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Dynamical systems

A dynamical system (X,T) is a compact metric space (X,d)
with a homeomorphism T : X→ X. For the talk we assume
(X,T) is minimal (it doesn’t have proper nontrivial subsystems).
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Numerical invariant of dynamics: entropy

Entropy:

htop(X) = lim
ϵ→0

lim
n→∞

log sep(X,n, ϵ)
n

,

where sep(X,n, ϵ) is the number of orbits in X distinguishable
up to time n at resolution ϵ.

Geometrical interpretation for subshifts X ⊂ ΣZd = {0, . . . ,d − 1}
Z:

htop(X) = βdimbox(X) = βdimH(X),

where β is a normalising constant depending on what metric
exactly we chose on the full shift ΣZd.
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Low complexity as a lack of independence

Theorem (Kerr, Li), only for subshifts

1 X ⊂ AZ has positive entropy iff it has an independence set
S ⊆ Z of positive density.

2 X ⊂ AZ is not tame iff it has an infinite independence set S
⊆ Z.

3 X ⊂ AZ is not null iff it has an arbitrarily large
independence set S ⊆ Z

Set S ⊆ Z is an independence set for X ⊂ AZ if there are a , b
in A such that for any σ : S→ {a, b} there is x = (xn)n ∈ X with

xn = σ(n) for n ∈ S.
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Mean equicontinuity

Besicovitch pseudometric on (X,T) is given by

DB(x, y) = lim
n→∞

1
n

n−1∑
k=0

d(Tk(x),Tk(y)).

Besicovitch space [X]B is a quotient space X/ ∼ obtained by
identifying point x, y such that DB(x, y) = 0
.

A system is mean equicontinuous if DB : X ×X→ [0,∞) is
continuous (w.r.t. the original metric d). In this case ([X]B, [T])
is the MEF (maximal equicontinuous factor) of X.
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Amorphic complexity - intuition

Amorphic complexity [Fuhrmann, Gröger, Jäger (2018)] is a
numerical invariant of dynamical systems based on an
asymptotic notion of separation and suited for systems in low
complexity regime.

If a system is not mean equicontinuous, then its amorphic
complexity is infinite.
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Asymptotic separation numbers

For δ > 0 and ν ∈ (0, 1] we say that x, y ∈ X are (δ, ν)-separated if

Dδ(x, y) = lim
n→∞

#
{
−n ≤ k ≤ n : d

(
Tk(x),Tk(y)

)
≥ δ

}
2n + 1

≥ ν.

A subset S ⊆ X is said to be (δ, ν)-separated if all pairs of
distinct points x, y ∈ S are (δ, ν)-separated.

The (asymptotic) separation number Sep(X, δ, ν) of X is the
largest cardinality of a (δ, ν)-separated subset S of X.

We say (X,T) has finite separation numbers if all Sep(X, δ, ν) are
finite for δ > 0, ν ∈ (0, 1].
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Finite separation numbers - characterisation

The following conditions are equivalent:
1 (X,T) has finite separation numbers,
2 (X,T) is mean equicontinuous,
3 (X,T) is uniquely ergodic and has discrete spectrum with
continuous eigenfunctions.

null ⊆ tame ⊆ mean equicontinuous ⊆ discrete spectrum

System (X,T) is called regular almost automorphic if for the
factor map π : X→ MEF, the set {z ∈ MEF :

∣∣∣π−1(z)∣∣∣ = 1} has
full Haar measure.
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Elżbieta (Ela) Krawczyk (joint with Maik Gröger) Amorphic complexity of automatic systems



Amorphic complexity - definition

Definition:

ac(X) = sup
δ>0

lim
ν→0

logSep(X, δ, ν)
− log ν

and ac(X) = sup
δ>0

lim
ν→0

logSep(X, δ, ν)
− log ν

.

If the numbers coincide we put ac(X) = ac(X) = ac(X).

Geometric interpretation for a subshift X ⊂ ΣZd:

ac
(
X) = dimbox ([X]B) and ac

(
X) = dimbox ([X]B) ,

where dimbox([X]B) (resp. dimbox([X]B)) is a lower (resp. upper)
box dimension of [X]B ⊂ [ΣZd]B.
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Amorphic complexity so far

1 ac(Isometry) = 0,
2 ac(Sturmian) = 1,
3 ac(Denjoy) = 1,
4 upper bounds for Toeplitz subshifts,
5 (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for
some regular model sets,

6 (Baake, Gähler, Gohlke):
ac(Hat tiling) = 4 log(φ)

4 log(φ)−log(2+
√
3)
= 3.166443

7 (Fuhrmann, Gröger): bounds for (lower\upper) amorphic
complexity of minimal constant length substitution systems
+ closed formula over two letter alphabet,

8 Our result: closed formula for
ac(constant length substitution) + relation to nullness and
tameness.
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Elżbieta (Ela) Krawczyk (joint with Maik Gröger) Amorphic complexity of automatic systems



Amorphic complexity so far

1 ac(Isometry) = 0,
2 ac(Sturmian) = 1,
3 ac(Denjoy) = 1,
4 upper bounds for Toeplitz subshifts,
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7 (Fuhrmann, Gröger): bounds for (lower\upper) amorphic
complexity of minimal constant length substitution systems
+ closed formula over two letter alphabet,

8 Our result: closed formula for
ac(constant length substitution) + relation to nullness and
tameness.
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5 (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for
some regular model sets,

6 (Baake, Gähler, Gohlke):
ac(Hat tiling) = 4 log(φ)

4 log(φ)−log(2+
√
3)
= 3.166443
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Constant length substitution shifts

Consider a substitution φ : A → A∗ on some finite alphabet A,
e.g. the Thue–Morse substitution

φ(0) = 01, φ(1) = 10.

A substitution φ is said to be of constant length k if it sends all
letters to words of the same length k (e.g. the Thue–Morse
substitution is of constant length 2).

With a substitution φ we associate a substitution subshift:

Xφ ={z ∈ AZ | every finite word that appears in z

appears in φk(a) for some a ∈ A, k ≥ 1}.
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Low complexity notions for substitution shifts

The following conditions are equivalent:
1 (X,T) has finite separation numbers,
2 (X,T) is mean equicontinuous,
3 (X,T) is uniquely ergodic and has discrete spectrum with
continuous eigenfunctions.

A minimal substitution shift X has finite separation numbers if
and only if it has discrete spectrum if and only if it is regular
almost automorphic (for the factor map π : X→ MEF, the set
{z ∈ MEF :

∣∣∣π−1(z)∣∣∣ = 1} has full Haar measure).
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Separation substitution

To state our result we need to define separation substitution
and separation number of a primitive constant length
substitution φ of height h=1.

The separation substitution of φ : A → A∗ is defined on the set
of all unordered pairs of distinct letters in A.

substitution φ

a→ aabca

b→ abacc

c→ acabc

separation substitution φs of φ(
a
b

)
→

(
a
b

)(
a
b

)(
a
c

)
(
a
c

)
→

(
a
c

)(
a
b

)(
b
c

)(
a
c

)
(
b
c

)
→

(
b
c

)(
b
c

)
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Separation substitution and separation number

separation substitution φs(
a
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)
→
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→

(
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)(
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(
b
c
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→

(
b
c

)(
b
c

)

incidence matrix Ms of φs2 2 01 1 0
0 1 2



The matrix Ms has a dominant (Perron–Frobenius) eigenvalue
λs = 3 which we call the separation number of φ.
1 λs = 0 or 1 ≤ λs ≤ k,
2 λs = 0 if and only if Xφ is finite
3 λs = k if and only if Xφ does not have discrete spectrum.
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Amorphic complexity of constant length substitution
shifts

Theorem (Gröger, K.)

For a (pure) minimal substitution shift X of constant length k
its amorphic complexity is given by

ac(X) =
log k

log k − log λs
,

where λs is the separation number of φ ((log k)/0 = ∞).

For a general (nonminimal) automatic system X we have

ac(X) = max{ac(Y) | Y ⊂ X minimal subshift}.
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Tameness and nullness of automatic shifts

Theorem (Gröger, K. + Fuhrmann, Kellendonk, Yassawi)

For an infinite minimal automatic shift X, the following are
equivalent:
1 ac(X) = 1,
2 X is tame,
3 X is null,
4 the factor map π : X→ MEF has only countably many
nonregular points (countably many points z ∈ MEF with
|π−1(z)| ≥ 2).

(2)⇐⇒ (4) was shown by Fuhrmann, Kellendonk, and Yassawi.
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Proof synopsis
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