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Let 1 < 6 < 2 be our parameter. Put

/\,,((9) = {Zn: akﬁk ’ ak € {—1,0,1}}

k=0

and

N©B) = | An(0).

n>1
Trivial properties of A(6):
e countable;
e unbounded;

e symmetric about 0.
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Let 8 be a Pisot number, i.e, an algebraic integer whose other
conjugates are less than 1 in modulus. Then N\(0) is uniformly
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Proof.
Omitted.

Theorem (folklore)
If § is transcendental, then 0 is a limit point of A(9).
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k=0

Since  is transcendental, z,(6) := #D,(0) = 2"*1.
On the other hand, max D,(0) = O(0") < 2".

By the pigeonhole principle, there exist x,y € D,(0) such that

9 n
|x — y| < const - <§> = o(1).

Since x — y € N,(0), we are done.
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Theorem (Drobot, 1973)
If 0 is a limit point of \(9), then \() is dense in R.

Thus, if 6 is not of height 1 (i.e., is not a root of —1,0,1
polynomial), then A(6) is dense. (For example, § = v/2.)

Theorem (Erdés-Komornik, 1998)

Ifo < # and not Pisot, then \(0) has a finite accumulation
point.
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Conjecture. If 6 is not Pisot, then z,(0) > 0" and consequently,
A(0) is dense.

We will be interested in the case of algebraic 8 of height 1 which
are not Pisot.

Definition. We say that an algebraic § > 1 is a Perron number if
|| < @ for any conjugate « of 6.

Theorem (S+Solomyak, 2009)
If 0 is not Perron, then \(0) is dense in R.



Digression: ¢(0), L(0)

Put D(0) = U,>1 Dn(0), i.e., the set of all finite 0-1 sums in
nonnegative powers of 6.



Digression: ¢(0), L(0)

Put D(0) = U,>1 Dn(0), i.e., the set of all finite 0-1 sums in
nonnegative powers of 6.

Since VA > we have that [0, A] N D(0) is finite, D(€) is discrete.



Digression: ¢(0), L(0)

Put D(0) = U,>1 Dn(0), i.e., the set of all finite 0-1 sums in
nonnegative powers of 6.

Since VA > we have that [0, A] N D(0) is finite, D(€) is discrete.

Write D(G) = {yo <n< }



Digression: ¢(0), L(0)

Put D(0) = U,>1 Dn(0), i.e., the set of all finite 0-1 sums in
nonnegative powers of 6.

Since VA > we have that [0, A] N D(0) is finite, D(€) is discrete.
Write D(G) = {yo <n< }
Put

2(0) = liminf(yp+1 — Yn),
L(0) = limsup(Yn+1 — Yn)-
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Also, £(6) = 0 if z,(0) > 6".

Lemma (Erdés-Komornik, 1998)
We have always z,(0) > CO" for some C = C(6) > 0.

Lemma (S+Solomyak)
zp(A) = [\ for all A € C with 3 < |A| < 1.
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With this lemma, the proof of the theorem is fairly easy: assume
first that 1 < 6 < |«|, where « is a conjugate of 6.

Then

zp(0) = zp(a) > Cla|" > 6".
If |a] = 0 and p is the minimal polynomial of €, then by a theorem
due to D. Boyd, we always have p(t) = q(t™) for some m > 2.

From this, one can deduce that

zp(0) > C-min{0™",2"} > 6". O
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Theorem (S-+Solomyak)

1. If 0 has a conjugate a such that
fla < 1,
then () = 0 and consequently, N(§) = 0.
2. If 0 has a complex conjugate « such that
Olal =1,

then £(0) = 0.
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Note that z,(1/a) = zp(«).
For the second part, put 61 = 60,0, = o, 03 = @. We have
626,603 = 1.

Since the Galois group acts transitively, there exist i,j # 1 such
that
020;0; = 1.

Hence |0;0;] = 62, and max{|¢;|, 6|} > 6, i.e., 6 is not Perron.
Therefore, ¢(0) = 0.
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