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Pure point spectrum
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Analogies

Symbolic

Geometric

Sequences (Words)

The product topology

on o

Shift ¢

Subshift X = {¢"(w) | n € N}

Tilings

Tiling metric

Translation by x € R?

Continuous hull

X;={J +x|x€RY



Definition of one-dimensional tiling

the label

\

® atile: T'= (|a,bl,!) Or just T = [a, D]

/

the support (suppT)

® 3 patch=a collection P of tiles such that

S, T €P,S+T = (suppS)° N (suppT)°® =)

® a tiling=a patch T such that R = (J,.suppT




A construction of non-periodic tilings

interest: non-periodic but “ordered” tiling

\

T +x="7T only for x =0

construction: via a substitution rule



Tiling dynamical systems

Continuous hull

X, =19 +x|x €R]

R acts on X, via translation:

XgXR3(S,x)—» S+x€ X,

Often there is one and only one invariant Borel probability measure u



Tiling dynamical systems

R acts on X, via translation:

X XR3(S,x)— S+xe X,

Often there is one and only one invariant Borel probability measure u

We say I has pure point dynamical spectrum if there exists a complete
orthonormal basis for L?(x) consisting of eigenfunctions for the Koopman
operators U, : fr f(-—x) (U(f)S) =AS —x))

(fis an eigenfunction if U (f) =c.f)



Tiling dynamical systems

We say  has pure point dynamical spectrum if there exists a complete
orthonormal basis for L%*(ux) consisting of eigenfunctions for the Koopman

operators U, : f= f(- —x) (Uf)(S) =S —X))

A tiling 9 has pure point spectrum
<7 Is almost periodic (a weak form of translational symmetry)

(Gouéré, Lenz-Spindeler-Strungaru)



Tiling dynamical systems

A tiling 9 has pure point spectrum

<7 Is almost periodic (a weak form of translational symmetry)

(Gouéré, Lenz-Spindeler-Strungaru)

<the corresponding dynamical system is conjugate to a rotation of compact
abelian group



Main question

Decide which non-periodic tiling has pure point dynamical spectrum.

<—has a weak form of symmetry

—falls into the class of tilings
which are classified by their spectra



A construction of non-periodic tilings

a substitution rule =a recipe for “expanding and subdividing”
= o A: a finite set of tiles (the alphabet)
® p: the rule of expanding P € A and then subdivide it

e ) > 1: an expansion factor

Example

Ty 15
! +2\/5 :expansion factor A ={[0,7],]0, 1]}

T =

pr(Th) ={T, To+71}  pr(T2) ={T1}



A construction of non-periodic tilings
1++/5 | o 1
Example 7= 5 ‘expansion factor A ={[0,7],[0,1]}

pr(Th) ={T, Ta+71}  pr(T2) ={T1}

T expand by 7

0 T 0 2

subdivide
T1 I T2 —|— T

0 4’ T+ 1 pr(hi)

15 expand by 7 T,
0 1 "0 T

pr(T2)



A construction of non-periodic tilings

17 15
Example - — L+ V5 .expansion factor A = {[0,7],[0,1]}

prp(T) ={T,Ta+71}  pr(Tlz)={T1}
We extend the domain of p by setting p(P + x) = p(P) + Ax

| |

0 T T+ 1 3 3J|FT 441

pr(Th) pr(T) +3 = pp(T, + 3/7)



A construction of non-periodic tilings

S-adic tilings: tilings of the form 7 = nh_)rrgo Piy © Piy © -0 iy (Pn)
{p1,p2,--.,pm, }: a finite family of substitutions with a common alphabet A

i1,02,... € {1,2,...,mq}: a directive sequence

in other words: a tiling 7 = 7 that admits “de-substituted tilings”

T, T, TW, ...
such that

pi (T = T =12,



A construction of non-periodic tilings

i (T ) =T n=1.2,...

| I N = | = N
| | | | | |
| = | - N I e
| | | | | |
T2 T2 T1 T2 Tl

PR



Main question

Decide which S-adic tiling has pure point dynamical spectrum.

Self-similar tilings by substitution rules with the Pisot condition
have pure point spectrum

Today’s result

(1)Give a sufficient condition for a given S-adic tiling to be pure
point

(2)this condition is satisfied for one of the simplest classes
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The main idea

(1)Generalize Solomyak’s overlap algorithm [Solomyak 1997] to
the S-adic setting

(2)apply the overlap algorithm t¢ a class of S-adic tiligs of
Interest

Goes back to the coincidence condition for constant-length
symbolic substitution



Overlap algorithm

p p P
91‘1_192(_293(_3’”,

where p : a substitution rule with a fixed alphabet &/ and non-fixed

expansion factor A,

Set A, ={xeR|ITe T (T+x€ T,)}

An overlap @n = a triple (S,x,T) such that S, Te g, and x € A, with
nt(S + x) Nint7T # &



Overlap algorithm

An overlap @n = a triple (S,x,T) such that S, Te g, and x € A, with

mnt(S + x) N int7T # @

S+x S +x’

yeER

S, x, T)~ (S, x, T



Overlap algorithm

An overlap @n = a triple (S,x,T) such that S, Te g, and x € A, with

mnt(S + x) N int7T # @

S, x, T) ~ (S, x",T)
[S,x, T]: the equivalence class

V. ={[S,x,T]| (S,x,T) : an overlap @n}



Overlap algorithm

[S,x, T]. the equivalence class

V. ={[S,x,T]| (S,x,T) : an overlap @n}

S, x, T)@n+1 - (S, x, T)Y@n
it ep(S),Te€p(T),and x' =1 x

S+x

S+ x
T
Pn
Pu(S + X)

Overlap @ n + 1

.

p,(T)

Overlap @ n



Overlap algorithm

[S,x, T]. the equivalence class

V. ={[S,x,T]| (S,x,T) : an overlap @n}

V. .2v-oweV, if there are
S, x, T)@n+1 - (S, x, T)Y@n S.x.T)Ev.(S.X.T) € w
if S € p,(8).T € p(T), and x' = i,x such that (S,x,T) — (5, T)
S+x

Overlap @ n + 1

N

Overlap @ n




Overlap algorithm
[S,x, T]. the equivalence class
@n -1
V. ={[S,x,T]| (S,x,T) : an overlap @n} ‘
S, x,T)@n+1 - (5,x,T)@n XN @n

it S €p,(S), T €p,T), and x' = ¢,(x)

V. .2v—->weV if there are @n + 1

n

S, x,T)€v,(S,x,T) Ew
such that (S,x,T) = (S, x, T")



Overlap algorithm
[S,x, T]. the equivalence class
@n -1
V. ={[S,x,T]| (S,x,T) : an overlap @n} ~
:><;;>%%§\\\‘ @n

An overlap (S,x,T) is a coincidence if

S+x=T
@n + 1



The first main theorem

Theorem (N-Thuswaldner)
If there are n; < m; <n, <m, < --- such that,

foranyjandv e Vins there is a path from v to a coincidence w € Vi,

+ a technical condition,
Then J, has pure point dynamical spectrum

A combinatorial condition=an analytic condition



A remark

@® [Bustos-Manibo-Yassawi 23+]: similar criterion for one-dimensional S-adic
words
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Setting

M: a 2 x 2 matrix with non-negative integer entries and irreducible characteristic
polynomial (fix)

P1> P2 ---» Py ONE-dimensional binary geometric substitution rules with M as the

substitution matrix

# of O in the image of O # of O in the image of 1
# of 1 inthe image of O # of 1 in the image of 1

(Take a left PF eigenvector (1, 1,)
~two tiles [0,/,],[0,,,] form the alphabet)



Setting

M: a 2 x 2 matrix with non-negative integer entries and irreducible characteristic
polynomial (fix)
P1> P2 ---» Py ONE-dimensional binary geometric substitution rules with M as the

substitution matrix

# of O in the image of O # of O in the image of 1
# of 1 inthe image of O # of 1 in the image of 1

Take a directive sequence i, i,, ... € {1,2,...,n,} and consider an S-adic tiling 7,
belonging to (i),

T =Ty Ty« -
Pi, Pi, Pis



The second main theorem

Take a directive sequence i, i,, ... € {1,2,...,n,} and consider an S-adic tiling 7,
belonging to (i),

91 <« 92 <« 93 €= oo
Assumption Pi Py Pi
T, Is repetitive and has uniform patch frequency, and

The Perron-Frobenius eigenvalue 1 for M is a Pisot number

Theorem

The tiling 97, has pure point spectrum.

(Single symbolic substitution case: Barge-Diamond 2002)



A related result

Theorem(Berthé-Minervino-Steiner-Thuswaldner 2016)
Under an assumption, generic symbolic S-adic Pisot conjecture for unimodular
substitutions with two letters holds. (Matrix not fixed)



Thank you for your attention.



