Ode to O-minimality

Toghrul Karimov

Max Planck Institute for Software Systems

(ロ)、(型)、(E)、(E)、 E) のQ(()

・ロト・西・・日・・日・・日・

Mathematical structure:

$$\mathbb{M} \coloneqq \langle \underbrace{\mathbb{R}}_{\mathrm{domain}}; \underbrace{0,1}_{\mathrm{constants}}, \underbrace{<,+,\cdot, exp}_{\mathrm{functions/relations}} \rangle$$

Mathematical structure:

$$\mathbb{M} \coloneqq \langle \underbrace{\mathbb{R}}_{\text{domain constants}}; \underbrace{0,1}_{\text{functions/relations}} \rangle$$

 $S \subseteq \mathbb{R}^d$ is **definable** in \mathbb{M} if there exist $k \ge 0$, $a \in \mathbb{R}^k$, and a formula φ in the language of \mathbb{M} such that

$$S = \{x \in \mathbb{R}^d : \varphi(x, a) \text{ holds in } \mathbb{M}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mathematical structure:

$$\mathbb{M} \coloneqq \langle \underbrace{\mathbb{R}}_{\text{domain constants}}; \underbrace{0,1}_{\text{functions/relations}} \rangle$$

 $S \subseteq \mathbb{R}^d$ is **definable** in \mathbb{M} if there exist $k \ge 0$, $a \in \mathbb{R}^k$, and a formula φ in the language of \mathbb{M} such that

$$S = \{x \in \mathbb{R}^d : \varphi(x, a) \text{ holds in } \mathbb{M}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example: $\exists z : x = \exp(z) \land \pi < \exp(yz) < \pi^2$ defines $\{(x, y) : \pi < x^y < \pi^2\}.$

Definition

A structure \mathbb{M} with domain \mathbb{R} is **o-minimal** if every $S \subseteq \mathbb{R}^d$ definable in \mathbb{M} has finitely many connected components.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Definition

A structure \mathbb{M} with domain \mathbb{R} is **o-minimal** if every $S \subseteq \mathbb{R}^d$ definable in \mathbb{M} has finitely many connected components.

Some o-minimal structures:

-
$$\mathbb{R}_0 = \langle \mathbb{R}; 0, 1, +, \cdot \rangle$$

-
$$\mathbb{R}_{exp} = \langle \mathbb{R}; 0, 1, +, \cdot, exp \rangle$$

–
$$\mathbb{R}_{\mathsf{exp},\mathsf{rt}} = \langle \mathbb{R}; \mathbf{0}, \mathbf{1}, +, \cdot, \mathsf{exp}, \mathsf{cos'} \rangle$$
 where

$$\cos'(x) = \begin{cases} \cos(x), & \text{if } x \in (0, 1) \\ 0, & \text{otherwise.} \end{cases}$$

Definition

A structure \mathbb{M} with domain \mathbb{R} is **o-minimal** if every $S \subseteq \mathbb{R}^d$ definable in \mathbb{M} has finitely many connected components.

Some o-minimal structures:

$$-\mathbb{R}_{0} = \langle \mathbb{R}; 0, 1, +, \cdot \rangle$$

$$- \mathbb{R}_{exp} = \langle \mathbb{R}; 0, 1, +, \cdot, exp \rangle$$

-
$$\mathbb{R}_{\mathsf{exp},\mathsf{rt}} = \langle \mathbb{R}; \mathbf{0}, 1, +, \cdot, \mathsf{exp}, \mathsf{cos'} \rangle$$
 where

$$\cos'(x) = \begin{cases} \cos(x), & \text{if } x \in (0,1) \\ 0, & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The theory of \mathbb{R}_0 is decidable, and the theory of $\mathbb{R}_{exp,rt}$ is decidable assuming Schanuel's conjecture.

Restricted analytic functions

Gabrielov, 1960

Let $g_1,\ldots,g_k\colon (0,1) o\mathbb{R}$ be real analytic. Then

 $\langle \mathbb{R}; 0, 1, <, +, \cdot, g_1, \ldots, g_n \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is o-minimal.

Example: $\langle \mathbb{R}; 0, 1, +, \cdot, \cos' \rangle$

Pfaffian chains

Khovanskii, 1980

Suppose $g_1, \ldots, g_k \colon O \to \mathbb{R}$ form a Pfaffian chain: $O \subseteq \mathbb{R}$ is open and every $g'_i(x)$ is polynomial in $x, g_1(x), \ldots, g_i(x)$. Then

$$\langle \mathbb{R}; 0, 1, <, +, \cdot, g_1, \ldots, g_k \rangle$$

is o-minimal.

Pfaffian chains

Khovanskii, 1980

Suppose $g_1, \ldots, g_k \colon O \to \mathbb{R}$ form a Pfaffian chain: $O \subseteq \mathbb{R}$ is open and every $g'_i(x)$ is polynomial in $x, g_1(x), \ldots, g_i(x)$. Then

$$\langle \mathbb{R}; 0, 1, <, +, \cdot, g_1, \ldots, g_k \rangle$$

is o-minimal.

Examples:

-
$$e^x$$

- e^{-x^2} , $\int_0^x e^{-t^2} dt$
- $\tan(x)$ with $O = (-\pi/2, \pi/2)$ since $\tan'(x) = 1 + (\tan(x))^2$

Pfaffian chains

Khovanskii, 1980

Suppose $g_1, \ldots, g_k \colon O \to \mathbb{R}$ form a Pfaffian chain: $O \subseteq \mathbb{R}$ is open and every $g'_i(x)$ is polynomial in $x, g_1(x), \ldots, g_i(x)$. Then

$$\langle \mathbb{R}; 0, 1, <, +, \cdot, g_1, \ldots, g_k \rangle$$

is o-minimal.

Examples:

$$\begin{array}{l} - e^{x} \\ - e^{-x^{2}}, \int_{0}^{x} e^{-t^{2}} dt \\ - \tan(x) \text{ with } O = (-\pi/2, \pi/2) \text{ since } \tan'(x) = 1 + (\tan(x))^{2} \end{array}$$

Adding restrictions of Liouvillian functions to $\langle \mathbb{R}; 0, 1, <, +, \cdot \rangle$ preserves o-minimality!

O-minimal \approx tame, free of "abnormal" phenomena in many senses

Recently: connections to Diophantine geometry

Pila-Wilkie Theorem, 2006

A set $X \subseteq \mathbb{R}^d$ definable in an o-minimal structure cannot have "too many" rational points.

Linear dynamical systems

Linear dynamical system: $M \in \mathbb{Q}^{d imes d}$, $s \in \mathbb{Q}^d$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The orbit of *s* under *M*: $\langle s, Ms, M^2s, \ldots \rangle$

Linear dynamical systems

Linear dynamical system: $M \in \mathbb{Q}^{d imes d}$, $s \in \mathbb{Q}^d$

The orbit of *s* under *M*: $\langle s, Ms, M^2s, \ldots \rangle$

Safety Problem

Given M, s and semialgebraic T, decide whether $M^n s \notin T$ for all n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Safety Problem

Safety Problem

Problem: Decide whether $M^n s \notin T$ for all *n*.

For T a hyperplane, equivalent to the Skolem Problem for linear recurrence sequences.

Decidability of the RP in dimension 4 \Rightarrow approximability of

$$L(\theta) = \inf\{c \colon |\theta - p/q| < c/q^2 \text{ for some } p, q \in \mathbb{Z}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for $\theta \in \{\arg(z)/(2\pi) \colon z \in \mathbb{Q}(i)\}.$

Given M, s, T decide whether there exists $\varepsilon > 0$ such that $\langle s', Ms', M^2s', \ldots \rangle$ avoids T for all $||s - s'|| < \varepsilon$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

That is, $M^n \cdot \mathcal{B}(s, \varepsilon)$ avoids T for all n.

Given M, s, T decide whether there exists $\varepsilon > 0$ such that $\langle s', Ms', M^2s', \ldots \rangle$ avoids T for all $||s - s'|| < \varepsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

That is, $M^n \cdot \mathcal{B}(s, \varepsilon)$ avoids T for all n.

Theorem

The Robust Safety Problem is decidable.

Does there exist $\varepsilon > 0$ such that

 $M^n \cdot \mathcal{B}(s,\varepsilon)$ avoids T (**X**)

for all *n*?

Does there exist $\varepsilon > 0$ such that

 $M^n \cdot \mathcal{B}(s,\varepsilon)$ avoids T (\F)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all n?

Write M = CD where

- eigenvalues of C are positive reals,
- D is diagonalisable with all eigenvalues on \mathbb{T} ,
- C, D commute.

Does there exist $\varepsilon > 0$ such that

 $M^n \cdot \mathcal{B}(s,\varepsilon)$ avoids T (\mathcal{F})

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all n?

Write M = CD where

- eigenvalues of C are positive reals,
- D is diagonalisable with all eigenvalues on \mathbb{T} ,
- -C, D commute.

Then $M^n = C^n D^n$. Assuming M is invertible,

$$(\mathbf{H}) \Leftrightarrow D^n \cdot \mathcal{B}(\mathbf{s}, \varepsilon) \text{ avoids } C^{-n} \cdot T.$$

Does there exist $\varepsilon > 0$ such that

 $D^n \cdot \mathcal{B}(s,\varepsilon)$ does not intersect $C^{-n} \cdot T$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for all n?

 $(D^n s)_{n \in \mathbb{N}}$ is uniformly recurrent in a compact set X.

 $(D^n \cdot \mathcal{B}(s,\varepsilon))_{n \in \mathbb{N}}$ is uniformly recurrent in X_{ε} .

 $(C^{-n} \cdot T)_{n \in \mathbb{N}}$ converges to a closed limit shape L.

Does there exist $\varepsilon > 0$ such that

 $D^n \cdot \mathcal{B}(s,\varepsilon)$ does not intersect $C^{-n} \cdot T$

for all *n*?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Does there exist $\varepsilon > 0$ such that

```
D^n \cdot \mathcal{B}(s,\varepsilon) does not intersect C^{-n} \cdot T
```

for all n?

Algorithm

Compute X and L

If X intersects L, output NO

Compute N and $\varepsilon > 0$ such that $C^{-n} \cdot T$ avoids X_{ε} for all n > N

If $D^n s \in \overline{C^{-n} \cdot T}$ for some $n \in \{0, \dots, N\}$, output NO

Otherwise, conclude YES

Convergence

Definition

A sequence $(Z_n)_{n\in\mathbb{N}}$ with $Z_n\subseteq\mathbb{R}^d$ converges to a closed limit shape L if $\lim_{n\to\infty} d_H(L,Z_n)=0$, where

$$d_H(A,B) = \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

The limit shape is

$$L = \{x \colon \liminf_{n \to \infty} d(x, Z_n) = 0\} = \{x \colon \lim_{n \to \infty} d(x, Z_n) = 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convergence in o-minimal structures

Let X be compact and $(Z_n)_{n \in \mathbb{N}}$ be a sequence of subsets of X definable in an o-minimal structure:

$$x \in Z_n \Leftrightarrow \varphi(x, n)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: $Z_n = C^{-n} \cdot T$ definable in \mathbb{R}_{exp} .

Convergence in o-minimal structures

Let X be compact and $(Z_n)_{n \in \mathbb{N}}$ be a sequence of subsets of X definable in an o-minimal structure:

$$x \in Z_n \Leftrightarrow \varphi(x, n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example: $Z_n = C^{-n} \cdot T$ definable in \mathbb{R}_{exp} .

Let $Z_t = \{x : \varphi(x, t)\}$ and $L = \liminf_{t \to \infty} \{x : d(x, Z_t) = 0\}$. Consider $\varepsilon > 0$ and $V = \{t \ge 0 : d_H(L, Z_t) < \varepsilon\}$.

Convergence in o-minimal structures

Let X be compact and $(Z_n)_{n \in \mathbb{N}}$ be a sequence of subsets of X definable in an o-minimal structure:

$$x \in Z_n \Leftrightarrow \varphi(x, n)$$

Example: $Z_n = C^{-n} \cdot T$ definable in \mathbb{R}_{exp} .

Let $Z_t = \{x : \varphi(x, t)\}$ and $L = \liminf_{t \to \infty} \{x : d(x, Z_t) = 0\}$. Consider $\varepsilon > 0$ and $V = \{t \ge 0 : d_H(L, Z_t) < \varepsilon\}$.

By o-minimality, $V \subseteq \mathbb{R}_{\geq 0}$ is a finite union of intervals. V must contain an unbounded interval by construction of L. Hence

$$\lim_{t\to\infty} d_H(L,Z_t) = \lim_{n\to\infty} d_H(L,Z_n) = 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

What is difficult about the Safety Problem?

Recall: $M^n s \notin T \Leftrightarrow D^n s \notin C^{-n} \cdot T$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What is difficult about the Safety Problem?

Recall: $M^n s \notin T \Leftrightarrow D^n s \notin C^{-n} \cdot T$

Difficult case: $L \cap X$ is non-empty and does not have full dimension in X.

Need to argue that $C^{-n} \cdot T$ approaches $L \cap X$ faster than $D^n s$ does.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Another example: frequencies for LRS

Let
$$u_n = \sum_{i=1}^k p_i(n) \lambda_i^n$$
 with $|\lambda_1| \ge \cdots \ge |\lambda_k| > 0$.

Kelmendi, 2023

The natural density of $\{n: u_n \ge 0\}$ exists, can be approximated to arbitrary precision, and can be compared to 1 and 0.

Evertse, 1984

For every $\varepsilon > 0$, there exists c > 0 such that $|u_n| > c(|\lambda_1| - \varepsilon)^n$ for all $u_n \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Frequencies via o-minimality

We want the density of $\{n: M^n s \in H\}$ where H is a halfspace.

Suppose *M* is invertible. Write M = CD. Then

$$M^n s \in H \Leftrightarrow D^n s \in C^{-n} \cdot H.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Compute the limit shape of $C^{-n} \cdot H$ and the closure X of $\{D^n s \colon n \in \mathbb{N}\}.$

The density is simply $\mu_X(X \cap L)$.

Ode to O-minimality

A structure \mathbb{M} with domain \mathbb{R} is o-minimal if every $S \subseteq \mathbb{R}^d$ definable in \mathbb{M} has finitely many connected components.

Examples:

- $\mathbb{R}_0 = \langle \mathbb{R}; 0, 1, +, \cdot \rangle$ and its expansions with bounded analytic functions
- $\mathbb{R}_{exp} = \langle \mathbb{R}; 0, 1, +, \cdot, exp \rangle$ and its expansions with Pfaffian chains

Further reading:

Fewnomials, A. G. Khovanskii

Geometric categories and o-minimal structures, L. van den Dries and C. Miller

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・