The topology of sums in powers of an algebraic number

Nikita Sidorov

(joint with Boris Solomyak)

The University of Manchester

April 8, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $1 < \theta < 2$ be our parameter. Put

$$\Lambda_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{-1,0,1\}
ight\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $1 < \theta < 2$ be our parameter. Put

$$\Lambda_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{-1, 0, 1\}
ight\}$$

 and

$$\Lambda(\theta) = \bigcup_{n \ge 1} \Lambda_n(\theta).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $1 < \theta < 2$ be our parameter. Put

$$\Lambda_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{-1, 0, 1\}
ight\}$$

and

$$\Lambda(\theta) = \bigcup_{n \ge 1} \Lambda_n(\theta).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trivial properties of $\Lambda(\theta)$:

Let $1 < \theta < 2$ be our parameter. Put

$$\Lambda_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{-1, 0, 1\}
ight\}$$

and

$$\Lambda(\theta) = \bigcup_{n \ge 1} \Lambda_n(\theta).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Trivial properties of $\Lambda(\theta)$:

• countable;

Let $1 < \theta < 2$ be our parameter. Put

$$\Lambda_n(\theta) = \left\{ \sum_{k=0}^n a_k \theta^k \mid a_k \in \{-1, 0, 1\} \right\}$$

and

$$\Lambda(\theta) = \bigcup_{n \ge 1} \Lambda_n(\theta).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trivial properties of $\Lambda(\theta)$:

- countable;
- unbounded;

Let $1 < \theta < 2$ be our parameter. Put

$$\Lambda_n(\theta) = \left\{ \sum_{k=0}^n a_k \theta^k \mid a_k \in \{-1, 0, 1\} \right\}$$

and

$$\Lambda(\theta) = \bigcup_{n \ge 1} \Lambda_n(\theta).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trivial properties of $\Lambda(\theta)$:

- countable;
- unbounded;
- symmetric about 0.

Question: what is the **topology** of $\Lambda(\theta)$?

・ロト < 団ト < 三ト < 三ト < 回 < つへの

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem (Garsia, 1962)

Let θ be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\theta)$ is uniformly discrete.

Theorem (Garsia, 1962)

Let θ be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\theta)$ is uniformly discrete.

Proof. Omitted.

Theorem (Garsia, 1962)

Let θ be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\theta)$ is uniformly discrete.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof. Omitted.

Theorem (folklore)

If θ is transcendental, then 0 is a limit point of $\Lambda(\theta)$.

Proof. Put

$$D_n(heta) = \left\{ \sum_{k=0}^n \mathsf{a}_k heta^k \mid \mathsf{a}_k \in \{0,1\}
ight\}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Put

$$D_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{0,1\}
ight\}.$$

Since θ is transcendental, $z_n(\theta) := \#D_n(\theta) = 2^{n+1}$.

Put

$$D_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{0,1\}
ight\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since θ is transcendental, $z_n(\theta) := \#D_n(\theta) = 2^{n+1}$.

On the other hand, $\max D_n(\theta) = O(\theta^n) \ll 2^n$.

Put

$$D_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{0,1\}
ight\}.$$

Since θ is transcendental, $z_n(\theta) := \#D_n(\theta) = 2^{n+1}$.

On the other hand, $\max D_n(\theta) = O(\theta^n) \ll 2^n$.

By the pigeonhole principle, there exist $x, y \in D_n(\theta)$ such that

$$|x-y| \leq \operatorname{const} \cdot \left(rac{ heta}{2}
ight)^n = o(1).$$

Put

$$D_n(heta) = \left\{\sum_{k=0}^n a_k heta^k \mid a_k \in \{0,1\}
ight\}.$$

Since θ is transcendental, $z_n(\theta) := \#D_n(\theta) = 2^{n+1}$.

On the other hand, $\max D_n(\theta) = O(\theta^n) \ll 2^n$.

By the pigeonhole principle, there exist $x, y \in D_n(\theta)$ such that

$$|x-y| \leq \operatorname{const} \cdot \left(\frac{\theta}{2}\right)^n = o(1).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since $x - y \in \Lambda_n(\theta)$, we are done.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Theorem (Drobot, 1973)

If 0 is a limit point of $\Lambda(\theta)$, then $\Lambda(\theta)$ is dense in \mathbb{R} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Drobot, 1973)

If 0 is a limit point of $\Lambda(\theta)$, then $\Lambda(\theta)$ is dense in \mathbb{R} .

Thus, if θ is not of height 1 (i.e., is not a root of -1, 0, 1 polynomial), then $\Lambda(\theta)$ is dense. (For example, $\theta = \sqrt{2}$.)

Theorem (Drobot, 1973)

If 0 is a limit point of $\Lambda(\theta)$, then $\Lambda(\theta)$ is dense in \mathbb{R} .

Thus, if θ is not of height 1 (i.e., is not a root of -1, 0, 1 polynomial), then $\Lambda(\theta)$ is dense. (For example, $\theta = \sqrt{2}$.)

Theorem (Erdős-Komornik, 1998) If $\theta < \frac{1+\sqrt{5}}{2}$ and not Pisot, then $\Lambda(\theta)$ has a finite accumulation point.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We will be interested in the case of algebraic θ of height 1 which are not Pisot.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We will be interested in the case of algebraic θ of height 1 which are not Pisot.

Definition. We say that an algebraic $\theta > 1$ is a Perron number if $|\alpha| < \theta$ for any conjugate α of θ .

We will be interested in the case of algebraic θ of height 1 which are not Pisot.

Definition. We say that an algebraic $\theta > 1$ is a Perron number if $|\alpha| < \theta$ for any conjugate α of θ .

Theorem (S+Solomyak, 2009)

If θ is not Perron, then $\Lambda(\theta)$ is dense in \mathbb{R} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Put $D(\theta) = \bigcup_{n \ge 1} D_n(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ .

Put $D(\theta) = \bigcup_{n \ge 1} D_n(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ .

Since $\forall \Delta >$ we have that $[0, \Delta] \cap D(\theta)$ is finite, $D(\theta)$ is discrete.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Put $D(\theta) = \bigcup_{n \ge 1} D_n(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ .

Since $\forall \Delta >$ we have that $[0, \Delta] \cap D(\theta)$ is finite, $D(\theta)$ is discrete.

Write $D(\theta) = \{y_0 < y_1 < ... \}.$

Put $D(\theta) = \bigcup_{n \ge 1} D_n(\theta)$, i.e., the set of all finite 0-1 sums in nonnegative powers of θ .

Since $\forall \Delta >$ we have that $[0, \Delta] \cap D(\theta)$ is finite, $D(\theta)$ is discrete.

Write $D(\theta) = \{y_0 < y_1 < ... \}.$

Put

$$\ell(\theta) = \liminf_{n} (y_{n+1} - y_n),$$

$$L(\theta) = \limsup_{n} (y_{n+1} - y_n).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Also, $\ell(\theta) = 0$ if $z_n(\theta) \gg \theta^n$.

Also,
$$\ell(\theta) = 0$$
 if $z_n(\theta) \gg \theta^n$.

Lemma (Erdős-Komornik, 1998) We have always $z_n(\theta) \ge C\theta^n$ for some $C = C(\theta) > 0$.

(日) (同) (三) (三) (三) (○) (○)

Also,
$$\ell(\theta) = 0$$
 if $z_n(\theta) \gg \theta^n$.

Lemma (Erdős-Komornik, 1998) We have always $z_n(\theta) \ge C\theta^n$ for some $C = C(\theta) > 0$.

Lemma (S+Solomyak) $z_n(\lambda) \ge |\lambda|^{-n-1}$ for all $\lambda \in \mathbb{C}$ with $\frac{1}{2} < |\lambda| < 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Then

$$z_n(\theta)=z_n(\alpha)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then

$$z_n(\theta) = z_n(\alpha) \ge C |\alpha|^n$$

Then

$$z_n(\theta) = z_n(\alpha) \ge C |\alpha|^n \gg \theta^n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then

$$z_n(\theta) = z_n(\alpha) \ge C |\alpha|^n \gg \theta^n.$$

If $|\alpha| = \theta$ and p is the minimal polynomial of θ , then by a theorem due to D. Boyd,

Then

$$z_n(\theta) = z_n(\alpha) \ge C |\alpha|^n \gg \theta^n.$$

If $|\alpha| = \theta$ and p is the minimal polynomial of θ , then by a theorem due to D. Boyd, we always have $p(t) = q(t^m)$ for some $m \ge 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then

$$z_n(\theta) = z_n(\alpha) \ge C |\alpha|^n \gg \theta^n.$$

If $|\alpha| = \theta$ and p is the minimal polynomial of θ , then by a theorem due to D. Boyd, we always have $p(t) = q(t^m)$ for some $m \ge 2$.

From this, one can deduce that

$$z_n(heta) \ge C \cdot \min\{\theta^{mn}, 2^n\} \gg \theta^n$$
.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (S+Solomyak)

1. If θ has a conjugate α such that

 $\theta |\alpha| < 1,$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (S+Solomyak)

1. If θ has a conjugate α such that

 $\theta |\alpha| < 1,$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then $\ell(\theta) = 0$ and consequently, $\Lambda(\theta) = 0$.

Theorem (S+Solomyak)

1. If θ has a conjugate α such that

 $|\theta|\alpha| < 1,$

then $\ell(\theta) = 0$ and consequently, $\Lambda(\theta) = 0$.

2. If θ has a complex conjugate α such that

$$|\theta|\alpha| = 1,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then $\ell(\theta) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note that $z_n(1/\alpha) = z_n(\alpha)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note that $z_n(1/\alpha) = z_n(\alpha)$.

For the second part, put $\theta_1 = \theta, \theta_2 = \alpha, \theta_3 = \overline{\alpha}$.

Note that $z_n(1/\alpha) = z_n(\alpha)$.

For the second part, put $\theta_1 = \theta, \theta_2 = \alpha, \theta_3 = \overline{\alpha}$. We have

 $\theta_1^2\theta_2\theta_3=1.$

Note that $z_n(1/\alpha) = z_n(\alpha)$.

For the second part, put $\theta_1 = \theta, \theta_2 = \alpha, \theta_3 = \overline{\alpha}$. We have

$$\theta_1^2 \theta_2 \theta_3 = 1.$$

Since the Galois group acts transitively, there exist $i, j \neq 1$ such that

Note that $z_n(1/\alpha) = z_n(\alpha)$.

For the second part, put $\theta_1 = \theta, \theta_2 = \alpha, \theta_3 = \overline{\alpha}$. We have

$$\theta_1^2 \theta_2 \theta_3 = 1.$$

Since the Galois group acts transitively, there exist $i,j \neq 1$ such that

$$\theta_2^2 \theta_i \theta_j = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note that $z_n(1/\alpha) = z_n(\alpha)$.

For the second part, put $\theta_1 = \theta$, $\theta_2 = \alpha$, $\theta_3 = \overline{\alpha}$. We have

$$\theta_1^2 \theta_2 \theta_3 = 1.$$

Since the Galois group acts transitively, there exist $i,j \neq 1$ such that

$$\theta_2^2 \theta_i \theta_j = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence $|\theta_i \theta_j| = \theta^2$, and max $\{|\theta_i|, |\theta_j|\} \ge \theta$, i.e., θ is not Perron.

Note that $z_n(1/\alpha) = z_n(\alpha)$.

For the second part, put $\theta_1 = \theta, \theta_2 = \alpha, \theta_3 = \overline{\alpha}$. We have

$$\theta_1^2 \theta_2 \theta_3 = 1.$$

Since the Galois group acts transitively, there exist $i, j \neq 1$ such that

$$\theta_2^2 \theta_i \theta_j = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence $|\theta_i \theta_j| = \theta^2$, and $\max\{|\theta_i|, |\theta_j|\} \ge \theta$, i.e., θ is not Perron. Therefore, $\ell(\theta) = 0$.

Example

Let $\theta \approx 1.22074$ be the positive root of $x^4 = x + 1$. Then θ has a single conjugate $\alpha \approx -0.72449$ inside the open disc, whence $L(\theta) = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Let $\theta \approx 1.22074$ be the positive root of $x^4 = x + 1$. Then θ has a single conjugate $\alpha \approx -0.72449$ inside the open disc, whence $L(\theta) = 0$.

Example

For the equation $x^5 = x^4 - x^2 + x + 1$ we have $\theta \approx 1.26278$ and $|\alpha| \approx 0.74090$ so $|\alpha|\theta \approx 0.93559$ (and $\alpha \notin \mathbb{R}$). Again, $L(\theta) = 0$.

(日) (同) (三) (三) (三) (○) (○)

Example

Let $\theta \approx 1.22074$ be the positive root of $x^4 = x + 1$. Then θ has a single conjugate $\alpha \approx -0.72449$ inside the open disc, whence $L(\theta) = 0$.

Example

For the equation $x^5 = x^4 - x^2 + x + 1$ we have $\theta \approx 1.26278$ and $|\alpha| \approx 0.74090$ so $|\alpha|\theta \approx 0.93559$ (and $\alpha \notin \mathbb{R}$). Again, $L(\theta) = 0$.

(日) (同) (三) (三) (三) (○) (○)