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Trivial properties of Λ(θ):

• countable;

• unbounded;

• symmetric about 0.
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Theorem (folklore)

If θ is transcendental, then 0 is a limit point of Λ(θ).
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Since θ is transcendental, zn(θ) := #Dn(θ) = 2n+1.

On the other hand, maxDn(θ) = O(θn) ≪ 2n.

By the pigeonhole principle, there exist x , y ∈ Dn(θ) such that

|x − y | ≤ const ·
(

θ

2

)n

= o(1).

Since x − y ∈ Λn(θ), we are done.
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Thus, if θ is not of height 1 (i.e., is not a root of −1, 0, 1
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√
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Theorem (Erdős-Komornik, 1998)

If θ < 1+
√

5
2

and not Pisot, then Λ(θ) has a finite accumulation

point.



Conjecture. If θ is not Pisot, then zn(θ) ≫ θn and consequently,
Λ(θ) is dense.



Conjecture. If θ is not Pisot, then zn(θ) ≫ θn and consequently,
Λ(θ) is dense.

We will be interested in the case of algebraic θ of height 1 which
are not Pisot.



Conjecture. If θ is not Pisot, then zn(θ) ≫ θn and consequently,
Λ(θ) is dense.

We will be interested in the case of algebraic θ of height 1 which
are not Pisot.

Definition. We say that an algebraic θ > 1 is a Perron number if
|α| < θ for any conjugate α of θ.



Conjecture. If θ is not Pisot, then zn(θ) ≫ θn and consequently,
Λ(θ) is dense.

We will be interested in the case of algebraic θ of height 1 which
are not Pisot.

Definition. We say that an algebraic θ > 1 is a Perron number if
|α| < θ for any conjugate α of θ.

Theorem (S+Solomyak, 2009)

If θ is not Perron, then Λ(θ) is dense in R.
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Put D(θ) =
⋃

n≥1 Dn(θ), i.e., the set of all finite 0-1 sums in
nonnegative powers of θ.

Since ∀∆ > we have that [0,∆] ∩ D(θ) is finite, D(θ) is discrete.

Write D(θ) = {y0 < y1 < . . . }.

Put

ℓ(θ) = lim inf
n

(yn+1 − yn),

L(θ) = lim sup
n

(yn+1 − yn).
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Also, ℓ(θ) = 0 if zn(θ) ≫ θn.

Lemma (Erdős-Komornik, 1998)

We have always zn(θ) ≥ Cθn for some C = C (θ) > 0.

Lemma (S+Solomyak)

zn(λ) ≥ |λ|−n−1 for all λ ∈ C with 1
2

< |λ| < 1.
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With this lemma, the proof of the theorem is fairly easy: assume
first that 1 < θ < |α|, where α is a conjugate of θ.

Then
zn(θ) = zn(α) ≥ C |α|n ≫ θn.

If |α| = θ and p is the minimal polynomial of θ, then by a theorem
due to D. Boyd, we always have p(t) = q(tm) for some m ≥ 2.

From this, one can deduce that

zn(θ) ≥ C · min{θmn, 2n} ≫ θn.
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1. If θ has a conjugate α such that

θ|α| < 1,

then ℓ(θ) = 0 and consequently, Λ(θ) = 0.

2. If θ has a complex conjugate α such that

θ|α| = 1,

then ℓ(θ) = 0.
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Idea of the proof:

Note that zn(1/α) = zn(α).

For the second part, put θ1 = θ, θ2 = α, θ3 = α. We have

θ2
1θ2θ3 = 1.

Since the Galois group acts transitively, there exist i , j 6= 1 such
that

θ2
2θiθj = 1.

Hence |θiθj | = θ2, and max{|θi |, |θj |} ≥ θ, i.e., θ is not Perron.
Therefore, ℓ(θ) = 0.
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