The topology of sums in powers of an algebraic number

Nikita Sidorov

(joint with Boris Solomyak)

The University of Manchester
April 8, 2010

Background

Let $1<\theta<2$ be our parameter. Put

$$
\Lambda_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

Background

Let $1<\theta<2$ be our parameter. Put

$$
\Lambda_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

and

$$
\Lambda(\theta)=\bigcup_{n \geq 1} \Lambda_{n}(\theta)
$$

Background

Let $1<\theta<2$ be our parameter. Put

$$
\Lambda_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

and

$$
\Lambda(\theta)=\bigcup_{n \geq 1} \Lambda_{n}(\theta)
$$

Trivial properties of $\Lambda(\theta)$:

Background

Let $1<\theta<2$ be our parameter. Put

$$
\Lambda_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

and

$$
\Lambda(\theta)=\bigcup_{n \geq 1} \Lambda_{n}(\theta)
$$

Trivial properties of $\Lambda(\theta)$:

- countable;

Background

Let $1<\theta<2$ be our parameter. Put

$$
\Lambda_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

and

$$
\Lambda(\theta)=\bigcup_{n \geq 1} \Lambda_{n}(\theta)
$$

Trivial properties of $\Lambda(\theta)$:

- countable;
- unbounded;

Background

Let $1<\theta<2$ be our parameter. Put

$$
\Lambda_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

and

$$
\Lambda(\theta)=\bigcup_{n \geq 1} \Lambda_{n}(\theta)
$$

Trivial properties of $\Lambda(\theta)$:

- countable;
- unbounded;
- symmetric about 0 .

Question: what is the topology of $\Lambda(\theta)$?

Question: what is the topology of $\Lambda(\theta)$? Is it dense? discrete? neither?

Question: what is the topology of $\Lambda(\theta)$? Is it dense? discrete? neither?

Theorem (Garsia, 1962)
Let θ be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\theta)$ is uniformly discrete.

Question: what is the topology of $\Lambda(\theta)$? Is it dense? discrete? neither?

Theorem (Garsia, 1962)
Let θ be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\theta)$ is uniformly discrete.

Proof.
Omitted.

Question: what is the topology of $\Lambda(\theta)$? Is it dense? discrete? neither?

Theorem (Garsia, 1962)
Let θ be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\theta)$ is uniformly discrete.

Proof.
Omitted.
Theorem (folklore)
If θ is transcendental, then 0 is a limit point of $\Lambda(\theta)$.

Proof.
Put

$$
D_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{0,1\}\right\}
$$

Proof.
Put

$$
D_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{0,1\}\right\} .
$$

Since θ is transcendental, $z_{n}(\theta):=\# D_{n}(\theta)=2^{n+1}$.

Proof.
Put

$$
D_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{0,1\}\right\} .
$$

Since θ is transcendental, $z_{n}(\theta):=\# D_{n}(\theta)=2^{n+1}$.
On the other hand, $\max D_{n}(\theta)=O\left(\theta^{n}\right) \ll 2^{n}$.

Proof.
Put

$$
D_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{0,1\}\right\} .
$$

Since θ is transcendental, $z_{n}(\theta):=\# D_{n}(\theta)=2^{n+1}$.
On the other hand, $\max D_{n}(\theta)=O\left(\theta^{n}\right) \ll 2^{n}$.
By the pigeonhole principle, there exist $x, y \in D_{n}(\theta)$ such that

$$
|x-y| \leq \text { const } \cdot\left(\frac{\theta}{2}\right)^{n}=o(1)
$$

Proof.
Put

$$
D_{n}(\theta)=\left\{\sum_{k=0}^{n} a_{k} \theta^{k} \mid a_{k} \in\{0,1\}\right\} .
$$

Since θ is transcendental, $z_{n}(\theta):=\# D_{n}(\theta)=2^{n+1}$.
On the other hand, $\max D_{n}(\theta)=O\left(\theta^{n}\right) \ll 2^{n}$.
By the pigeonhole principle, there exist $x, y \in D_{n}(\theta)$ such that

$$
|x-y| \leq \text { const } \cdot\left(\frac{\theta}{2}\right)^{n}=o(1)
$$

Since $x-y \in \Lambda_{n}(\theta)$, we are done.

Remark. θ does not have to be transcendental for this method to work.

Remark. θ does not have to be transcendental for this method to work.

Theorem (Drobot, 1973)
If 0 is a limit point of $\Lambda(\theta)$, then $\Lambda(\theta)$ is dense in \mathbb{R}.

Remark. θ does not have to be transcendental for this method to work.

Theorem (Drobot, 1973)
If 0 is a limit point of $\Lambda(\theta)$, then $\Lambda(\theta)$ is dense in \mathbb{R}.

Thus, if θ is not of height 1 (i.e., is not a root of $-1,0,1$ polynomial), then $\Lambda(\theta)$ is dense. (For example, $\theta=\sqrt{2}$.)

Remark. θ does not have to be transcendental for this method to work.

Theorem (Drobot, 1973)
If 0 is a limit point of $\Lambda(\theta)$, then $\Lambda(\theta)$ is dense in \mathbb{R}.

Thus, if θ is not of height 1 (i.e., is not a root of $-1,0,1$ polynomial), then $\Lambda(\theta)$ is dense. (For example, $\theta=\sqrt{2}$.)

Theorem (Erdős-Komornik, 1998)
If $\theta<\frac{1+\sqrt{5}}{2}$ and not Pisot, then $\Lambda(\theta)$ has a finite accumulation point.

Conjecture. If θ is not Pisot, then $z_{n}(\theta) \gg \theta^{n}$ and consequently, $\Lambda(\theta)$ is dense.

Conjecture. If θ is not Pisot, then $z_{n}(\theta) \gg \theta^{n}$ and consequently, $\Lambda(\theta)$ is dense.

We will be interested in the case of algebraic θ of height 1 which are not Pisot.

Conjecture. If θ is not Pisot, then $z_{n}(\theta) \gg \theta^{n}$ and consequently, $\Lambda(\theta)$ is dense.

We will be interested in the case of algebraic θ of height 1 which are not Pisot.

Definition. We say that an algebraic $\theta>1$ is a Perron number if $|\alpha|<\theta$ for any conjugate α of θ.

Conjecture. If θ is not Pisot, then $z_{n}(\theta) \gg \theta^{n}$ and consequently, $\Lambda(\theta)$ is dense.

We will be interested in the case of algebraic θ of height 1 which are not Pisot.

Definition. We say that an algebraic $\theta>1$ is a Perron number if $|\alpha|<\theta$ for any conjugate α of θ.

Theorem (S+Solomyak, 2009)
If θ is not Perron, then $\Lambda(\theta)$ is dense in \mathbb{R}.

Digression: $\ell(\theta), L(\theta)$

Put $D(\theta)=\bigcup_{n \geq 1} D_{n}(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ.

Digression: $\ell(\theta), L(\theta)$

Put $D(\theta)=\bigcup_{n \geq 1} D_{n}(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ.

Since $\forall \Delta>$ we have that $[0, \Delta] \cap D(\theta)$ is finite, $D(\theta)$ is discrete.

Digression: $\ell(\theta), L(\theta)$

Put $D(\theta)=\bigcup_{n \geq 1} D_{n}(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ.

Since $\forall \Delta>$ we have that $[0, \Delta] \cap D(\theta)$ is finite, $D(\theta)$ is discrete.
Write $D(\theta)=\left\{y_{0}<y_{1}<\ldots\right\}$.

Digression: $\ell(\theta), L(\theta)$

Put $D(\theta)=\bigcup_{n \geq 1} D_{n}(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ.

Since $\forall \Delta>$ we have that $[0, \Delta] \cap D(\theta)$ is finite, $D(\theta)$ is discrete.
Write $D(\theta)=\left\{y_{0}<y_{1}<\ldots\right\}$.
Put

$$
\begin{aligned}
& \ell(\theta)=\liminf _{n}\left(y_{n+1}-y_{n}\right), \\
& L(\theta)=\limsup _{n}\left(y_{n+1}-y_{n}\right) .
\end{aligned}
$$

It is obvious that $\ell(\theta)=0$ if and only if 0 is a limit point of $\Lambda(\theta)$.

It is obvious that $\ell(\theta)=0$ if and only if 0 is a limit point of $\Lambda(\theta)$.
Also, $\ell(\theta)=0$ if $z_{n}(\theta) \gg \theta^{n}$.

It is obvious that $\ell(\theta)=0$ if and only if 0 is a limit point of $\Lambda(\theta)$.
Also, $\ell(\theta)=0$ if $z_{n}(\theta) \gg \theta^{n}$.

Lemma (Erdős-Komornik, 1998)
We have always $z_{n}(\theta) \geq C \theta^{n}$ for some $C=C(\theta)>0$.

It is obvious that $\ell(\theta)=0$ if and only if 0 is a limit point of $\Lambda(\theta)$.
Also, $\ell(\theta)=0$ if $z_{n}(\theta) \gg \theta^{n}$.

Lemma (Erdős-Komornik, 1998)
We have always $z_{n}(\theta) \geq C \theta^{n}$ for some $C=C(\theta)>0$.

Lemma (S+Solomyak)
$z_{n}(\lambda) \geq|\lambda|^{-n-1}$ for all $\lambda \in \mathbb{C}$ with $\frac{1}{2}<|\lambda|<1$.

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

Then

$$
z_{n}(\theta)=z_{n}(\alpha)
$$

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

Then

$$
z_{n}(\theta)=z_{n}(\alpha) \geq C|\alpha|^{n}
$$

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

Then

$$
z_{n}(\theta)=z_{n}(\alpha) \geq C|\alpha|^{n} \gg \theta^{n}
$$

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

Then

$$
z_{n}(\theta)=z_{n}(\alpha) \geq C|\alpha|^{n} \gg \theta^{n}
$$

If $|\alpha|=\theta$ and p is the minimal polynomial of θ, then by a theorem due to D. Boyd,

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

Then

$$
z_{n}(\theta)=z_{n}(\alpha) \geq C|\alpha|^{n} \gg \theta^{n}
$$

If $|\alpha|=\theta$ and p is the minimal polynomial of θ, then by a theorem due to D . Boyd, we always have $p(t)=q\left(t^{m}\right)$ for some $m \geq 2$.

With this lemma, the proof of the theorem is fairly easy: assume first that $1<\theta<|\alpha|$, where α is a conjugate of θ.

Then

$$
z_{n}(\theta)=z_{n}(\alpha) \geq C|\alpha|^{n} \gg \theta^{n}
$$

If $|\alpha|=\theta$ and p is the minimal polynomial of θ, then by a theorem due to D . Boyd, we always have $p(t)=q\left(t^{m}\right)$ for some $m \geq 2$.

From this, one can deduce that

$$
z_{n}(\theta) \geq C \cdot \min \left\{\theta^{m n}, 2^{n}\right\} \gg \theta^{n}
$$

Theorem (S+Solomyak)

1. If θ has a conjugate α such that

$$
\theta|\alpha|<1
$$

Theorem (S+Solomyak)

1. If θ has a conjugate α such that

$$
\theta|\alpha|<1
$$

then $\ell(\theta)=0$ and consequently, $\Lambda(\theta)=0$.

Theorem (S+Solomyak)

1. If θ has a conjugate α such that

$$
\theta|\alpha|<1
$$

then $\ell(\theta)=0$ and consequently, $\Lambda(\theta)=0$.
2. If θ has a complex conjugate α such that

$$
\theta|\alpha|=1,
$$

then $\ell(\theta)=0$.

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.
For the second part, put $\theta_{1}=\theta, \theta_{2}=\alpha, \theta_{3}=\bar{\alpha}$.

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.
For the second part, put $\theta_{1}=\theta, \theta_{2}=\alpha, \theta_{3}=\bar{\alpha}$. We have

$$
\theta_{1}^{2} \theta_{2} \theta_{3}=1
$$

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.
For the second part, put $\theta_{1}=\theta, \theta_{2}=\alpha, \theta_{3}=\bar{\alpha}$. We have

$$
\theta_{1}^{2} \theta_{2} \theta_{3}=1
$$

Since the Galois group acts transitively, there exist $i, j \neq 1$ such that

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.
For the second part, put $\theta_{1}=\theta, \theta_{2}=\alpha, \theta_{3}=\bar{\alpha}$. We have

$$
\theta_{1}^{2} \theta_{2} \theta_{3}=1
$$

Since the Galois group acts transitively, there exist $i, j \neq 1$ such that

$$
\theta_{2}^{2} \theta_{i} \theta_{j}=1
$$

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.
For the second part, put $\theta_{1}=\theta, \theta_{2}=\alpha, \theta_{3}=\bar{\alpha}$. We have

$$
\theta_{1}^{2} \theta_{2} \theta_{3}=1
$$

Since the Galois group acts transitively, there exist $i, j \neq 1$ such that

$$
\theta_{2}^{2} \theta_{i} \theta_{j}=1
$$

Hence $\left|\theta_{i} \theta_{j}\right|=\theta^{2}$, and $\max \left\{\left|\theta_{i}\right|,\left|\theta_{j}\right|\right\} \geq \theta$, i.e., θ is not Perron.

Idea of the proof:

Note that $z_{n}(1 / \alpha)=z_{n}(\alpha)$.
For the second part, put $\theta_{1}=\theta, \theta_{2}=\alpha, \theta_{3}=\bar{\alpha}$. We have

$$
\theta_{1}^{2} \theta_{2} \theta_{3}=1
$$

Since the Galois group acts transitively, there exist $i, j \neq 1$ such that

$$
\theta_{2}^{2} \theta_{i} \theta_{j}=1
$$

Hence $\left|\theta_{i} \theta_{j}\right|=\theta^{2}$, and $\max \left\{\left|\theta_{i}\right|,\left|\theta_{j}\right|\right\} \geq \theta$, i.e., θ is not Perron. Therefore, $\ell(\theta)=0$.

Bonus: In all these results, if $\theta<\sqrt{2}$, then $L(\theta)=0$. This is because $\ell\left(\theta^{2}\right)=0$ implies $L(\theta)=0$ (Erdős-Komornik).

Bonus: In all these results, if $\theta<\sqrt{2}$, then $L(\theta)=0$. This is because $\ell\left(\theta^{2}\right)=0$ implies $L(\theta)=0$ (Erdős-Komornik).

Example

Let $\theta \approx 1.22074$ be the positive root of $x^{4}=x+1$. Then θ has a single conjugate $\alpha \approx-0.72449$ inside the open disc, whence $L(\theta)=0$.

Bonus: In all these results, if $\theta<\sqrt{2}$, then $L(\theta)=0$. This is because $\ell\left(\theta^{2}\right)=0$ implies $L(\theta)=0$ (Erdős-Komornik).

Example

Let $\theta \approx 1.22074$ be the positive root of $x^{4}=x+1$. Then θ has a single conjugate $\alpha \approx-0.72449$ inside the open disc, whence $L(\theta)=0$.

Example

For the equation $x^{5}=x^{4}-x^{2}+x+1$ we have $\theta \approx 1.26278$ and $|\alpha| \approx 0.74090$ so $|\alpha| \theta \approx 0.93559$ (and $\alpha \notin \mathbb{R}$). Again, $L(\theta)=0$.

Bonus: In all these results, if $\theta<\sqrt{2}$, then $L(\theta)=0$. This is because $\ell\left(\theta^{2}\right)=0$ implies $L(\theta)=0$ (Erdős-Komornik).

Example

Let $\theta \approx 1.22074$ be the positive root of $x^{4}=x+1$. Then θ has a single conjugate $\alpha \approx-0.72449$ inside the open disc, whence $L(\theta)=0$.

Example

For the equation $x^{5}=x^{4}-x^{2}+x+1$ we have $\theta \approx 1.26278$ and $|\alpha| \approx 0.74090$ so $|\alpha| \theta \approx 0.93559$ (and $\alpha \notin \mathbb{R}$). Again, $L(\theta)=0$.

