
Rauzy dimension and finite state dimension

Verónica Becher1 Olivier Carton2 Santiago Figueira1

1Universidad de Buenos Aires & CONICET

2IRIF, Université Paris Cité & CNRS
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What is a dimension ?

A dimension is a function AN → R (often [0, 1]) which measures
the complexity of the sequence x ∈ AN.

Example (Topological entropy)

htop(x) := lim
`→∞

log2 #(Fact(x) ∩A`)
`

For instance

htop(0101010101010 · · · ) = 0 Periodic

htop(0100101001001 · · · ) = 0 Fibonacci

htop(0100011011000 · · · ) = 1 Champernowne
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Expansion of real numbers (in some base b)

Fix an integer base b > 2. The alphabet is A = {0, 1, . . . , b−1}.
I if b = 2, A = {0, 1},
I if b = 10, A = {0, 1, 2, . . . , 9}.

Each real number α ∈ [0, 1) has an expansion in base b:
x = a1a2a3 · · · where ai ∈ A and

α =
∑
k>1

ak
bk
.

In the rest of this talk:
real number α ∈ [0, 1) ←→ sequence x ∈ AN

1/3 ←→ 010101 · · · = (01)N

π/4 ←→ 1100100100001111 · · ·



Normal sequences

A normal sequence is a sequence such that all finite words of
the same length occur in it with the same limiting frequency.

A sequence x ∈ AN is normal if for each finite word w ∈ A∗:

lim
n→∞

|x[1 : n]|w
n

=
1

(#A)|w|

where I #A is the cardinality of the alphabet A

I |u| is the length of the word u.

I |u|w is the number of occurrences of w in u.



Preservation of normality by addition

Theorem (Rauzy, 1976)
For β ∈ [0, 1), the following conditions are equivalent:

I β is normal,

I β has Rauzy dimension (#A− 1)/#A.

Theorem (Rauzy, 1976)
For β ∈ [0, 1), the following conditions are equivalent:

I for each α normal, α+ β is still normal,

I β has Rauzy dimension 0.



Outline

Introduction

Normality

Rauzy dimensions

Finite state dimensions

Results



Rauzy dimensions

For w ∈ A∗ and ` > 0

β`(w) := min
f :A`→A

#{i : w[i] 6= f(w[i+ 1 : i+ `])}
|w|

w

w[i] w[i+ 1 : i+ `]

` symbols

f

f(w[i+ 1 : i+ `])

6=



Rauzy dimensions
For w ∈ A∗ and ` > 0

β`(w) := min
f :A`→A

#{i : w[i] 6= f(w[i+ 1 : i+ `])}
|w|

γ`(w) := min
f :A`→A

#{i : w[i] 6= f(w[i− ` : i− 1])}
|w|

w

w[i]w[i− ` : i− 1]

` symbols

f

f(w[i− ` : i− 1])

6=



Rauzy dimensions

For w ∈ A∗ and ` > 0

β`(w) := min
f :A`→A

#{i : w[i] 6= f(w[i+ 1 : i+ `])}
|w|

γ`(w) := min
f :A`→A

#{i : w[i] 6= f(w[i− ` : i− 1])}
|w|

For x ∈ AN and ` > 1,

β
`
(x) := lim inf

n→∞
β`(x[1 : n]) and β`(x) := lim sup

n→∞
β`(x[1 : n])

β(x) := lim
`→∞

β
`
(x) and β(x) := lim

`→∞
β`(x)

γ(x) and γ(x) are defined similarly using γ` instead of β`.
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Finite state dimensions

The finite state dimensions dim and dim has several equivalent
definitions using either

I Measure-theoretic entropy, or

I Finite state compressibility, or

I Finite state predictors/martingales.
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Function h

Let h : [0, 1]→ [0, 1] be the classical entropy function

h(α) := −α log2 α− (1− α) log2(1− α)

whose graph is

 0

 0.5

 1

 0  0.5  1

h(x)
2x



Results

Here, we suppose #A = 2.

Theorem

I For every x ∈ AN,

2γ(x) 6 dim(x) 6 h(γ(x)),

2γ(x) 6 dim(x) 6 h(γ(x)),

2β(x) 6 dim(x) 6 h(β(x)),

2β(x) 6 dim(x) 6 h(β(x)).

I These inequalities are sharp.



Results

Reformulation of one implication of second Rauzy’s theorem:

Theorem (Rauzy, 1976)

If dim(x) = 1 and dim(y) = 0, then dim(x+ y) = 1.

Theorem
For every x, y ∈ AN,

dim(x)− dim(y) 6 dim(x+ y) 6 dim(x) + dim(y),

dim(x)− dim(y) 6 dim(x+ y) 6 dim(x) + dim(y).



Measure-theoretic entropy

Recall that |w|u is the number of occurrences of u in w.

Normalized `-entropy of w ∈ A∗:

h`(w) := −1

`

∑
u∈A`

fu log fu where fu :=
|w|u

|w| − |u|+ 1

Normalized entropy of x ∈ AN:

h(x) := lim inf
`→∞

h`(x) where h`(x) := lim inf
n→∞

h`(x[1 : n))

h(x) := lim inf
`→∞

h`(x) where h`(x) := lim sup
n→∞

h`(x[1 : n))



Finite state compressibility (by transducers)

Transducer T with
transitions p a|v−−→ q
for a ∈ A and v ∈ A∗

Q

Input tape a0 a1 a2 a3 a4 a5 a6 a7

Output tape b0 b1 b2 b3 b4 b5 b6

The compression ratios of a run q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ · · ·

ρT (x) := lim inf
n→∞

|v1v2 · · · vn|
n

and ρ̄T (x) := lim sup
n→∞

|v1v2 · · · vn|
n

.

The compression ratios of x ∈ AN are given by

ρ(x) := inf
{
ρT (x) : T is a one-to-one transducer

}
ρ̄(x) := inf

{
ρ̄T (x) : T is a one-to-one transducer

}



Finite state predictors/martingales

A predictor π is a function A∗ ×A→ [0, 1] such that∑
a∈A π(w, a) = 1 for each w ∈ A∗.

It is a finite state predictor if π(w, 0) and π(w, 1) are computed
by an automaton reading w.

The dimension of π on w:

dimπ(w) :=

|w|−1∑
i=0

log
1

π(w[0 : i), w[i])
.

The dimensions of x ∈ AN are

dim(x) := inf
π∈Π

lim inf
n→∞

dimπ(x[1 : n))

n

dim(x) := inf
π∈Π

lim sup
n→∞

dimπ(x[1 : n))

n

where Π is the class of all finite state predictors.



Relations

The finite state dimension has several equivalent definitions
using either

I Measure-theoretic entropy, or

I Finite state compressibility, or

I Finite state predictors/martingales.

Theorem (Many people)

For every x ∈ AN,

h(x) = ρ(x) = dim(x) and h(x) = ρ̄(x) = dim(x).



From the previous theorem

For every x ∈ AN,

dim(x) = 0⇐⇒ β(x) = 0 ⇐⇒ γ(x) = 0

dim(x) = 0⇐⇒ β(x) = 0 ⇐⇒ γ(x) = 0

dim(x) = 1⇐⇒ β(x) = 1
2 ⇐⇒ γ(x) = 1

2

dim(x) = 1⇐⇒ β(x) = 1
2 ⇐⇒ γ(x) = 1

2

Quoting Rauzy, are the function β and γ similar ?



Counterexample

Let x be a generic sequence for the following Markov chain.
β(x) = β(x) < γ(x) = γ(x) = 11
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