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Abstract. In the first part of the paper we prove that the Zeckendorf sum-of-
digits function sZ(n) and similarly defined functions evaluated on polynomial

sequences of positive integers or primes satisfy a central limit theorem. We
also prove that the Zeckendorf expansion and the q-ary expansions of integers
are asymptotically independent.

1. Introduction

Let q ≥ 2 be an integer. Then a real-valued function f defined on the non-
negative integers is called q-additive if f satisfies

f(0) = 0 and f(n) =
∑
k≥0

f(εq,k(n)qk),

where εq,k(n) ∈ {0, 1, . . . , q − 1} are the digits in the q-ary expansion

n =
∑
k≥0

εq,k(n)qk

of the integer n ≥ 0. For example, the sum-of-digits function

sq(n) =
∑
j≥0

εq,k(n)

is a q-additive function. The distribution behaviour of q-additive functions has been
discussed by several authors (starting most probably with M. Mendès France [18]
and H. Delange [3], see also Coquet [2], Dumont and Thomas [10, 11], Manstavic̆ius
[16], and [6] for a list of further references). Most papers deal with the average
value or the distribution of q-additive function. There are, however, also laws of
the iterated logarithm and more generally a Strassen law for the sum of digits
function due to Manstavic̆ius [17]. (It seems to be difficult to generalize such a
law to the Zeckendorf sum-of-digits function since a corresponding Fundamental
Lemma seems to be out of reach at the moment, even the generalization to a joint
law of two q-ary sum-of-digits function is not obvious, see [8].)

The most general central limit theorem for q-additive functions f is due to
Manstavic̆ius [16], where the distribution of the values f(n) (0 ≤ n < N) is consid-
ered. In this paper we are interested in the distribution of f(P (n)) (0 ≤ n < N),
where P (x) is an integer polynomial. Here the best known result is due to Bassily
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and Kátai [1].1 (Here and in the sequel Φ(x) denotes the distribution function of
the standard normal law.)
Theorem 1. Let f be a q-additive function such that f(bqk) = O (1) as k → ∞
and b ∈ {0, . . . , q − 1}. Assume that Dq(N)

(logN)η → ∞ as N → ∞ for some η > 0
and let P (n) be a polynomial with integer coefficients, degree r and positive leading
term. Then, as N →∞,

1
N

#
{
n < N

∣∣∣∣f(P (n))−Mq(Nr)
Dq(Nr)

< x

}
→ Φ(x)

and
1

π(N)
#
{
p ∈ P, p < N

∣∣∣∣f(P (p))−Mq(Nr)
Dq(Nr)

< x

}
→ Φ(x),

where

Mq(N) :=
[logq N ]∑
k=0

µk,q, Dq(N)2 =
[logq N ]∑
k=0

σ2
k,q

and

µk,q :=
1
q

q−1∑
b=0

f(bqk), σ2
k,q :=

1
q

q−1∑
b=0

f2(bqk)− µ2
k,q.

This result relies on the fact that suitably modified centralized moments con-
verge.

The main purpose of this paper is to extend this result to certain G-ary digital
expansions. Let a ≥ 1 be an integer and the sequence G = (Gk)k≥0 be defined by
the linear recurrence

Gk = aGk−1 +Gk−2, G0 = 1, G1 = a+ 1.

Now every integer n ≥ 0 has a unique digital expansion

n =
∑
k≥0

εG,k(n)Gk

with integer digits 0 ≤ εG,k(n) ≤ a provided that
j∑

k=0

εG,k(n)Gk < Gj+1

for all j ≥ 0 (which means that εG,k−1(n) = 0 if εG,k(n) = a). A special case
of these expansions is the Zeckendorf expansion where a = 1 and the Gk are the
Fibonacci numbers.

A function f is said to be G-additive, if

f(0) = 0 and f(n) =
∑
k≥0

f(εG,k(n)Gk).

Alternatively we have
f(n) =

∑
k≥0

fk(εG,k(n)),

where fk(b) := f(bGk).

1This theorem was only stated (and proved) for η = 1
3

. However, a short inspection of the

proof shows that η > 0 is sufficient.
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First we will prove the following theorem concerning the distribution of the
sequence f(n), 0 ≤ n < N . The proof essentially relies on the fact that the possible
G-ary digital expansions can be represented by a Markov chain. Note that the
sequence Gk is also given by

(1.1) Gk =
α(α+ 1)
α2 + 1

αk − α− 1
α2 + 1

(
− 1
α

)k
,

where α is the positive root of the characteristic polynomial of the linear recurrence

χ(x) = x2 − ax− 1.

Theorem 2. Let G be as above, f a G-additive function such that fk(b) = O (1)
as k → ∞ for b ∈ {0, . . . , a}. Then, for all η > 0, the expected value of f(n),
0 ≤ n < N , is given by

(1.2) EN :=
1
N

∑
n<N

f(n) = M(N) +O ((logN)η) ,

where

M(N) = MG(N) =
[logαN ]∑
k=0

µk with µk =
α

α2 + 1

a−1∑
b=1

fk(b) +
1

α2 + 1
fk(a).

Furthermore, set

D(N)2 = DG(N)2 =
[logαN ]∑
j,k=0

σ
(2)
j,k

with

σ
(2)
j,k =


α

α2+1

a−1∑
b=1

fk(b)2 + 1
α2+1fk(a)2 − µ2

k if j = k(
− 1
α2

)|j−k|
µmin(j,k)µmax(j,k) if j 6= k,

where

µk = − α

α2 + 1

a−1∑
b=1

fk(b) +
α2

α2 + 1
fk(a).

Assume further that there exists a constant c > 0 such that σ(2)
k,k ≥ c for all k ≥ 0.

Then, as N →∞,

(1.3)
1
N

#
{
n < N

∣∣∣∣f(n)−M(N)
D(N)

< x

}
→ Φ(x)

and

(1.4)
1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x)

for all positive integers h.

(1.3) has been shown by Drmota [5] for strongly G-additive functions f , i.e.

f(n) =
∑
k≥0

f(εk(n)).
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Furthermore, it should be noted that (1.4) provides an asymptotic relation for the
variance, too, however, without an error term:

(1.5) VN :=
1
N

∑
n<N

(f(n)− EN )2 ∼ D(N)2.

We will use Theorem 2 and a method similar to Bassily and Kátai’s to prove
Theorem 3.
Theorem 3. Let G, f be as in Theorem 2 and P (n) a polynomial with integer
coefficients, degree r and positive leading term. Then, as N →∞,

(1.6)
1
N

#
{
n < N

∣∣∣∣f(P (n))−M(Nr)
D(Nr)

< x

}
→ Φ(x)

and

(1.7)
1

π(N)
#
{
p < N

∣∣∣∣f(P (p))−M(Nr)
D(Nr)

< x

}
→ Φ(x).

and
1
N

∑
n<N

(
f(P (n))−M(Nr)

D(Nr)

)h
→
∫ ∞
−∞

xh dΦ(x),

1
π(N)

∑
p<N

(
f(P (p))−M(Nr)

D(Nr)

)h
→
∫ ∞
−∞

xh dΦ(x)

for all positive integers h, if we set f(P (n)) = −f(−P (n)) for P (n) < 0.
Note that definition of f(P (n)) for P (n) < 0 has no influence on the result,

because the number of non-negative integers n with P (n) < 0 is negligible.
Our next results concern the indepence of different digital expansions. For ex-

ample, in [6] the following property is shown. Suppose that q1, q2 are two coprime
integers and f1, f2 q1- resp. q2-additive functions satisfying the assumptions of The-
orem 1. Then we have, as N →∞,

1
π(N)

#
{
n < N

∣∣∣∣fi(n)−Mqi(N)
Dqi(N)

< xi (i = 1, 2)
}
→ Φ(x1)Φ(x2),

i.e. the distribution of the pairs (f1(n), f2(n)), 0 ≤ n < N , can be considered as
independent.

We will extend this property to our more general situation.
Theorem 4. Suppose that f1, f2 are two functions satisfying one of the following
conditions.

• (i) q1, q2 ≥ 2 are two positive coprime integers and f1, f2 q1- resp. q2-
additive functions satisfying the assumptions of Theorem 1. Furthermore
set Mi(N) := Mqi(N) and Di(N) := Dqi(N) (i = 1, 2).

• (ii) q ≥ 2 is an integer and f1(n) a q-additive function satisfying the as-
sumptions of Theorem 1. a ≥ 1 is an integer and f2(n) is a G-additive func-
tion satisfying the assumptions of Theorem 2. Furthermore set M1(N) :=
Mq(N), D1(N) := Dq(N) and M2(N) := MG(N), D2(N) := DG(N).

• (iii) a1, a2 ≥ 1 are two different integers such that
√

a2
1+4

a2
2+4

is irrational,
G = (Gj)j≥0 and H = (Hj)j≥0 the corresponding linear recurrent se-
quences, and f1, f2 G- resp. H-additive functions satisfying the assumptions
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of Theorem 2. Furthermore set M1(N) := MG(N), D1(N) := DG(N) and
M2(N) := MH(N), D2(N) := DH(N).

Let P1(x), P2(x) be two polynomials with integer coefficients, degrees r1, r2 and pos-
itive leading term. Then, as N →∞,

(1.8)
1
N

#
{
n < N

∣∣∣∣fi(Pi(n))−Mi(Nri)
Di(Nri)

< xi (i = 1, 2)
}
→ Φ(x1)Φ(x2)

and

(1.9)
1

π(N)
#
{
p < N

∣∣∣∣fi(Pi(p))−Mi(Nri)
Di(Nri)

< xi (i = 1, 2)
}
→ Φ(x1)Φ(x2).

The paper is organized in the following way. Section 2 is devoted to the proof
of Theorem 2. Section 3 provides a plan of the proof of Theorem 3. Sections 4–6
collect some preliminaries which are needed for the proof of Theorem 3 in Section 7.
Finally, the proof of Theorem 4 is presented in Section 8.

2. Proof of Theorem 2

Our aim is to study the distribution behaviour of f(n), 0 ≤ n < N , i.e. the
random variable YN defined by

Pr[YN ≤ x] :=
1
N

#{n < N : f(n) ≤ x}.

If we define ζk,N by

Pr[ζk,N ≤ x] :=
1
N

#{n < N : fk(εk(n)) ≤ x}

and ξk,N by

Pr[ξk,N = b] :=
1
N

#{n < N : εk(n) = b} (b ∈ {0, . . . , a}),

then we obviously have

YN =
∑
k≥0

ζk,N =
∑
k≥0

fk(ξk,N ).

i.e. YN is a (weighted) sum of ξk,N . Therefore, we will first have a detailed look
at ξk,N . It turns out that ξk,Gj constitutes an almost stationary Markov chain, as
the next lemma shows. We want to mention that this fact is also a consequence
of results from Dumont and Thomas [10, 11]. In our case this is a quite simple
observation. Therefore we decided to present a short proof of this fact, too. This
procedure is simpler and shorter than introducing the notation of [10, 11] and to
specialize afterwards.

Lemma 1. For fixed j, the random variables (ξk,Gj )0≤k≤j−1 form a Markov chain
with

Pr[ξk,Gj = 1] = Pr[ξk,Gj = 2] = · · · = Pr[ξk,Gj = a− 1],(2.1)

Pr[ξk+1,Gj = 1|ξk,Gj = b] = · · · = Pr[ξk+1,Gj = a− 1|ξk,Gj = b],(2.2)

Pr[ξk+1,Gj = b|ξk,Gj = 1] = · · · = Pr[ξk+1,Gj = b|ξk,Gj = a− 1],(2.3)
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(for all j, k, b) and

(2.4)

Pr[ξk+1,Gj = 0]
Pr[ξk+1,Gj = 1]
Pr[ξk+1,Gj = a]

 = Pk,j

Pr[ξk,Gj = 0]
Pr[ξk,Gj = 1]
Pr[ξk,Gj = a]

 ,

where

Pk,j =

 1
α +O

(
1

α2(j−k)

) (a−1)(α+1)
α2 +O

(
1

α2(j−k)

)
α+1
α2 +O

(
1

α2(j−k)

)
1

α+1 +O
(

1
α2(j−k)

)
a−1
α +O

(
1

α2(j−k)

)
1
α +O

(
1

α2(j−k)

)
1

α+1 +O
(

1
α2(j−k)

)
0 0

 ,

with initial states

Pr[ξ0,Gj = 0] =
Gj−1

Gj
=

1
α

+O
(

1
α2j

)
and

Pr[ξ0,Gj = 1] = Pr[ξ0,Gj = 2] = · · · = Pr[ξ0,Gj = a] =
1

α+ 1
+O

(
1
α2j

)
.

Remark. The matrices Pk,j are no transition matrices of a Markov process, but they
describe transition matrices in view of the relations (2.1)–(2.3). However, it turned
out to be easier to work with 3× 3-matrices instead of (a+ 1)× (a+ 1)-matrices.

Proof. A sequence (εi)i≥0 of non-negative integers is a G-ary digital expansion of
an integer n, if and only if εi ≤ a for all i ≥ 0, εi−1 = 0 if εi = a and εi 6= 0 only
for a finite number of i (cf. e.g. Grabner and Tichy [13]). Let

Bj = {(ε0, . . . , εj−1) : εi ≤ a, εi−1 = 0 if εi = a}

be the set of G-ary digital expansions for n < Gj . Then

Pr[ξk,Gj = b] =
1
Gj

#{(ε0, . . . , εj−1) ∈ Bj : εk = b}

and it can be easily seen that (2.1) holds. For k = 0, even Pr[ξ0,Gj = a] is equal to
Pr[ξ0,Gj = 1].

We have

#{(ε0, . . . , εj−1) ∈ Bj : ε0 = 0} = #{(ε0, . . . , εj−1) ∈ Bj : εj−1 = 0},

because we can take a block (0, ε1, . . . , εj−1) of the set on the left side of the equa-
tion, shift it to the left, set εj−1 = 0 and get a one-one correspondence to the blocks
on the right side. Therefore

Pr[ξ0,Gj = 0] =
Gj−1

Gj
=

α+1
D αj−1 − −α

−1+1
D (−α)−j+1

α+1
D αj − −α−1+1

D (−α)−j
=

1
α

+O
(

1
α2j

)
.

Since the other probabilities Pr[ξ0,Gj = b], 1 ≤ b ≤ a, are equal, we have

Pr[ξ0,Gj = 1] = · · · = Pr[ξ0,Gj = a] =
1
a

(1−Pr[ξ0,Gj = 0]) =
1

α+ 1
+O

(
1
α2j

)
.
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Now we show that we have a Markov chain.

Pr[ξk+1,Gj = bk+1|ξk,Gj = bk, . . . , ξ0,Gj = b0]

=
Pr[ξk+1,Gj = bk+1, ξk,Gj = bk, . . . , ξ0,Gj = b0]

Pr[ξk,Gj = bk, . . . , ξ0,Gj = b0]

=
#{(ε0, . . . , εj−1) ∈ Bj : (ε0, . . . , εk+1) = (b0, . . . , bk+1)}

#{(ε0, . . . , εj−1) ∈ Bj : (ε0, . . . , εk) = (b0, . . . , bk)}

=
#{(εk+1, . . . , εj−1) ∈ Bj−k−1 : εk+1 = bk+1}

#{(εk, . . . , εj−1) ∈ Bj−k : εk = bk}

=
Pr[ξ0,Gj−k−1 = bk+1] Gj−k−1

Pr[ξ0,Gj−k = bk] Gj−k
,

where the third equation is valid only if (b0, . . . , bk+1) ∈ Bk+2. Otherwise the
probability is 0 (for bk+1 = a, bk 6= 0, (b0, . . . , bk) ∈ Bk+1) or undefined (for
(b0, . . . , bk) 6∈ Bk+1). If the probability is defined, we thus have

Pr[ξk+1,Gj = bk+1|ξk,Gj = bk, . . . , ξ0,Gj = b0] = Pr[ξk+1,Gj = bk+1|ξk,Gj = bk]

with the probabilities

Pr[ξk+1,Gj = 0|ξk,Gj = 0] =
1
α

+O
(

1
α2(j−k)

)
,

Pr[ξk+1,Gj = 0|ξk,Gj = c] =
α+ 1
α2

+O
(

1
α2(j−k)

)
(1 ≤ c ≤ a),

Pr[ξk+1,Gj = b|ξk,Gj = 0] =
1

α+ 1
+O

(
1

α2(j−k)

)
(1 ≤ b ≤ a),

Pr[ξk+1,Gj = b|ξk,Gj = c] =
1
α

+O
(

1
α2(j−k)

)
(1 ≤ b ≤ a− 1, 1 ≤ c ≤ a),

Pr[ξk+1,Gj = a|ξk,Gj = c] = 0 (1 ≤ c ≤ a).

Similarly to (2.1), (2.2) and (2.3) are easy to see. Hence

Pr[ξk+1,Gj = b] =
a∑
c=0

Pr[ξk+1,Gj = b|ξk,Gj = c]Pr[ξk,Gj = c]

= Pr[ξk+1,Gj = b|ξk,Gj = 0]Pr[ξk,Gj = 0]+Pr[ξk+1,Gj = b|ξk,Gj = a]Pr[ξk,Gj = a]

+ (a− 1)Pr[ξk+1,Gj = b|ξk,Gj = 1]Pr[ξk,Gj = 1]

and the transition from ξk,Gj to ξk+1,Gj is entirely determined by (2.4). �

Corollary 1. The probability distribution of ξk,Gj is given by

Pr[ξk,Gj = b] = pb +O
(

1
α2 min(k,j−k)

)
with

pb =


α+1
α2+1 if b = 0
α

α2+1 if 1 ≤ b ≤ a− 1
1

α2+1 if b = a.
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Proof. Let P denote the matrix obtained by neglecting the O
(

1
α2(j−k)

)
terms in

the matrix Pk,j . The eigenvalues of P are 1, 0 and − 1
α2 and the eigenvector to the

eigenvalue 1 with p0 + (a− 1)p1 + pa = 1 is
(
α+1
α2+1 ,

α
α2+1 ,

1
α2+1

)t
. �

Lemma 1 suggests to approximate the digital distribution by a stationary Markov
chain (Xk, k ≥ 0), with (stationary) probability distribution Pr[Xk = b] = pb,
0 ≤ b ≤ a, and transition matrix P , i.e.

Pr[Xk+1 = 0|Xk = 0] =
1
α
,

Pr[Xk+1 = 0|Xk = c] =
α+ 1
α2

(1 ≤ c ≤ a),

Pr[Xk+1 = b|Xk = 0] =
1

α+ 1
(1 ≤ b ≤ a),(2.5)

Pr[Xk+1 = b|Xk = c] =
1
α

(1 ≤ b ≤ a− 1, 1 ≤ c ≤ a),

Pr[Xk+1 = a|Xk = c] = 0 (1 ≤ c ≤ a).

The next lemma shows how we can quantify this approximation for finite dimen-
sional distributions.
Lemma 2. For every h ≥ 1 and integers 0 ≤ k1 < k2 < · · · < kh < j we have

Pr[ξk1,Gj = b1, . . . , ξkh,Gj = bh] = qk1,...,kh,b1,...,bh +O
(

1
α2 min(k1,j−kh)

)
for all b1, . . . , bh ∈ {0, . . . , a}, where

qk1,...,kh,b1,...,bh = Pr[Xk1 = b1, . . . , Xkh = bh].

Proof. For 0 ≤ k < l < j we have

Pk,jPk+1,j · · ·Pl−1,j = P l−k +O
(
α−2(j−l)

)
and consequently

(2.6) Pr[ξl,Gj = b2|ξk,Gj = b1] = Pr[Xl = b2|Xk = b1] +O
(
α−2(j−l)

)
.

Since

Pr[ξk1,Gj = b1, . . . , ξkh,Gj = bh]

= Pr[ξkh,Gj = bh|ξkh−1,Gj = bh−1]Pr[ξkh−1,Gj = bh−1|ξkh−2,Gj = bh−2] · · ·
· · ·Pr[ξk2,Gj = b2|ξk1,Gj = b1]Pr[ξk1,Gj = b1],

we just have to apply (2.6) and Corollary 1 and the lemma follows. �

The case of general N is very similar.
Lemma 3. The probability distribution of ξk,N for Gj ≤ N < Gj+1 with j > k is
given by

(2.7) Pr[ξk,N = b] = Pr[ξk,Gj = b] +O
(

1
αj−k

)
for all b ∈ {0, . . . , a}.

Furthermore, the joint distribution for 0 ≤ k1 < k2 < · · · < kh < j is given by

Pr[ξk1,N = b1, . . . , ξkh,N = bh] = Pr[ξk1,Gj = b1, . . . , ξkh,Gj = bh] +O
(

1
αj−kh

)
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for all b1, . . . , bh ∈ {0, . . . , a}.

Proof. For N =
j∑
i=0

εiGi, we have

{n < N} = {n < εjGj}∪
(
{n < εj−1Gj−1}+εjGj

)
∪· · ·∪

(
{n < ε0G0}+

j∑
i=1

εiGi

)
.

Therefore

Pr[ξk,N = b] =
1
N

(
#{n < εjGj | εk = b}+ #{n < εj−1Gj−1 | εk = b}+ · · ·

+ #{n < εk+1Gk+1 | εk = b}+


k−1∑
i=0

εiGi if εk = b

0 otherwise

)

=
1
N

(
εjGjPr[ξk,Gj = b] + · · ·+ ε[ k+j

2 ]G[ k+j
2 ]Pr[ξk,G[ k+j

2 ]
= b]

)
+O

(
1
N
G[ k+j

2 ]

)
=Pr[ξk,Gj = b] +O

(
1

αj−k

)
,

where we have used

Pr[ξk,Gj = b] = Pr[ξk,Gj−l = b] +O
(

1
αj−l−k

)
for k ≤ j − l.

A similar reasoning can be done for the joint distribution, e.g. we have for
l < k < j:

(2.8) Pr[ξk,N = b, ξl,N = c] =
1
N

j∑
i=k+1

εiGiPr[ξk,Gi = b, ξl,Gi = c]

+
1
N


k−1∑
i=l+1

εiGiPr[ξl,Gi = c] +


l−1∑
i=0

εiGi if εl = c

0 otherwise

 if εk = b

0 otherwise

Thus, we can proceed in the same way. �

We now turn to the derivation of EN = EYN , i.e. to the proof of (1.2), the first
part of Theorem 2. Since

YN =
j∑

k=0

ζk,N

for N < Gj+1, the expected value of YN is given by

EYN =
j∑

k=0

E ζk,N =
B∑
k=A

E ζk,N +O ((logN)η) ,

where

(2.9) A = [(logN)η] and B = [logαN ]− [(logN)η]
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and η > 0 is a sufficiently small number (to be chosen in the sequel). Furthermore,
we have

E ζk,N =
a∑
b=0

Pr[ξk,N = b]fk(b) = µk +O
(

1
α2 min(k,j−k)

)
,

which implies

EYN =
1
N

∑
n<N

f(n) = M(N) +O ((logN)η) .

It seems that the variance VarYN cannot be treated in a similar (easy) way. There-
fore, we use some additional assumptions and present a proof of (1.4) together with
the distributional result (1.3).

The above calculation indicates that we just have to concentrate on digits εk(n)
with A ≤ k ≤ B (defined in (2.9)). The reason is that we obtain uniform estimates
for this range. The following lemma is a direct consequence of Lemmata 2 and 3.
Note that it is not necessary to assume that k1, . . . , kh are ordered and that they
are distinct.
Lemma 4. For every h ≥ 1 and for every λ > 0 we have

1
N

#{n < N | εk1(n) = b1, . . . , εkh(n) = bh} = qk1,...,kh,b1,...,bh +O
(

1
(logN)λ

)
uniformly for all integers

A ≤ k1, k2, . . . , kh ≤ B
(where A,B are defined in (2.9) with an arbitrary η > 0) and
b1, b2, . . . , bh ∈ {0, 1, . . . , a}, where

qk1,...,kh,b1,...,bh = Pr[Xk1 = b1, . . . , Xkh = bh].

This observation causes that we have to truncate the given function f(n) and
have to consider

f(n) =
B∑
k=A

fk(εk) = f(n) +O ((logN)η) .

In order to finish the proof of Theorem 2 it is (luckily) enough to prove

(2.10)
1
N

#
{
n < N

∣∣∣∣f(n)−M(N)
D(N)

< x

}
→ Φ(x),

where

M(N) =
B∑
k=A

µk, D(N)2 =
B∑

j,k=A

σ
(2)
j,k .

This is due to the following lemma and (2.11).
Lemma 5. Suppose that D(N)/(logN)η →∞ for some η > η/2. Then we have

1
N

#
{
n < N

∣∣∣∣f(n)−M(N)
D(N)

< x

}
→ Φ(x)

for all x ∈ R if and only if

1
N

#
{
n < N

∣∣∣∣f(n)−M(N)
D(N)

< x

}
→ Φ(x)

for all x ∈ R.
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Furthermore, if for all h ≥ 0

1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x)

then we also have

1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x)

and conversely.

Proof. We consider the three (sequences of) random variables

XN =
f(·)−M(N)

D(N)
, YN =

f(·)−M(N)
D(N)

, ZN =
f(·)−M(N)

D(N)
.

Suppose first that the limiting distribution of XN is Gaussian and that all moments
converge. Since

lim
N→∞

D(N)
D(N)

= 1

and YN = XN
D(N)

D(N)
the same is true for YN .

Further, we know that

lim
N→∞

‖YN − ZN‖∞ = 0.

Thus, it immediately follows that the limiting distribution of ZN is the same as
that of YN and that all moments of ZN converge to the same limits as the moments
of YN .

It is also clear that the converse implications are valid. This completes the proof
of Lemma 5. �

Therefore it is sufficient to show that the moments

Ah(N) =
1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h
converge to the corresponding moments of the normal law. We will do this in two
steps. First we prove a central limit theorem (with convergence of moments) for
the exact Markov process and then we compare these moments to those of f(n),
i.e. (1.4). Obviously the proof (1.3) of Theorem 2 is completed then.

The next lemma provides a central limit theorem for
∑
fk(Xk), where Xk is the

stationary Markov process defined by (2.5).

Lemma 6. Suppose that there exists a constant c > 0 such that σ(2)
j,j ≥ c for all

j ≥ 0. Then we have

(2.11) D(N)2 � logN, D(N)2 � logN

and the sums of the random variables fk(Xk) satisfy a central limit theorem. More
precisely ∑B

k=A fk(Xk)−M(N)
D(N)

⇒ N (0, 1)
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and for all h ≥ 0 we have, as N →∞,

E

(∑B
k=A fk(Xk)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x).

Proof. Let
P (x,A) := Pr[Xk+1 ∈ A|Xk = x]

(which does not depend on k) denote the transition function of the Markov chain
(Xk, k ≥ 0) and

β := 1− sup
x1,x2,A

|P (x1, A)− P (x2, A)|

its ergodicity coefficient. If the fk are injective on {0, . . . , a}, then (fk(Xk), k ≥ 0) is
a Markov chain with ergodicity coefficient β and we get, by Lemma 2 of Dobrušin [4]
and with Varfk(Xk) = σ

(2)
k,k ≥ c,

Var
s′∑
k=s

fk(Xk) ≥ c

100
(s′ − s+ 1)β.

If some of the fk are not injective, we get the same result by considering injec-
tive functions f̃k which tend to fk. Since D(N)2 = Var

∑[logαN ]
k=0 fk(Xk) and

D(N)2 = Var
∑B
k=A fk(Xk), this proves (2.11) if β is positive.

Suppose β = 0. Then there exist x1, x2 ∈ {0, . . . , a} and a set A such that
P (x1, A) = 0 and P (x2, A) = 1, because P (x,A) attains just finitely many values.
We have P (x, {0}) > 0 for all x. Hence, if 0 ∈ A, we get a contradiction to
P (x1, A) = 0 and, if 0 6∈ A, we get a contradiction to P (x2, A) = 1. Therefore we
have β > 0.

For each h ≥ 2, the moments E |fk(Xk)|h are jointly bounded because of
fk(b) = O (1). Hence, if the fk are injective, all conditions of Theorem 4 of Lif̌sic [15]
are satisfied and we have convergence of (absolute) moments to those of the normal
distribution. An inspection of Lif̌sic’ proof shows that, as above, this is valid for
non-injective fk too. �

Now we are able to compare the moments of f(n) and
∑
fk(Xk).

Lemma 7. For every h ≥ 1 and every λ > 0 we have

1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h
= E

(∑B
k=A fk(Xk)−M(N)

D(N)

)h
+O

(
1

(logN)λ

)
.

Proof. We have

1
N

∑
n<N

(
f(n)−M(N)

D(N)

)h

=
1
N

∑
n<N

(∑B
k=A(fk(εk(n))− µk)

D(N)

)h
=

1
N

∑
n<N

B∑
k1=A

· · ·
B∑

kh=A

h∏
i=1

fki(εki(n))− µki
D(N)

=
∑

A≤k1,...,kh≤B

∑
0≤b1,...,bh≤a

1
N

#{n < N | εk1(n) = b1, . . . , εkh(n) = bh}
h∏
i=1

fki(bi)− µki
D(N)
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and

E

(∑B
k=A fk(Xk)−M(N)

D(N)

)h

=
∑

A≤k1,...,kh≤B

∑
0≤b1,...,bh≤a

Pr[Xk1 = b1, . . . , Xkh = bh]
h∏
i=1

fki(bi)− µki
D(N)

.

By Lemmata 4 and 6, these expressions are equal up to an error term
O
(
(logN)h/2−λ

)
. Since λ can be chosen arbitrarily, the lemma is proved. �

3. Plan of the Proof of Theorem 3

We set M , D and f as in Theorem 2 with the only difference B := [r logαN ]−A
(A = [(logN)η]). Then an argument similar to Lemma 5 shows that it is enough
to prove

1
N

#
{
n < N

∣∣∣∣f(P (n))−M(Nr)
D(Nr)

< x

}
→ Φ(x)

and
1

π(N)
#
{
p < N

∣∣∣∣f(P (p))−M(Nr)
D(Nr)

< x

}
→ Φ(x).

In fact, we prove that the centralized moments

Bh(N) =
1
N

∑
n<N

(
f(P (n))−M(Nr)

D(Nr)

)h
and

Ch(N) =
1

π(N)

∑
p<N

(
f(P (p))−M(Nr)

D(Nr)

)h
converge (for N → ∞) by comparing them to Ah(Nr). By proceeding as in the
proof of Lemma 7 and by using the following lemma, it follows that for each fixed
integer h ≥ 0, Bh(N)−Ah(Nr)→ 0 and Ch(N)−Ah(Nr)→ 0 as N → ∞. (Of
course, this proves Theorem 3. We just have to replace Lemma 4 by the following
property.)

Lemma 8 (Main Lemma). Let P (n) be an integer polynomial of degree r ≥ 1 and
positive leading term. Then for every h ≥ 1 and for every λ > 0 we have

1
N

#{n < N | εk1(P (n)) = b1, . . . , εkh(P (n)) = bh} = qk1,...,kh,b1,...,bh+O
(

1
(logN)λ

)
and

1
π(N)

#{p < N | εk1(P (p)) = b1, . . . , εkh(P (p)) = bh} = qk1,...,kh,b1,...,bh+O
(

1
(logN)λ

)
uniformly for all integers

(logN)η ≤ k1, k2, . . . , kh ≤ logαN
r − (logN)η

and b1, b2, . . . , bh ∈ {0, 1, . . . , a}. (The qk1,...,kh,b1,...,bh are as in Lemma 4. )
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It turns out that this lemma can be proved similarly to that of Bassily and
Kátai [1], i.e. with help of exponential sums. The only difficulty is to get a nice
condition for extracting the digits εk(n) without using greedy algorithms. This
problem is solved in the next section with help of a proper tiling of the unit square.
Section 5 provides proper estimates for exponential sums. These are the two main
ingredients of the proof which is then completed in Sections 6 and 7.

4. Tilings

The aim of this section is to provide proper tilings of the plane corresponding
to our digital expansions in order to get an analogue to q-ary expansions where we
have

(4.1) εq,k(n) = b ⇐⇒
〈

n

qk+1

〉
∈
[
b

q
,
b+ 1
q

)
,

if 〈x〉 denotes the fractional part of x.
For our expansions, we will have to take into account the values of

〈
n

αk(α+1)

〉
and

〈
n

αk+1(α+1)

〉
. By taking just one value into account, there are overlaps and we

cannot get something like (4.1) or (4.2).

Proposition 1. Let Ab, 0 ≤ b ≤ a, denote rectangles in the plane R2 defined as
the convex hull of the following corners:

A0 :
(
− α

α2 + 1
,

α2

α2 + 1

)
, (0, 1),

(
α+ 1
α2 + 1

,− α− 1
α2 + 1

)
,

(
1

α2 + 1
,− α

α2 + 1

)
,

Ab :
(

(b− 1)α+ 1
α2 + 1

,
α2 − α+ b

α2 + 1

)
,

(
bα+ 1
α2 + 1

,
α2 − α+ b+ 1

α2 + 1

)
,(

(b+ 1)α+ 1
α2 + 1

,−α− b− 1
α2 + 1

)
,

(
bα+ 1
α2 + 1

,− α− b
α2 + 1

)
for b ∈ {1, . . . , a− 1},

Aa :
(
α2 − α
α2 + 1

,
aα

α2 + 1

)
,

(
α2 − α+ 1
α2 + 1

,
α2

α2 + 1

)
, (1, 0),

(
α2

α2 + 1
,− 1

α3 + α2

)
.

Then these rectangles induce a periodic tiling of the plane with periods Z × Z, i.e.
they constitute a partition of the unit square modulo 1. Their slopes are (α, 1),
(−1, α) and their areas are λ2(Ab) = pb, b = 0, . . . , a, with pb as in Corollary 1.
Furthermore, if εk(n) = b then

(4.2)
(〈

n

αk(α+ 1)

〉
,

〈
n

αk+1(α+ 1)

〉)
∈ (Ab mod 1) +O

(
α−k

)
.

Essentially, this proposition says that there is an analogue to (4.1) for G-ary
expansions with a small error of order O

(
α−k

)
for the k-th digit. We want to

remark that Farinole [12] considered a very similar question.

Remark. The rectangles Ab modulo 1 constitute a Markov partition of the toral
automorphism with matrix (

a 1
1 0

)
.

Example. Before proving the proposition, we illustrate the example a = 3:
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(0,0)

(0,1) (1,1)

(1,0)

A0 A1
A2

A3

which looks like follows in R2/Z2:

(0,0)

(0,1) (1,1)

(1,0)

A0

A1
A2

A3

A0

A1
A2

A3

Proof of Proposition 1. Suppose that n is given by n =
∑
εjGj . Then we have

〈
n

αk(α+ 1)

〉
=
〈
· · ·+ εk+1

α2

α2 + 1
+ εk

α

α2 + 1
+ εk−1

1
α2 + 1

+ · · ·
〉

+O
(

1
αk

)
=
〈
· · ·+ εk+1

(−α)−1α

α2 + 1
+ εk

α

α2 + 1
+ εk−1

1
α2 + 1

+ · · ·
〉

+O
(

1
αk

)
=
〈

(x+ εk + y)α
α2 + 1

〉
+O

(
1
αk

)
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with the abbreviations

x = · · ·+ εk+2(−α)−2 + εk+1(−α)−1,

y = εk−1α
−1 + εk−2α

−2 + · · · ,

where we have used (1.1) and that α
α2+1α

j − α
α2+1 (−α)−j is an integer for all j ≥ 0

(see (5.2)). Similarly we get〈
n

αk+1(α+ 1)

〉
=
〈
−α2x+ εk + y

α2 + 1

〉
+O

(
1
αk

)
.

By Rényi [19], we know that (εk−1, εk−2, . . .) < (ε′k−1, ε
′
k−2, . . .) (lexicographically)

implies
εk−1α

−1 + εk−2α
−2 + · · · < ε′k−1α

−1 + ε′k−2α
−2 + · · ·

Hence, if εk < a, then y is bounded by

0 ≤ y < aα−1 + aα−3 + aα−5 + · · · = 1

and by
0 ≤ y < aα−2 + aα−4 + aα−6 + · · · = α−1

if εk = a. Similarly, x is bounded by

x < aα−2 + aα−4 + aα−6 + · · · = α−1

for all εk, by
x > −aα−1 − aα−3 − aα−5 − · · · = −1

for εk = 0 and by

x > −(a− 1)α−1 − aα−3 − aα−5 − · · · = α−1 − 1

for εk > 0.
If we put these limits into

(
(x+εk+y)α
α2+1 , −α

2x+εk+y
α2+1

)
, we obtain the given corners

for Ab. It is now an easy exercise that (the interiors of) these rectangles are pair-
wisely disjoint (and situated as in the example) and that they induce a periodic
tiling in R2 with periods Z2. �

5. Exponential Sums

In order to prove the Main Lemma we have to study exponential sums of the
form

1
N

∑
n<N

e

(
S

α+ 1
P (n)

)
and

1
π(N)

∑
p<N

e

(
S

α+ 1
P (p)

)
,

where
S =

m1,1

αk1
+

m1,2

αk1+1
+ · · ·+ mh,1

αkh
+

mh,2

αkh+1

with integers mi,j (1 ≤ i ≤ h, 1 ≤ j ≤ 2) and e(x) := e2πix, as usual.
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Lemma 9. Let mi,j, i ∈ {1, . . . , h}, j ∈ {1, 2} be integers with |mi,j | ≤ (logN)δ

for all i, j and

(logN)η ≤ k1 < k2 < · · · < kh ≤ logαN
r − (logN)η

for arbitrary constants δ > 0, η > 0. Then, if S 6= 0,

α(logN)η
′

Nr
� |S| � α−(logN)η

′

for all η′ < η.

Proof. Clearly we have

S � (logN)δ

αk1
≤ (logN)δ

α(logN)η
� α−(logN)η

′

.

For the lower bound, we first remark that αk is given by

(5.1) αk = G′kα+G′k−1,

where the sequence (G′j)j≥0 is defined by G′0 = 0, G′1 = 1 and G′j = aG′j−1 +G′j−2

for j ≥ 2. Therefore we have

S =
m1,1α

kh−k1+1 +m1,2α
kh−k1 + · · ·+mh,1α+mh,2

αkh+1
=
Aα+B

αkh+1
,

with
A = m1,1G

′
kh−k1+1 +m1,2G

′
kh−k1

+ · · ·+mh,1

and
B = m1,1G

′
kh−k1

+m1,2G
′
kh−k1−1 + · · ·+mh,2

We have
|(Aα+B)(Aα−1 −B)| = |A2 − aAB −B2| ≥ 1

if A 6= 0 or B 6= 0 and
Aα−1 −B � (logN)δ

because G′j is given by

(5.2) G′j =
α

α2 + 1
αj − α

α2 + 1
(−α)−j

(cf. (1.1)). Hence

|S| � 1
(logN)δαkh

� α(logN)η
′

Nr
.

�

The next two lemmata are adapted from Lemma 6.2 and Theorem 10 of Hua [14].
Lemma 10. Let P (n) be a polynomial of degree r with leading coefficient β. For
every τ0 > 0, we have a τ > 0 such that

N−r(logN)τ < β < (logN)−τ

implies
1
N

∑
n<N

e(P (n)) = O
(
(logN)−τ0

)
as N →∞.
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Lemma 11. Let P (n) be as in Lemma 10. For every τ0 > 0, we have a τ > 0 such
that

N−r(logN)τ < β < (logN)−τ

implies
1

π(N)

∑
p<N

e(P (p)) = O
(
(logN)−τ0

)
.

as N →∞.
Note that we can apply these two lemmas for β = S/(α+ 1) with S 6= 0 for any

choice of τ > 0 since
α−(logN)η � (logN)−τ .

Lemma 10 can be deduced for r ≥ 12 from Theorem I in Chapter VI of Vino-
gradov [20] because of

β =
1
q

+
θ

q2
with θ ≤ 1, (logN)τ < q < Nr(logN)−τ .

if β ∈ [ 1
q ,

1
q+1 ]. For general r, the two lemmata can be proved by replacing q by 1

β in
the proofs of Lemma 6.2 and Theorem 10 of Hua and using the following lemma.2

Lemma 12.
F+[ 1

β ]∑
n=F+1

min
(
U,

1
2‖nβ‖

)
� U +

1
β

log
1
β
,

where ‖x‖ = min(〈x〉, 1− 〈x〉).

Proof. In each of the intervals
[
mβ, (m + 1)β

)
and

(
1 − (m + 1)β, 1 − mβ

]
,

0 ≤ m ≤ 1
2 [ 1
β ], we have at most one {nβ}. Therefore

F+[ 1
β ]∑

n=F+1

min
(
U,

1
2‖nβ‖

)
≤ 2

1
2 [ 1
β ]∑

m=0

min
(
U,

1
2mβ

)
� U +

1
β

log
1
β

�

6. The Boundary of the Tilings

Lemma 13. Let P (x) be an arbitrary polynomial of degree r and ∆ > 0. Set

Ek,b(∆) := #
{
n ≤ N

∣∣∣∣(〈 P (n)
αk(α+ 1)

〉
,

〈
P (n)

αk+1(α+ 1)

〉)
∈ Ub(∆)

}
,

Fk,b(∆) := #
{
p ≤ N

∣∣∣∣(〈 P (p)
αk(α+ 1)

〉
,

〈
P (p)

αk+1(α+ 1)

〉)
∈ Ub(∆)

}
,

where

Ub(∆) =
{(

x1 + y1 −
1
α
y2, x2 +

1
α
y1 + y2

) ∣∣∣∣(x1, x2) ∈ ∂Ab, |yi| ≤
∆
2
, i = 1, 2

}
.

(∂Ab denotes the boundary of Ab.) Let (logN)η < k < logαNr− (logN)η for some
(fixed) η > 0 and λ an arbitrary positive constant. Then, uniformly in k, we have

Ek,b(∆)� ∆N +N(logN)−λ, Fk,b(∆)� ∆π(N) +N(logN)−λ.

2Unfortunately we could not find a direct reference for Lemmata 10 and 11.
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Proof. We use discrepancies to prove this lemma. The isotropic discrepancy JN of
the points (x1,1, x1,2), . . . , (xN,1, xN,2) in R2 is defined by

JN = sup
C⊆T2

∣∣∣∣∣ 1
N

N∑
n=1

χC({xn,1}, {xn,2})− λ2(C)

∣∣∣∣∣ ,
where the supremum is taken over all convex subsets C of T2 = R

2/Z2. It can be
estimated by the normal discrepancy DN which is defined by

DN = sup
I⊆T2

∣∣∣∣∣ 1
N

N∑
n=1

χI({xn,1}, {xn,2})− λ2(I)

∣∣∣∣∣ ,
where the supremum is taken over all 2-dimensional intervals I of T2:

DN ≤ JN ≤ (8
√

2 + 1)
√
DN

(see Theorem 1.12 of Drmota and Tichy [9]).
To get an estimate for DN we use the following version of Erdős-Turán-Koksma’s

inequality:

DN �
1
M

+
∑

(m1,m2) ∈ Z2 \ (0, 0) :
|m1|, |m2| ≤M

min
(

1
|m1|

,
1
|m2|

,
1

|m1m2|

) ∣∣∣∣∣ 1
N

N∑
n=1

e(m1xn,1 +m2xn,2)

∣∣∣∣∣ ,
where M is an arbitrary positive integer (and 1

0 = +∞) (cf. Theorem 1.21 of [9]).

We set (xn,1, xn,2) =
(

P (n)
αj(α+1) ,

P (n)
αj+1(α+1)

)
and M = (logN)2λ. Then we have,

since Ub(∆) is the union of 4 convex subsets and the conditions of Lemmata 9 and
10 hold,

Ek,b(∆) ≤ 4JNN+λ2(Ub(∆))N � N

(logN)λ
+
(
log(logN)2λ

)2
N(logN)−τ0/2+∆N.

Similarly we get, with Lemma 11,

Fk,b(∆)� N

(logN)λ
+
(
log(logN)2λ

)2
N(logN)−τ0/2 + ∆π(N).

We can choose τ0 > 2λ and the inequalities are proved. �

7. Proof of Main Lemma

For b ∈ {0, . . . , a} let ϕb(x, y) be a function periodic mod 1, defined explicitly in
[0, 1]× [0, 1] by

ϕb(x1, x2) :=

 1 if (x1, x2) ∈ Ab \ ∂Ab
1
2 if (x1, x2) ∈ ∂Ab
0 otherwise

.

Its Fourier expansion
∑∑

cm1,m2(b)e(m1x1 +m2x2) is given by

c0,0(b) = λ2(Ab),

cm1,m2(b) =
∑

(x1,x2)
∈V (Ab)

∣∣det((x1 − y1, x2 − y2))(y1,y2)∈Γ(x1,x2)

∣∣∏
(y1,y2)
∈Γ(x1,x2)

−2πi(m1(x1 − y1) +m2(x2 − y2))
e(−m1x1−m2x2),
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where V (Ab) denotes the set of vertices of the rectangle Ab and Γ(x1, x2) the set
of vertices adjacent to (x1, x2) ∈ V (Ab) (cf. Drmota [7], Lemma 1). This can be
bounded by (cf. Lemma 2 of Drmota [7])

|cm1,m2(b)|2 �
∑

(x1,x2)∈V (Ab)

∏
(y1,y2)∈Γ(x1,x2)

1
(1 + |m1(x1 − y1) +m2(x2 − y2)|)2

� 1(
1 +

∣∣m1 + 1
αm2

∣∣)2 (1 +
∣∣m2 − 1

αm1

∣∣)2(7.1)

� min
(

1,
1
m̃2

1

)
min

(
1,

1
m̃2

2

)
uniformly for all (m1,m2), where the constants implied by � only depend on Ab
and m̃1 := m1 + 1

αm2, m̃2 := m2 − 1
αm1.

For (small) ∆ > 0 we consider the function

ψb(x1, x2) :=
1

∆2

∆
2∫

−∆
2

∆
2∫

−∆
2

ϕb(x1 + z1 −
1
α
z2, x2 +

1
α
z1 + z2)dz1dz2.

The Fourier expansion
∑∑

dm1,m2(b)e(m1x1 + m2x2) of this function is given
by

dm1,m2(b) = cm1,m2(b)

(
e( m̃1∆

2 )− e(− m̃1∆
2 )

) (
e( m̃2∆

2 )− e(− m̃2∆
2 )

)
−4π2m̃1m̃2∆2

if (m1,m2) 6= (0, 0) and

d0,0(b) = c0,0(b) = λ2(Ab).

Hence

(7.2) |dm1,m2(b)| � min
(

1,
1
|m̃1|

,
1

∆m̃2
1

)
min

(
1,

1
|m̃2|

,
1

∆m̃2
2

)
and

(7.3) dm1,m2(b) = cm1,m2(b)
(
1 +O

(
m̃2

1∆2
)) (

1 +O
(
m̃2

2∆2
))

as m̃i∆→ 0.
It is clear that 0 ≤ ψb(x1, x2) ≤ 1 for every pair (x1, x2) and that

ψb(x1, x2) =
{

1 if (x1, x2) ∈ Ab \ Ub(∆)
0 if (x1, x2) 6∈ Ab ∪ Ub(∆)

We define

F
(

(x1,1, x1,2), . . . , (xh,1, xh,2)
)

:= ψb1(x1,1, x1,2) . . . ψbh(xh,1, xh,2)

and

t(n) := F

((
n

αk1(α+ 1)
,

n

αk1+1(α+ 1)

)
, . . . ,

(
n

αkh(α+ 1)
,

n

αkh+1(α+ 1)

))
.

We set
Σ1 := #{n < N | εk1(P (n)) = b1, . . . , εkh(P (n)) = bh}

Σ2 := #{p < N | εk1(P (p)) = b1, . . . , εkh(P (p)) = bh}
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and get, with (4.2) and Lemma 13,∣∣∣∣∣Σ1 −
∑
n<N

t(P (n))

∣∣∣∣∣ ≤ Ek1,b1(∆) + · · ·+ Ekh,bh(∆),

∣∣∣∣∣Σ2 −
∑
n<N

t(P (n))

∣∣∣∣∣ ≤ Fk1,b1(∆) + · · ·+ Fkh,bh(∆),

for ∆ greater than the error terms O
(
α−ki

)
= O

(
α−(logN)η

)
of (4.2).

Furthermore, set V :=
(

1
αk1 (α+1)

, 1
αk1+1(α+1)

, . . . , 1
αkh (α+1)

, 1
αkh+1(α+1)

)t
and let

M be the set of vectors M = (m1,1,m1,2, . . . ,mh,1,mh,2) with integer entries mi,j .
Then we have

t(n) =
∑

M∈M

TMe(MVn),

where
TM = dm1,1,m1,2(b1) . . . dmh,1,mh,2(bh).

and

(7.4)
∑
n<N

t(P (n)) =
∑

M∈M

TM

∑
n<N

e(MVP (n)),

∑
p<N

t(P (p)) =
∑

M∈M

TM

∑
p<N

e(MVP (p)).

If |mi,j | ≤ (logN)2δ for all i, j, Lemmata 9 and 10 provide∑
n<N

e(MVP (n))� N(logN)−τ0 ,

if MV 6= 0. Lemma 11 provides a similar result for primes. Since (mi,1,mi,2) 7→
(m̃i,1, m̃i,2) is, up to a constant, an orthogonal transformation, we have

min
(

1,
1
|m̃i,1|

)
min

(
1,

1
|m̃i,2|

)
� min

(
1,

1
|mi,1|

)
min

(
1,

1
|mi,2|

)
and, with (7.2),

∑
M∈M:|mi,j |≤(logN)2δ

|TM| �
h∏
i=1

[(logN)2δ]∑
mi,1,mi,2=−[(logN)2δ]

min
(

1,
1
|m̃i,1|

)
min

(
1,

1
|m̃i,2|

)

�

 [(logN)2δ]∑
m1,m2=−[(logN)2δ]

min
(

1,
1
|m1|

)
min

(
1,

1
|m2|

)h

�
(
log(logN)2δ

)2h
.

For the M with |mi,j | > (logN)2δ for some i, j, we get similarly

∑
M∈M:∃i,j with |mi,j |>(logN)2δ

|TM| �

 ∞∑
m=[(logN)2δ]

1
m2∆

( ∞∑
m=1

min
(

1
m
,

1
m2∆

))2h−1

� 1
(logN)2δ∆

(
log

1
∆

+ ∆
)2h−1

� (log(logN)δ)2h−1

(logN)δ
,
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if we set ∆ = (logN)−δ. Therefore we have

(7.5) Σ1 = N
∑

M∈M:MV=0

TM +O
(
N(logN)−τ0/2 +N(logN)−δ/2

)
(and a similar expression for Σ2). Since the main term depends on ∆, we want to
replace TM by

T ′M = cm1,1,m1,2(b1) . . . cmh,1,mh,2(bh).
Hence we have to estimate the difference

∑
M∈M:MV=0(TM − T ′M).

By (7.3), we have

(7.6) TM = T ′M

(
1 +O

(
max
i,j

m̃2
i,j∆

2

))
.

First assume |mi,j | < (logN)δ/2 for all i, j. Then we obtain from (7.6) and (7.1)∑
M∈M:|mi,j |<(logN)δ/2

|TM − T ′M| �
∑

M∈M:|mi,j |<(logN)δ/2

|T ′M|(logN)−δ

�

[(logN)δ/2]∑
m=1

1
m

2h

(logN)−δ ≤
(
log(logN)δ/2

)2h
(logN)δ

� (logN)−δ/2.

and it remains to estimate the sum of the TM and T ′M with |mi,j | > (logN)δ/2 for
some i, j which satisfy MV = 0, i.e.

m1,1G
′
kh−k1+1 +m1,2G

′
kh−k1

+ · · ·+mh,1 = 0,(7.7)

m1,1G
′
kh−k1

+m1,2G
′
kh−k1−1 + · · ·+mh,2 = 0.(7.8)

This is done by the following lemma, where only one of the equations is needed.
Lemma 14. We have

(7.9)
∑′ H∏

i=1

min
(

1,
1
|mi|

)
� (logN)−

δ
2(H−1)2 ,

where
∑′ denotes the sum over all integer solutions (m1, . . . ,mH) of the linear

equation

(7.10) γ1m1 + · · ·+ γH−1mH−1 +mH = 0,

(with integers γi 6= 0) such that |mi| > (logN)δ/2 for some i. The constant implied
by � does not depend on the γi.

Proof. First we remark that mi = 0 for some i reduces the problem to a smaller
one. For H = 1 (as well as for H = 2), the lemma is trivial. Hence we assume
H > 1 and mi 6= 0 for all i.

For every choice of (m1, . . . ,mH−1), let mH be the corresponding solution of
(7.10). First we sum up over all choices with |mH | ≥ |m1 . . .mH−1|1/(H−1)2

and
obtain∑ 1

|m1 . . .mH |
≤ 2H−1

∞∑
m1=1

· · ·
∞∑

mH−1=1

1
m1 . . .mH−1

1

(m1 . . .mH−1)
1

(H−1)2

= 2H−1

( ∞∑
m=1

1

m
1+ 1

(H−1)2

)H−1

.
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If we consider only |mi| ≥ (logN)δ/2 for some i ≤ H − 1, we have thus∑ 1
|m1 . . .mH |

� (logN)−
δ

2(H−1)2 .

For |mH | ≥ (logN)δ/2 and |mi| < (logN)δ/2 for i ≤ H − 1, we get

∑ 1
|m1 . . .mH |

≤ 2H−1

[(logN)δ/2]∑
m=1

1
m

H−1

1
(logN)δ/2

�
(
log(logN)δ/2

)H−1

(logN)δ/2
.

It remains to estimate the sum over the choices (m1, . . . ,mH−1) with
|mH | < |m1 . . .mH−1|1/(H−1)2

. W.l.o.g., assume |γ1m1| = max1≤i≤H−1 |γimi|.
Then we have

(7.11) |mH | < |γ1m1 . . . γH−1mH−1|
1

(H−1)2 ≤ |γ1m1|
1

H−1

and

|γ2m2 + · · ·+ γH−1mH−1| ∈
[
|γ1m1| − |γ1m1|

1
H−1 , |γ1m1|+ |γ1m1|

1
H−1

]
.

We split the possible range of |γ2m2| into

I2 =
(

0, |γ1m1| − |γ1m1|(H−2)/(H−1)
]

and J2 =
(
|γ1m1| − |γ1m1|(H−2)/(H−1), |γ1m1|

]
.

For J2, we obtain

(7.12)
∑

m2:|γ2m2|∈J2

1
|m2|

≤ 2|γ1m1|
H−2
H−1

|γ2|
|γ2|

|γ1m1| − |γ1m1|
H−2
H−1

≤ 4

|γ1m1|
1

H−1
.

Summing up over all such (m1, . . . ,mH) with |mi| ≥ (logN)δ/2 for some i, we get
(7.13)∑ 1
|m1 . . .mH |

≤
∑

m1:|γ1m1|≥(logN)δ/2

2H−1

|m1||γ1m1|
1

H−1
(log |γ1m1|)H−3 ≤ 2H(logN)−

δ
2H .

Thus it suffices to consider m2 with |γ2m2| ∈ I2 from now on. This implies

|γ3m3+· · ·+γH−1mH−1| ∈
[
|γ1m1 + γ2m2| − |γ1m1|

1
H−1 , |γ1m1 + γ2m2|+ |γ1m1|

1
H−1

]
with

|γ1m1 + γ2m2| ≥ |γ1m1|
H−2
H−1 .

We split the possible range of |γ3m3| into

J3 =
(
|γ1m1 + γ2m2| − |γ1m1|(H−3)/(H−1), |γ1m1 + γ2m2|+ |γ1m1|(H−3)/(H−1)

]
and I3 = (0, 2|γ1m1|] \ J3. Similarly to (7.12), we obtain∑

m3:|γ3m3|∈J3

1
|m3|

≤ 8

|γ1m1|
1

H−1

and the sum over these (m1, . . . ,mH) can be estimated as in (7.13). For all other
m3, we have

|γ1m1 + γ2m2 + γ3m3| ≥ |γ1m1|
H−3
H−1 .

We can proceed inductively and in the only remaining case we would have

|γ1m1 + · · ·+ γH−1mH−1| ≥ |γ1m1|
1

H−1

which contradicts (7.11). Thus the lemma is proved. �
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We apply Lemma 14 for (7.7) with H = 2h − 1. Multiplying each term of the
sum in (7.9) by min(1, 1/|mh,2|) (where mh,2 is determined by (7.8)), gives∑

M∈M:MV=0,∃i,j:|mi,j |>(logN)δ/2

T ′M � (logN)−
δ

8(h−1)2

and the same estimate for TM.
Hence ∑

M∈M:MV=0

TM = q′k1,...,kh,b1,...,bh
+O

(
(logN)−

δ
8(h−1)2

)
,

where
q′k1,...,kh,b1,...,bh

=
∑

M∈M:MV=0

T ′M.

Together with (7.5), we obtain

Σ1 = Nq′k1,...,kh,b1,...,bh
+O

(
N(logN)−λ

)
,

if we choose τ0 = 2λ and δ = 8(h− 1)2λ.
The result does not depend on the choice of the polynomial P (n). If we set

P (n) = n, Lemma 4 implies

q′k1,...,kh,b1,...,bh
= qk1,...,kh,b1,...,bh .

Similarly we get

Σ2 = π(N)qk1,...,kh,b1,...,bh +O
(
N(logN)−λ

)
.

Remark. In the case h = 1 we have MV = 0 only for (m1,m2) = (0, 0) and
c0,0(b) = λ2(Ab) = pb = qk,b.

8. Proof of Theorem 4

In order to prove independence of different digital expansions we can proceed es-
sentially along the same lines as for the proof of Theorem 3. We just have to replace
the Main Lemma (Lemma 8) by the following three (main) lemmas (corresponding
to the three parts of Theorem 4) which imply

1
N

∑
n<N

2∏
`=1

(
f `(P`(n))−M `(Nr`)

D`(Nr`)

)h`
−

2∏
`=1

(
1
N

∑
n<N

(
f `(P`(n))−M `(Nr`)

D`(Nr`)

)h`)
→ 0

and the corresponding statement for primes. Therefore the twodimensional mo-
ments converge to those of the twodimensional normal law and Theorem 4 is proved.
Lemma 15. Let q1, q2 be two positive coprime integers and P1(x), P2(x) two inte-
ger polynomials of degrees r1 resp. r2 with positive leading terms. Then for every
h1, h2 ≥ 1 and for every λ > 0 we have

1
N

#{n < N | εq1,k1(P1(n)) = b1, . . . , εq1,kh1
(P1(n)) = bh1 ,

εq2,l1(P2(n)) = c1, . . . , εq2,lh2
(P2(n)) = ch2}

= q−h1
1 q−h2

2 +O
(

1
(logN)λ

)
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and

1
π(N)

#{p < N | εq1,k1(P1(p)) = b1, . . . , εq1,kh1
(P1(p)) = bh1 ,

εq2,l1(P2(p)) = c1, . . . , εq2,lh2
(P2(p)) = ch2}

= q−h1
1 q−h2

2 +O
(

1
(logN)λ

)
uniformly for all integers

(logN)η ≤ k1 < k2 < · · · < kh1 ≤ r1 logq1 N − (logN)η,

(logN)η ≤ l1 < l2 < · · · < lh2 ≤ r2 logq2 N − (logN)η,

and b1, b2, . . . , bh1 ∈ {0, 1, . . . , q1 − 1} resp. c1, c2, . . . , ch2 ∈ {0, 1, . . . , q2 − 1}.
Lemma 16. Let q ≥ 2 and a ≥ 1 be two integers and P1(x), P2(x) two inte-
ger polynomials of degrees r1 resp. r2 with positive leading terms. Then for every
h1, h2 ≥ 1 and for every λ > 0 we have

1
N

#{n < N | εq,k1(P1(n)) = b1, . . . , εq,kh1
(P1(n)) = bh1 ,

εG,l1(P2(n)) = c1, . . . , εG,lh2
(P2(n)) = ch2}

= q−h1ql1,...,lh2 ,c1,...,ch2
+O

(
1

(logN)λ

)
and

1
π(N)

#{p < N | εq,k1(P1(p)) = b1, . . . , εq,kh1
(P1(p)) = bh1 ,

εG,l1(P2(p)) = c1, . . . , εG,lh2
(P2(p)) = ch2}

= q−h1ql1,...,lh2 ,c1,...,ch2
+O

(
1

(logN)λ

)
uniformly for all integers

(logN)η ≤ k1 < k2 < · · · < kh1 ≤ r1 logq N − (logN)η,

(logN)η ≤ l1 < l2 < · · · < lh2 ≤ r2 logαN − (logN)η,

and b1, b2, . . . , bh1 ∈ {0, 1, . . . , q − 1} resp. c1, c2, . . . , ch2 ∈ {0, 1, . . . , a}.

Lemma 17. Let a1, a2 ≥ 1 be two integers such that
√

a2
1+4

a2
2+4

is irrational and let
G = (Gj) and H = (Hj) denote the corresponding second order recurrent sequences.
Furthermore, let P1(x), P2(x) be two integer polynomials of degrees r1 resp. r2 with
positive leading terms. Then for every h1, h2 ≥ 1 and for every λ > 0 we have

1
N

#{n < N | εG,k1(P1(n)) = b1, . . . , εG,kh1
(P1(n)) = bh1 ,

εH,l1(P2(n)) = c1, . . . , εH,lh2
(P2(n)) = ch2}

= q
(G)
k1,...,kh1 ,b1,...,bh1

q
(H)
l1,...,lh2 ,c1,··· ,ch2

+O
(

1
(logN)λ

)
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and
1

π(N)
#{p < N | εG,k1(P1(p)) = b1, . . . , εG,kh1

(P1(p)) = bh1 ,

εH,l1(P2(p)) = c1, . . . , εH,lh2
(P2(p)) = ch2}

= q
(G)
k1,...,kh1 ,b1,...,bh1

q
(H)
l1,...,lh2 ,c1,...,ch2

+O
(

1
(logN)λ

)
uniformly for all integers

(logN)η ≤ k1 < k2 < · · · < kh1 ≤ r1 logα1
N − (logN)η,

(logN)η ≤ l1 < l2 < · · · < lh2 ≤ r2 logα2
N − (logN)η,

and b1, b2, . . . , bh1 ∈ {0, 1, . . . , a1} resp. c1, c2, . . . , ch2 ∈ {0, 1, . . . , a2}.
The proofs of these lemmas run along the same lines as the previous Main Lemma

(compare also with [1] and [6]). We have to consider sums of the type∑
M1,M2

TM1TM2

∑
n<N

e(M1V1P1(n) + M2V2P2(n))

(cf. (7.4), where, in the q-ary case, M`, V` and TM`
are defined by

M` = (m(`)
1 , . . . ,m

(`)
h`

),V` = (q−k1+1, . . . , q−kh`+1), TM`
= d

m
(`)
1 ,q`

(b1) . . . d
m

(`)
h`
,q`

(b`)

with

dm,q(b) =
e(−mbq )− e(−m(b+1)

q )

2πim
e(m∆

2 )− e(−m∆
2 )

2πim∆
.

Especially, if r1 6= r2, then the proof is straightforward and very similar to that of
Proposition 1 in [6]. The reason is that there are no cancellations in the leading
coefficient of the polynomial M1V1P1(n) + M2V2P2(n) and consequently one can
directly apply Lemmata 10 and 11 in order to estimate the corresponding exponen-
tial sums.

Therefore we concentrate on the case r1 = r2. Here we have to adapt certain
properties.

Lemma 18. Suppose that q1, q2 ≥ 2 are coprime integers and c1, c2, r positive
integers. For arbitrary (but fixed) integers h1, h2 let m(`)

j (1 ≤ j ≤ h`, ` ∈ {1, 2})
be satisfying m

(`)
j 6≡ 0 mod q and |m(`)

j | ≤ (logN)δ, where δ > 0 is any given
constant. Set

S` :=
m

(`)
1

q
k

(`)
1 +1
`

+ · · ·+
m

(`)
h

q
k

(`)
h`

+1

`

.

Then, for

(logN)η ≤ k(`)
1 < k

(`)
2 < · · · < k

(`)
h`
≤ logq` N

r − (logN)η

we uniformly have

q(logN)η
′

Nr
� |c1S1 + c2S2| � q−(logN)η

′

for all given 0 < η′ < η, where q = max{q1, q2}.
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This lemma is implicitly contained in the proof of Proposition 2 of [6], the state-
ment of which is that of Lemma 15 for r = 1. However, by using Lemmata 10, 11
(which have not been used in this generality in [6]) and 18, Lemma 15 follows as
Proposition 2 of [6].
Lemma 19. Let q ≥ 2 and a ≥ 1 be two integers and c1, c2, r positive integers.
For arbitrary (but fixed) integers h1, h2, let m(1)

j (1 ≤ j ≤ h1) be integers satisfying

m
(1)
j 6≡ 0 mod q and |m(1)

j | ≤ (logN)δ and let m(2)
i,j (1 ≤ i ≤ h2, j ∈ {1, 2}) be

integers satisfying |m(2)
i,j | ≤ (logN)δ, where δ > 0 is any given constant. Let

S1 :=
m

(1)
1

qk
(1)
1 +1

+ · · ·+
m

(1)
h1

qk
(1)
h1

+1

and

S2 :=
m

(2)
1,1

αk
(2)
1

+
m

(2)
1,2

αk
(2)
1 +1

+ · · ·+
m

(2)
h2,1

αk
(2)
h2

+
m

(2)
h2,2

αk
(2)
h2

+1
.

Then, for

(logN)η ≤ k(1)
1 < k

(1)
2 < · · · < k

(1)
h1
≤ logq N

r − (logN)η

and for
(logN)η ≤ k(2)

1 < k
(2)
2 < · · · < k

(2)
h2
≤ logαN

r − (logN)η

we uniformly have

q(logN)η
′

Nr
�
∣∣∣∣c1S1 + c2

S2

α+ 1

∣∣∣∣� q−(logN)η
′

for all given 0 < η′ < η.

Proof. The upper bound is trivial. Thus, we concentrate on the lower bound. We
have, with (5.1) and αk(α+ 1) = Gkα+Gk−1,

S := c1S1 + c2
S2

α+ 1
=
c1m̂

(1)

qk
(1)
h1

+1
+
c2

(
m̂

(2)
1 α+ m̂

(2)
2

)
G
k

(2)
h2

+1
α+G

k
(2)
h2

with integers m̂(1), m̂
(2)
1 , m̂

(2)
2 and therefore S = 0 if and only if the equations

c1m̂
(1)G

k
(2)
h2

+1
+ c2m̂

(2)
1 qk

(1)
h1

+1 = 0

c1m̂
(1)G

k
(2)
h2

+ c2m̂
(2)
2 qk

(1)
h1

+1 = 0

hold. Since (Gk, Gk+1) = 1 for all k, we obtain qk
(1)
h1

+1|c1m̂(1) and hence q|m̂(1) (for
sufficiently large k(1)

h1
) which is not possible for m(1)

h1
6≡ 0 mod q.

Hence we may assume S 6= 0. In order to get a lower bound for S, we use Baker’s
theorem (see [21]) saying that for non-zero algebraic numbers α1, α2, . . . , αn and
integers b1, b2, . . . , bn we have either

αb11 · · ·αbnn = 1

or ∣∣∣αb11 · · ·αbnn − 1
∣∣∣ ≥ exp (−U) ,
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where

U = 26n+32n3n+6dn+2(1 + log d)(logB + log d) logA1 · · · logAn

with d = [Q(α1 . . . , αn) : Q],

B = max{2, |b1|, |b2|, . . . , |bn|}.

and real numbers A1, A2, . . . , An ≥ e with logAj ≥ h(αj), where h(·) denotes the
absolute logarithmic height.

Set ε = η/(h1+h2−1). Then there exists an integer K with 0 ≤ K ≤ h1 + h2 − 2
such that for all j, `

k
(`)
j+1 − k

(`)
j 6∈

[
(logN)Kε, (logN)(K+1)ε

)
.

So fix K with this property. First suppose k(`)
j+1−k

(`)
j < (logN)Kε for all j, `. Then

we have log |m̂(1)| � (logN)Kε, log |m̂(2)
i | � (logN)Kε and we can apply Baker’s

theorem for r = 6 with α1 = q, α2 = α, α3 = m̂(1), α4 = m̂
(2)
1 α + m̂

(2)
2 , α5 = −c1,

α6 = c2/(α + 1) and b1 = −k(1)
h1
− 1, b2 = k

(2)
h2

+ 1, b3 = b5 = 1, b4 = b6 = −1 and
obtain∣∣∣∣∣∣ −c1m̂

(1)(α+ 1)αk
(2)
h2

+1

c2(m̂(2)
1 α+ m̂

(2)
2 )qk

(1)
h1

+1
− 1

∣∣∣∣∣∣ ≥ e−C log(max(k
(1)
h1
,k

(2)
h2

)) log |m̂(1)| log(|m̂(2)
1 |+|m̂

(2)
2 |)

for a certain constant C > 0. Of course, this implies

|S| ≥ max
(
q−k

(1)
h1 , α−k

(2)
h2

)
e−c log logN (logN)Kε ≥ (logN)τ

Nr

for some constant c > 0 and all τ > 0.
Otherwise we have some s1, s2 such that k(`)

j+1 − k
(`)
j < (logN)Kε for all j < s`

and k
(`)
s`+1 − k

(`)
s` ≥ (logN)(K+1)ε. Here we get by Baker’s theorem, as above,

S := c1

(
m

(1)
1

qk
(1)
1 +1

+ · · ·+ m
(1)
s1

qk
(1)
s1 +1

)
+

c2
α+ 1

(
m

(2)
1,1

αk
(2)
1 +1

+ · · ·+
m

(2)
s2,2

αk
(2)
s2

)
≥ max

(
q−k

(1)
s1 , α−k

(2)
s2

)
e−c log logN (logN)Kε

and can estimate S − S by

|S − S| � (logN)δ
(
q−k

(1)
s1
−(logN)(K+1)ε

+ α−k
(2)
s2
−(logN)(K+1)ε

)
.

Hence we have

|S| ≥ max
(
q−k

(1)
s1 , α−k

(2)
s2

)(
e−c log logN (logN)Kε −O

(
(logN)δe− log(min(q,α))(logN)(K+1)ε

))
≥ (logN)τ

Nr

�

Lemma 20. Let a1, a2 ≥ 1 be two integers such that
√

a2
1+4

a2
2+4

is irrational, let
G = (Gj) and H = (Hj) denote the corresponding second order recurrent sequences
and c1, c2, r be positive integers. For arbitrary (but fixed) integers h1, h2 let m(`)

i,j
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(1 ≤ j ≤ h`, j, ` ∈ {1, 2}) be integers satisfying |m(`)
i,j | ≤ (logN)δ (where δ > 0 is

any given constant) such that

S1 :=
m

(1)
1,1

αk
(1)
1

+
m

(1)
1,2

αk
(1)
1 +1

+ · · ·+
m

(1)
h2,1

αk
(1)
h1

+
m

(1)
h1,2

αk
(1)
h1

+1
6= 0

and

S2 :=
m

(2)
1,1

αk
(2)
1

+
m

(2)
1,2

αk
(2)
1 +1

+ · · ·+
m

(2)
h2,1

αk
(2)
h2

+
m

(2)
h2,2

αk
(2)
h2

+1
6= 0

Then, for

(logN)η ≤ k(`)
1 < k

(`)
2 < · · · < k

(`)
h1
≤ logα` N

r − (logN)η

we uniformly have

α(logN)η
′

Nr
�
∣∣∣∣c1 S1

α1 + 1
+ c2

S2

α2 + 1

∣∣∣∣� α−(logN)η
′

for all given 0 < η′ < η, where α = max{α1, α2}.

Proof. Again we can concentrate on the lower bound and have

S := c1
S1

α1 + 1
+ c2

S2

α2 + 1
=
c1

(
m̂

(1)
1 α1 + m̂

(1)
2

)
G
k

(1)
h1

+1
α1 +G

k
(1)
h1

+
c2

(
m̂

(2)
1 α2 + m̂

(2)
2

)
H
k

(2)
h2

+1
α2 +H

k
(2)
h2

The assumption that
√

a2
1+4

a2
2+4

is irrational ensures α2 6∈ Q(α1). Hence S is zero if
and only if the equations

c1m̂
(1)
1 H

k
(2)
h2

+1
+ c2m̂

(2)
1 G

k
(1)
h1

+1
= 0

c1m̂
(1)
1 H

k
(2)
h2

+ c2m̂
(2)
2 G

k
(1)
h1

+1
= 0

c1m̂
(1)
2 H

k
(2)
h2

+1
+ c2m̂

(2)
1 G

k
(1)
h1

= 0

c1m̂
(1)
2 H

k
(2)
h2

+ c2m̂
(2)
2 G

k
(1)
h1

= 0

hold. Then we must have e.g.

m̂
(1)
1 = −m̂(2)

1

c2
c1

G
k

(1)
h1

+1

H
k

(2)
h2

+1

= m̂
(1)
2

G
k

(1)
h1

+1

G
k

(1)
h1

and G
k

(1)
h1

+1
|m̂(1)

1 because of (G
k

(1)
h1

+1
, G

k
(1)
h1

) = 1. With |m(`)
i,j | ≤ (logN)δ we get

m̂
(1)
1 = 0 and thus m̂(1)

2 = m̂
(2)
1 = m̂

(2)
2 = S1 = S2 = 0.

Hence S 6= 0 and the lower bound is obtained similarly to Lemma 19. �
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