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Permeable sets: Definition

Motivation

Consider ‘short’ connections avoiding a set in R2:

Finitely many points

A line or a circle
A strip of positive
width

Intuitively, they have different levels of ‘permeability’.
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Permeable sets: Definition

Definition

Definition ((Null-)permeability)

Let Rd be equipped with some norm ‖ · ‖.
A set Θ ⊂ Rd is null permeable if for any two points x , y ∈ Rd

and any δ > 0, x and y can be connected by a path γ that is
disjoint from Θ \ {x , y} and has length at most ‖x − y‖+ δ.

A set Θ ⊂ Rd is permeable if for any two points x , y ∈ Rd and
any δ > 0, x and y can be connected by a path γ with Θ ∩ γ
countable and with length at most ‖x − y‖+ δ.

Easy consequences:

Subsets of permeable sets are permeable
Permeable sets have empty interior (rel. to Rd)
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Permeable sets: Definition

More examples

C × [0, 1] ⊂ R2, where C is the Cantor middle third set

impermeable
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Permeable sets: Definition

More examples

{(
x , sin(x−1)

)
: x > 0

}
⊂ R2

permeable, but not null permeable{(
x , sin(x−1), cos(x−1)

)
: x > 0

}
⊂ R3

, null permeable
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Permeable sets: Definition

But why?

But why would one be interested in this concept?
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Starting point: SDEs

SDEs

Stochastic differential equations (SDE):

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0

b : Rd → Rd , σ : Rd → Rd×m

W is a vector of m independent Brownian motions.

If b, σ are Lipschitz:
Existence and uniqueness (K. Itô)
Euler-Maruyama numerical scheme converges with positive rate

Modeling recent phenomena such as electricity market models or
dividend maximization for insurance companies lead to SDEs with
discontinuities in their drift terms (that is in b).
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Starting point: SDEs

SDEs

Transformation method

Method used by L. & Szölgyenyi (2016-2017),
Müller-Gronbach, Rauhögger, Yaroslavtseva (2024+):

Existence and uniqueness by a transformation that ‘annihilates’ the
discontinuities.
In dimension d = 1: Suppose b is piecewise Lipschitz, σ is
Lipschitz, σ does not vanish in the discontinuities of b.
G : R → R a suitable bijective function. Zt = G (Xt).
Transformed SDE:

dZt = b̃(Zt)dt + σ̃(Zt)dWt , Z0 = G (x0)

b̃ : R→ R, σ̃ : R→ R

Then σ̃ is Lipschitz, b̃ is continuous and piecewise Lipschitz and
therefore globally Lipschitz → use classical results and transform
back
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Piecewise Lipschitz functions

What should a piecewise Lipschitz function be?

So what is a piecewise Lipschitz’ function f : Rd → R in several
dimensions?

In one dimension: Discontinuities happen at points t1, t2, . . . , tm.
Restricted to the intervals

(−∞, t1), (t1, t2), . . . , (tm−1, tm), (tm,∞)

the function f is Lipschitz.

No straightforward generalization: The intervals are the
1-dimensional convex, connected, path-connected, star-shaped,...
sets, the polytopes, balls etc.
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Piecewise Lipschitz functions

What should a piecewise Lipschitz function be?

Idea: Instead of the set where the function is Lipschitz, concentrate
on the set where the property fails, the exception set Θ.

In 1 dimension: Θ = {t1, t2, . . . , tm}.

How to employ the piecewise Lipschitz property consistently?
intrinsic metric on Rd \Θ:

%(x , y) := inf{`(γ) : γ is a path in Rd \Θ connecting x and y}

`(γ) is the length of the path γ

f is intrinsically
L-Lipschitz if f is
Lipschitz w.r.t. % on
R

d \Θ with Lipschitz
constant L.
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Piecewise Lipschitz functions

Pw Lip and permeability

Example: Θ = {(x1, 0) : x1 ≤ 0} ⊆ R2, f (x) = |x | arg(x),

12 / 14



Piecewise Lipschitz functions

Pw Lip and permeability

Example: Θ = {(x1, 0) : x1 ≤ 0} ⊆ R2, f (x) = |x | arg(x),

12 / 14



Piecewise Lipschitz functions

Pw Lip and permeability

Example: Θ = {(x1, 0) : x1 ≤ 0} ⊆ R2, f (x) = |x | arg(x),

12 / 14



Piecewise Lipschitz functions

Pw Lip and permeability

Example: Θ = {(x1, 0) : x1 ≤ 0} ⊆ R2, f (x) = |x | arg(x),

12 / 14



Piecewise Lipschitz functions

Pw Lip and permeability

Example: Θ = {(x1, 0) : x1 ≤ 0} ⊆ R2, f (x) = |x | arg(x),

12 / 14



Piecewise Lipschitz functions

Pw Lip and permeability

A useful and natural condition on f :

For some Θ ⊂ Rd we have:
If f is intrinsically L-Lipschitz on Rd \Θ and continuous on Rd ,
then f is L-Lipschitz on the whole of Rd .

trivial for the common definition in the 1 dimensional case
not obvious and not true in several dimensions
⇒ a situation that had to be investigated!

What condition on Θ could guarantee this?
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Piecewise Lipschitz functions

Pw Lip and permeability

Important result

Theorem (L. & St., 2022)

Let Θ ⊆ Rd be permeable. Then every continuous function
R

d → R which is intrinsically L-Lipschitz on Rd \Θ is L-Lipschitz
continuous on the whole of Rd .

14 / 14
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