Σ) is the natural coding of a minimal
translation Rt on Td−1 w.r.t. a partition {F1, . . . ,Fd} of a bounded fundamental domain of Td−1.
Then the sets F1, . . . ,Fd are affine images of S-adic Rauzy fractals. Moreover, they are bounded
remainder sets of Rt for letters (and, under some properness condition, also for words).

When we apply these theorems to concrete examples in Section 6, we will see that they have sev-
eral consequences. We want to mention two of these consequences already here; see Corollaries 6.3
and 6.8.

Corollary C. Almost every rotation (w.r.t. Lebesgue measure) of the 2-torus T2 has a natural
coding by a subshift of three letters of complexity 2n+ 1 that is balanced for words. The associated
bounded remainder sets for letters and words are the (bounded) S-adic Rauzy fractals corresponding
to the Cassaigne–Selmer algorithm.

Corollary D. Almost every rotation (w.r.t. Lebesgue measure) of the 3-torus T3 has a natural
coding by a subshift of four letters that is balanced for words. The associated bounded remainder
sets for letters and words are the (bounded) S-adic Rauzy fractals corresponding to the Brun
algorithm.

As applications for our results, we want to mention the recent paper [CDFG20], where our
present results are used in the framework of Schrödinger operators with quasi-periodic multi-
frequency potentials based on toral translations. In particular, they use our theory to produce
Cantor spectra of zero Lebesgue measure for these potentials. Moreover, we are currently consid-
ering higher-dimensional versions of the three-distance theorem in [ABK+21] where the involved
shapes are generated by symbolic and geometric versions of continued fraction algorithms (related
again to S-adic Rauzy fractals). Note that there have been recently several major advances on
higher-dimensional distance theorems, such as [BK18, HM20, HM21, HR21]. We also mention that
sequences with good properties of balance are used in operations research, for optimal routing and
scheduling (see e.g. [AGH00, BC04, BJ08]).
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More generally, we would like to deduce global discrepancy estimates for multidimensional Kro-
necker sequences from the local study of bounded remainder sets and thanks to the symbolic cod-
ings considered here. This is in the spirit of the one-dimensional results obtained in [Ada04a]. In
[ABM+21], we also consider Markov partitions for nonstationary hyperbolic toral automorphisms
(as defined in [AF05]) related to continued fraction algorithms. We thereby develop symbolic
models as nonstationary subshifts of finite type and Markov partitions for sequences of toral auto-
morphisms. The pieces of the corresponding Markov partitions are fractal sets (and more precisely
S-adic Rauzy fractals) defined by associating substitutions to (incidence) matrices, or in terms of
Bratteli diagrams, obtained by constructing suspensions via two-sided Markov compacta [Buf14].

In the present paper, we are dealing exclusively with results that hold for almost all parameters
(with respect to a given measure). However, similarly to the examples on the Arnoux–Rauzy
algorithm in [BST19, Theorem 3.8 and Corollary 3.9], it is possible to produce concrete families
of S-adic dynamical systems having purely discrete spectrum (characterized e.g. by properties
of their partial quotients or by recurrence properties) for other continued fraction algorithms as
well. According to [BST19, Theorem 3.1], their study involves the investigation of combinatorial
properties of the underlying sequences of substitutions. Other explicit examples are provided by
S-adic systems related to a constant sequence given by the repetition of a single Pisot substitution.
We end up with a substitutive dynamical system for such examples and for this class of parameters,
there exist many algorithms for checking purely discrete spectrum; see e.g. [BST10] or Section 6.1
below. Besides that, given any Pisot matrix, we show how to construct Pisot substitutions giving
rise to substitutive dynamical systems with purely discrete spectrum for large enough powers of
this Pisot matrix; we refer to Section 5.2, and in particular, to Proposition 5.9.

Outline of the paper. After recalling basic notation and definitions in Section 2, Section 3
is devoted to the precise statement of our main results on purely discrete spectrum including
their consequences on natural codings of translations and bounded remainder sets. The concepts
needed in the proofs of our results are provided in Section 4. In particular, we recall the required
background on Rauzy fractals. These proofs are then given in Section 5. Section 6 is devoted to
the detailed discussion of some examples which provide codings of a.e. translation on T2 and T3

that lead to bounded remainder sets of all scales.

2. Mise en scène

2.1. Multidimensional continued fraction algorithms. There are several formalisms for
defining multidimensional continued fractions, see e.g. [AL18, Bre81, BAG01, KLDM06, Lag93,
Lag94, Sch00]. In the present paper, a (d−1)-dimensional continued fraction algorithm (∆, T, A)
is defined on a set

∆ ⊆ {x ∈ [0, 1]d : ‖x‖1 = 1}
by a map

A : ∆→ GL(d,Z)

satisfying
tA(x)−1x
‖tA(x)−1x‖1 ∈ ∆ for all x ∈ ∆, together with the associated transformation

(2.1) T : ∆→ ∆, x 7→
tA(x)−1x

‖tA(x)−1x‖1
.

Here tM denotes the transpose of a matrix M . The map A is usually piecewise constant which en-
tails that T is piecewise continuous. These algorithms are called linear simplex-splitting in [Lag93,
Section 2], and their iteration produces convergent matrices used for simultaneous Diophantine
approximation. The matrices tA(x) are called partial quotient matrices. This class of algorithms
contains prominent examples like the classical algorithms of Brun [Bru19, Bru20, Bru58], Jacobi–
Perron [Ber71, HJ68, Per07, Sch73], and Selmer [Sel61], which are discussed in Section 6. When
we refer to these well-known continued fraction algorithms we will often informally talk about the
classical continued fraction algorithms.

In the present paper the transition from the linear homogeneous version of the algorithm given
by the piecewise linear map x 7→ tA(x/‖x‖1)−1x to its projectivized version (2.1) is performed
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by a normalization by the 1-norm. This choice allows working with a symmetric version of the
algorithm, as e.g. in [AL18].

A multidimensional continued fraction algorithm (∆, T, A) is called positive if A(x) is a non-
negative matrix for all x ∈ ∆, i.e., if A(∆) is contained in

Md = {M ∈ Nd×d : |detM | = 1},
with N = {0, 1, 2, . . .}. It is additive if the set of produced matrices A(∆) is finite, multiplicative
otherwise. Setting

A(n)(x) = A(Tn−1x) · · · A(Tx)A(x),

A is a linear cocycle for T , i.e., it fulfills the cocycle property A(m+n)(x) = A(m)(Tnx)A(n)(x);
this is the reason for defining T by the transpose of A.

The column vectors y
(n)
i , 1 ≤ i ≤ d, of the convergent matrices tA(n)(x) produce d sequences

of rational convergents (y
(n)
i /‖y(n)

i ‖1)n∈N that are supposed to converge to x. More precisely,

• T converges weakly at x ∈ ∆ if limn→∞ y
(n)
i /‖y(n)

i ‖1 = x holds for all i ∈ {1, . . . , d};
• T converges strongly at x ∈ ∆ if limn→∞ ‖y(n)

i −‖y
(n)
i ‖1 x‖ = 0 holds1 for all i ∈ {1, . . . , d};

• T converges exponentially at x ∈ ∆ if there are positive constants κ, δ ∈ R such that

‖y(n)
i − ‖y(n)

i ‖1 x‖ < κe−δn holds for all i ∈ {1, . . . , d} and all n ∈ N.

An important role is played by the following condition, which is essentially equivalent to almost
everywhere exponential convergence of the algorithm.

Definition 2.1 (Pisot condition, cf. [BD14, BST19]). Let (X,T, ν) be a dynamical system with
ergodic invariant probability measure ν, and let C : X → Md be a log-integrable linear cocycle
for T ; here log-integrable means that

∫
X

log max(1, ‖C(x)‖) dν(x) < ∞. Then the Lyapunov

exponents ϑk(C) of C exist and are given for k ∈ {1, . . . , d} by (∧k denotes the k-fold exterior
product)

ϑ1(C) + · · ·+ ϑk(C) = lim
n→∞

1

n
log ‖ ∧k C(Tn−1x) · · · C(Tx)C(x)‖ for ν-almost all x ∈ X.

We say that (X,T,C, ν) satisfies the Pisot condition if ϑ1(C) > 0 > ϑ2(C).

We always assume that the continued fraction algorithm (∆, T, A) is endowed with an ergodic
T -invariant probability measure ν such that the map A is ν-measurable; here GL(d,Z) carries the
discrete topology. Then the Pisot condition together with the Oseledets theorem (see e.g. [Arn98,
Theorem 3.4.1]) implies that there is a constant δ < 0 such that, for ν-almost all x ∈ ∆, there is
a hyperplane V of Rd with

lim
n→∞

1

n
log ‖A(n)(x)v‖ ≤ δ for all v ∈ V.

According to Lagarias [Lag93, Theorem 4.1] the Pisot condition is equivalent to a.e. exponential
convergence of (∆, T, A) under some natural conditions called (H1) – (H5) that are introduced in
[Lag93, Section 4]. These conditions are true in many cases; see e.g. [BST21]. In the present paper,
we will only rely on the Pisot condition; the relation between the Pisot condition and exponential
convergence will not be used. Thus we do not go into details.

2.2. Substitutive and S-adic dynamical systems, shifts of directive sequences. Substitu-
tions will be very important objects in our constructions. Let A = {1, 2, . . . , d} be a finite ordered
alphabet and let σ : A∗ → A∗ be an endomorphism of the free monoid A∗ of words over A, which
is equipped with the operation of concatenation. If σ is nonerasing, i.e., if σ does not map a
nonempty word to the empty word, then we call σ a substitution over the alphabet A. A word w
is a factor of a word v if there exist words p, s such that v = pws. Moreover, if p is the empty
word, then w is a prefix of v, which will often be denoted by w � v; we write w ≺ v when w � v
and w 6= v. On the space AN of one-sided infinite sequences over A (equipped with the product

1We indicate which norm we use only if the choice of the norm is relevant. Here, ‖ · ‖ can be any norm in Rd.
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topology of the discrete topology on A), the notions of factor and prefix are defined in a similar
way. With the substitution σ we associate the language

Lσ =
{
w ∈ A∗ : w is a factor of σn(i) for some i ∈ A, n ∈ N

}
,

i.e., Lσ is the set of words that occur as subwords in iterations of σ on a letter of A. Using the
language Lσ, the substitutive dynamical system (Xσ,Σ) is defined by

Xσ = {ω ∈ AN : each factor of ω is contained in Lσ},
with Σ being the shift map (ωn)n∈N 7→ (ωn+1)n∈N;2 Xσ is obviously Σ-invariant.

The abelianized counterpart of a substitution σ is its so-called incidence matrix

Mσ = (|σ(j)|i)1≤i,j≤d,

where |w|i denotes the number of occurrences of a letter i ∈ A in the word w ∈ A∗. The
abelianization of a word w ∈ A∗ is `(w) = t(|w|1, . . . , |w|d), so that `(σ(w)) = Mσ`(w).

Many properties of a substitution depend on its incidence matrix. Indeed, while Mσ “forgets”
the combinatorics of σ, it encodes letter frequencies and convergence properties of the sequences
of Xσ. So-called unimodular Pisot substitutions, which are characterized in terms of incidence
matrices, have received particular interest: A unimodular Pisot substitution is a substitution σ
whose incidence matrix Mσ has a characteristic polynomial which is the minimal polynomial of a
Pisot unit. Recall that a Pisot unit is an algebraic integer greater than 1 whose norm equals ±1 and
whose Galois conjugates are all contained in the open unit disk. For example, if σ is unimodular
Pisot, then we can infer that the elements of Xσ are balanced in the sense defined in Section 4.1;
see e.g. [Ada04b, Theorem 1]. Moreover, a unimodular Pisot substitution σ is primitive in the
sense that its incidence matrix admits a positive power. This implies that the associated symbolic
dynamical system (Xσ,Σ) is minimal (i.e., Xσ has no nontrivial closed shift-invariant subset); see
e.g. [Que10]. Throughout this paper we will assume that the incidence matrix of a substitution σ
is unimodular, i.e., we consider the set of substitutions

Sd = {σ : σ is a substitution over A = {1, . . . , d}, Mσ ∈Md}.
When we discuss sequences (σn)n∈N of unimodular substitutions later, considering the linear co-
cycle (σn)n∈N 7→ tMσ0

will enable us to study the convergence behavior of (σn)n∈N. Here the Pisot
condition (see Definition 2.1), which is also a condition on incidence matrices in this setting, will
be of particular importance for us.

Substitutive dynamical systems (and related tiling flows) have been studied extensively in the
literature with special emphasis on unimodular Pisot substitutions; see for instance [BG20, BS18,
Fog02, Que10]. The main conjecture in this context, the so-called Pisot substitution conjecture,
claims that, for each unimodular Pisot substitution σ, the substitutive dynamical system (Xσ,Σ)
is measurably conjugate to a minimal translation on the torus Td−1, and, hence, has purely
discrete spectrum. Although there are many partial results (see e.g. [ABB+15, Bar16, Bar18, HS03,
MA20]), this conjecture is still open. However, given a single unimodular Pisot substitution σ,
there are many algorithms that can be used to verify that (Xσ,Σ) has purely discrete spectrum;
see [AL11, BST10, MA20, SS02]. Thus, for each single unimodular Pisot substitution σ, this
property is easy to check, which is important for us.

To be more precise, in the present paper, unimodular Pisot substitutions are of importance
because of their relation to multidimensional continued fraction algorithms that satisfy the Pisot
condition. Indeed, we show that wide classes of symbolic dynamical systems of Pisot type are
measurably conjugate to minimal translations on the torus, provided that the same is true for a
particular Pisot unimodular substitutive element of the class; see Theorem 3.5.

The concept of S-adic dynamical system constitutes a generalization of substitutive dynamical
systems; see for instance [AMS14, ABM+21, BD14, BST19, Thu20], where S-adic dynamical
systems are studied in a similar context as in the present paper. An S-adic dynamical system is

2We denote the shift map on any space of sequences by Σ; this should not cause any confusion.
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defined in terms of a sequence σ = (σn)n∈N of substitutions over a given alphabet A in a way that
is analogous to the definition of a substitutive dynamical system. In particular, let

Lσ =
{
w ∈ A∗ : w is a factor of σ[0,n)(i) for some i ∈ A, n ∈ N

}
,

be the language associated with σ, with

σ[k,n) = σk ◦ σk+1 ◦ · · · ◦ σn−1 (0 ≤ k ≤ n).

Then the S-adic dynamical system (Xσ,Σ) is defined by setting

Xσ = {ω ∈ AN : each factor of ω is contained in Lσ}.
The sequence σ is called a directive sequence of (Xσ,Σ). Note that the S-adic dynamical system
of a periodic directive sequence (σ0, . . . , σn−1)∞ is equal to the substitutive dynamical system
(Xσ[0,n)

,Σ).

We say that a directive sequence σ has purely discrete spectrum if the system (Xσ,Σ) is
uniquely ergodic (i.e., it has a unique shift-invariant measure µ), minimal, and has purely dis-
crete measure-theoretic spectrum (i.e., the measurable eigenfunctions of the Koopman operator
UT : L2(Xσ,Σ, µ)→ L2(Xσ,Σ, µ), f 7→ f ◦ Σ, span L2(Xσ,Σ, µ)).

There is a tight link between S-adic dynamical systems and continued fraction algorithms. For
the classical continued fraction algorithm, this is worked out in detail in [AF01, AF05]; for mul-
tidimensional continued fractions algorithms, see for instance [BST19, Thu20]. Indeed, for each
given vector, a continued fraction algorithm creates a sequence of partial quotient matrices. If
these matrices are nonnegative and integral (i.e., if the algorithm is positive), they can be regarded
as incidence matrices of a directive sequence of substitutions of an S-adic dynamical system. In
fact, a continued fraction algorithm produces a whole shift of sequences of matrices, depending on
the vector that has to be approximated. The matrices are taken from a (finite or infinite) set M
depending on the algorithm. While for some algorithms, all sequences in MN occur as sequences
of partial quotient matrices (as is the case for instance for the Brun and Selmer algorithms),
other algorithms (like the Jacobi–Perron algorithm) impose some restrictions on these admissible
sequences, which are usually given by a finite type condition. As a further illustration, in the for-
malization of multidimensional continued fraction algorithms as Rauzy induction type algorithms
developed in [CN13, Fou20], inspired by interval exchanges, finite graphs allow to formalize ad-
missibility conditions. Here, we do not need to restrict ourselves to such finite type admissibility
conditions and we work with shift-invariant sets of directive sequences such as formalized below.
We will come back to the notion of admissibility in Section 2.5.

Assume throughout the paper that the space SNd of sequences over the substitutions Sd carries
the product topology of the discrete topology on S. Let D ⊂ SNd be a shift-invariant set of directive
sequences (which is not to be confused with the S-adic shift (Xσ,Σ) of a single directive sequence
σ ∈ D); note that we do not require D to be closed. We define the linear cocycle Z over (D,Σ) by

Z : D →Md, (σn)n∈N 7→ tMσ0
;

recall that Mσ is the incidence matrix of σ. Analogously to the linear cocycle A, we define

(2.2) Z(n)(σ) = Z(Σn−1σ) · · ·Z(Σσ)Z(σ),

so that Z(n)(σ) = tMσn−1
· · · tMσ1

tMσ0
= tMσ[0,n)

. As mentioned before, this cocycle will be

important in order to study convergence properties of the S-adic dynamical system (Xσ,Σ).
Indeed, we have under mild conditions (see Section 4.1) that

(2.3)
⋂
n∈N

Mσ0
Mσ1

· · ·Mσn−1
Rd+ = R+u

for some vector u ∈ Rd+, which is called a generalized right eigenvector of σ (or of (Mσn)n∈N)
and can be seen as the generalization of the Perron–Frobenius eigenvector of a primitive matrix.
Moreover, we wish to carry over the property of a substitution being Pisot in the substitutive case
to this more general setting. This will be done by imposing the Pisot condition in Definition 2.1 on
the Lyapunov exponents of the cocycle (D,Σ, Z, ν) for a convenient Σ-invariant Borel measure ν.
Thus we do not consider a single sequence σ but the behavior of ν-almost all sequences in D.



CONTINUED FRACTION ALGORITHMS AND TRANSLATIONS 9

Finally, recall that in general a shift (or equivalently, a symbolic dynamical system) is a closed
and shift-invariant set Y of sequences ω ∈ AN over some alphabet A. The language L of Y is the
set of all factors of the sequences in Y . The factor complexity of L (or of Y ) is given by

(2.4) pL : N→ N, n 7→ #{v ∈ L : v has length n}.
2.3. S-adic shifts given by continued fraction algorithms. Our goal is to set up symbolic
realizations of positive continued fraction algorithms, which in turn will provide symbolic models
of toral translations, in a way that is described in Section 2.4 below. To this end, for a given
multidimensional continued fraction algorithm (∆, T, A), we associate with each x ∈ ∆ a sequence
of substitutions σ = (σn)n∈N ∈ SNd with generalized right eigenvector x. In particular, given
x ∈ ∆, we regard the partial quotient matrices tA(Tnx) as incidence matrices of substitutions,
i.e., for each n ∈ N we choose σn with incidence matrix Mσn

= tA(Tnx). This obviously implies
that Mσ[0,n)

= tA(n)(x).

Definition 2.2 (S-adic realization). We call a map ϕ : ∆→ Sd a substitution selection for a positive
(d−1)-dimensional continued fraction algorithm (∆, T, A) if the incidence matrix of ϕ(x) is equal
to tA(x) for all x ∈ ∆. The corresponding substitutive realization of (∆, T, A) is the map

ϕ : ∆→ SNd , x 7→ (ϕ(Tnx))n∈N,

together with the shift (ϕ(∆),Σ). For any x ∈ ∆, the sequence ϕ(x) is called an S-adic expansion
of x, and (Xϕ(x),Σ) is called the S-adic dynamical system of x w.r.t. (∆, T, A, ϕ).

If ϕ(x) = ϕ(y) for all x,y ∈ ∆ with A(x) = A(y), then ϕ is called a faithful substitution
selection and ϕ is a faithful substitutive realization.

Note that the diagram

(2.5)

∆ ∆

ϕ(∆) ϕ(∆)

T

ϕ ϕ

Σ

commutes. If T converges weakly at x for ν-almost all x ∈ ∆ (w.r.t. a measure ν having the
properties determined in Section 2.1), then the dynamical system (∆, T, ν) is measure-theoretically
isomorphic to its substitutive realization, which we write as

(2.6) (∆, T, ν)
ϕ∼= (ϕ(∆),Σ, ν ◦ϕ−1).

The following definition will play a crucial role in the sequel. A Pisot matrix is an integer
matrix with characteristic polynomial equal to the minimal polynomial of a Pisot number, and a
Pisot substitution is a substitution whose incidence matrix is a Pisot matrix.3

Definition 2.3 (Pisot sequence and point). A sequence (Mn) ∈MN
d [(σn) ∈ SNd ] is called a periodic

Pisot sequence if there is an k ≥ 1 such that the sequence has period k and M0M1 · · ·Mk−1 is a
Pisot matrix [σ0 ◦ σ1 ◦ · · · ◦ σk−1 is a Pisot substitution].

For a multidimensional continued fraction algorithm (∆, T, A, ν), we say that x0 ∈ ∆ is a
periodic Pisot point if there is an k ≥ 1 such that T k(x0) = x0 and A(k)(x0) is a Pisot matrix.

We also need to recall the notion of properness. A substitution σ over A is left [right] proper
if there exists j ∈ A such that σ(i) starts [ends] with j for all i ∈ A. A sequence of substitutions
σ = (σn) is left [right] proper if for each k ∈ N there exists n > k such that σ[k,n) is left [right]

proper. It is proper if it is both left and right proper.4 Properness is a natural assumption
introduced in [DHS99] in order to relate Bratteli–Vershik systems associated with stationary,

3We stress the fact that in this paper we mainly work with unimodular Pisot substitutions and matrices.
4We mention that, in previous papers, a sequence of substitutions (σn) is called proper if each substitution σn

is proper, see for instance [Dur03, BCBD+21]. For our purposes, the weaker definition stated before is sufficient,

i.e., for each k ∈ N there exists n > k such that σ[k,n) is proper. Via telescoping, the definition used in the present

paper amounts to the definition which requires each substitution σn to be proper.
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properly ordered Bratteli diagrams with substitutive dynamical systems. In the present paper,
we will use [BCBD+21, Corollary 5.5] which states that if a primitive unimodular proper S-adic
shift (Xσ,Σ) is balanced for letters, then it is also balanced for words (see Sections 4.1 and 4.4
for definitions). Telescoping a directive sequence (σn) means the following (this is also called
blocking): we consider a directive sequence of the form (σ[kn,kn+1)) for some strictly increasing

sequence (kn). Directive sequences are not assumed to take finitely many values in [BCBD+21]
hence, up to telescoping, we can use [BCBD+21, Corollary 5.5] with the present definition of
properness.

2.4. Natural codings, bounded remainder sets, and Rauzy fractals. In this section, we
introduce some terminology related to symbolic codings of toral translations with respect to finite
partitions; see [Che09] for more details and also [And21a, Section III]. For t ∈ Rd, we consider the
translation

Rt : Td → Td, x 7→ x + t (mod Zd)
on Td = Rd/Zd. We assume that t = (t1, . . . , td) is totally irrational in the sense that 1, t1, . . . , td
are rationally independent. This implies that Rt is minimal and uniquely ergodic.

We want to provide symbolic codings of Rt with respect to a given finite partition. There
are many possible codings, and the simplest partitions, using polytopes for example, do not give
the best results in terms of multiscale bounded remainder sets. We rather consider partitions
of a fundamental domain of Td which are chosen in a way that on each atom the map Rt is a
translation by a vector. This induces an exchange of domains on this fundamental domain and
leads to the notion of natural partition and natural coding, which we describe now.

Definition 2.4 (Natural partition). A measurable fundamental domain of Td is a set F ⊂ Rd with
Lebesgue measure 1 that satisfies F + Zd = Rd. A collection {F1, . . . ,Fh} is said to be a natural
partition5 of F with respect to Rt if

• ⋃hi=1 Fi = F ;
• the (Lebesgue) measure of Fi ∩ Fj is zero for all i 6= j, 1 ≤ i, j ≤ h;
• each set Fi, 1 ≤ i ≤ h, is the closure of its interior and has boundary of measure zero;
• there exist vectors t1, . . . , th in Rd such that ti+Fi ⊂ F with ti ≡ t (mod Zd), 1 ≤ i ≤ h.

A natural partition is called bounded if the set F is bounded.

A natural partition {F1, . . . ,Fh} of a measurable fundamental domain F of Td allows to define

a.e. on F a map R̃t : F → F as an exchange of domains (which depends on the partition) by

R̃t(x) = x + ti whenever x ∈ F̊i. The map R̃t is defined on F \ ⋃hi=1 ∂Fi, hence, it is defined

almost everywhere. The dynamical system (F , R̃t, λ|F ), where λ denotes the Lebesgue measure,
is measurably isomorphic to (Td, Rt) (endowed with the Haar measure). One has for a.e. x ∈ F ,

R̃t(x) ≡ Rt(x) (mod Zd). The collection {F1 + t1, . . . ,Fh + th} also forms a measurable natural
partition of F , hence the terminology exchange of domains; see Figure 3 below for an illustration.
The language associated with the partition {F1, . . . ,Fh} is the set of words i0 · · · in ∈ {1, . . . , h}∗
such that

⋂n
k=0 R̃

−k
t F̊ik 6= ∅.

Definition 2.5 (Natural coding). A shift (X,Σ) is a natural coding of (Td, Rt) if its language is

the language of a natural partition {F1, . . . ,Fh} and
⋂
n∈N

⋂n
k=0 R̃

−k
t F̊ik is reduced to one point

for any (in)n∈N ∈ X, where R̃t stands for the associated exchange of domains.6

A sequence (in)n∈N ∈ {1, . . . , h}N is said to be a natural coding of (Td, Rt) w.r.t. the natural
partition {F1, . . . ,Fh} if there exists x ∈ F such that (in)n∈N codes the orbit of x under the action

of R̃t, i.e., R̃nt (x) = x +
∑n−1
k=0 tik ∈ Fin for all n ∈ N; note that Rnt (x) ≡ R̃nt (x) (mod Zd).

If (X,Σ) is a natural coding of (Td, Rt) w.r.t. a natural partition {F1, . . . ,Fh}, whose elements
F1, . . . ,Fh are bounded, we call (X,Σ) a bounded natural coding. The shift (X,Σ) is minimal,
uniquely ergodic, and has purely discrete spectrum according to Lemma 5.12.

5This is a partition up to zero measure sets.
6This intersection on F is meaningful because {F1, . . . ,Fh} is a natural partition of F ; see the fourth bullet

point of Definition 2.4.
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We give an example for the concepts defined above. Consider the translation Rα on T1 with
α ∈ R \ Q. The partition {F1,F2} of F = [0, 1) given by F1 = [0, 1−α) and F2 = [1−α, 1) is a
bounded natural partition (which corresponds to a Sturmian dynamical system [MH40]) because
Rα(x) = x+α for x ∈ F1 and Rα(x) = x+α−1 for x ∈ F2. The bounded natural coding of a point
x ∈ T1 is the (Sturmian) sequence (in)n∈N given by Rnα(x) ∈ Fin , n ∈ N. On the contrary, the
partition of [0, 1) by the intervals [0, 1

2 ) and [ 1
2 , 1) is not a natural partition for Rα. Indeed, since we

have no integers k1, k2 such that both [α+k1, α+k1+ 1
2 ) ⊂ [0, 1) and [α+k2+ 1

2 , α+k2+1) ⊂ [0, 1),
the fourth bullet point in Definition 2.4 is not fulfilled.

Definition 2.6 (Bounded remainder set). A bounded remainder set of a dynamical system (X,T, µ)
with invariant probability measure µ is a measurable set Y ⊆ X such that there exists C > 0 with
the property∣∣#{0 ≤ n < N : Tn(x) ∈ Y } −Nµ(Y )

∣∣ ≤ C for all N ∈ N and a.e. x ∈ X.
Bounded natural codings and bounded remainder sets are closely related; see for instance

[Rau84, Fer92] and Theorem 3.8 below. We will define bounded natural partitions using Rauzy
fractals. To define Rauzy fractals, we denote by

(2.7) πu : Rd → 1⊥ the projection along u on 1⊥,

where 1⊥ is the hyperplane orthogonal to 1 = (1, 1, . . . , 1).

Figure 2. Illustration of the definition of the Rauzy fractal Rσ corresponding
to the periodic directive sequence σ = (γ1, γ2)∞, where γ1, γ2 are the Cassaigne–
Selmer substitutions defined in (6.1). The abelianizations `(p) of the prefixes of
(γ1 ◦ γ2)n(1) define a broken line and are projected along u to 1⊥ in order to
define the Rauzy fractal Rσ, where u is a generalized right eigenvector of σ. The
subtiles Rσ(1), Rσ(2), and Rσ(3) are indicated by different shades of grey.

Definition 2.7 (Rauzy fractal and subtile). Let (Xσ,Σ) be an S-adic dynamical system with
σ ∈ SNd having the generalized right eigenvector u. The Rauzy fractal associated with σ = (σn)n∈N
is defined as

Rσ = {πu `(p) : p � σ[0,n)(j) for infinitely many n ∈ N, j ∈ A},
and, for each word w ∈ A∗, a subtile of Rσ is defined by

(2.8) Rσ(w) = {πu `(p) : pw � σ[0,n)(j) for infinitely many n ∈ N, j ∈ A}.
We clearly have

Rσ =
⋃

w∈An

Rσ(w) (n ∈ N),

and in particular Rσ =
⋃
i∈ARσ(i). In Figure 2, we illustrate the definition of the Rauzy

fractal for the periodic directive sequence σ = (γ1, γ2)∞, with γ1, γ2 being the Cassaigne–Selmer
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substitutions defined in (6.1) below. Rauzy fractals associated with periodic sequences σ (and
therefore related to substitutive dynamical systems) go back to [Rau82] and have been studied
extensively; see for instance [AI01, BS05, BST10, CS01, Fog02, IR06, ST09, Thu20]. Our definition
of Rσ is equivalent to the one in [BST19, Section 2.9], which uses limit sequences of σ, i.e., infinite
sequences that are images of σ[0,n) for all n ∈ N.

F1

F2

F3

t

Rt

R̃t(F1)

R̃t(F2)

R̃t(F3)

Figure 3. Let Rσ =
⋃
i∈ARσ(i) be the Rauzy fractal associated with the direc-

tive sequence σ = (γ1, γ2)∞; see (6.1) for the definition of the Cassaigne–Selmer
substitutions γ1 and γ2. The negative projection −R′σ of this Rauzy fractal is a
measurable fundamental domain of T2 (i.e., its translates by vectors in Z2 tile R2)
admitting the natural partition {F1,F2,F3} = {−R′σ(1),−R′σ(2),−R′σ(3)}
w.r.t. Rt, where t = (1/β3, 1/β4) with β3 = β + 1. The exchange of domains R̃t

is defined by R̃t(x) = x + ti on Fi with t1 = t− (1, 0), t2 = t− (0, 1), t3 = t.

For convenience, we define a further “projection” that will provide translations on Td−1 in the
main results given in Section 3. We set

(2.9) π′ : Rd → Rd−1, (x1, . . . , xd) 7→ (x1, . . . , xd−1),

i.e., we omit the last coordinate of a vector. (In doing so, we make an arbitrary choice; it would
also be possible to omit any other coordinate.) Sometimes, we will just write x′ instead of π′(x).
Similarly, for the subtiles embedded in Rd−1 via π′, we will write

(2.10) R′σ(w) = π′(Rσ(w)) (w ∈ A∗).
Figure 3 illustrates how subtiles of the projection of a Rauzy fractal Rσ give rise to a natural
partition and visualizes the domain exchange R̃t. In this figure, we use again the Rauzy fractal
for the periodic directive sequence σ = (γ1, γ2)∞, with γ1, γ2 as in (6.1) below.

2.5. Cylinders and positive range. To state our theorems, we need a few more definitions on
partitions associated with continued fraction algorithms.

Definition 2.8 (Cylinder and follower set, positive range). Let (D,Σ, ν) be a dynamical system
with D ⊂ SNd and a shift invariant Borel measure ν. The cylinder set of (ω0, . . . , ωn−1) ∈ Snd is
defined as

[ω0, . . . , ωn−1] =
{

(υk)k∈N ∈ D : (υ0, . . . , υn−1) = (ω0, . . . , ωn−1)
}
,

and Σn[ω0, . . . , ωn−1] is the follower set of (ω0, . . . , ωn−1). Moreover, we say that (ωn)n∈N has
positive range in (D,Σ, ν) if

inf
n∈N

ν(Σn[ω0, . . . , ωn−1]) > 0.
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Similarly, the cylinder sets of a multidimensional continued fraction algorithm (∆, T, A, ν) are
given by

(2.11) ∆(n)(x) = {y ∈ ∆ : A(y) = A(x), A(Ty) = A(Tx), . . . , A(Tn−1y) = A(Tn−1x)},
with ∆(0)(x) = ∆; for convenience, we set ∆(x) = ∆(1)(x). In this context, the follower sets are
the sets of the form Tn∆(n)(x). Then x ∈ ∆ is said to have positive range in (∆, T, A, ν) if

inf
n∈N

ν(Tn∆(n)(x)) > 0.

Cylinder sets of (D,Σ, ν) are measurable because all cylinders are open sets in the subspace
topology on D. This is the reason why we assumed ν to be a Borel measure. We also recall that D
is not necessarily closed. Note that measurability of the cylinder sets of (∆, T, A, ν) holds because
A is measurable by assumption.

In all the classical algorithms we are aware of, almost every x ∈ ∆ has positive range, and we
even have the (global) finite range property (cf. [IY87]) stating that the set of follower sets

D = {Tn∆(n)(x) : x ∈ ∆, n ∈ N}
is finite, where sets differing only on a set of ν-measure zero are identified. For instance, although
the Jacobi–Perron algorithm is multiplicative, D consists of only two elements; see also Section 6.4.
By the T -invariance of ν, the finite range property obviously implies positive range for a.e. x ∈ ∆
if we suppose that all cylinders satisfy ν(∆(n)(x)) > 0; this will be the case for the algorithms
considered in Section 6.

If (∆, T, A, ν) has the finite range property and
⋂
n∈N ∆(n)(x) = {x} for almost all x ∈ ∆, i.e.,

the set of cylinders {∆(x) : x ∈ ∆} is a generating partition, then {U∩∆(x) : U ∈ D, x ∈ ∆} forms
a (measurable countable) generating Markov partition of (∆, T ); see e.g. [Yur95, Theorem 10.1].
Most of the classical continued fraction algorithms (like Brun, Selmer, and Jacobi–Perron) are
designed in a way that this Markov partition property holds.

We need that any set B ⊂ ∆ with ν(B) > 0 included in the follower set Tn∆(n)(x) leads to an
intersection T−nB ∩∆(n)(x) with positive measure. To this end, we always assume the stronger
property that

(2.12) ν(E) = 0 =⇒ ν ◦ T (E) = 0 for all measurable sets E.

Although ν ◦T is usually not additive and therefore not a measure, we use the notation ν ◦T � ν
because (2.12) is reminiscent of absolute continuity.

The notation ν ◦ Σ� ν has the analogous meaning in the context of a shift (D,Σ, ν).

3. Main results

We present two types of results: the first type is stated in the framework of multidimensional
continued fraction algorithms in Section 3.1, the second one is stated in terms of S-adic dynamical
systems and directive sequences in Section 3.2. For both frameworks, two theorems are given.
The first one requires the existence of a single substitutive dynamical system with purely discrete
spectrum which corresponds to a periodic sequence in the set of S-adic sequences under consid-
eration. The existence of this single system already implies purely discrete spectrum for a whole
shift of S-adic dynamical systems. It is stated in Theorem 3.1 for multidimensional continued
fraction algorithms and in Theorem 3.5 for shifts of directive sequences. The second one yields
unconditional purely discrete spectrum results for accelerations and is contained in Theorem 3.3
for multidimensional continued fraction algorithms and in Theorem 3.6 for shifts of directive se-
quences. All these results are then made more explicit in terms of bounded remainder sets with
Theorem 3.8.

3.1. Main results on multidimensional continued fraction algorithms. In this section, we
provide our main results for multidimensional continued fraction algorithms. We recall that we
use the abbreviation x′ = π′(x) for the map π′ defined in (2.9). In particular, following (2.10), we
wite R′σ(i) = π′(Rσ(i)). The notation � is defined at the end of Section 2.5.
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Theorem 3.1. Let (∆, T, A, ν) be a positive (d−1)-dimensional continued fraction algorithm sat-
isfying the Pisot condition and ν◦T � ν. Let ϕ be a faithful substitutive realization of (∆, T, A, ν).
Assume that there is a periodic Pisot point x0 ∈ ∆ with positive range in (∆, T, A, ν) such that
ϕ(x0) has purely discrete spectrum. Then, for ν-almost all x ∈ ∆, the S-adic dynamical system
(Xϕ(x),Σ) is a bounded natural coding of the minimal translation by π′(x) on Td−1 w.r.t. the
partition {−R′ϕ(x)(i) : i ∈ A}; in particular, its measure-theoretic spectrum is purely discrete.

It will follow from Theorem 3.8 that the sets −R′ϕ(x)(i), i ∈ A, are bounded remainder sets. If

the directive sequence ϕ(x) is assumed to be (left) proper (as defined in Section 2.3), Theorem 3.8
shows that we can even refine these bounded remainder sets from letters to words. In particular,
in this case the Rauzy fractals −R′ϕ(x)(w), w ∈ An, associated with words of length n are bounded

remainder sets for each n ∈ N.

Remark 3.2.

(i) We note that (Xϕ(x0),Σ) is a substitutive dynamical system since ϕ(x0) is a periodic
sequence of substitutions. For such systems, some combinatorial coincidence conditions
(as for instance the ones used in [ABB+15, BK06, BST10, IR06]) can be used to estab-
lish purely discrete measure-theoretic spectrum; see Section 4.2 for precise statements.
We could therefore replace the purely discrete spectrum condition in Theorem 3.1 by
“ϕ(x0) ◦ ϕ(Tx0) ◦ · · · ◦ ϕ(Tn−1x0) satisfies the super coincidence condition from [IR06,
Definition 4.2]”. However, since coincidence conditions require quite some notation, we
decided to formulate them later in this paper in order to make our main results easier to
read. The Pisot substitution conjecture implies that all Pisot substitutions satisfy the su-
per coincidence condition. To get an impression of the techniques used in the substitutive
case for proving purely discrete spectrum, see also Section 6, where we use the balanced
pair algorithm to prove purely discrete spectrum of a substitutive dynamical system.

(ii) In Theorem 3.1, we can omit the requirement that ϕ is faithful if we replace A by ϕ in
the definition of the cylinder sets ∆(n)(x) in (2.11), if we assume that ϕ is measurable,
and if we assume positive range with respect to this new definition of cylinder.

Since the Pisot substitution conjecture is not proved, we cannot omit the requirement of a
periodic Pisot point with purely discrete spectrum in Theorem 3.1, and we do not even know
whether there always exists a substitutive realization ϕ that admits such a point. However, we are
able to establish the following unconditional theorem that guarantees the existence of accelerations
(∆, T k) for which there exists a faithful substitutive realization ϕ with a periodic Pisot point x0

such that ϕ(x0) has purely discrete spectrum.

Theorem 3.3. Let (∆, T, A, ν) be a positive (d−1)-dimensional continued fraction algorithm sat-
isfying the Pisot condition and ν ◦ T � ν, and assume that there exists a periodic Pisot point
with positive range. Then there exist a positive integer k and a (faithful) substitutive realiza-
tion ϕ of (∆, T k, A, ν) such that for ν-almost all x ∈ ∆ the S-adic dynamical system (Xϕ(x),Σ)

is a bounded natural coding of the minimal translation by π′(x) on Td−1 w.r.t. the partition
{−R′ϕ(x)(i) : i ∈ A}; in particular, its measure-theoretic spectrum is purely discrete. Moreover,

we have (∆, T k, ν)
ϕ∼= (ϕ(∆),Σ, ν ◦ϕ−1).

Remark 3.4. The set of translations in Theorems 3.1 and 3.3 does not cover Td−1 since the
translations are of the form Rt with t ∈ [0, 1]d−1 and ‖t‖1 ≤ 1. However, Rt is conjugate to all
translations Rs with s ∈ GL(d−1,Z) t, and {t ∈ [0, 1]d−1 : ‖t‖1 ≤ 1} is mapped by

(t1, . . . , td−1) 7→ (t1, t1 + t2, . . . , t1 + t2 + · · ·+ td−1)

to {t ∈ [0, 1]d−1 : 0 ≤ t1 ≤ t2 ≤ · · · ≤ td−1 ≤ 1}. Then, taking permutations of the coordinates of
the latter set gives the whole torus Td−1.

Verifying purely discrete spectrum for some concrete substitutive dynamical systems will allow
us to use Theorem 3.1 in Section 6 in order to prove a.e. purely discrete spectrum for many
continued fraction algorithms like for instance the Jacobi–Perron, Brun, Cassaigne–Selmer and
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Arnoux–Rauzy–Poincaré algorithms. Indeed, it is well known that these algorithms have the
finite range property, and the Pisot condition holds for all these algorithms when d = 3. In the
case of Brun, the Pisot condition also holds for d = 4. Applying Theorem 3.1 to these algorithms,
according to Remark 3.4 we are able to realize almost all translations in T2 and T3 via systems
of the form (Xϕ(x),Σ), x ∈ ∆. Since the Cassaigne–Selmer algorithm (for d = 3) gives rise
to languages Lϕ(x) of factor complexity 2n + 1, we also show that there exist natural codings

for almost all translations of T2 with factor complexity 2n + 1, see Corollary 6.3. Looking at
[BCBD+21, BST19], we also see other consequences for these algorithms and their associated shifts
of directive sequences like bounded remainder sets for letters and words, tiling properties of Rauzy
fractals, and a description of their dimension group. We will come back to these consequences in
Theorem 3.8, in Section 4.2, and in Section 6.

3.2. Main results on shifts of directive sequences. We now give variants of the results of
the previous section in terms of directive sequences.

Theorem 3.5. Let D ⊂ SNd be a shift-invariant set of directive sequences equipped with an ergodic
Σ-invariant Borel probability measure ν satisfying ν ◦ Σ � ν. Assume that the linear cocycle
(D,Σ, Z, ν) defined by Z((σn)n∈N) = tMσ0

satisfies the Pisot condition, and that there is a periodic
Pisot sequence in D having positive range in (D,Σ, ν) and purely discrete spectrum. Then for ν-
almost all σ ∈ D the S-adic dynamical system (Xσ,Σ) is a bounded natural coding of the minimal
translation by π′(u) on Td−1 w.r.t. the partition {−R′σ(i) : i ∈ A}. Here, u is the generalized
right eigenvector of σ normalized by ‖u‖1 = 1. In particular, the measure-theoretic spectrum of
(Xσ,Σ) is purely discrete.

To get an analogue of Theorem 3.3 for directive sequences, we do not start with a shift of
directive sequences but rather with its abelianization, i.e., a shift of sequences of matrices (D,Σ),
for which we would like to find a map s : Md → Sd such that almost all σ ∈ s(D) have purely
discrete spectrum, where s((Mn)n∈N) = (s(Mn))n∈N. Again, we have to consider the accelerated
shift (D,Σk) for a suitable power Σk to gain such a result. The main issue is the construction
of a substitution with purely discrete spectrum associated with a given unimodular Pisot matrix,
which is done in Proposition 5.9.

Theorem 3.6. Let D ⊂MN
d be a shift-invariant set of sequences of unimodular matrices equipped

with an ergodic Σ-invariant Borel probability measure ν satisfying ν ◦ Σ � ν. Assume that the
linear cocycle (D,Σ, Z, ν) defined by Z((Mn)n∈N) = tM0 satisfies the Pisot condition, and that
there is a periodic Pisot sequence in D having positive range in (D,Σ, ν). Then there exists a
positive integer k and a map ψ : D → SNd satisfying ψ ◦ Σk = Σ ◦ ψ such that for ν-almost
all M ∈ D the S-adic dynamical system (Xψ(M),Σ) is a bounded natural coding of the minimal

translation by π′(u) on Td−1 w.r.t. the partition {−R′ψ(M)(i) : i ∈ A}. Here, u is the generalized

right eigenvector of M normalized by ‖u‖1 = 1. In particular, the measure-theoretic spectrum of
(Xψ(M),Σ) is purely discrete.

Remark 3.7. Let M = (Mn) and ψ(M) = (σn). According to (5.8), the map ψ in Theorem 3.6
can be chosen in a way that Mnk · · ·M(n+1)k−1 is the incidence matrix of σn. This choice is needed
to derive Theorem 3.3 from Theorem 3.6.

The main difference between the results in Section 3.1 and the ones in Section 3.2 is that in the
latter case there can be several directive sequences in D with the same generalized right eigenvector
(normalized w.r.t. ‖ · ‖1).

3.3. Main results on natural codings and bounded remainder sets. We now prove that
natural codings with respect to bounded fundamental domains (see Definition 2.5) provide bounded
remainder sets and that, moreover, Rauzy fractals can be considered as canonical bounded remain-
der sets, up to some affine map. In the following theorem, we need the fundamental domain F to
be bounded and the partition of F to have d atoms for a translation on Td−1. Recall that we set
x′ = π′(x) for the projection π′ defined in (2.9) and that λ denotes the Lebesgue measure.
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Theorem 3.8. Assume that (X,Σ) is the natural coding of a minimal translation Rt on Td−1

w.r.t. a natural partition {F1, . . . ,Fd} of a bounded fundamental domain F . Then the atoms
F1, . . . ,Fd are bounded remainder sets of Rt. Their Lebesgue measures are rationally independent.

If, moreover, (X,Σ) is an S-adic dynamical system with X = Xσ for some σ ∈ SNd , then

• u = (λ(F1), . . . , λ(Fd)) is a generalized right eigenvector of σ,
• there is an affine map H : Rd → Rd−1 such that Fi = H(Rσ(i)) for 1 ≤ i ≤ d,
• (Xσ,Σ) is a natural coding of Ru′ w.r.t. the natural partition {−R′σ(i) : 1 ≤ i ≤ d}.

Furthermore, if the directive sequence σ is left proper, then for each word i0i1 · · · in ∈ Lσ, the
“cylinder set” Fi0 ∩R−1

t Fi1 ∩ · · · ∩R−nt Fin is also a bounded remainder set of Rt; in particular,
−R′σ(i0i1 · · · in) is a bounded remainder set of Ru′ .

The result also holds if one replaces left properness by right properness.
As mentioned in the introduction, the study of bounded remainder sets started with the work

of W. M. Schmidt [Sch74]. A vast literature is devoted to the subject, see e.g. [Fer92, GL15,
Lia87, Rau84]. In the case of S-adic dynamical systems that are natural codings of a minimal
translation on a torus, Theorem 3.8 characterizes the bounded remainder sets for letters as affine
images of S-adic Rauzy fractals and can be considered as a partial converse to Theorems 3.1, 3.3,
3.5 and 3.6. It shows that these bounded remainder sets “extend to words” in the sense that they
can be subdivided in a natural way to provide bounded remainder sets for words as well. This
yields a great variety of sets of bounded local discrepancy for Kronecker rotations on the torus.
In [Lia87], it is shown that only “trivial” axis-parallel boxes can be bounded remainder sets for
Kronecker sequences and toral translations. The bounded remainder sets constructed in [GL15]
are based on polytopes. In all these cases, the bounded remainder sets do not “extend to words”
like ours.

We also note that such natural codings by S-adic dynamical systems provide (nonstationary)
Markov partitions in the sense of [AF05] for automorphisms of the torus. We will pursue this in
the forthcoming paper [ABM+21].

Theorem 3.8 leads us to state the following conjecture stating, roughly speaking, that a bounded
remainder set that “extends to words” must have fractal boundary.

Conjecture 3.9. Let {F1, . . . ,Fh} be a natural partition of a minimal translation Rt on Td−1,
d ≥ 3, such that all sets Fi0 ∩ R−1

t Fi1 ∩ · · · ∩ R−nt Fin , i0i1 · · · in ∈ {1, . . . , h}∗, are bounded
remainder sets for Rt. Then Fi cannot have piecewise smooth boundaries (1 ≤ i ≤ h).

One argument supporting this conjecture is the above-mentioned relation between natural cod-
ings and Markov partitions for automorphisms of the torus, and the fact that Markov partitions
cannot have smooth boundaries for hyperbolic automorphisms of the torus in dimension d ≥ 3,
see [Bow78].

After some preparations in Section 4, the proofs of all main results will be contained in Sec-
tion 5. The proof of the S-adic results in Theorem 3.5 and Theorem 3.6 will be given in Section 5.1
and Section 5.2, respectively. The results on multidimensional continued fractions, namely The-
orems 3.1 and 3.3, will then be deduced from the corresponding S-adic results in Section 5.3.
Finally, Theorem 3.8 is proved in Section 5.4.

4. Preparations for the proofs of the main theorems

Throughout the proofs of our main results, we will need notation, definitions, and results that
are recalled in this section.

4.1. Properties of sequences of substitutions. In our main theorems, we put certain assump-
tions, most notably, the Pisot condition from Definition 2.1. We will now discuss combinatorial
properties that will be satisfied by almost all directive sequences σ under these assumptions. We
need these combinatorial properties because they occur in some results from [BST19] that will be
important for us. Accordingly, most of the definitions stated in the present subsection are taken
from [BST19, Section 2].
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Let σ = (σn) ∈ SNd be a sequence of substitutions over a given alphabet A = {1, . . . , d}. We
say that σ is primitive, if for each k ∈ N there exists n > k such that Mσ[k,n)

is a positive matrix.

If each factor (σ0, . . . , σm), m ∈ N, occurs infinitely often in σ, then σ is recurrent. As observed
in [Fur60, p. 91–95], primitivity and recurrence of σ allow for an analog of the Perron–Frobenius
theorem for the associated sequence (Mσn) of incidence matrices. In particular, if σ is primitive
and recurrent, then the generalized right eigenvector u defined in (2.3) exists.

A sequence of substitutions σ is said to be unimodular if the incidence matrices of the substi-
tutions are unimodular.

Another important property is algebraic irreducibility. A sequence of substitutions σ = (σn)
over the alphabet A is called algebraically irreducible if for each k ∈ N the matrix Mσ[k,n)

has
irreducible characteristic polynomial provided that n ∈ N is large enough. For S-adic dynamical
systems that arise from multidimensional continued fraction algorithms which satisfy primitivity
and the Pisot condition, we can (almost everywhere) prove a result that is even stronger than
algebraic irreducibility; see Lemma 5.1.

Finally, we require the language given by a sequence of substitutions to be balanced. More
precisely, a language L over a finite alphabet A = {1, . . . , d} is said to be C-balanced if for each
two words w,w′ ∈ L with |w| = |w′| we have

∣∣|w|i−|w′|i∣∣ ≤ C for each i ∈ A. It is called balanced
if it is C-balanced for some C. We define

(4.1) BC = {σ ∈ SNd : Lσ is C-balanced}.
The following lemma relates balancedness to boundedness of Rauzy fractals.

Lemma 4.1 (cf. [BST19, Lemma 4.1]). Let σ be a primitive sequence of substitutions with a
generalized right eigenvector and C ∈ N. Then σ ∈ BC implies that Rσ ⊂ [−C,C]d ∩ 1⊥.

We mention that unbounded Rauzy fractals were recently studied in [And21b] for the case of
the Arnoux-Rauzy S-adic dynamical systems discussed in Section 6.3.

We will need results from [BST19] which require a set of technical conditions that goes un-
der the name Property PRICE, which is an abbreviation for Primitivity, Recurrence, algebraic
Irreducibility, C-balancedness, and recurrent left Eigenvector.

Definition 4.2 (Property PRICE). A directive sequence σ = (σn) ∈ SNd has Property PRICE if
the following conditions hold for some strictly increasing sequences (nk)k∈N and (`k)k∈N and a
vector v ∈ Rd≥0 \ {0}.

(P) There exists h ∈ N and a positive matrix M ′ such that Mσ[`k−h,`k)
= M ′ for all k ∈ N.

(R) We have (σnk
, . . . , σnk+`k−1) = (σ0, . . . , σ`k−1), i.e., Σnkσ ∈ [σ0, σ1, . . . , σ`k−1] for all

k ∈ N.
(I) The directive sequence σ is algebraically irreducible.

(C) There exists C > 0 such that the language of Σnk+`kσ is C-balanced, i.e., Σnk+`kσ ∈ BC
for all k ∈ N.

(E) We have limk→∞
tMσ[0,nk)

v/‖tMσ[0,nk)
v‖1 = v.

We note that if σ satisfies Property PRICE, then Σσ also satisfies Property PRICE by [BST19,
Lemma 5.10].

Remark 4.3. Since a unimodular Pisot substitution σ is primitive by [CS01, Proposition 1.3] and
balanced by [Ada03, Theorem 13 (1)], the constant sequence (σ) satisfies Property PRICE with
v being the dominant left eigenvector of Mσ.

4.2. Tilings by Rauzy fractals and coincidence conditions. As mentioned before, the Rauzy
fractals defined in Section 2.4 play a crucial role in proving that the S-adic dynamical system
(Xσ,Σ) has purely discrete spectrum. The importance of Rauzy fractals is due to the fact that
one can “see” on them the toral translation to which we want to conjugate (in the measure-
theoretic sense) an S-adic dynamical system (Xσ,Σ); this is worked out in [BST19, Section 8]. In
the substitutive case, the proof of this conjugacy strongly relies on a certain self-affinity property
of the subtiles Rσ(i), i ∈ A; see e.g. [SW02]. In the S-adic case, these subtiles are no longer
self-affine. However, they still satisfy a certain set equation that allows to express them as unions
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of shrunk copies of subtiles RΣnσ(i) corresponding to a shift of the original directive sequence σ.
More precisely, we have the following slight variant of [BST19, Proposition 5.6].

Lemma 4.4. If σ admits a generalized right eigenvector u then

(4.2) Rσ(i) =
⋃

p∈A∗, j∈A : p i�σ[0,n)(j)

πu
(
`(p) +Mσ[0,n)

RΣnσ(j)
)

(i ∈ A, n ∈ N).

Because the notation (and also the statement) of this lemma differs from [BST19, Proposi-
tion 5.6], we provide a full proof for the convenience of the reader. Figures 1 and 4 illustrate
Rauzy fractals that are subdivided into subtiles according to Lemma 4.4.

Proof. Let i ∈ A, n ∈ N. According to (2.8), Rσ(i) is the closure of the set of points of the form
πu `(p

′), where p′i is a prefix of σ[0,k)(j
′) for infinitely many k > n, j′ ∈ A. Since σ[0,k)(j

′) =
σ[0,n) ◦σ[n,k)(j

′), we conclude that p′i � σ[0,k)(j
′) if and only if p′ can be written as p′ = σ[0,n)(p̃) p

with p̃ j � σ[n,k)(j
′), p i � σ[0,n)(j) for some p̃, p ∈ A∗, j ∈ A. Thus `(p′) = `(p) + `(σ[0,n)(p̃)) =

`(p) +Mσ[0,n)
`(p̃) and, hence,

Rσ(i) =
⋃

p∈A∗, j∈A : p i�σ[0,n)(j)

(
πu `(p) + {πuMσ[0,n)

`(p̃) : p̃ j � σ[n,k)(j
′) for infinitely many k > n, j′ ∈ A}

)
.

It remains to show that the latter set is equal to πuMσ[0,n)
RΣnσ(j). It follows from (2.3) that

u(n) = M−1
σ[0,n)

u is a generalized right eigenvector of Σnσ. Since πu(n)(x) = x for all x ∈ 1⊥ and

πu(n)u(n) = 0 = πuMσ[0,n)
u(n) we have πuMσ[0,n)

= πuMσ[0,n)
πu(n) , thus

{πuMσ[0,n)
`(p̃) : p̃ j � σ[n,k)(j

′) for infinitely many k > n, j′ ∈ A}
= πuMσ[0,n)

{πu(n) `(p̃) : p̃ j � σ[n,k)(j
′) for infinitely many k > n, j′ ∈ A}

= πuMσ[0,n)
RΣnσ(j). �

An S-adic Rauzy fractal Rσ has thus two different kinds of natural subsets: the subtiles Rσ(w)
defined in (2.8) and the (level n) subdivision tiles πu

(
`(p) + Mσ[0,n)

RΣnσ(j)
)

occurring on the

right hand side of (4.2) for some i ∈ A. In this section, we will mostly use the subdivision tiles.
We will need the collection7

Cσ = {x +Rσ(i) : x ∈ Zd ∩ 1⊥, i ∈ A}.
consisting of the translations of (the subtiles of) the Rauzy fractal Rσ by vectors in the lattice
Zd ∩ 1⊥. As shown e.g. in [BST19], the fact that Cσ forms a tiling of 1⊥ implies that (Xσ,Σ) has
purely discrete spectrum. Here, a tiling of 1⊥ is a set of tiles that covers 1⊥ in a way that the
intersection of any two distinct tiles has (d−1)-dimensional Lebesgue measure 0. Related results
for the substitutive case are contained in [AI01, Theorem 2] and [CS01, Theorem 3.8]; for the
classical example that initiated the whole theory we refer to [Rau82].

It is proved in [BST19, Proposition 7.5] that, if Property PRICE holds, Cσ is a locally finite
multiple tiling of 1⊥ by compact tiles (in the sense that a.e. point of 1⊥ is contained in exactly m
elements of Cσ for some given m ≥ 1). It is a priori not clear how to decide for a given directive
sequence σ if this multiple tiling is actually a tiling. However, as shown in [BST19, Section 7], the
following coincidence conditions (whose meaning will be explained in Remark 4.7) can be used to
get checkable criteria for this tiling property.

Definition 4.5 (Geometric coincidence condition). A directive sequence σ = (σn)n∈N satisfies the
geometric coincidence condition if for each R > 0, there is k ∈ N such that, for all n ≥ k, there
exist zn ∈ 1⊥, in ∈ A, such that

{y ∈ Zd : ‖M−1
σ[0,n)

(y − zn)‖ ≤ R, 0 ≤ 〈1,y〉 < |σ[0,n)(j)|}
⊂ {`(p) : p ∈ A∗, p in � σ[0,n)(j)}

for all j ∈ A.(4.3)

(Recall that w � v means that w is a prefix of v.)

7Note that we cannot exclude a priori that different pairs (x, i) give rise to the same set x +Rσ(i), i.e., that
Cσ is a multiset and not a set. If Cσ forms a tiling, then this possibility is excluded.
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This geometric coincidence condition is a rephrasing of the more geometric variant defined in
[BST19, Section 2.11]. In this geometric setting, the condition ensures suitable growth properties
of certain patches of parallelotopes that are defined by the dual E∗1 (σ[0,n)) of the so-called one-

dimensional geometric realization E1(σ[0,n)) of σ[0,n) for growing n.8 Since we do not want to
define discrete hyperplanes and dual substitutions here, we use equivalent statements with usual
substitutions and abelianizations of words.

It turns out that the following version of the geometric coincidence condition taken from [BST19,
Proposition 7.9 (iv)] is more useful for our purposes.

Definition 4.6 (Effective version of the geometric coincidence condition). A directive sequence
σ = (σn)n∈N satisfies the effective version of the geometric coincidence condition if there are
n ∈ N, z ∈ 1⊥, i ∈ A, C > 0, such that

(4.4) Σnσ ∈ BC ,
{
y ∈ Zd : ‖πu(n)M−1

σ[0,n)
y − z‖∞ ≤ C, 0 ≤ 〈1,y〉 < |σ[0,n)(j)|

}
⊂
{
`(p) : p ∈ A∗, p i � σ[0,n)(j)

}
,

for all j ∈ A,

with u(n) = M−1
σ[0,n)

u.

If σ is a substitution for which the constant sequence (σ)n∈N satisfies the geometric coincidence
condition, we say that σ satisfies the geometric coincidence condition (and similarly for the effective
version).

Remark 4.7. We want to motivate the geometric coincidence conditions of Definitions 4.5 and 4.6
and discuss how they imply that the multiple tiling Cσ is a tiling (subject to Property PRICE;
proofs will follow in Proposition 4.8). First note that these coincidence conditions are about control
points of tiles and, in order to understand their meaning, it is useful to replace these control points
by the associated tiles. For n ∈ N, let Tn be the collection of all n-th subdivision tiles (in the sense
of (4.2)) of the tiles in Cσ. The geometric coincidence condition (4.3) states that, given R > 0, for
n large enough, there is a subcollection Pn consisting of all tiles of Tn contained in a large ball (in
terms of R and Mσ[0,n)

), such that Pn ⊂ Qn, where Qn is the collection of n-th subdivision tiles of

Rσ(in) for some in ∈ A (compare the range of the union in (4.2) to the right hand of side (4.3)).
Since it is known from [BST19, Proposition 7.3] that the elements of Qn are pairwise disjoint in
measure (in particular, Qn and thus Pn are sets), Tn is a multiple tiling that far enough inside Pn
covers without overlaps. (Here, we need that R is large enough to avoid that M−1

σ[0,n)
Pn is covered

again by tiles from M−1
σ[0,n)

(Tn \ Pn).) Thus Tn is a tiling. As the tiles of Cσ are unions of tiles of

Tn, also Cσ is a tiling.
The size of the patch Pn that we require in order to infer that Cσ is a tiling is determined

by the largest diameter of the subtiles in the n-th subdivision of Rσ(in). This diameter is in
turn determined by the balance constant C of the language LΣnσ. This observation leads to the
quantified version of geometric coincidence in (4.4), which is also illustrated in Figure 4.

The geometric coincidence condition can be seen as an S-adic analog of the geometric coinci-
dence condition (or super-coincidence condition) in [BK06, IR06, BST10], which provides a tiling
criterion in the substitutive case. This criterion is a coincidence type condition in the same vein as
the various coincidence conditions introduced in the usual Pisot framework; see e.g. [Sol97, AL11].
The term “coincidence condition” goes back to Dekking [Dek78] where it meant that the letters of
the images of all letters under a substitution (of constant length) “coincide” at a certain position.
The letter in in Definition 4.5 and 4.6 plays the role of this common coincidence letter. This
condition was further developed and, in the substitutive case, it means that certain broken lines
that can be associated with the multiple tiling Cσ “coincide”, in the sense that they have at least
one edge in common; see e.g. [BK06, IR06].

Results from [BST19] that are central for our proofs are contained in the following proposition.

Proposition 4.8. Let σ ∈ SNd be a directive sequence satisfying Property PRICE. Then the
following assertions are equivalent.

8The linear maps E1(σ[0,n)) and E∗1 (σ[0,n)) are introduced in [AI01].
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(i) The collection Cσ forms a tiling.
(ii) The collection CΣnσ forms a tiling for some n ∈ N.

(iii) The collection CΣnσ forms a tiling for all n ∈ N.
(iv) The sequence σ satisfies the geometric coincidence condition.
(v) The sequence σ satisfies the effective version of the geometric coincidence condition.

Figure 4. Illustration of the proof of Proposition 4.8 (v) ⇒ (i). The large tiles
are the tiles of Cσ, the marked points are the translation points of their level n sub-
division tiles (these tiles are drawn in grey; up to three subdivision tiles can share
the same translation point in this three-letter example). Because Σnσ ∈ BC ,
these level n subdivision tiles are bounded in terms of C; here C = 2. More
precisely, the given point πuMσ[0,n)

z can only be contained in level n subdivi-

sion tiles whose translation points are contained in the (shaded) parallelepiped
πuMσ[0,n)

(z + [−C,C]3 ∩ 1⊥). All translation points inside the shaded paral-

lelepiped belong to level n subdivision tiles of the same tile of Cσ, namely Rσ(i);
this is the effective version of the geometric coincidence condition. Therefore,
πuMσ[0,n)

z belongs only to level n subdivision tiles of a single tile of Cσ. Thus it
is an exclusive point of Cσ.

Proof. This result is proved in [BST19] but, because our equivalent assertions somewhat differ
from the ones in [BST19, Proposition 7.9], we give some details here. For given w ∈ Rd≥0 \ {0}
and σ ∈ SNd , we define in [BST19, Section 2.10] a collection Cσ,w similarly to Cσ. However, the
elements of Cσ,w are Rauzy fractals that are projected to w⊥. (The detailed definition, which
requires some notation, is not relevant for us and we refrain from stating it.) These collections are
of particular importance when w is equal to the generalized left eigenvector from Definition 4.2(E).
Indeed, letting v and v(n) be generalized left eigenvectors of σ and Σnσ, respectively, we can use
results from [BST19] to gain that, for each n ∈ N,9

Cσ forms a tiling of 1⊥

⇐⇒ Cσ,v forms a tiling of v⊥ [BST19, Proposition 7.5]

⇐⇒ CΣnσ,v(n) forms a tiling of (v(n))⊥ [BST19, Lemma 7.2]

⇐⇒ CΣnσ forms a tiling of 1⊥ [BST19, Proposition 7.5].

These equivalences prove that (i) ⇔ (ii) ⇔ (iii). The equivalences (i) ⇔ (iv) ⇔ (v) are treated in
[BST19, Proposition 7.9]. However, the proof of the implication (v)⇒ (i) in [BST19] is somewhat
sketchy. Since this implication will be of particular importance in the sequel, and in order to

9Note the different notation in [BST19]: Cσ,v = Cv and CΣnσ,v(n) = C(n)
v .
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further explain the (effective version of the) geometric coincidence condition, we give a more
detailed proof of it, which is illustrated in Figure 4.

Proof of the implication (v) ⇒ (i). Let u be a generalized right eigenvector of σ, which exists
because Property PRICE implies that σ is primitive and recurrent. Assume that there are n ∈ N,
z ∈ 1⊥, i ∈ A, C > 0, such that (4.4) holds. We show that πuMσ[0,n)

z is an exclusive point

of the collection Cσ in the sense that it is contained in only one element of Cσ. Since [BST19,
Proposition 7.5] states that Cσ is a locally finite multiple tiling by compact tiles, this will already
imply that Cσ is in fact a tiling, because the compactness of the tiles together with local finiteness
yield that each exclusive point has a neighborhood consisting of exclusive points. Since Cσ forms
a multiple tiling and, hence, a covering of 1⊥, we have πuMσ[0,n)

z ∈ x +Rσ(i′) for some (x, i′) ∈
(Zd ∩ 1⊥)×A. To prove exclusivity, we have to show that this choice of (x, i′) is unique. By the
set equation in Lemma 4.4 for Rσ(i′), there exist p′ ∈ A∗, j′ ∈ A with

(4.5) p′i′ � σ[0,n)(j
′)

such that

(4.6) πuMσ[0,n)
z ∈ πu

(
x + `(p′) +Mσ[0,n)

RΣnσ(j′)
)
.

As in the proof of Lemma 4.4, note that πuMσ[0,n)
= πuMσ[0,n)

πu(n) , where u(n) = M−1
σ[0,n)

u is a

generalized right eigenvector of Σnσ. Therefore, (4.6) implies that

(4.7) πuMσ[0,n)
z ∈ πuMσ[0,n)

(
πu(n)M−1

σ[0,n)

(
x + `(p′)

)
+RΣnσ(j′)

)
.

Since u ∈Mσ[0,n)
Rd≥0 \ {0} implies that u /∈Mσ[0,n)

(1⊥), the mapping πuMσ[0,n)
|1⊥ : 1⊥ → 1⊥ is

a bijection. Therefore, and because z, πu(n)M−1
σ[0,n)

(
x+ `(p′)

)
, and RΣnσ(j′) are contained in 1⊥,

(4.7) is equivalent to

(4.8) z ∈ πu(n)M−1
σ[0,n)

(
x + `(p′)

)
+RΣnσ(j′).

Because we assume (4.4), we have Σnσ ∈ BC and thus Lemma 4.1 implies that ‖y‖∞ ≤ C for all
y ∈ RΣnσ, hence, (4.8) yields

‖πu(n)M−1
σ[0,n)

(
x + `(p′)

)
− z‖∞ ≤ C.

Since 〈1,x+ `(p′)〉 = 〈1, `(p′)〉 = |p′| < |σ[0,n)(j
′)|, by (4.4) we may conclude that x+ `(p′) = `(p)

for some p ∈ A∗ with p i � σ[0,n)(j
′). In particular, we have |p′| = |p|. Since p′i′ is also a prefix of

σ[0,n)(j
′) by (4.5), we obtain that p′ = p and i′ = i, thus x = 0. Therefore, (x, i′) = (0, i) is the

only possible choice for (x, i′) and, hence, 0+Rσ(i) is the only tile of the collection Cσ containing
πuMσ[0,n)

z. This proves that πuMσ[0,n)
z is an exclusive point of Cσ and, hence, yields that the

collection Cσ is a tiling (and, a fortiori, that all elements of Cσ are different). This concludes the
proof of the implication (v) ⇒ (i). �

4.3. Purely discrete spectrum implies geometric coincidence. In our main theorems, sub-
stitutive dynamical systems with purely discrete spectrum play a key role. The following lemma
shows that in the substitutive case purely discrete spectrum is equivalent to the geometric coin-
cidence condition, and thus, by Proposition 4.8, also to its effective version. This will be crucial
in the proofs of Theorems 3.5 and 3.6; see also the discussion before Lemma 5.4. Indeed, let τ
be a unimodular Pisot substitution that satisfies the geometric coincidence condition. We will
show that the existence of occurrences of long blocks of τ in a given directive sequence σ allows
to “transfer” the effective version of the coincidence condition from τ to σ. Using the following
lemma, this “transfer” works for purely discrete spectrum property as well.

Lemma 4.9. Let σ be a unimodular Pisot substitution. Then (Xσ,Σ) has purely discrete spectrum
if and only if σ satisfies the geometric coincidence condition.
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Proof. Assume that (Xσ,Σ) has purely discrete spectrum.10 As σ is primitive, the elements of
(Xσ,Σ) have sublinear complexity by [Que10, Proposition 5.12], by [Fog02, Proposition 5.1.12]
we can uniquely extend a.e. sequence in (Xσ,Σ) to a two-sided infinite sequence having the same
language. Hence, it is immaterial if we define (Xσ,Σ) by using one- or two-sided infinite sequences.

Next we claim that (Xσ,Σ) has purely discrete spectrum if and only if the tiling flow (Tσ, T )
associated with (Xσ,Σ) has purely discrete spectrum. To prove sufficiency, assume that (Xσ,Σ)
has purely discrete spectrum. Then (Xσ,Σ) is measurably conjugate to a translation x 7→ x+α on

a compact abelian group G via a measurable conjugacy Φ. Let (X̃σ, T̃ ) be the suspension flow with

constant roof function f(ω) ≡ c. Then (X̃σ, T̃ ) is measurably conjugate to the translation x̃ 7→
x̃+(0, ct) on the compact abelian group G̃ = (G×R)/ ∼, with (g, c) ∼ (g+α, 0), via the measurable

conjugacy Φ× id. Thus, by a slight variation of [Wal82, Theorem 3.5], (X̃σ, T̃ ) has purely discrete

spectrum. If the constant c is chosen properly, [BK06, Corollary 5.7] shows that (X̃σ, T̃ ) and the
tiling flow (Tσ, T ) associated with (Xσ,Σ) are conjugate; see also [CS03, Corollary 3.2]. Thus,
(Tσ, T ) has purely discrete spectrum. Necessity is due to [SS02, Corollary 5.2].

Next we establish that the tiling flow (Tσ, T ) has purely discrete spectrum if and only the substi-
tution σ satisfies the geometric coincidence condition. Indeed, according to [BK06, Corollary 9.4],
(Tσ, T ) has purely discrete spectrum if and only if the so-called coincidence rank of T is equal
to 1.11 This, by [BK06, Remark 18.5], is in turn equivalent to the fact that the collection C(σ)

of (substitutive) Rauzy fractals associated with the constant sequence (σ) forms a tiling. Finally,
because the constant sequence (σ) satisfies Property PRICE by Remark 4.3, Proposition 4.8 shows
that this tiling property holds if and only if the substitution σ satisfies the geometric coincidence
condition.

This chain of equivalences proves the lemma.
�

4.4. Balance and bounded remainder sets. In the sequel, we will strongly rely on the relation
between balance and bounded remainder sets. We are interested in bounded remainder sets
given by arbitrary words and not only by letters. Therefore, we also consider balance for words:
A language L is balanced for the word v ∈ L if there exists some Cv ≥ 1 such that, for any two
words w,w′ ∈ L with |w| = |w′|, we have

∣∣|w|v − |w′|v∣∣ ≤ Cv, and L is balanced for words if it
is balanced on each v ∈ L. Here, |w|v denotes the number of occurrences of the factor v in w.
Without further precision, balance will always refer to letters. We note that, in case a directive
sequence σ is primitive and proper, balance for letters of the language Lσ implies its balance for
all words; see [BCBD+21, Corollary 5.5].

The quantity C occurring in the definition of bounded remainder sets (i.e., in Definition 2.6) can
be considered as a notion of local discrepancy; see e.g. [Ada04b]. To illustrate this, we characterize
balance by the following geometric version of [Ada03, Proposition 7], using the projection πu
defined in (2.7). For u ∈ Rd+ with ‖u‖1 = 1, we have πu `(w) = `(w)− |w|u, which is a geometric
version of local discrepancy when u is a letter frequency vector.

Proposition 4.10. Let (X,Σ) be a uniquely ergodic minimal shift over the alphabet A = {1, . . . , d}.
Let u = (u1, . . . , ud) be the vector whose entry ui equals the measure of the cylinder [i] for
each i ∈ A. Then the language of X is balanced for letters if and only if sup{‖πu `(w)‖ :
w in the language of X} is bounded. Moreover, (X,Σ) is balanced for the word v if and only
if the cylinder [v] is a bounded remainder set.

Proof. Let L be the language of X and denote the unique Σ-invariant measure of (X,Σ) by µ.
We start with the proof of the second assertion. Assume first that v ∈ L is chosen in a way

that [v] is a bounded remainder set, and let w,w′ ∈ L with |w| = |w′| = m be given. Choose

10Since there does not seem to exist a direct proof of the fact that purely discrete spectrum of (Xσ ,Σ) implies the

geometric coincidence condition, we have to take the deviation via tiling flows in the proof of this lemma. Because
tiling flows will play no role in this paper, we refrain from giving detailed definitions and refer e.g. to [BK06].

11The fact that the coincidence rank is equal to one is the analog of our geometric coincidence condition in the
setting of flows, see [BK06, Section 7].
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x = x0x1 · · · ∈ X. Then, by minimality, there exist n, n′ ∈ N such that Σnx ∈ [w] and Σn
′
x ∈ [w′].

Thus, because [v] is a bounded remainder set,∣∣|w|v − |w′|v∣∣ ≤ ∣∣|x0 · · ·xn+m−1|v − |x0 · · ·xn−1|v − |x0 · · ·xn′+m−1|v + |x0 · · ·xn′−1|v
∣∣+ 2(|v| − 1)

≤ µ([v])
∣∣(n+m)− n− (n′ +m) + n′

∣∣
v

+ 2(|v| − 1) + 4C = 2(|v| − 1) + 4C

holds for some C > 0. (The summand 2(|v| − 1) comes from occurrences of v in x that partially
overlap with x0 · · ·xn−1 or with x0 · · ·xn′−1.) Thus L is (2(|v|−1) + 4C)-balanced for the word v.

Assume now that L is C-balanced for v, and let x = x0x1 · · · ∈ X be generic for the measure
µ. Then we have∣∣|x0 · · ·xn−1|v − nµ([v])

∣∣ = lim
m→∞

∣∣∣|x0 · · ·xn−1|v −
1

m
|x0 · · ·xmn−1|v

∣∣∣
for all n ∈ N because x is generic; moreover,

0 ≤ |x0 · · ·xmn−1|v −
m−1∑
k=0

|xkn · · ·x(k+1)n−1|v ≤ (m− 1) (|v| − 1)

for all m,n ∈ N because we only have to count the number of occurrences of v at positions kn−h,
1 ≤ k < m, 1 ≤ h < |v|, and∣∣∣m |x0 · · ·xn−1|v −

m−1∑
k=0

|xkn · · ·x(k+1)n−1|v
∣∣∣ ≤ mC

by the C-balancedness for v. Putting everything together, we obtain that

(4.9)
∣∣|x0 · · ·xn−1|v − nµ([v])

∣∣ ≤ C + |v| − 1

for all n ∈ N, thus [v] is a bounded remainder set.
To prove the first assertion, assume that sup{‖πu `(w)‖∞ : w ∈ L} = C (w.l.o.g. we may use

the ∞-norm). Let w,w′ ∈ L with |w| = |w′| be given. Then `(w)− `(w′) ∈ 1⊥ and, hence,

max
i∈A

(
∣∣|w|i − |w′|i∣∣) = ‖`(w)− `(w′)‖∞ = ‖πu(`(w)− `(w′))‖∞ ≤ 2C.

Thus L is (2C)-balanced for letters. Now assume that L is C-balanced for letters. Then, in the
same way as we derived (4.9), we gain maxi∈A

(∣∣|w|i − |w|ui∣∣) = maxi∈A
(∣∣|w|i − |w|µ([i])

∣∣) ≤ C
for all w ∈ L. Since πuei = ei − u holds for each i ∈ A, we have πu `(w) = (|w|i − |w|ui)i∈A for
w ∈ A∗. Thus sup{‖πu `(w)‖∞ : w ∈ L} ≤ C. �

5. Proofs of the main results

This section contains the proofs of all our main results. In Sections 5.1 and 5.2, we prove the
results stated in Section 3.2 on shifts of directive sequences. In Section 5.3, we will use these
results to derive the theorems on multidimensional continued fraction algorithms formulated in
Section 3.1. Section 5.4 is devoted to the proof of Theorem 3.8 on natural codings and bounded
remainder sets.

5.1. Proof of Theorem 3.5. For convenience, we recall the assumptions of Theorem 3.5. Let
D ⊂ SNd be a shift-invariant set of directive sequences equipped with an ergodic Σ-invariant Borel
probability measure ν satisfying ν ◦ Σ� ν. Assume that

• the linear cocycle (D,Σ, Z, ν) defined by Z((σn)n∈N) = tMσ0
satisfies the Pisot condition;

• there is a periodic Pisot sequence with purely discrete spectrum and positive range in
(D,Σ, ν).

We first show that under these assumptions ν-almost all σ ∈ D satisfy Property PRICE. To this
end, we need the following auxiliary results.

Lemma 5.1 (cf. [BST19, Lemma 8.7]). Let the assumptions of Theorem 3.5 be in force. If ν-
almost all (σn) ∈ D are primitive, then for ν-almost every sequence (σn) ∈ D, for each k ∈ N, the
characteristic polynomial of Mσ[k,n)

is the minimal polynomial of a Pisot unit for all sufficiently
large n ∈ N.
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Contrary to the assumptions in [BST19, Lemma 8.7], the shift invariant set D is not required to
be closed in Lemma 5.1. Nevertheless, the lemma holds by the same proof as [BST19, Lemma 8.7].

In the statement of the next result, recall that BC is defined in (4.1) and denotes the set of
sequences in SNd with C-balanced language.

Lemma 5.2. Under the assumptions of Theorem 3.5, we have limC→∞ ν(D ∩ BC) = 1, in par-
ticular D ∩BC is ν-measurable for all C > 0.

Proof. We first show that a.e. σ ∈ D is primitive. By assumption, D contains a periodic Pisot
sequence with positive range, i.e., there is a sequence τ = (τn) ∈ D with the following properties:

(a) There is j ≥ 1 such that Σjτ = τ and τ[0,j) is a unimodular Pisot substitution;
(b) infn∈N ν(Σn[τ0, . . . , τn−1]) > 0.

Since τ[0,j) is a unimodular Pisot substitution by (a), Remark 4.3 implies that it is primitive
and, hence, there is k ∈ N such that τ[0,kj) has positive incidence matrix. Set h = kj. Because

ν ◦ Σh � ν, (b) implies that

(5.1) ν([τ0, . . . , τh−1]) > 0.

Ergodicity of ν and the Poincaré Recurrence Theorem therefore yield that a.e. σ ∈ D contains
[τ0, . . . , τh−1] infinitely often and, hence, a.e. σ ∈ D is primitive.

Since the Pisot condition holds, since τ[0,h) has positive incidence matrix, and since (5.1) holds,

we gain from [BD14, Theorem 6.4] that ν
(⋃

C∈N(D ∩BC)
)

= 1. Since BC ⊆ BC′ for all C < C ′,
it only remains to show that D ∩ BC is ν-measurable for all C > 0. Let C > 0 be arbitrary but
fixed and set

B′C =
⋂
n∈N

⋃
(σ0,...,σn−1)∈Sn

d : ν([σ0,...,σn−1]∩BC)>0

[σ0, . . . , σn−1].

(Recall that the cylinders [σ0, . . . , σn−1] are subsets of D according to Definition 2.8.) Then we
clearly have D ∩BC ⊆ B′C . On the other hand, if σ ∈ B′C is primitive, then σ ∈ D and the finite
languages

L(n)
σ =

{
w ∈ A∗ : w is a factor of σ[0,n)(i) for some i ∈ A

}
are C-balanced for all n ∈ N. Since L

(0)
σ ⊆ L

(1)
σ ⊆ · · · , also Lσ =

⋃
n∈N L

(n)
σ is C-balanced, i.e.,

σ ∈ BC . Hence, because a.e. directive sequence in D is primitive, we have ν((D ∩BC)4B′C) = 0.
Since cylinders are measurable (they are open sets and ν is a Borel measure on D) and countable
unions and intersections of measurable sets are measurable, we obtain that B′C and, hence, also
D ∩BC is ν-measurable. �

Proposition 5.3. Under the assumptions of Theorem 3.5, ν-almost every σ ∈ D satisfies Property
PRICE.

Proof. Let τ = (τn) ∈ D be a periodic Pisot point. We saw in the proof of Lemma 5.2 that
there is h ∈ N such that τ[0,h) has positive incidence matrix and (5.1) holds. Thus by Lemma 5.2

there is C ∈ N such that ν(Σ−h(D ∩ BC)) = ν(D ∩ BC) > 1 − ν([τ0, . . . , τh−1]), and, hence,
ν
(
[τ0, . . . , τh−1] ∩ Σ−hBC

)
> 0.

By ergodicity of ν together with the Poincaré Recurrence Theorem, we have for almost all σ =
(σn)n∈N ∈ D some `0(σ) ≥ h such that Σ`0(σ)−hσ ∈ [τ0, . . . , τh−1]∩Σ−hBC , i.e., (σ0, . . . , σ`0(σ)−1)

ends with (τ0, . . . , τh−1) and Σ`0(σ)σ ∈ BC . We will now extend `0(σ) for almost all σ ∈ D to a
sequence (`k(σ))k∈N such that

• (σ0, . . . , σ`k+1(σ)−1) ends with (σ0, . . . , σ`k(σ)−1) (and, a fortiori, with (τ0, . . . , τh−1)),

• Σ`k+1(σ)σ ∈ BC ,
• `k+1(σ) ≥ 2`k(σ),

for all k ∈ N. To this end, assume that `0(σ), . . . , `k(σ) are already defined for almost all σ ∈ D.
Consider the set of all σ having a given value `k = `k(σ) and a given prefix (σ0, . . . , σ`k−1). Assume
that this set has positive measure, which implies that ν

(
[σ0, . . . , σ`k−1]∩Σ−`kBC

)
> 0. Then, for

almost all σ in this set, we obtain (by the Poincaré Recurrence Theorem and ergodicity of ν) some
`k+1(σ) with the required properties. Applying this for all choices of `k and (σ0, . . . , σ`k−1), we
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get some `k+1(σ) for almost all σ ∈ D. Therefore, such a sequence (`k(σ))k∈N exists for almost
all σ ∈ D.

Setting nk(σ) = `k+1(σ) − `k(σ), we obtain that conditions (P), (R) and (C) of Property
PRICE hold for almost all σ ∈ D. By [BST19, Lemma 5.7], we can replace (nk) and (`k) by
subsequences such that condition (E) holds. These subsequences also satisfy (P), (R), and (C).
From the Pisot condition and Lemma 5.1, we obtain that almost all σ ∈ D are algebraically
irreducible, i.e., also (I) holds a.e. and we are done. �

With Proposition 5.3 at our disposal, we can use a slight variation of [BST19, Theorem 3.1]
to show without much effort that under the conditions of Theorem 3.5 the following is true: For
almost all σ = (σn) ∈ D, the dynamical system (Xσ,Σ) has an m-to-1 factor which is a minimal
translation on Td−1 for some m ∈ N. However, in order to prove Theorem 3.5, we have to
show that m = 1, i.e., that (Xσ,Σ) is measurably conjugate to a minimal translation on Td−1,
which is way more difficult. Indeed, to prove this, according to Proposition 4.8 and [BST19,
Theorem 3.1], one has to verify the (effective version of the) geometric coincidence condition
for a.e. element of D.12 This would require tedious combinatorial verifications: By interpreting
geometric coincidence geometrically (as indicated by its name), this was done for some instances in
the case of three-letter alphabets in [BBJS15] by using the dual E∗1 (σ[0,n)) of the one-dimensional
geometric realization of σ[0,n) for growing n. As recalled in the introduction, this requires both
combinatorial and geometric arguments relying on planar topology, which restricts the scope of
application of such methods to the case of three-letter alphabets. In the present paper, we use
an ergodic argument to simplify this decisively, allowing us to consider general alphabets, and we
show that it suffices to check the condition on the Pisot point in the statement of Theorem 3.5.

The idea behind this ergodic argument is as follows. The geometric coincidence condition
(4.3) is satisfied for a given directive sequence σ ∈ D if certain sets defined in terms of balls
of arbitrarily large radius R are contained in sets that are defined by the combinatorics of σ.
According to the effective version of the geometric coincidence condition (4.4), it is even sufficient
to consider balls with a radius chosen in terms of certain properties of balance of languages
related to σ. By the assumptions of Theorem 3.5, there exists a substitutive system (Xτ ,Σ),
with τ = τ[0,j) and (τ0, . . . , τj−1)∞ ∈ D, which has purely discrete spectrum and, hence, by
Lemma 4.9 satisfies the geometric coincidence condition (4.3) for balls of arbitrarily large radii R.
After a technical preparation contained in Lemma 5.4, in Lemma 5.6 we show that this has the
following consequence: Each S-adic dynamical system whose directive sequence σ = (σn) has
Property PRICE and contains a sufficiently long block (σn, . . . , σn+`−1) with σ[n,n+`) = τm (i.e.,

m is sufficiently large) followed by some tail Σn+`σ ∈ BC , satisfies the effective version (4.4)
of geometric coincidence condition. Informally speaking, in σ we need a sufficiently long block
consisting of the repetition of a given substitution that satisfies the coincidence condition (4.3),
which is followed by a tail that is “balanced enough”, to guarantee the coincidence condition for
the whole sequence σ. Using the Poincaré Recurrence Theorem, we are able to show that almost
all directive sequences in D contain such a block. This will finally imply Theorem 3.5.

Lemma 5.4. Let τ be a unimodular Pisot substitution with geometric coincidence. Then for each
C > 0 there are m = mτ (C) ∈ N, z ∈ 1⊥, and i ∈ A such that for each t ∈ Rd≥0 \ {0} we have{

y ∈ Zd : ‖πtM−mτ y − z‖∞ ≤ C, 0 ≤ 〈1,y〉 < |τm(j)|
}

⊂ {`(p) : p ∈ A∗, p i � τm(j)} for all j ∈ A.(5.2)

Remark 5.5. If we look at the definition of the effective version of geometric coincidence in (4.4),
the lemma states that the inclusion in this definition still holds if we replace πu(n) by an arbitrary
projection πt with some nonnegative vector t. Indeed, because the elements M−mτ y that are
projected are close to a hyperplane that is “sufficiently orthogonal” to t and 1, this projection
does not change these vectors too much.

12Recall that even in the substitutive case, it is not known if the geometric coincidence is always fulfilled.
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Proof. Since τ satisfies the geometric coincidence condition, there exist, for each R > 0 and
sufficiently large m ∈ N, some i ∈ A and z′ ∈M−mτ 1⊥ = (tMm

τ 1)⊥, such that

{y ∈ Zd : ‖M−mτ y − z′‖∞ ≤ R, 0 ≤ 〈1,y〉 < |τm(j)|}
⊂ {`(p) : p ∈ A∗, p i � τm(j)} for all j ∈ A.(5.3)

Since tMm
τ 1/‖tMm

τ 1‖ converges to a dominant eigenvector of tMτ which is positive, there exists
a constant c1 > 0 such that ‖x‖∞ ≤ c1‖πtx‖∞ for all t ∈ Rd≥0 \ {0}, x ∈ (tMm

τ 1)⊥, m ∈ N. Let

π̃t,m denote the projection along t onto (tMm
τ 1)⊥. There is another constant c2 > 0 such that

‖x − π̃t,mx‖∞ ≤ c2 for all t ∈ Rd≥0 \ {0}, x ∈ Rd with 0 ≤ 〈tMm
τ 1,x〉 < maxj∈A〈tMm

τ 1, ej〉 =

maxj∈A |τm(j)|, m ∈ N. To see this, note that 〈tMm
τ 1,x〉 < maxj∈A〈tMm

τ 1, ej〉 says that
the orthogonal distance between x and (tMm

τ 1)⊥ is smaller than the maximum of the orthog-
onal distances between ej and (tMm

τ 1)⊥. This implies that the same is true for the corre-
sponding distances “along t”, i.e., ‖x − π̃t,mx‖∞ ≤ maxj∈A ‖ej − π̃t,mej‖∞ and we can take
c2 = maxm′∈N maxj∈A ‖ej − π̃t,m′ej‖∞, which is finite because tMm

τ 1/‖tMm
τ 1‖ converges to a

positive dominant eigenvector of tMτ . Therefore, we have

‖M−mτ y − z′‖∞ ≤ ‖π̃t,mM−mτ y − z′‖∞ + c2 ≤ c1‖πt(M−mτ y − z′)‖∞ + c2

for all y ∈ Zd, z′ ∈ (tMm
τ 1)⊥ with 0 ≤ 〈1,y〉 < maxj∈A |τm(j)|. Choosing m = mτ (C) such that

(5.3) holds for R = c1C+c2 and some z′ ∈ 1⊥, i ∈ A, we obtain that (5.2) holds with z = πtz
′. �

Let τ be a unimodular Pisot substitution that satisfies geometric coincidence. We now prove
geometric coincidence for directive sequences σ = (σn) containing a long block (σn, . . . , σn+`−1)
satisfying σ[n,n+`) = τm followed by a tail Σn+`σ ∈ BC . Indeed, this constellation will allow us
to apply Lemma 5.4 in order to fulfill the effective version of the geometric coincidence condition
for Σn+`σ. Thus Σn+`σ gives rise to tilings which will lead to the desired conclusion.

Lemma 5.6. Let τ be a unimodular Pisot substitution that satisfies geometric coincidence. Let
σ = (σn) be a sequence satisfying Property PRICE with C > 0 chosen in a way that there are
`, n ∈ N such that, for m = mτ (C) as in Lemma 5.4, we have σ[n,n+`) = τm and Σn+`σ ∈ BC .

Then Cσ forms a tiling of 1⊥.

Proof. Let u be a generalized right eigenvector of σ. Then u(n) = M−1
σ[0,n)

u is a generalized

right eigenvector of Σnσ. Since σ satisfies Property PRICE, Σnσ also satisfies Property PRICE
by [BST19, Lemma 5.10]. We want to prove that Σnσ satisfies (4.4). To this end, we apply
Lemma 5.4 to τ and t = u(n+`). Since σ[n,n+`) = τm, this yields that

{y ∈ Zd : ‖πu(n+`)M−1
σ[n,n+`)

y − z‖∞ ≤ C, 0 ≤ 〈1,y〉 < |σ[n,n+`)(j)|}
= {y ∈ Zd : ‖πtM−mτ y − z‖∞ ≤ C, 0 ≤ 〈1,y〉 < |τm(j)|}
⊂ {`(p) : p ∈ A∗, p i � σ[n,n+`)(j)}

for all j ∈ A.

Thus all conditions of Proposition 4.8 (v), in particular (4.4), are satisfied by Σnσ, hence, by
Proposition 4.8 each of the two collections CΣnσ and Cσ forms a tiling of 1⊥. �

We are now in a position to prove Theorem 3.5. Indeed, we use the Poincaré Recurrence Theo-
rem together with the ergodicity of ν in order to show that under the conditions of Theorem 3.5,
Lemma 5.6 can be applied to almost all directive sequences σ ∈ D.

Conclusion of the proof of Theorem 3.5. According to the assumptions of Theorem 3.5, there is a
sequence (τn) ∈ D with period k and positive range such that τ = τ[0,k) is a Pisot substitution
and the substitutive dynamical system (Xτ ,Σ) has purely discrete spectrum. Lemma 4.9 implies
that τ satisfies the geometric coincidence condition. By Lemma 5.2 and the positive range of (τn),
there is C ∈ N such that

ν(D ∩BC) > 1− inf
n∈N

ν(Σn[τ0, . . . , τn−1]).

This yields that ν(Σn[τ0, . . . , τn−1]∩BC) > 0 and, since ν ◦Σn � ν, ν([τ0, . . . , τn−1]∩Σ−nBC) > 0
for all n ∈ N. Choose m = mτ (C) as in Lemma 5.4. By the Poincaré Recurrence Theorem and the
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ergodicity of ν, for almost all sequences σ ∈ D, there exists n such that Σnσ ∈ [τ0, . . . , τkm−1] ∩
Σ−kmBC , which is equivalent to the conditions σ[n,n+`) = τm and Σn+`σ ∈ BC in the formulation
of Lemma 5.6. Thus, since Property PRICE holds for a.e. σ ∈ D by Proposition 5.3, Lemma 5.6
yields geometric coincidence for almost all σ ∈ D. This implies that Cσ forms a tiling of 1⊥. We
may thus apply [BST19, Proposition 8.5] to conclude that (Xσ,Σ, µ) is conjugate to the translation
by πuei = ei−u on 1⊥/Zd for all i ∈ {1, . . . , d}, where u is the generalized right eigenvector of σ
normalized by ‖u‖1 = 1. Taking i = d and omitting the d-th coordinate, we obtain that (Xσ,Σ, µ)
is conjugate to the translation by −π′(u) = −u′ on Td−1, thus also to the translation by u′. In
particular, (Xσ,Σ, µ) has purely discrete measure-theoretic spectrum. It remains to prove that the
shift (Xσ,Σ) is a natural coding of Ru′ w.r.t. the natural partition {−R′σ(1), . . . ,−R′σ(d)}. The
required topological properties of the atoms of the natural partition are established in [BST19,
Theorem 3.1]. We then consider the action of the domain exchange from [BST19, Proposition 8.4]
on the pieces of the Rauzy fractal which gives Rσ(i) + ei − u ⊂ Rσ, for 1 ≤ i ≤ d. This yields,
after applying π′, that −R′σ(i)− ei + u′ ⊂ −R′σ for 1 ≤ i < d and −R′σ(d) + u′ ⊂ −R′σ. Lastly,
the fact that the intersection of cylinders from Definition 2.5 consists always of a single point holds
by [BST19, Lemma 8.3]. �

5.2. Proof of Theorem 3.6. To prove Theorem 3.6, we need to get rid of the condition on the
existence of a periodic Pisot sequence with purely discrete spectrum present in Theorem 3.5. In
other words, under the conditions of Theorem 3.6, we have to provide an “accelerated” substitution
with purely discrete spectrum (i.e., satisfying the geometric coincidence condition by Lemma 4.9).
This is the objective of Proposition 5.9, which, for any given unimodular Pisot matrix M , provides
a substitution with incidence matrix Mn (for some n ≥ 1) having purely discrete spectrum.

We start with two technical lemmas. Lemma 5.7 recalls the classical connection between Pisot
substitutions and balance; see Remark 4.3. Moreover, Lemma 5.8 recalls that for any given integer
vector x with nonnegative entries, there exists a word w with uniformly bounded balance (w.r.t.
the direction of x) whose abelianization satisfies `(w) = x.

Lemma 5.7. Let M be a unimodular Pisot matrix with dominant right eigenvector u. There
exists a constant C > 0 such that each substitution σ satisfying Mσ = Mk for some k ∈ N and

(5.4) max
p∈A∗ : p�σ(i), i∈A

‖πu`(p)‖∞ < 2

has C-balanced language Lσ.

Proof. Let σ be a substitution satisfying the conditions indicated in the statement of the lemma.
Let n ∈ N be arbitrary but fixed and choose a prefix p of σn(i) for some i ∈ A. Then we have
p = σn−1(pn−1) · · ·σ(p1)p0 for some prefixes pj of σ(ij), ij ∈ A, with σ(ij) ∈ pjij−1A∗; thus

`(p) = Mk(n−1)`(pn−1) + · · ·+Mk`(p1) + `(p0).

Let v be a dominant left eigenvector of M , % < 1 the maximal absolute value of the nondominant
eigenvalues of M and π̃u the projection along u on v⊥. Then we have a constant c1 > 0 such
that ‖M `x‖∞ ≤ c1%

`‖x‖∞ for all ` ∈ N, x ∈ v⊥. Thus we have ‖π̃uM `x‖∞ = ‖M `π̃ux‖∞ ≤
c1%

`‖π̃ux‖∞ for all x ∈ Rd, hence

(5.5) ‖π̃u`(p)‖∞ <
c1

1− %k max
q∈A∗: q�σ(i), i∈A

‖π̃u`(q)‖∞.

There is a constant c2 > 0 such that ‖πux‖∞ ≤ c2‖x‖∞ for all x ∈ v⊥ and ‖π̃ux‖∞ ≤ c2‖x‖∞
for all x ∈ 1⊥. Thus (5.5) and (5.4) yield

‖πu`(p)‖∞ = ‖πuπ̃u`(p)‖∞ ≤ c2‖π̃u`(p)‖∞ <
c1c2

1− %k max
q∈A∗: q�σ(i), i∈A

‖π̃u`(q)‖∞

=
c1c2

1− %k max
q∈A∗: q�σ(i), i∈A

‖π̃uπu`(q)‖∞ ≤
c1c

2
2

1− %k max
q∈A∗: q�σ(i), i∈A

‖πu`(q)‖∞ <
2c1c

2
2

1− %k .

If v ∈ Lσ, then v is a factor of σn(i) for some n ∈ N, i ∈ A. Thus there are two prefixes p1, p2 of

σn(i) such that p1v = p2 and, hence, ‖πu`(v)‖∞ ≤ ‖πu`(p1)‖∞ + ‖πu`(p2)‖∞ <
4c1c

2
2

1−%k . Moreover,
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for two factors v1, v2 with |v1| = |v2|, we have

‖`(v1)− `(v2)‖∞ = ‖πu`(v1)− πu`(v2)‖∞ ≤ ‖πu`(v1)‖∞ + ‖πu`(v2)‖∞ ≤
8c1c

2
2

1− %k ,

thus Lσ is C-balanced with C =
8c1c

2
2

1−%k . �

Lemma 5.8. Let x ∈ Nd. Then there exists a word w ∈ A∗ such that `(w) = x and ‖πx`(p)‖∞ ≤
1− 1

2d−2 for p � w. Moreover, w starts with the letter corresponding to the largest coordinate of x.

Proof. This is proved in [Mei73, Tij80]. �

The construction of the desired substitution is contained in the following proposition.

Proposition 5.9. Let M be a nonnegative unimodular Pisot matrix. Then there exists a substi-
tution σ with incidence matrix Mσ satisfying Mσ = Mn for some n ∈ N such that the geometric
coincidence condition holds. Moreover, we can choose σ in a way that σ(i) ≺ σ(j) or σ(j) ≺ σ(i)
for all i, j ∈ A.

Proof. Let u be a dominant right eigenvector of M . We construct a substitution σ using the set

P = {y ∈ Zd : ‖πuy‖∞ ≤ C, 0 ≤ 〈1,Mny〉 ≤ max
i∈A
〈1,Mnei〉 for some n ∈ N},

with C as in Lemma 5.7. Note that P is a finite set since 〈1,Mny〉 = 〈tMn1,y〉 and u ∈ Rd+.
Write P = {y` : 0 ≤ ` ≤ L} such that 0 = 〈u,y0〉 < 〈u,y1〉 < · · · < 〈u,yL〉; this is possible since
u has rationally independent coordinates. Then for n ∈ N large enough we have

(5.6) ‖πuMny‖∞ ≤
1

3
for all y ∈ P

and Mn(y`+1 − y`) ∈ Nd for all 0 ≤ ` < L. Let words w` be given by Lemma 5.8 with x = x` =
Mn(y`+1 − y`) for 0 ≤ ` < L, and let Lj , j ∈ A, be such that yLj

= ej . (Note that ej ∈ P since
C ≥ 1.) Define the substitution σ by σ(j) = w0w1 · · ·wLj−1 for all j ∈ A. Note that σ(i) is a
prefix of σ(j) if and only if 〈u, ei〉 < 〈u, ej〉.

To show that Lσ is C-balanced, consider p � σ(j) for some j ∈ A. Then p = w0 · · ·w`−1p
′ for

some 0 ≤ ` < L, p′ � w`. (Here, w0 · · ·w`−1 is the empty word for ` = 0.) This yields

‖πu`(p)‖∞ = ‖πuy` + πu`(p
′)‖∞ ≤ ‖πuy`‖∞ + ‖πu`(p′)‖∞

≤ ‖πuy`‖∞ + ‖πuMn(y`+1 − y`)‖∞ + ‖πMn(y`+1−y`)`(p
′)‖∞ < 2,

where the last inequality follows from (5.6) and Lemma 5.8. Therefore, Lemma 5.7 gives that Lσ
is C-balanced. It remains to show that the constant sequence (σ) satisfies the effective version of
the geometric coincidence condition (4.4).

By the construction of σ, we have Mσ = Mn and

{y ∈ Zd : ‖πuM−1
σ y‖∞ ≤ C, 0 ≤ 〈1,y〉 < |σ(j)|}

=
⋃
j′∈A
{`(w0 · · ·w`) : 0 ≤ ` < Lj′ − 1} ⊂

⋃
i∈A
{`(p) : p ∈ A∗, p i � σ(j)}(5.7)

for all j ∈ A. Let i0 ∈ A be chosen in a way that 〈u, ei0〉 = maxj∈A〈u, ej〉. Then the i0-th
coordinate of x` is the largest one for each 0 ≤ ` < L if n is chosen large enough. Since we defined
the words w` by Lemma 5.8, this means that w` starts with i0 for each 0 ≤ ` < L if n is chosen
large enough, and we can sharpen the inclusion in (5.7) to⋃

j′∈A
{`(w0 · · ·w`) : 0 ≤ ` < Lj′ − 1} ⊂ {`(p) : p ∈ A∗, p i0 � σ(j)}

for all j ∈ A. Together with (5.7), this yields

{y ∈ Zd : ‖πuM−1
σ y‖∞ ≤ C, 0 ≤ 〈1,y〉 < |σ(j)|} ⊂ {`(p) : p ∈ A∗, p i0 � σ(j)}

for all j ∈ A. Therefore, σ satisfies the effective version of the geometric coincidence condition,
and, hence, by Proposition 4.8, also the geometric coincidence condition. �
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Remark 5.10. To prove the main statement of Proposition 5.9, we could also have used the condi-
tion from [Bar16, Corollary 2] to check geometric coincidence.13 This condition requires that the
last letter of σ(i) is equal for all i ∈ A and the first letter of σ(i) is different from the first letter
of σ(j) if i 6= j. If M is a unimodular Pisot matrix, then it is also primitive and thus there is
n ∈ N such that Mn is a positive matrix. By this positivity, there is clearly a substitution σ with
incidence matrix Mn having this property. Because our proof is elementary and much shorter
than the proof of [Bar16, Corollary 2], we decided to give a direct proof.

We can now finish the proof of Theorem 3.6. The idea is to provide a suitable substitutive
realization in the same flavor as the substitutive realizations associated with multidimensional
continued fraction algorithms from Section 2.3. Analogously to compositions of substitutions, in
the sequel we will use the notation M[k,n) = Mk · · ·Mn−1 for products of matrices.

Proof of Theorem 3.6. Let (D,Σ, Z, ν) be as in the statement of Theorem 3.6. Then for some

k > 0 there is a sequence (M̃n) ∈ D with period k and positive range such that M̃[0,k) is a Pisot

matrix. Since M̃[0,k) and M̃[i,i+k) = M̃−1
[0,i)M̃[0,k)M̃[0,i) are similar matrices, M̃[i,i+k) is a Pisot

matrix for each 0 ≤ i < k. By Proposition 5.9, there is a substitution τi with incidence matrix
Mτi = M̃[i,i+k) satisfying the geometric coincidence condition (replace k by km for some m ∈ N if

necessary). We choose τi in a way that τi = τj if M̃[i,i+k) = M̃[j,j+k), 0 ≤ i, j < k.

Choose a map s :Mk
d → Sd with the properties that

• the incidence matrix of s(M0, . . . ,Mk−1) is M[0,k) for all (M0, . . . ,Mk−1) ∈Mk
d,

• s(M0, . . . ,Mk−1) = s(M ′0, . . . ,M
′
k−1) if M[0,k) = M ′[0,k),

• s(M0, . . . ,Mk−1) = τi if M[0,k) = M̃[i,i+k) for some 0 ≤ i < k.

Then the map

(5.8) ψ : D→ SNd , (Mn)n∈N 7→
(
s(Mkn, . . . ,Mkn+k−1)

)
n∈N

is well defined, and, setting D = ψ(D) we have the commutative diagram

D D

D D

Σk

ψ ψ

Σ

The acceleration Σk of Σ may no longer be ergodic with respect to ν. Thus the system (D,Σ, ν′)
may be nonergodic, with ν′ = ν ◦ ψ−1. However, we will now show that (D,Σ, ν′) can be
partitioned into ergodic systems14 that satisfy the conditions of Theorem 3.5. Since all cylinders
in D are measurable, ν′ is a Borel probability measure on D. Suppose that (D,Σ, ν′) is not

ergodic. Then there exists a Σ-invariant (up to measure zero) subset D̃ ⊆ D with 0 < ν′(D̃) < 1.

Then ψ−1(D̃) ⊂ D is Σk-invariant, hence
⋃k−1
i=0 Σ−iψ−1(D̃) is Σ-invariant and, by ergodicity of ν,

equal to D up to measure zero. Therefore, we have ν′(D̃) = ν(ψ−1(D̃)) ≥ 1/k. Since D \ D̃ is also

Σ-invariant, we also have ν′(D̃) ≤ 1 − 1/k. We repeat the argument until we have a measurable

partition {D1, . . . , D`} of D, with 1 ≤ ` ≤ k, such that
(
Dj ,Σ,

ν′|Dj

ν(Dj)

)
is ergodic for all 1 ≤ j ≤ `.

Let now j be fixed. We need to prove that, for some 0 ≤ i < k, the constant (and hence
periodic) Pisot sequence (τi)n∈N has positive range in Dj . For all 0 ≤ i < k, we have

ν′
(
Σn[τi, . . . , τi︸ ︷︷ ︸

n times

] ∩Dj

)
≥ ν

(
Σkn

[
M̃i, . . . , M̃i+kn−1

]
∩ψ−1(Dj)

)
= ν

(
Σ−iΣkn

[
M̃i, . . . , M̃i+kn−1

]
∩ Σ−iψ−1(Dj)

)
(5.9)

≥ ν
(
Σkn

[
M̃0, . . . , M̃i+kn−1

]
∩ Σ−iψ−1(Dj)

)
.

13In [Bar16] the author deals with tiling flows, however, as we saw in the proof of Lemma 4.9, this makes no
difference, see also [CS03, Theorem 3.1].

14These systems correspond to sets of directive sequences that may not be closed in D. This is why we chose
not to confine ourselves to closed sets of directive sequences.
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Since

Σi
⋂
n∈N

Σkn
[
M̃0, . . . , M̃i+kn−1

]
=
⋂
n∈N

Σkn+i
[
M̃0, . . . , M̃i+kn−1

]
and

ν

( ⋂
n∈N

Σkn+i
[
M̃0, . . . , M̃i+kn−1

])
= inf
n∈N

ν
(
Σkn+i[M̃0, . . . , M̃i+kn−1]

)
> 0

by the positive range of (M̃n), ν ◦ Σi � ν gives that

ν

( ⋂
n∈N

Σkn
[
M̃0, . . . , M̃i+kn−1

])
> 0.

Therefore, by (5.9) and because
⋃k−1
i=0 Σ−iψ−1(Dj) = D, there is 0 ≤ i < k such that

inf
n∈N

ν′
(
Σn[τi, . . . , τi︸ ︷︷ ︸

n times

] ∩Dj

)
> 0.

Note that the constant sequence (τi)n∈N may not be in Dj , but the proof of Theorem 3.5 also goes
through for Pisot directive sequences with positive range that are not contained in Dj (but in the
closure of Dj relative to D). Thus (τi)n∈N ∈ Dj is a periodic Pisot sequence having positive range

in
(
Dj ,Σ,

ν′|Dj

ν′(Dj)

)
and purely discrete spectrum. Since the cocycle Z satisfies the Pisot condition,

the same is true for the cocycle Zj : Dj → Md, (σn) 7→ tMσ0
. Summing up, we can apply

Theorem 3.5 to
(
Dj ,Σ, Zj ,

ν′|Dj

ν′(Dj)

)
. This proves the result. �

5.3. Proofs of Theorems 3.1 and 3.3. We now prove Theorems 3.1 and 3.3 by reducing them
to Theorems 3.5 and 3.6 (see also Remark 3.7), respectively.

Proof of Theorem 3.1. Recall that (∆, T, A, ν) is a positive (d−1)-dimensional continued fraction
algorithm satisfying the Pisot condition and ν ◦T � ν, that ϕ is a faithful substitutive realization
of (∆, T, A, ν), and that there is a periodic Pisot point x0 such that ϕ(x0) has purely discrete

spectrum and positive range in (∆, T, A, ν). Then we have (∆, T, ν)
ϕ∼= (ϕ(∆),Σ, ν ◦ ϕ−1), hence

ν ◦ϕ−1 is an ergodic Σ-invariant Borel probability measure satisfying ν ◦ϕ−1 ◦Σ� ν ◦ϕ−1, the
linear cocycle (ϕ(∆),Σ, Z, ν ◦ ϕ−1) defined by Z((σn)n∈N) = tMσ0 satisfies the Pisot condition,
and ϕ(x0) is a periodic Pisot sequence with purely discrete spectrum having positive range in
(ϕ(∆),Σ, ν ◦ ϕ−1). Therefore, by Theorem 3.5, for ν-almost all x ∈ ∆, the S-adic dynamical
system (Xϕ(x),Σ) is a natural coding of the minimal translation by π′(u) on Td−1 with respect
to the partition {−R′ϕ(x)(i) : i ∈ A} of the bounded fundamental domain −R′ϕ(x), where u is

the generalized right eigenvector of ϕ(x) normalized by ‖u‖1 = 1. Since x is the generalized right
eigenvector of ϕ(x) satisfying ‖x‖1 = 1, we have x = u, which proves Theorem 3.1. �

Theorem 3.3 follows from Theorem 3.6 in the following way.

Proof of Theorem 3.3. Recall that (∆, T, A, ν) is a positive (d−1)-dimensional continued fraction
algorithm satisfying the Pisot condition and ν ◦ T � ν, and that there is a periodic Pisot point
x0 ∈ ∆ having positive range in (∆, T, A, ν). Define η : ∆ → MN

d by x 7→ (tA(Tnx))n∈N. Then

we have (∆, T, ν)
η∼= (η(∆),Σ, ν ◦ η−1), hence, ν ◦ η−1 is an ergodic Σ-invariant Borel probability

measure satisfying ν ◦ η−1 ◦ Σ � ν ◦ η−1, the linear cocycle (η(∆),Σ, Z, ν ◦ η−1) defined by
Z((Mn)n∈N) = tM0 satisfies the Pisot condition, and η(x0) has positive range in (η(∆),Σ, ν◦η−1).
Therefore, by Theorem 3.6, there exists a positive integer k and a map ψ : η(∆) → SNd (which
we choose as in (5.8)) satisfying ψ ◦ Σk = Σ ◦ ψ such that, for ν-almost all x ∈ ∆, the S-adic
dynamical system (Xψ◦η(x),Σ) is a natural coding of the minimal translation by π′(x) on Td−1

with respect to a partition of a bounded fundamental domain. Setting ϕ = ψ ◦ η, we obtain that
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the diagram

∆ ∆

η(∆) η(∆)

ϕ(∆) ϕ(∆)

Tk

η

ϕ

η

ϕΣk

ψ ψ

Σ

commutes. Because we have chosen ψ as in (5.8), ϕ is a substitutive realization of (∆, T k, A, ν)
such that for ν-almost all x ∈ ∆ the S-adic dynamical system (Xϕ(x),Σ) is a natural coding of the

minimal translation by π′(x) on Td−1 with respect to the partition {−R′ϕ(x)(i) : i ∈ A} of the

bounded fundamental domain −R′ϕ(x). This implies that (Xϕ(x),Σ) has purely discrete spectrum.

Since by construction, x is a generalized right eigenvector of ϕ(x), the map ϕ is injective, thus

(∆, T k, ν)
ϕ∼= (ϕ(∆),Σ, ν ◦ϕ−1). �

5.4. Proof of Theorem 3.8. We now establish the relation between a natural coding with d
atoms, bounded remainder sets, and Rauzy fractals asserted in Theorem 3.8. To this end, we need
Lemma 5.11 that states in a nutshell that balance implies strong convergence. Like in Section 2.1,
strong convergence refers to the convergence of the column vectors M[0,n)ei towards multiples of

the generalized right eigenvector u, for a sequence σ ∈ SNd . Lemma 5.11 was proved in [BST19,
Proposition 4.3] with the additional assumption that σ is recurrent. We give a slightly simpler
proof that does not require recurrence. Recall that πu denotes the projection along u onto 1⊥.

Lemma 5.11. Let σ ∈ SNd . If Lσ is balanced and the generalized right eigenvector u of σ has
rationally independent coordinates, then limn→∞ πuMσ[0,n)

ei = 0 for all i ∈ A and

(5.10) lim
n→∞

sup
{
‖πuMσ[0,n)

`(w)‖ : w ∈ LΣnσ

}
= 0.

Proof. Assume that σ = (σn)n∈N ∈ SNd has balanced language Lσ and a generalized right eigen-
vector u with rationally independent coordinates. We first show that σ is a primitive sequence
of substitutions. Suppose that there exists k ∈ N such that Mσ[k,n)

is not positive for all n > k.

Then there exist coordinates i, j such that the (i, j)-element of Mσ[k,n)
is 0 for infinitely many n,

i.e., Mσ[k,n)
ej ∈ e⊥i . Since the cones Mσ[k,n)

Rd≥0 form a nested sequence of nonempty com-

pact sets, their intersection is nonempty, and we obtain that e⊥i ∩
⋂
n∈NMσ[k,n)

Rd≥0 6= {0}, thus

Mσ[0,k)
(e⊥i ) ∩ ⋂n∈NMσ[0,n)

Rd≥0 6= {0}, which implies that u ∈ Mσ[0,k)
(e⊥i ), contradicting that u

has rationally independent coordinates. Therefore, σ is primitive.
Choose a sequence (in)n∈N ∈ AN such that in � σn(in+1) for all n ∈ N, and let ω(n) be such

that σ[n,`)(i`) ≺ ω(n) for all ` > n, i.e., ω(n) is a so-called limit sequence of Σnσ. Set

P = {w ∈ A∗ : w ≺ ω(0)} and Pn = {w ∈ A∗ : w ≺ σ[0,n)(in)} (j ∈ A, n ∈ N).

Since σ is balanced, the set πu`(P ) is bounded by Proposition 4.10. From P0 ⊆ P1 ⊆ · · · ⊆⋃
n∈N Pn = P , we obtain that there is a sequence of positive numbers (εn)n∈N with limn→∞ εn = 0

such that

(5.11) ‖x‖ ≤ εn for all x ∈ 1⊥ satisfying x + πu`
(
Pn
)
⊆ πu`(P ).

We can now show that πuMσ[0,n)
`(Qn) is small, where

Qn = {w ∈ A∗ : pj ≺ ω(n) and pwj ≺ ω(n) for some p ∈ A∗, j ∈ A}
is the set of return words in ω(n) to some letter. More precisely, we have

(5.12) ‖πuMσ[0,n)
`(w)‖ ≤ 2εk for all w ∈ Qn, k < n, provided that Mσ[k,n)

is a positive matrix.

To prove this, let w ∈ Qn. If Mσ[k,n)
is a positive matrix (which holds for sufficiently large n by

the primitivity of σ) and j ∈ A, then there exists v ∈ A∗ with v ik � σ[k,n)(j). Because w ∈ Qn,
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we have some p ∈ A∗ such that

σ[0,n)(p)σ[0,k)(v)u � σ[0,n)(p)σ[0,k)(v ik) � σ[0,n)(p j) ≺ σ[0,n)(ω
(n)) = ω(0) for all u ∈ Pk,

and the same holds when we replace p by pw, thus

πu`
(
σ[0,n)(p)σ[0,k)(v)

)
+ πu`

(
Pk
)
⊆ πu`(P ) and πu`

(
σ[0,n)(pw)σ[0,k)(v)) + πu`

(
Pk
)
⊆ πu`(P ).

From (5.11), we obtain that

‖πuMσ[0,n)
`(w)‖ ≤

∥∥πu`(σ[0,n)(p)σ[0,k)(v)
)∥∥+

∥∥πu`(σ[0,n)(pw)σ[0,k)(v))
∥∥ ≤ 2εk.

Next we show that, for each n ∈ N, the Minkowski sum

(5.13) `(Qn)−
d∑
j=1

`(Qn) contains a basis of Rd with vectors in {0, 1}d.

First note that `(Qn) contains a basis of Rd by the rational indepence of u and the balance of Lσ. If
this was not the case then, since `(Qn) ⊂ Zd, there would be v⊥ ∈ Zd with `(Qn) ⊂ v⊥. However,
such v cannot exist because Qn contains arbitrarily long factors of ω(n), hence Mσ[0,n)

`(Qn)

contains arbitrarily large vectors with bounded distance from Ru (by the balance of Lσ), which
implies that u ∈ Mσ[0,n)

v⊥, contradicting that u is rationally independent. Thus we may choose

words wi ∈ Qn such that {`(wi) : 1 ≤ i ≤ d} forms a basis of Rd. If `(wi) ∈ {0, 1}d for all i,
then we have found a basis of the required form because 0 ∈ `(Qn). Otherwise note that each
nonempty factor w of ω(n) can be written as

(5.14) w = v1a1v2a2 · · · v`a` with 1 ≤ ` ≤ d, vj ∈ Qn, aj ∈ A for all 1 ≤ j ≤ `, aj 6= ak if j 6= k.

Indeed, let a1 be the first letter of w and v1 the longest (possibly empty) word such that v1a1 � w;
then v1 ∈ Qn and (v1a1)−1w has no occurrence of a1; if w 6= v1a1, then let a2 ∈ A be the first
letter of (v1a1)−1w and v2 the longest word such that v2a2 � (v1a1)−1w; repeat this procedure
until (v1a1 · · · v`a`)−1w (which has no occurrences of a1, . . . , a`) is the empty word. Now, if
`(wi) /∈ {0, 1}d and wi = v1a1v2a2 · · · v`a`, then we can replace wi by the shorter word vj for some j

or, when all `(vj) are in the span of the other basis vectors, we replace `(wi) by `(wi)−
∑`
j=1 `(vj)

without losing the basis property. Since `(wi) −
∑`
j=1 `(vj) = `(a1 · · · a`) ∈ {0, 1}d and the

replacement by a shorter word can happen only finitely many times, this proves (5.13).
From (5.12) and (5.13) we see that, for each n ∈ N, there is a basis of Rd with vectors x ∈ {0, 1}d

satisfying ‖πuMσ[0,n)
x‖ ≤ 2(d+1)εk for all k < n such that Mσ[k,n)

is positive. In particular, we
have the same basis for infinitely many n, and obtain that limn→∞ πuMσ[0,n)

ei = 0 for all i ∈ A.

Finally, let w ∈ LΣnσ. By primitivity, w is a factor of ω(n). Writing w as in (5.14), we obtain

that ‖πuMσ[0,n)
`(w)‖ ≤ 2dεk +

∑d
i=1 ‖πuMσ[0,n)

ei‖ for all k < n such that Mσ[k,n)
is positive.

This proves the lemma. �

Before we start with the core part of the proof of Theorem 3.8, we need the following variant
of a result of Chevallier [Che09].

Lemma 5.12 (cf. [Che09, Theorems A and B]). Let (X,Σ) be a bounded natural coding of (Td, Rt)
w.r.t. a natural partition {F1, . . . ,Fh} of a fundamental domain F . Then there is a continuous
surjective map χ : X → F and a one-to-one coding map Φ defined a.e. on F that satisfies
χ ◦ Φ(x) = x for a.e. x ∈ F . Furthermore, the shift (X,Σ) is minimal and uniquely ergodic, and
(Td, Rt) is measure-theoretically isomorphic to (X,Σ). Thus (X,Σ) has purely discrete measure-
theoretic spectrum.

Sketch of the proof. The proof of this lemma is very similar to the proofs of [Che09, Theorems A
and B] (which are valid for Td according to the remark after their statement), and we will refer
to these proofs in the present sketch. Also observe that the aperiodicity condition of [Che09,
Theorems A and B] is used at the beginning of the proof of [Che09, Theorem A] just to ensure

that for each (i0i1 . . . ) ∈ X the set
⋂
n∈N

⋂n
k=0 R̃

−k
t F̊ik is either empty or a singleton. This is true

by assumption in our setting.
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Define χ : X → F by (i0i1 · · · ) 7→
⋂
n∈N

⋂n
k=0 R̃

−k
t F̊ik . This is well defined because the

intersection is exactly one point by the definition of a natural coding. Continuity of χ is proved
in the same way as in the proof of [Che09, Theorem A] (in this part of the proof, we need the
natural coding to be bounded), surjectivity follows because χ(X) is dense in F and compact. Thus
χ(X) = F and F is bounded. Clearly, also F1, . . . ,Fh are bounded. We can also define a map Φ
for a.e. x ∈ F , more precisely, for every x ∈ G with

G = F \
⋃
n∈N

h⋃
i=1

R̃−nt ∂Fi,

by associating with x the natural coding of its orbit under the action R̃t w.r.t. the natural partition
{F1, . . . ,Fh}. Now χ ◦ Φ(x) = x for each x ∈ G follows from the definition of a natural coding.

Define χ′ : X → Td by χ′ = χ (mod Td). Then χ′ is obviously continuous and surjective.

Following the proof of [Che09, Theorem A], we can show that (Td, Rt) and (F , R̃t) are topological

factors of (X,Σ), in particular, Rt ◦ χ′ = χ′ ◦ Σ and R̃t ◦ χ = χ ◦ Σ.
The proof of minimality of (X,Σ) deviates a bit from Chevallier’s proof, and we provide the

details. Fix ω ∈ X. We want to prove that the orbit of ω is dense in X. Let ω′ = (i0i1 · · · ) be an
arbitrary element of the set Φ(G) (which is dense in X) and let U = [i0, . . . , in] be a neighborhood

of ω′ (for some n ∈ N). The open set V =
⋂n
k=0 R̃

−ik
t F̊ik is nonempty because x = χ(ω′) is

in V. Since Rt is minimal, there exists an integer m ≥ 0 such that Rmt ◦ χ(ω) belongs to V. But

R̃t ◦ χ = χ ◦Σ and, hence, χ ◦Σm(ω) belongs to V. Since {F1, . . . ,Fh} is a natural partition, for

each i ≤ k, F̊i ∩ Fj = ∅. By the definition of χ, we have χ−1(V) ⊂ U , and therefore Σm(ω) ∈ U .
So all the elements of Z are limit points of the sequence (Σm(ω))m≥0, which shows that (X,Σ) is
minimal.

The remaining assertions are of a measure theoretic nature. Thus for the proofs of these
assertions it is immaterial that the partition {F1, . . . ,Fh} is measure theoretic. They follow by
rephrasing the proof of [Che09, Theorem B] verbatim. �

Proof of Theorem 3.8. Let (X,Σ) be the natural coding of the minimal translation Rt on Td−1

w.r.t. the natural partition {F1, . . . ,Fd} of the bounded fundamental domain F . We consider the

associated exchange of domains R̃t defined on F ; see Section 2.4. Let ti be such that R̃t(x) = x+ti
on Fi (note that ti − t ∈ Zd), and let u = (u1, . . . , ud) with ui = λ(Fi), where λ denotes the

Lebesgue measure. Then we have
∑d
i=1 ui = 1. Since F is bounded and (F , R̃t, λ|F ) is ergodic,

we have for almost all x ∈ F , by the Birkhoff Ergodic Theorem,

d∑
i=1

uiti =

d∑
i=1

ti

∫
Fi

dλ = lim
n→∞

1

n

n−1∑
k=0

(
R̃k+1

t (x)− R̃kt (x)
)

= lim
n→∞

1

n

(
R̃nt (x)− x

)
= 0.

Define a matrix N ∈ R(d−1)×d by Nei = ti, i.e., the columns of N are the vectors ti. Then we
have Nu = 0 and, by the minimality of R̃t, the vectors ti span Rd−1, thus the kernel of N is Ru.
Hence we have ‖x‖∞ ≤ c ‖Nx‖∞ for all x ∈ 1⊥, with 1/c = min{‖Nx‖∞ : x ∈ 1⊥, ‖x‖∞ = 1} >
0. If w is in the language of X, then N`(w) =

∑d
i=1 |w|iti = R̃

|w|
t (x) − x for some x ∈ F , thus

‖N`(w)‖∞ ≤ diam(F), where diam(F) denotes the diameter of F . Hence, we have

|w|i − |w|ui ≤ ‖`(w)− |w|u‖∞ ≤ c ‖N (`(w)− |w|u)‖∞ = c ‖N`(w)‖∞ ≤ cdiam(F).

Therefore, Fi is a bounded remainder set for all 1 ≤ i ≤ d, and the language of X is (2 cdiam(F))-
balanced.

Minimality of Rt implies total irrationality of t. We will show that this in turn implies that
the vector u = (λ(F1), . . . , λ(Fd)) has rationally independent coordinates. Indeed, suppose on the

contrary that 〈z,u〉 = 0 for some z ∈ Zd \ {0}. Consider the d × d matrix Ñ that is obtained
from N by subtracting t from each column and adding the row (1, . . . , 1) at the bottom. Because

ti − t ∈ Zd, the matrix Ñ is an integer matrix. Moreover, since Nu = 0 and ‖u‖1 = 1, we have

Ñu =
(−t

1

)
. If det Ñ 6= 0, then we have tÑy = z for some y ∈ Qd \{0}; if det Ñ = 0, then we have
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tÑy = 0 for some y ∈ Zd \ {0}. In both cases, we have 0 = 〈tÑy,u〉 = 〈y,
(−t

1

)
〉, contradicting

the total irrationality of t.
Assume now that X = Xσ for some sequence of substitutions σ ∈ SNd . Because F1, . . . ,Fd

are bounded remainder sets with measures u1, . . . , ud, Xσ has uniform letter frequencies. Thus
[BD14, Theorem 5.7] implies that u = (u1, . . . , ud) is the (rationally independent) generalized
right eigenvector of σ normalized by ‖u‖1 = 1 (moreover, σ is primitive; see the first part of the
proof of Lemma 5.11). Let ω(0) ∈ Xσ be as in the proof of Lemma 5.11, and write ω(0) = ω0ω1 · · ·
with ωn ∈ A. Then there is some z ∈ F such that Rnt (z) ∈ Fωn

for all n ∈ N. Define the affine
map H : Rd → Rd−1 by H(x) = z + Nx. Then, because Ru is in the kernel of N , we have
H(x) = H(πux), in particular H(πuei) = z + ti. By minimality, we have

(5.15) Fi =
{
z +N`(p) : p ∈ A∗, p i ≺ ω(0)

}
⊆ H(Rσ(i)) for all i ∈ A.

On the other hand, if p i � σ[0,n)(j) for infinitely many (n, j) ∈ N×A, then for all these n there

are words wn ∈ LΣnσ such that σ[0,n)(wn) p i ≺ ω(0), which implies H
(
Mσ[0,n)

`(wn) + `(p)
)
∈ Fi

for infinitely many n and, by Lemma 5.11, H(`(p)) ∈ Fi. Hence, we have H(Rσ(i)) ⊆ Fi, thus

H(Rσ(i)) = Fi. This means that (F , R̃t) is the domain exchange H(Rσ(i)) 7→ H(Rσ(i)) +

H(πuei). Therefore, (F , R̃t) is conjugate to the domain exchange R′σ(i) 7→ R′σ(i) + e′i − u′, and
(Xσ,Σ) is a natural coding of Ru′ w.r.t. the natural partition {−R′σ(i) : 1 ≤ i ≤ d}, by the same
arguments as in the proof of Theorem 3.5.

Assume now that the directive sequence σ is left proper. Then by [BCBD+21, Lemma 3.2] the
shift (Xσ,Σ) can be represented as (Xσ′ ,Σ), where σ′ is proper (and still unimodular). Like σ,
also σ′ is primitive; see again the first part of the proof of Lemma 5.11. From [BCBD+21,
Corollary 5.5], we gain that if a primitive unimodular proper S-adic shift (Xσ,Σ) is balanced
for letters, then it is also balanced for words. Hence, cylinders associated with factors are also
bounded remainder sets, by Proposition 4.10. �

6. Examples

In this section, we show that our theory can easily be applied to well-known multidimensional
continued fraction algorithms, in particular to the Jacobi–Perron, Brun, (Cassaigne–)Selmer and
Arnoux–Rauzy algorithms. For dimension d = 3, corresponding results for the Brun and the
Arnoux–Rauzy algorithms were already given in [BST19], and for the Cassaigne–Selmer algorithm
in [FN20]. Using our new theory, the conditions we need to check are easier to verify than the
ones in [BST19, FN20]. This even allows us to treat the Arnoux–Rauzy algorithm in arbitrary
dimension (see Section 6.3), the (multiplicative) Jacobi–Perron algorithm (d = 3) in Section 6.4
and the Brun algorithm for d = 4 in Section 6.5. We start with the Cassaigne–Selmer algorithm
(d = 3) in Section 6.2, for which we can also prove more general results than the ones in [FN20].

Save for the Arnoux–Rauzy algorithm, we focus on algorithms with dimension d ∈ {3, 4}.
For higher dimensions, the main problem is to prove the Pisot condition (see Definition 2.1).
Usually, heavy computer calculations are needed to prove that the second Lyapunov exponent of
an algorithm is negative; see [BST21] for the Selmer algorithm with d = 4. Moreover, somewhat
surprising numerical experiments from [BST21] indicate that the second Lyapunov exponent is
positive for most of the classical continued fraction algorithms if the dimension is beyond a certain
threshold. In other words, the Pisot condition seems to be violated in these cases, and our
results cannot be applied. For instance, the Brun and Jacobi–Perron algorithms seem to have
positive second Lyapunov exponent in dimension d ≥ 10, contrarily to what was expected e.g.
in [Lag93, HK00]. For the Selmer algorithm, the Pisot condition seems to be violated already in
dimension d ≥ 5.

6.1. Balanced pair algorithm. Before studying individual continued fraction algorithms, we
recall an algorithm that can be used to check whether a substitution has purely discrete spectrum.
(For each continued fraction algorithm, we have to do this for one substitution associated with a
periodic point.) The balanced pair algorithm was introduced by Livshits [Liv87, Liv92] and was
inspired by the notion of coincidence for non-constant length substitutions such as considered for
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instance in [Mic78]; see also [SS02, Section 3], [BK06, Section 17] or [BST10, Section 5.8]. This
algorithm is usually simpler than checking geometric coincidence.

Let σ be a unimodular Pisot substitution. A balanced pair is a pair (v1, v2) ∈ A∗ × A∗ with
`(v1) = `(v2). It is called irreducible if no proper prefixes of v1 and v2 give rise to a balanced
pair. Each balanced pair can be decomposed into irreducible balanced pairs in an obvious way.
The balanced pair algorithm for a substitution σ on the alphabet A = {1, . . . , d} starts with
I0 = {(ij, ji) : i, j ∈ A, i 6= j}. Given Ik for some k ∈ N, the set Ik+1 is defined recursively by the
set of all irreducible balanced pairs occurring in a decomposition of a balanced pair (σ(v1), σ(v2))
with (v1, v2) ∈ Ik. We say that the balanced pair algorithm terminates if for some k ∈ N the set

Ik \ (I0∪ · · ·∪ Ik−1) = ∅ and if each (v1, v2) ∈ ⋃kj=0 Ij eventually contains a coincidence, i.e., there

is a pair of the form (i, i) ∈ A×A that occurs in (σj(v1), σj(v2)) for some j ∈ N.
According to [BST10, Theorem 5.8.8], the balanced pair algorithm terminates if and only if C(σ)

forms a tiling of 1⊥. (More precisely, the theorem states that a certain collection of tiles forms
a tiling of v⊥, where v is a left eigenvector of Mσ, but this is equivalent to C(σ) being a tiling

of 1⊥; see the proof of Proposition 4.8.) By Proposition 4.8 and Lemma 4.9, this is equivalent
to σ having purely discrete spectrum. For a direct proof that a slightly different version of the
balanced pair algorithm implies purely discrete spectrum, see [SS02, Theorem 3.1].

Proposition 6.1 (cf. [BST10, Theorem 5.8.8]). A unimodular Pisot irreducible substitution σ has
purely discrete spectrum if and only if the balanced pair algorithm starting with I0 terminates.

6.2. The Cassaigne–Selmer algorithm. In 2015, Cassaigne announced a 2-dimensional con-
tinued fraction algorithm that was first studied in [CLL17], and in more detail in [CLL21]. This
algorithm is called Cassaigne–Selmer algorithm because it is measurably conjugate to a semi-
sorted version of the 2-dimensional Selmer algorithm (with the conjugation given by a linear map,
see [CLL21, Proposition 11.1]); Selmer’s algorithm goes back to [Sel61] (see also [Lag93, Section 6])
and is conjugate on the absorbing simplex to Mönkemeyer’s algorithm [Mön54] (see [Pan08]). Cas-
saigne’s representation of this algorithm is remarkable because it admits a set of substitutions that
is particularly relevant from a symbolic point of view. As shown in [CLL17], the S-adic dynamical
systems defined in terms of these substitutions have factor complexity 2n+1 (see (2.4)) and, as un-
derlined in [BCBD+21], belong to the family of so-called dendric subshifts. Dendric subshifts have
the striking property that the sets of return words all have the same cardinality for every factor
(they even generate the free group), which, among other properties, provides a simple expression
for their dimension group.

Let ∆ = {(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 + x3 = 1}. Using the matrices

C1 =

1 1 0
0 0 1
0 1 0

 and C2 =

0 1 0
1 0 0
0 1 1

 ,

we define the matrix valued function

AC : ∆→ GL(3,Z), x 7→
{
tC1 if x ∈ ∆1 := {(x1, x2, x3) ∈ ∆ : x1 ≥ x3},
tC2 if x ∈ ∆2 := {(x1, x2, x3) ∈ ∆ : x1 < x3}.

Then TC is given by

TC : ∆→ ∆, (x1, x2, x3) 7→
{

(x1−x3

x1+x2
, x3

x1+x2
, x2

x1+x2
) if x1 ≥ x3,

( x2

x2+x3
, x1

x2+x3
, x3−x1

x2+x3
) if x1 < x3,

and (∆, TC, AC) is called Cassaigne–Selmer algorithm. In [AL18, Proposition 22], it is proved that
the density of the absolutely continous invariant probability measure νC of TC equals 12

π2(1−x1)(1−x3) .

Following [CLL17], we consider the Cassaigne–Selmer substitutions

(6.1) γ1 :


1 7→ 1

2 7→ 13

3 7→ 2

γ2 :


1 7→ 2

2 7→ 13

3 7→ 3
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The corresponding faithful substitution selection is defined by ϕC(x) = γj if x ∈ ∆j . By Defini-
tion 2.2, the map

(6.2) ϕC : ∆→ {γ1, γ2}N, x 7→ (ϕC(Tnx))n∈N,

is a faithful substitutive realization of (∆, TC, AC). We have TC(∆1) = TC(∆2) = ∆, thus the
algorithm satisfies the finite range property and each x ∈ ∆ has positive range (in the sense of
Definition 2.8). Moreover, ϕC(∆) = {γ1, γ2}N (up to a set of measure zero). According to [Lag93,
Section 6] and [Sch00, Chapter 7], TC is νC-almost everywhere weakly convergent, {∆1,∆2} is a
generating (Markov) partition for TC, and, hence, one has

(∆, TC, νC)
ϕC∼= ({γ1, γ2}N,Σ, νC ◦ϕ−1

C ).

The linear cocycle AC is log-integrable since the Cassaigne–Selmer algorithm is additive, with
AC taking only 2 values. By [Sch04, Theorem 1] and [BST21, Theorem 5.1] (see also [Lag93,
Section 6]), we know that (∆, TC, AC, νC) satisfies the Pisot condition. Moreover, since νC is a
Borel probability measure which is equivalent to the Lebesgue measure and TC maps open sets to
open sets, we have νC ◦ TC � νC.

To apply Theorem 3.1, we have to find a periodic Pisot point x ∈ ∆ (see Definition 2.3) such
that ϕC(x) has purely discrete spectrum. To this end, consider

(6.3) τ = γ1 ◦ γ2 :


1 7→ 13

2 7→ 12

3 7→ 2

and let x ∈ ∆ be the dominant right eigenvector of Mτ . Then we have ϕC(x) = (γ1, γ2)∞.
Since Mτ is a (unimodular) Pisot matrix, we conclude that x is a periodic Pisot point, which
has positive range by the above considerations. It only remains to prove that the substitutive
dynamical system (Xτ ,Σ) has purely discrete spectrum.

For the balanced pair algorithm, we start with (12, 21)
τ−→ (1312, 1213), which splits into the

irreducible pairs (1, 1), a coincidence, and (312, 213). Moreover, (13, 31)
τ−→ (132, 213) does not

split and (23, 32)
τ−→ (122, 212) splits into (12, 21) and the coincidence (2, 2). Thus

I1 = {(1, 1), (2, 2), (12, 21), (312, 213), (132, 213)}.
We have to go on with the new pairs (1, 1), (2, 2), (312, 213), (132, 213) occurring in I1. While

coincidences yield only coincidences again, we get the pairs (312, 213)
τ−→ (21312, 12132) and

(132, 213)
τ−→ (13212, 12132). Splitting these yields the new pair (321, 213). Summing up, the

set I2 contains the new pairs (3, 3) and (321, 213). We only have to check the one which is not a

coincidence, getting (321, 213)
τ−→ (21213, 12132). This gives (up to switching the order of the pair)

no new pairs in I3. Since all occurring pairs eventually end up in coincidences, the balanced pair
algorithm terminates for τ and, hence, (Xτ ,Σ) has purely discrete spectrum by Proposition 6.1.

Note that τ2 and thus the periodic directive sequence (γ1, γ2)∞ is proper. Hence, combining
Theorem 3.1 with Theorem 3.8, we obtain the following result. (Recall that x′ = π′(x) for the
projection π′ defined in (2.9); the corresponding projections of the subtiles, R′σ(w), w ∈ A∗, are
defined in (2.10).)

Theorem 6.2. Let (∆, TC, AC, νC) be the Cassaigne–Selmer algorithm, with substitutive realiza-

tion ϕC defined in (6.2). Then (∆, TC, νC)
ϕC∼= ({γ1, γ2}N,Σ, νC ◦ϕ−1

C ), and for νC-almost all x ∈ ∆
the following assertions hold.

(i) The shift XϕC(x) is a natural coding of the toral translation Rx′ w.r.t. the natural partition
{−R′σ(i) : i ∈ A}.

(ii) The S-adic dynamical system (XϕC(x),Σ) ∼= (T2, Rx′) has purely discrete spectrum.
(iii) The set −R′σ(w) is a bounded remainder set for Rx′ for each w ∈ A∗.
According to [CLL21, Theorem B], the system XϕC(x) has factor complexity 2n + 1 provided

that ϕC(x) is primitive. Thus Theorem 6.2 has the following consequence; see Remark 3.4 and
the fact that νC is equivalent to the Lebesgue measure.
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Corollary 6.3. For (Lebesgue) almost all t ∈ T2, there exists a minimal subshift X ⊂ {1, 2, 3}N
with factor complexity 2n+1 and language balanced for factors such that (X,Σ) is a natural coding
of the toral translation Rt.

This result is optimal in the sense that, according to [BB13], we cannot reach a smaller factor
complexity for a natural coding of a two-dimensional translation. The asserted balance for words
means that all Fi0 ∩R−1

t Fi1 ∩ · · · ∩R−nt Fin are bounded remainder sets of Rt, with the notation
of Theorem 3.8. We mention that the dimension group of X can be completely described: It is
isomorphic to (Z3, {x ∈ Z3 : 〈x,u〉 > 0} ∪ {0},1), where u stands for the associated generalized
right eigenvector which is normalized by ‖u‖1 = 1; see [BCBD+21] for more on this topic. All
this extends many properties of Sturmian sequences to sequences on 3-letter alphabets.

The Selmer algorithm also exists in higher dimensions; see e.g. [BFK15, BFK19]. However, to
be able to extend the previous results to higher dimensions, two problems occur: firstly, one has
to find a suitable substitutive realization leading to S-adic dynamical systems of factor complexity
(d−1)n + 1; secondly, as mentioned above, the second Lyapunov exponent seems to be negative
only for d ≤ 4 [BST21].

6.3. The Arnoux–Rauzy algorithm. In this section, we apply our results to the Arnoux–Rauzy
algorithm in arbitrary dimension d ≥ 3. Like the Cassaigne–Selmer algorithm (with d = 3),
the Arnoux–Rauzy algorithm generates symbolic dynamical systems that have factor complexity
(d−1)n+ 1 and belong to the family of dendric subshifts.

Define the set of Arnoux–Rauzy substitutions over the alphabet A = {1, . . . , d} by

(6.4) αi : i 7→ i, j 7→ ij for j ∈ A \ {i} (i ∈ A).

Let

∆i =

{
(x1, . . . , xd) ∈ [0, 1]d : xi ≥

∑
j 6=i

xj ,

d∑
i=1

xi = 1

}
.

Using the transposed incidence matrices of αi, we define the matrix valued function

AAR :
⋃
i∈A

∆i → GL(d,Z), x 7→ tMαi if x ∈ ∆i,

which gives that

TAR(x1, . . . , xd) =

(
x1

xi
, . . . ,

xi−1

xi
,
xi −

∑
j 6=i xj

xi
,
xi+1

xi
, . . . ,

xd
xi

)
if x ∈ ∆i.

We have TAR(∆i) = {x ∈ [0, 1]d : ‖x‖1 = 1} for all i ∈ A, thus the image of TAR need not be
contained in

⋃
i∈A∆i. For this reason, we have to restrict the domain of TAR to the d-dimensional

Rauzy simplex, which is defined by

∆AR =

{
x ∈ [0, 1]d : ‖x‖1 = 1 and TnAR(x) ∈

⋃
i∈A

∆i for all n ∈ N
}
.

The Rauzy simplex is defined in a way that TAR(∆AR) = ∆AR. The algorithm (∆AR, TAR, AAR) is
called Arnoux–Rauzy algorithm and goes back to [AR91]. The Rauzy simplex has zero Lebesgue
measure by [AS13, Section 7]. We consider TAR-invariant probability measures ν of (∆AR, TAR)
satisfying ν ◦T � ν. (The latter condition is satisfied for instance for Borel probability measures ν
w.r.t. the subspace topology on ∆AR; see e.g. [AHS16].) The map ϕAR defined by ϕAR(x) = αi
when x ∈ ∆i is a faithful substitution selection. We have TAR(∆AR∩∆i) = ∆AR, thus the algorithm
satisfies the finite range property and each x ∈ ∆ has positive range (in the sense of Definition 2.8).
The associated substitutive realization

(6.5) ϕAR : ∆→ {α1, . . . , αd}N, x 7→ (ϕAR(Tnx))n∈N

thus satisfies ϕAR(∆AR) = {α1, . . . , αd}N (up to a set of measure zero).
By [AD19], we know that the second Lyapunov exponent of the fully subtractive algorithm is

negative. Here, we show the same for the Arnoux–Rauzy algorithm, which is closely related to
the fully subtractive algorithm.
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Proposition 6.4. Let (∆AR, TAR, AAR, ν) be the Arnoux–Rauzy algorithm for d ≥ 2, where ν is
an ergodic invariant probability measure with support ∆AR. Then the Lyapunov exponents satisfy
ϑ1(AAR) > 0 > ϑ2(AAR).

Proof. Since the matrices are unimodular, it suffices to show that ϑ2(AAR) < 0. We show that

the restriction of ‖A(n)
AR (x)‖ to x⊥ is exponentially shrinking for a.e. x ∈ ∆AR. Indeed, define a

sequence (M̃n(x)) of Rd×d-matrices as in [DHS13], i.e., if AAR(TnAR(x)) = tMαi
, then tM̃n(x) is

given by subtracting A
(n)
AR (x)1/‖A(n)

AR (x)1‖∞ from the i-th column of tMαi
. Then

M̃0(x) · · · M̃n−1(x)y = tA
(n)
AR (x)y for all y ∈ tA

(n)
AR (x)−1 1⊥,

‖M̃n(x)‖∞ ≤ 1 for all x ∈ ∆AR, n ∈ N, and

(6.6) ‖M̃k(x) · · · M̃`−1(x)‖∞ <
2h − d
2h − 1

if all matrices M̃k(x) · · · M̃`−1(x) and M̃n−h+1(x) · · · M̃n(x), with k ≤ n < `, are primitive; see
[DHS13, Lemma 6]. For v ∈ x⊥ and i ∈ A, we have

〈ei, A(n)
AR (x)v〉 = 〈tA(n)

AR (x) ei,v〉 = 〈πxtA(n)
AR (x) ei,v〉 = 〈tA(n)

AR (x)π(n)
x ei,v〉

= 〈M̃0(x) · · · M̃n−1(x)π(n)
x ei,v〉,

where π
(n)
x denotes the projection along TnAR(x) on tA

(n)
AR (x)−1 1⊥.

Let T̃ be the induced map of TAR on the cylinder ∆̃ = ϕAR([α2, . . . , αd, α1, α2, . . . , αd]), and Ã
the induced cocyle (so that we can apply (6.6) with h = d = `− k). Then there exists c > 0 such

that ‖π(n)
x ei‖∞ ≤ c for all x ∈ ∆AR with TnAR(x) ∈ ∆̃, thus

‖A(n)
AR (x)v‖∞ ≤ c d ‖M̃0(x) · · · M̃n−1(x)‖∞‖v‖∞.

We have thus

‖Ã(n)(x)v‖∞ ≤ c d
(

2d − d
2d − 1

)n
‖v‖∞ for all x ∈ ∆̃, v ∈ x⊥.

which implies that the second Lyapunov exponent of Ã and thus of A is negative; see e.g. [Via14,
Section 4.4.1]. �

By induction on d, we can show that

α1 ◦ α2 ◦ · · · ◦ αd = α̃d, with α̃(i) = 1(i+1) for 1 ≤ i < d, α̃(d) = 1.

The substitution α̃ is the d-bonacci substitution; the characteristic polynomial of the incidence
matrix Mα̃ of α̃ is xd−xd−1−· · ·−x−1. Thus the dominant right eigenvector x ∈ ∆AR of Mα̃ is a
periodic Pisot point. It has, like all points of ∆AR, positive range. It is well known that α̃ has purely
discrete spectrum; see e.g. [IR06, Theorem 1.2 and Example 3.1], which is based on [FS92], or
[Bar16, Corollary 4.3]. (It is also not difficult to show that the balanced pair algorithm terminates
for α̃.) Moreover, α̃ is clearly left proper. Thus, combining again Theorem 3.1 with Theorem 3.8
and using the results on factor complexity from [AR91, p. 209] and [RZ00, Theorem III.8], we
obtain the following result (parts of which were proved for d = 3 in [BST19]).

Theorem 6.5. Let (∆AR, TAR, AAR, ν) be the Arnoux–Rauzy algorithm for d ≥ 2, where ν is an
ergodic invariant probability measure with support ∆AR, and let ϕAR be as in (6.5). Then we

have (∆AR, TAR, ν)
ϕAR∼= ({α1, . . . , αd}N,Σ, ν ◦ ϕ−1

AR), and for ν-almost all x ∈ ∆AR the following
assertions hold.

(i) The shift XϕAR(x) is a natural coding of the toral translation Rx′ w.r.t. the natural partition
{−R′σ(i) : i ∈ A}.

(ii) The S-adic dynamical system (XϕAR(x),Σ) ∼= (Td−1, Rx′) has purely discrete spectrum.
(iii) The set −R′σ(w) is a bounded remainder set for Rx′ for each w ∈ A∗.
(iv) The shift XϕAR(x) has factor complexity (d− 1)n+ 1 and is balanced for words.

Note that Arnoux–Rauzy shifts are also dendric and their dimension group has a similar de-
scription as the one given in the previous section for the Cassaigne–Selmer shifts; see [BCBD+21].
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6.4. The Jacobi–Perron algorithm. One of the most famous multidimensional continued frac-
tion algorithms is the Jacobi–Perron algorithm; see e.g. [Lag93, Section 2] or [Sch00, Chapter 4].
We want to apply our theory to the case d = 3. In this case, the Jacobi–Perron algorithm
is defined on the set ∆ = {(x1, x2, x3) ∈ R3

+ : x1 + x2 + x3 = 1, x1 ≤ x3, x2 ≤ x3}. Let
L = {(a, b) ∈ N2 : 0 ≤ a ≤ b 6= 0}, and for (a, b) ∈ L define the matrices

Ja,b =

0 1 0
0 0 1
1 a b


and the sets ∆a,b = {(x1, x2, x3) ∈ ∆ : ax1 ≤ x2 < (a + 1)x1 and bx1 ≤ x3 < (b + 1)x1}. Then
UJP = {∆a,b : (a, b) ∈ L} forms a partition of ∆. We can thus define the matrix valued function

AJP : ∆→ GL(3,Z), x 7→ Ja,b if x ∈ ∆a,b.

This function is used to define the piecewise linear function TJP according to (2.1), which yields

TJP(x1, x2, x3) =

(
x2 − ax1

1− (a+ b)x1
,

x3 − bx1

1− (a+ b)x1
,

x1

1− (a+ b)x1

)
if x ∈ ∆(a, b).

The algorithm (∆, TJP, AJP) is called (2-dimensional) Jacobi–Perron algorithm and goes back to
Jacobi’s posthumously published work [HJ68]. Note that, contrary to the Cassaigne–Selmer al-
gorithm, this algorithm is multiplicative (its linear cocycle AJP produces infinitely many different
matrices). It is known from [Sch90] that the invariant measure νJP of TJP is equivalent to the
Lebesgue measure on ∆ and, hence, has full support and satisfies νJP ◦T � νJP. However, there is
no known simple expression for the density of νJP; for more on this subject, see [Bro96]. A cylinder

∆(a0,b0),...,(an−1,bn−1) =
{
x ∈ ∆ : (AJP(T 0x), . . . , AJP(Tn−1x)) = (Ja0,b0 , . . . , Jan−1,bn−1

)
}

=

n−1⋂
k=0

T−kJP (∆ak,bk)

is nonempty if and only if the pairs (a0, b0), . . . , (an−1, bn−1) ∈ L satisfy the admissibility condition

(6.7) 0 ≤ ak ≤ bk 6= 0, and if ak = bk then ak+1 = 0

for all 0 ≤ k < n; see [Sch00, Section 4.1]. This implies that the Jacobi–Perron algorithm satisfies
the finite range property. In other words, this admissibility condition is a sofic condition that
can be recognized by a finite graph. It is proved in [Lag93, p. 322] that the cocycle AJP is log-
integrable (which is nontrivial in this case because AJP has infinite range). Thus, because νJP has
full support, each x ∈ ∆ has positive range. The fact that AJP satisfies the Pisot condition is
proved in [Sch00, Chapter 16]. Following [Ber16], we define the Jacobi–Perron substitutions

(6.8) ιa,b :


1 7→ 2

2 7→ 3

3 7→ 12a3b

(
(a, b) ∈ L

)
.

Then tJa,b is the incidence matrix of ιa,b for each pair (a, b) ∈ L. Define the substitution se-
lection ϕJP on ∆ by setting ϕJP(x) = ιa,b if x ∈ ∆a,b. The associated faithful substitutive
realization ϕJP yields

(∆JP, TJP, νJP)
ϕJP∼= (DJP,Σ, νJP ◦ϕ−1

JP ),

where DJP is the set of all directive sequences (ιak,bk) satisfying the admissibility condition (6.7)
for all k ∈ N. This isomorphy is due to the fact that the set {∆a,b : (a, b) ∈ L} is a generating
(Markov) partition for TJP, which yields weak convergence; see [Lag93, Section 5].

To apply Theorem 3.1, it remains to establish that there exists a periodic Pisot point x ∈ ∆
for which ϕJP(x) has purely discrete spectrum. This assertion is easily checked. Indeed, ι0,1 is
a unimodular Pisot substitution (see also [DFPLR04] for relations between the Jacobi–Perron
algorithm and Pisot numbers) and (ι0,1)∞ ∈ DJP is admissible. Moreover, using for instance the
balanced pair algorithm (as we did in Section 6.2 for another substitution), one easily checks that
ι0,1 has purely discrete spectrum. This implies that the right eigenvector x ∈ ∆ of the incidence
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matrix of σ is a periodic Pisot point with ϕJP(x) having purely discrete spectrum. Thus, all the
conditions of Theorem 3.1 are satisfied and, because of right properness of all directive sequences,
we arrive together with Theorem 3.8 at the following result.

Theorem 6.6. Let (∆, TJP, AJP, νJP) be the 2-dimensional Jacobi–Perron algorithm, and let ϕJP be

as above. Then we have (∆, TJP, νJP)
ϕJP∼= (DJP,Σ, νJP ◦ϕ−1

JP ), and for νJP-a.e. x ∈ ∆ the following
assertions hold.

(i) The shift XϕJP(x) is a natural coding of the toral translation Rx′ w.r.t. the natural partition
{−R′σ(i) : i ∈ A}.

(ii) The S-adic dynamical system (XϕJP(x),Σ) ∼= (T2, Rx′) has purely discrete spectrum.
(iii) The set −R′σ(w) is a bounded remainder set for Rx′ for each w ∈ A∗.
(iv) The shift XϕJP(x) is balanced for words.

6.5. The Brun algorithm. The case d = 3 of the Brun algorithm is treated in [BST19]. Here,
we consider the unordered version of the Brun algorithm, as defined in [DHS13], with special
emphasis on the case d = 4. We start with the definition of the algorithm for arbitrary d ≥ 3. For
this algorithm, we have ∆ = {x ∈ [0, 1]d : ‖x‖1 = 1}, and the set of Brun substitutions over A is
defined by

(6.9) βi,j : j 7→ ij, k 7→ k for k ∈ A \ {j}.
(We emphasize that in [BF11] the authors deal with other substitutions related to this algorithm.)
Let

∆i,j =
{

(x1, . . . , xd) ∈ ∆ : xi ≥ xj ≥ xk for all k ∈ A \ {i, j}
}
.

Using the transposed incidence matrices of βi,j , we define the matrix valued function

AB : ∆→ GL(d,Z), x 7→ tMβi,j
if x ∈ ∆i,j ,

which yields

TB(x1, . . . , xd) =

(
x1

1− xj
, . . . ,

xi−1

1− xj
,
xi − xj
1− xj

,
xi+1

1− xj
, . . . ,

xd
1− xj

)
if x ∈ ∆i,j .

The algorithm (∆, TB, AB) is called (unordered) Brun algorithm. It goes back to [Bru19, Bru20,
Bru58]. The faithful substitution selection corresponding to the substitutions in (6.9) is defined
by ϕB(x) = βi,j if x ∈ ∆i,j . As indicated in [DHS13], the directive sequences σ = (σn) that are
generated by this algorithm are characterized by the admissibility condition

(σn, σn+1) ∈
{

(βi,j , βi,j) : i ∈ A, j ∈ A \ {i}
}

∪
{

(βi,j , βj,k) : i ∈ A, j ∈ A \ {i}, k ∈ A \ {j}
} for all n ∈ N.(6.10)

This is again a sofic condition that can be recognized by a finite graph. For the faithful substitutive
realization ϕB associated with ϕB, we have thus ϕB(∆) = DB for a sofic shift DB, and the algo-
rithm satisfies the finite range property. The Brun algorithm has an ergodic invariant probability
measure νB that is equivalent to the Lebesgue measure; see e.g. [AL18, Proposition 28]. Then each
x ∈ ∆ has positive range. Moreover, as TB maps open sets to open sets, we have νB ◦ T � νB.

We now confine ourselves to the case d = 4. The linear cocycle AB is log-integrable since AB

takes only 12 values. By Schratzberger [Sch01], we know that (∆, TB, AB, νB) satisfies the Pisot
condition; see also [HK00, Har02], where an acceleration of Brun’s algorithm is considered. This
implies that {∆i,j : i 6= j} is a generating partition for TB and that TB is weakly convergent,

hence, (∆, TB, νB)
ϕB∼= (DB,Σ, νB ◦ϕ−1

B ).
To apply Theorem 3.1, we have to find a periodic Pisot point x ∈ ∆ such that ϕB(x) has purely

discrete spectrum. To this end, consider

τ = β12 ◦ β23 ◦ β34 ◦ β41 :


1 7→ 12341

2 7→ 12

3 7→ 123

4 7→ 1234
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and let x ∈ ∆ be the dominant right eigenvector of Mτ . Then ϕB(x) = (β12, β23, β34, β41)∞ ∈ DB

is an admissible sequence. Since Mτ is a Pisot matrix, we conclude that x is a periodic Pisot point,
which has positive range by the above considerations. Again using the balanced pair algorithm,
one can show that τ has purely discrete spectrum. Since τ is left proper, ϕB(x) is also left proper
for νB-a.e. x ∈ ∆. Combining Theorem 3.1 with Theorem 3.8, we thus obtain the following result.

Theorem 6.7. Let (∆, TB, AB, νB) be the Brun algorithm with d = 4, and let ϕB be as above.

Then (∆, TB, νB)
ϕB∼= (DB,Σ, νB ◦ϕ−1

B ), and for νB-almost all x ∈ ∆, the following assertions hold.

(i) The shift XϕB(x) is a natural coding of the toral translation Rx′ w.r.t. the natural partition
{−R′σ(i) : i ∈ A}.

(ii) The S-adic dynamical system (XϕB(x),Σ) ∼= (T3, Rx′) has purely discrete spectrum.
(iii) The set −R′σ(w) is a bounded remainder set for Rx′ for each w ∈ A∗.
(iv) The shift XϕB(x) is balanced for words.

Note that this result gives a natural coding for (Lebesgue) a.a. points of T3 in terms of “Brun
S-adic sequences” by Remark 3.4, and by recalling that the ergodic invariant measure νB of the
Brun algorithm is equivalent to Lebesgue measure.

Corollary 6.8. For (Lebesgue) almost all t ∈ T3, there exists a minimal subshift X ⊂ {1, 2, 3, 4}N
with language balanced for factors such that (X,Σ) is a natural coding of the toral translation Rt.
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[And21b] M. Andrieu, A Rauzy fractal unbounded in all directions of the plane, C. R. Math. Acad. Sci. Paris
359 (2021), no. 4, 399–407.
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[Ber16] V. Berthé, S-adic expansions related to continued fractions, Natural extension of arithmetic algorithms
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[BS05] V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions, Integers 5 (2005),
no. 3, A2, 46.

[BS18] A. I. Bufetov and B. Solomyak, On ergodic averages for parabolic product flows, Bull. Soc. Math.
France 146 (2018), no. 4, 675–690.
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[Rau84] , Ensembles à restes bornés, Seminar on number theory, 1983–1984 (Talence, 1983/1984), Univ.

Bordeaux I, Talence, 1984, pp. Exp. No. 24, 12.
[RK01] A. Rosenfeld and R. Klette, Digital straightness, Electronic Notes in Theoretical Computer Science

46 (2001), 1 – 32, IWCIA 2001, 8th International Workshop on Combinatorial Image Analysis.

[RZ00] R. N. Risley and L. Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure
and transcendence, Acta Arith. 95 (2000), no. 2, 167–184.

[Sch73] F. Schweiger, The metrical theory of Jacobi-Perron algorithm, Lecture Notes in Mathematics, Vol.

334, Springer-Verlag, Berlin-New York, 1973.
[Sch74] W. M. Schmidt, Irregularities of distribution. VIII, Trans. Amer. Math. Soc. 198 (1974), 1–22.

[Sch90] F. Schweiger, On the invariant measure for Jacobi-Perron algorithm, Math. Pannon. 1 (1990), no. 2,

91–106.
[Sch00] , Multidimensional continued fractions, Oxford Science Publications, Oxford University Press,

Oxford, 2000.
[Sch01] B. R. Schratzberger, The quality of approximation of Brun’s algorithm in three dimensions, Monatsh.

Math. 134 (2001), no. 2, 143–157.

[Sch04] F. Schweiger, Ergodic and Diophantine properties of algorithms of Selmer type, Acta Arith. 114
(2004), no. 2, 99–111.

[Sel61] E. S. Selmer, Continued fractions in several dimensions, Nordisk Nat. Tidskr. 9 (1961), 37–43, 95.
[Sol97] B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), no. 3,

695–738.

[SS02] V. F. Sirvent and B. Solomyak, Pure discrete spectrum for one-dimensional substitution systems of

Pisot type, Canad. Math. Bull. 45 (2002), no. 4, 697–710, Dedicated to Robert V. Moody.
[ST09] A. Siegel and J. M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.)

(2009), no. 118, 140 pp.
[SW02] V. F. Sirvent and Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals,

Pacific J. Math. 206 (2002), no. 2, 465–485.

[Thu89] W. Thurston, Groups, tilings, and finite state automata, AMS Colloquium lecture notes, 1989, Un-
published manuscript.



CONTINUED FRACTION ALGORITHMS AND TRANSLATIONS 45

[Thu20] J. M. Thuswaldner, S-adic sequences. A bridge between dynamics, arithmetic, and geometry, Substi-

tution and Tiling Dynamics: Introduction to Self-inducing Structures (S. Akiyama and P. Arnoux,

eds.), Lecture Notes in Mathematics, vol. 2273, Springer, Cham, 2020, pp. 97–191.
[Tij80] R. Tijdeman, The chairman assignment problem, Discrete Math. 32 (1980), no. 3, 323–330.

[Tij00] , Fraenkel’s conjecture for six sequences, Discrete Math. 222 (2000), no. 1-3, 223–234.

[Via14] M. Viana, Lectures on Lyapunov exponents, Cambridge Studies in Advanced Mathematics, vol. 145,
Cambridge University Press, Cambridge, 2014.

[Wal82] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-

Verlag, New York, 1982.
[Yoc06] J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction, Frontiers in

number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 401–435.

[Yur95] M. Yuri, Multi-dimensional maps with infinite invariant measures and countable state sofic shifts,
Indag. Math. (N.S.) 6 (1995), no. 3, 355–383.
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