Amorphic complexity, tameness, and nullness of constant length substitution systems

> Elżbieta (Ela) Krawczyk (joint with Maik Gröger)

> Jagiellonian University, Kraków

Kick off meeting of the ANR/FWF Project SYMDYNAR Roscoff, 2nd September 2024 A dynamical system (X, T) is a compact metric space (X, d) with a homeomorphism $T: X \to X$. For the talk we assume (X, T) is minimal (it doesn't have proper nontrivial subsystems).

Numerical invariant of dynamics: entropy

Entropy:

$$h_{top}(X) = \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \frac{\log \operatorname{sep}(X, n, \epsilon)}{n},$$

where $sep(X, n, \epsilon)$ is the number of orbits in X distinguishable up to time n at resolution ϵ .

Geometrical interpretation for subshifts $X \subset \Sigma_d^{\mathbb{Z}} = \{0, \dots, d-1\}^{\mathbb{Z}}$:

$$h_{top}(X) = \beta \dim_{box}(X) = \beta \dim_{H}(X),$$

where β is a normalising constant depending on what metric exactly we chose on the full shift $\Sigma_d^{\mathbb{Z}}$.

Numerical invariant of dynamics: entropy

Entropy:

$$h_{top}(X) = \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \frac{\log \operatorname{sep}(X, n, \epsilon)}{n},$$

where $sep(X, n, \epsilon)$ is the number of orbits in X distinguishable up to time n at resolution ϵ .

Geometrical interpretation for subshifts $X \subset \Sigma_d^{\mathbb{Z}} = \{0, \dots, d-1\}^{\mathbb{Z}}$:

$$h_{top}(X) = \beta \dim_{box}(X) = \beta \dim_{H}(X),$$

where β is a normalising constant depending on what metric exactly we chose on the full shift $\Sigma_d^{\mathbb{Z}}$.

Theorem (Kerr, Li), only for subshifts

- X ⊂ A^Z has positive entropy iff it has an independence set
 S ⊆ Z of positive density.
- ② $X \subset \mathcal{A}^{\mathbb{Z}}$ is not tame iff it has an infinite independence set S ⊆ \mathbb{Z} .
- ③ X ⊂ ℋ^Z is not null iff it has an arbitrarily large independence set S ⊆ Z

Set $S \subseteq \mathbb{Z}$ is an independence set for $X \subset \mathcal{A}^{\mathbb{Z}}$ if there are $a \neq b$ in \mathcal{A} such that for any $\sigma \colon S \to \{a, b\}$ there is $x = (x_n)_n \in X$ with

 $x_n = \sigma(n) \text{ for } n \in S.$

Theorem (Kerr, Li), only for subshifts

- X ⊂ A^Z has positive entropy iff it has an independence set
 S ⊆ Z of positive density.
- ② $X \subset \mathcal{A}^{\mathbb{Z}}$ is not tame iff it has an infinite independence set S ⊆ \mathbb{Z} .
- S X ⊂ A^Z is not null iff it has an arbitrarily large independence set S ⊆ Z

Set $S \subseteq \mathbb{Z}$ is an independence set for $X \subset \mathcal{A}^{\mathbb{Z}}$ if there are $a \neq b$ in \mathcal{A} such that for any $\sigma \colon S \to \{a, b\}$ there is $x = (x_n)_n \in X$ with

 $x_n = \sigma(n) \text{ for } n \in S.$

Theorem (Kerr, Li), only for subshifts

- X ⊂ A^Z has positive entropy iff it has an independence set
 S ⊆ Z of positive density.
- ② $X \subset \mathcal{A}^{\mathbb{Z}}$ is not tame iff it has an infinite independence set S ⊆ \mathbb{Z} .
- ③ X ⊂ A^Z is not null iff it has an arbitrarily large independence set S ⊆ Z

Set $S \subseteq \mathbb{Z}$ is an independence set for $X \subset \mathcal{A}^{\mathbb{Z}}$ if there are $a \neq b$ in \mathcal{A} such that for any $\sigma: S \to \{a, b\}$ there is $x = (x_n)_n \in X$ with

 $x_n = \sigma(n)$ for $n \in S$.

Theorem (Kerr, Li), only for subshifts

- X ⊂ A^Z has positive entropy iff it has an independence set
 S ⊆ Z of positive density.
- ② $X \subset \mathcal{A}^{\mathbb{Z}}$ is not tame iff it has an infinite independence set S ⊆ \mathbb{Z} .

3 X ⊂ A^Z is not null iff it has an arbitrarily large independence set S ⊆ Z

Set $S \subseteq \mathbb{Z}$ is an independence set for $X \subset \mathcal{A}^{\mathbb{Z}}$ if there are $a \neq b$ in \mathcal{A} such that for any $\sigma: S \to \{a, b\}$ there is $x = (x_n)_n \in X$ with

 $x_n = \sigma(n)$ for $n \in S$.

Theorem (Kerr, Li), only for subshifts

- X ⊂ A^Z has positive entropy iff it has an independence set
 S ⊆ Z of positive density.
- ② $X \subset \mathcal{A}^{\mathbb{Z}}$ is not tame iff it has an infinite independence set S ⊆ \mathbb{Z} .
- S X ⊂ A^Z is not null iff it has an arbitrarily large independence set S ⊆ Z

Set $S \subseteq \mathbb{Z}$ is an independence set for $X \subset \mathcal{A}^{\mathbb{Z}}$ if there are $a \neq b$ in \mathcal{A} such that for any $\sigma: S \to \{a, b\}$ there is $x = (x_n)_n \in X$ with

$$x_n = \sigma(n) \text{ for } n \in S.$$

$$D_B(x,y) = \varlimsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x),T^k(y)).$$

Besicovitch space $[X]_B$ is a quotient space X/ \sim obtained by identifying point x, y such that $D_B(x, y) = 0$

$$D_B(x,y) = \varlimsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x),T^k(y)).$$

Besicovitch space $[X]_B$ is a quotient space X/ \sim obtained by identifying point x, y such that $D_B(x, y) = 0$

$$D_B(x,y) = \varlimsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x),T^k(y)).$$

Besicovitch space $[X]_B$ is a quotient space X/ \sim obtained by identifying point x, y such that $D_B(x, y) = 0$

$$D_B(x,y) = \varlimsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} d(T^k(x),T^k(y)).$$

Besicovitch space $[X]_B$ is a quotient space X/ \sim obtained by identifying point x, y such that $D_B(x, y) = 0$

Amorphic complexity [Fuhrmann, Gröger, Jäger (2018)] is a numerical invariant of dynamical systems based on an asymptotic notion of separation and suited for systems in low complexity regime.

If a system is not mean equicontinuous, then its amorphic complexity is infinite.

$$D_{\delta}(x, y) = \lim_{n \to \infty} \frac{\#\left\{-n \le k \le n : d\left(T^{k}(x), T^{k}(y)\right) \ge \delta\right\}}{2n + 1} \ge \nu.$$

A subset $S \subseteq X$ is said to be (δ, ν) -separated if all pairs of distinct points x, y $\in S$ are (δ, ν) -separated.

The (asymptotic) separation number $\text{Sep}(X, \delta, \nu)$ of X is the largest cardinality of a (δ, ν) -separated subset S of X.

$$D_{\delta}(x, y) = \lim_{n \to \infty} \frac{\#\left\{-n \le k \le n : d\left(T^{k}(x), T^{k}(y)\right) \ge \delta\right\}}{2n + 1} \ge \nu.$$

A subset $S \subseteq X$ is said to be (δ, ν) -separated if all pairs of distinct points $x, y \in S$ are (δ, ν) -separated.

The (asymptotic) separation number $\text{Sep}(X, \delta, \nu)$ of X is the largest cardinality of a (δ, ν) -separated subset S of X.

$$D_{\delta}(x, y) = \lim_{n \to \infty} \frac{\#\left\{-n \le k \le n : d\left(T^{k}(x), T^{k}(y)\right) \ge \delta\right\}}{2n + 1} \ge \nu.$$

A subset $S \subseteq X$ is said to be (δ, ν) -separated if all pairs of distinct points $x, y \in S$ are (δ, ν) -separated.

The (asymptotic) separation number $\text{Sep}(X, \delta, \nu)$ of X is the largest cardinality of a (δ, ν) -separated subset S of X.

$$D_{\delta}(x, y) = \lim_{n \to \infty} \frac{\#\left\{-n \le k \le n : d\left(T^{k}(x), T^{k}(y)\right) \ge \delta\right\}}{2n + 1} \ge \nu.$$

A subset $S \subseteq X$ is said to be (δ, ν) -separated if all pairs of distinct points $x, y \in S$ are (δ, ν) -separated.

The (asymptotic) separation number $\text{Sep}(X, \delta, \nu)$ of X is the largest cardinality of a (δ, ν) -separated subset S of X.

Finite separation numbers - characterisation

The following conditions are equivalent:

- (X, T) has finite separation numbers,
- 2 (X, T) is mean equicontinuous,
- ③ (X, T) is uniquely ergodic and has discrete spectrum with continuous eigenfunctions.

 $\mathrm{null}\subseteq\mathrm{tame}\subseteq\mathrm{mean}\ \mathrm{equicontinuous}\subseteq\mathrm{discrete}\ \mathrm{spectrum}$

Finite separation numbers - characterisation

The following conditions are equivalent:

- (X, T) has finite separation numbers,
- 2 (X, T) is mean equicontinuous,
- ③ (X, T) is uniquely ergodic and has discrete spectrum with continuous eigenfunctions.

null \subseteq tame \subseteq mean equicontinuous \subseteq discrete spectrum

Finite separation numbers - characterisation

The following conditions are equivalent:

- (X, T) has finite separation numbers,
- 2 (X, T) is mean equicontinuous,
- (X, T) is uniquely ergodic and has discrete spectrum with continuous eigenfunctions.

null \subseteq tame \subseteq mean equicontinuous \subseteq discrete spectrum

The following conditions are equivalent:

- (X, T) has finite separation numbers,
- 2 (X, T) is mean equicontinuous,
- (X, T) is uniquely ergodic and has discrete spectrum with continuous eigenfunctions.

 $\operatorname{null} \subseteq \operatorname{tame} \subseteq \operatorname{mean} \, \operatorname{equicontinuous} \subseteq \operatorname{discrete} \, \operatorname{spectrum}$

Definition:

$$\underline{\operatorname{ac}}(\mathbf{X}) = \sup_{\delta > 0} \lim_{\nu \to 0} \frac{\log \operatorname{Sep}(\mathbf{X}, \delta, \nu)}{-\log \nu} \quad \text{and} \quad \overline{\operatorname{ac}}(\mathbf{X}) = \sup_{\delta > 0} \overline{\lim_{\nu \to 0}} \frac{\log \operatorname{Sep}(\mathbf{X}, \delta, \nu)}{-\log \nu}.$$

If the numbers coincide we put $ac(X) = \underline{ac}(X) = \overline{ac}(X)$.

Geometric interpretation for a subshift $X \subset \Sigma_d^{\mathbb{Z}}$:

 $\underline{\operatorname{ac}}(X) = \underline{\operatorname{dim}}_{\operatorname{box}}([X]_{\operatorname{B}}) \quad \text{and} \quad \overline{\operatorname{ac}}(X) = \operatorname{dim}_{\operatorname{box}}([X]_{\operatorname{B}}),$

where $\underline{\dim}_{box}([X]_B)$ (resp. $\overline{\dim}_{box}([X]_B)$) is a lower (resp. upper) box dimension of $[X]_B \subset [\Sigma_d^{\mathbb{Z}}]_B$.

Definition:

$$\underline{\operatorname{ac}}(\mathbf{X}) = \sup_{\delta > 0} \lim_{\nu \to 0} \frac{\log \operatorname{Sep}(\mathbf{X}, \delta, \nu)}{-\log \nu} \quad \text{and} \quad \overline{\operatorname{ac}}(\mathbf{X}) = \sup_{\delta > 0} \overline{\lim_{\nu \to 0}} \frac{\log \operatorname{Sep}(\mathbf{X}, \delta, \nu)}{-\log \nu}.$$

If the numbers coincide we put $ac(X) = \underline{ac}(X) = \overline{ac}(X)$.

Geometric interpretation for a subshift $X \subset \Sigma_d^{\mathbb{Z}}$:

$$\underline{\operatorname{ac}}(X) = \underline{\operatorname{dim}}_{\operatorname{box}}([X]_{\operatorname{B}}) \quad \text{and} \quad \overline{\operatorname{ac}}(X) = \overline{\operatorname{dim}}_{\operatorname{box}}([X]_{\operatorname{B}}),$$

where $\underline{\dim}_{box}([X]_B)$ (resp. $\overline{\dim}_{box}([X]_B)$) is a lower (resp. upper) box dimension of $[X]_B \subset [\Sigma_d^{\mathbb{Z}}]_B$.

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1,$
- ac(Denjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- (Baake, Gähler, Gohlke): ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- ac(**Denjoy**) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- (Baake, Gähler, Gohlke): ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- (ac(Denjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- (Baake, Gähler, Gohlke): ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- (Oenjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- (Baake, Gähler, Gohlke): ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

通 ト イ ヨ ト イ ヨ ト

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- (Oenjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- (Baake, Gähler, Gohlke): ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

伺下 イヨト イヨト

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- (ac(Denjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- **(Baake, Gähler, Gohlke):** ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

伺下 イヨト イヨト

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- (ac(Denjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- **(Baake, Gähler, Gohlke):** ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

- ac(Isometry) = 0,
- 2 $\operatorname{ac}(\operatorname{Sturmian}) = 1$,
- (Oenjoy) = 1,
- upper bounds for Toeplitz subshifts,
- (Fuhrmann, Gröger, Jäger, Kwietniak): upper bounds for some regular model sets,
- **(Baake, Gähler, Gohlke):** ac(Hat tiling) = $\frac{4 \log(\varphi)}{4 \log(\varphi) - \log(2 + \sqrt{3})} = 3.166443$
- (Fuhrmann, Gröger): bounds for (lower\upper) amorphic complexity of minimal constant length substitution systems + closed formula over two letter alphabet,
- Our result: closed formula for ac(constant length substitution) + relation to nullness and tameness.

Constant length substitution shifts

Consider a substitution $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ on some finite alphabet \mathcal{A} , e.g. the Thue–Morse substitution

 $\varphi(0) = 01, \quad \varphi(1) = 10.$

A substitution φ is said to be of constant length k if it sends all letters to words of the same length k (e.g. the Thue–Morse substitution is of constant length 2).

With a substitution φ we associate a substitution subshift:

$$\begin{split} X_{\varphi} = & \{z \in \mathcal{A}^{\mathbb{Z}} \mid \text{ every finite word that appears in } z \\ & \text{ appears in } \varphi^{k}(a) \text{ for some } a \in \mathcal{A}, k \geq 1 \}. \end{split}$$

Constant length substitution shifts

Consider a substitution $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ on some finite alphabet \mathcal{A} , e.g. the Thue–Morse substitution

 $\varphi(0) = 01, \quad \varphi(1) = 10.$

A substitution φ is said to be of constant length k if it sends all letters to words of the same length k (e.g. the Thue–Morse substitution is of constant length 2).

With a substitution φ we associate a substitution subshift:

 $X_{\varphi} = \{z \in \mathcal{A}^{\mathbb{Z}} \mid \text{ every finite word that appears in } z$ appears in $\varphi^{k}(a)$ for some $a \in \mathcal{A}, k \ge 1\}.$

Constant length substitution shifts

Consider a substitution $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ on some finite alphabet \mathcal{A} , e.g. the Thue–Morse substitution

$$\varphi(0) = 01, \quad \varphi(1) = 10.$$

A substitution φ is said to be of constant length k if it sends all letters to words of the same length k (e.g. the Thue–Morse substitution is of constant length 2).

With a substitution φ we associate a substitution subshift:

$$\begin{split} X_{\varphi} = & \{z \in \mathcal{A}^{\mathbb{Z}} \mid \text{ every finite word that appears in } z \\ & \text{appears in } \varphi^{k}(a) \text{ for some } a \in \mathcal{A}, k \geq 1 \}. \end{split}$$

The following conditions are equivalent:

- (X, T) has finite separation numbers,
- ❷ (X, T) is mean equicontinuous,
- (X, T) is uniquely ergodic and has discrete spectrum with continuous eigenfunctions.

A minimal substitution shift X has finite separation numbers if and only if it has discrete spectrum if and only if it is regular almost automorphic (for the factor map $\pi: X \to MEF$, the set $\{z \in MEF: |\pi^{-1}(z)| = 1\}$ has full Haar measure). The following conditions are equivalent:

- (X, T) has finite separation numbers,
- (X, T) is mean equicontinuous,
- (X, T) is uniquely ergodic and has discrete spectrum with continuous eigenfunctions.

A minimal substitution shift X has finite separation numbers if and only if it has discrete spectrum if and only if it is regular almost automorphic (for the factor map $\pi: X \to MEF$, the set $\{z \in MEF: |\pi^{-1}(z)| = 1\}$ has full Haar measure).

To state our result we need to define separation substitution and separation number of a primitive constant length substitution φ of height h=1.

The separation substitution of $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ is defined on the set of all unordered pairs of distinct letters in \mathcal{A} .

substitution φ a \rightarrow aabca b \rightarrow abacc c \rightarrow acabc

$$\begin{pmatrix} a \\ b \end{pmatrix} \rightarrow \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \rightarrow \begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} b \\ c \end{pmatrix} \rightarrow \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \\ \begin{pmatrix} b \\ c \end{pmatrix}$$

To state our result we need to define separation substitution and separation number of a primitive constant length substitution φ of height h=1.

The separation substitution of $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ is defined on the set of all unordered pairs of distinct letters in \mathcal{A} .

substitution φ a \rightarrow aabca b \rightarrow abacc c \rightarrow acabc

$$\begin{pmatrix} a \\ b \end{pmatrix} \rightarrow \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} a \\ c \end{pmatrix} \rightarrow \begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} \\ \begin{pmatrix} b \\ c \end{pmatrix} \rightarrow \begin{pmatrix} b \\ c \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \\ \begin{pmatrix} b \\ c \end{pmatrix}$$

To state our result we need to define separation substitution and separation number of a primitive constant length substitution φ of height h=1.

The separation substitution of $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ is defined on the set of all unordered pairs of distinct letters in \mathcal{A} .

substitution φ a \rightarrow aabca b \rightarrow abacc c \rightarrow acabc

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

To state our result we need to define separation substitution and separation number of a primitive constant length substitution φ of height h=1.

The separation substitution of $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ is defined on the set of all unordered pairs of distinct letters in \mathcal{A} .

substitution φ $a \rightarrow aabca$ $b \rightarrow abacc$ $c \rightarrow acabc$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

To state our result we need to define separation substitution and separation number of a primitive constant length substitution φ of height h=1.

The separation substitution of $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ is defined on the set of all unordered pairs of distinct letters in \mathcal{A} .

substitution φ $a \rightarrow aabca$ $b \rightarrow abacc$ $c \rightarrow acabc$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

To state our result we need to define separation substitution and separation number of a primitive constant length substitution φ of height h=1.

The separation substitution of $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ is defined on the set of all unordered pairs of distinct letters in \mathcal{A} .

substitution φ a \rightarrow aabca b \rightarrow abacc c \rightarrow acabc

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \\ \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

Separation substitution and separation number

separation substitution $\varphi_{\rm s}$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

incidence matrix M_s of φ_s

$$\begin{pmatrix} 2 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

The matrix M_s has a dominant (Perron–Frobenius) eigenvalue $\lambda_s = 3$ which we call the separation number of φ .

2) $\lambda_{s} = 0$ if and only if X_{φ} is finite

③ $\lambda_s = k$ if and only if X_{φ} does not have discrete spectrum.

Separation substitution and separation number

separation substitution $\varphi_{\rm s}$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

incidence matrix M_s of φ_s

$$\begin{pmatrix} 2 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

The matrix M_s has a dominant (Perron–Frobenius) eigenvalue $\lambda_s = 3$ which we call the separation number of φ .

2 $\lambda_{s} = 0$ if and only if X_{φ} is finite

(a) $\lambda_s = k$ if and only if X_{φ} does not have discrete spectrum.

Separation substitution and separation number

separation substitution $\varphi_{\rm s}$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

incidence matrix M_s of φ_s

$$\begin{pmatrix} 2 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

The matrix M_s has a dominant (Perron–Frobenius) eigenvalue $\lambda_s = 3$ which we call the separation number of φ .

2) $\lambda_{\rm s} = 0$ if and only if X_{φ} is finite

③ $\lambda_s = k$ if and only if X_{φ} does not have discrete spectrum

separation substitution $\varphi_{\rm s}$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

incidence matrix M_s of φ_s

The matrix M_s has a dominant (Perron–Frobenius) eigenvalue $\lambda_s = 3$ which we call the separation number of φ .

2
$$\lambda_{s} = 0$$
 if and only if X_{φ} is finite

(a) $\lambda_s = k$ if and only if X_{φ} does not have discrete spectrum.

separation substitution $\varphi_{\rm s}$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{c} \end{pmatrix} \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

incidence matrix M_s of φ_s

$$\begin{pmatrix} 2 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

The matrix M_s has a dominant (Perron–Frobenius) eigenvalue $\lambda_s = 3$ which we call the separation number of φ .

2
$$\lambda_{s} = 0$$
 if and only if X_{φ} is finite

3 $\lambda_{s} = k$ if and only if X_{φ} does not have discrete spectrum.

Theorem (Gröger, K.)

For a (pure) minimal substitution shift X of constant length k its amorphic complexity is given by

$$\operatorname{ac}(X) = \frac{\log k}{\log k - \log \lambda_s},$$

where $\lambda_{\rm s}$ is the separation number of φ ((log k)/0 = ∞).

For a general (nonminimal) automatic system X we have

 $ac(X) = max\{ac(Y) \mid Y \subset X \text{ minimal subshift}\}.$

Theorem (Gröger, K.)

For a (pure) minimal substitution shift X of constant length k its amorphic complexity is given by

$$\operatorname{ac}(X) = \frac{\log k}{\log k - \log \lambda_{s}},$$

where $\lambda_{\rm s}$ is the separation number of φ ((log k)/0 = ∞).

For a general (nonminimal) automatic system X we have

 $ac(X) = max\{ac(Y) \mid Y \subset X \text{ minimal subshift}\}.$

For an infinite minimal automatic shift X, the following are equivalent:

- **1** ac(X) = 1,
- 2 X is tame,
- X is null,
- the factor map π: X → MEF has only countably many nonregular points (countably many points z ∈ MEF with |π⁻¹(z)| ≥ 2).

 $(2) \iff (4)$ was shown by Fuhrmann, Kellendonk, and Yassawi.

For an infinite minimal automatic shift X, the following are equivalent:

- **1** ac(X) = 1,
- 2 X is tame,
- 3 X is null,

the factor map π: X → MEF has only countably many nonregular points (countably many points z ∈ MEF with |π⁻¹(z)| ≥ 2).

 $(2) \iff (4)$ was shown by Fuhrmann, Kellendonk, and Yassawi.

For an infinite minimal automatic shift X, the following are equivalent:

- **1** ac(X) = 1,
- 2 X is tame,
- 3 X is null,

the factor map π: X → MEF has only countably many nonregular points (countably many points z ∈ MEF with |π⁻¹(z)| ≥ 2).

 $(2) \iff (4)$ was shown by Fuhrmann, Kellendonk, and Yassawi.

For an infinite minimal automatic shift X, the following are equivalent:

- **1** ac(X) = 1,
- 2 X is tame,
- 3 X is null,
- the factor map π: X → MEF has only countably many nonregular points (countably many points z ∈ MEF with |π⁻¹(z)| ≥ 2).

 $(2) \iff (4)$ was shown by Fuhrmann, Kellendonk, and Yassawi.

Proof synopsis

Elżbieta (Ela) Krawczyk (joint with Maik Gröger) Amorphic complexity of automatic systems