Overlap coincidences for general S-adic tilings and Pisot substitution conjecture for binary case

A joint work with Jörg Thuswaldner

September 2024 @Roscoff, Yasushi Nagai (Shinshu University)

Contents

- (1)Definitions
- (2) The first main result (Overlap algorithm)
- (3) The Second main result (binary irreducible one-dim substitutions)

Pure point spectrum

Picture by Dirk Frettolöh

Analogies

Symbolic	Geometric
Sequences (Words)	Tilings
The product topology on $\mathscr{A}^{\mathbb{N}}$	Tiling metric
Shift σ	Translation by $x \in \mathbb{R}^d$
Subshift $X = \overline{\{\sigma^n(w) \mid n \in \mathbb{N}\}}$	Continuous hull $X_{\mathcal{T}} = \overline{\{\mathcal{T} + x \mid x \in \mathbb{R}^d\}}$

Definition of one-dimensional tiling

• a patch=a collection \mathcal{P} of tiles such that

$$S, T \in \mathcal{P}, S \neq T \Rightarrow (\operatorname{supp} S)^{\circ} \cap (\operatorname{supp} T)^{\circ} = \emptyset$$

• a tiling=a patch \mathcal{T} such that $\mathbb{R} = \bigcup_{T \in \mathcal{T}} \operatorname{supp} T$

interest: non-periodic but "ordered" tiling

construction: via a substitution rule

Continuous hull

$$X_{\mathcal{T}} = \overline{\{\mathcal{T} + x \mid x \in \mathbb{R}\}}$$

 \mathbb{R} acts on $X_{\mathcal{T}}$ via translation:

$$X_{\mathcal{T}} \times \mathbb{R} \ni (\mathcal{S}, x) \mapsto \mathcal{S} + x \in X_{\mathcal{T}}$$

Often there is one and only one invariant Borel probability measure μ

 \mathbb{R} acts on $X_{\mathcal{T}}$ via translation:

$$X_{\mathcal{T}} \times \mathbb{R} \ni (\mathcal{S}, x) \mapsto \mathcal{S} + x \in X_{\mathcal{T}}$$

Often there is one and only one invariant Borel probability measure μ

We say \mathscr{T} has pure point dynamical spectrum if there exists a complete orthonormal basis for $L^2(\mu)$ consisting of eigenfunctions for the Koopman operators $U_x: f \mapsto f(\cdot - x)$ $(U_x(f)(\mathscr{S}) = f(\mathscr{S} - x))$

(f is an eigenfunction if $U_x(f) = c_x f$)

We say \mathcal{T} has pure point dynamical spectrum if there exists a complete orthonormal basis for $L^2(\mu)$ consisting of eigenfunctions for the Koopman operators $U_x: f \mapsto f(\cdot - x)$ $(U_x(f)(\mathcal{S}) = f(\mathcal{S} - x))$

A tiling \mathcal{T} has pure point spectrum $\iff \mathcal{T}$ is almost periodic (a weak form of translational symmetry) (Gouéré, Lenz-Spindeler-Strungaru)

A tiling \mathcal{T} has pure point spectrum

 $\iff \mathcal{T}$ is almost periodic (a weak form of translational symmetry)

(Gouéré, Lenz-Spindeler-Strungaru)

⇒the corresponding dynamical system is conjugate to a rotation of compact abelian group

Main question

Decide which non-periodic tiling has pure point dynamical spectrum.

⇔has a weak form of symmetry

⇒falls into the class of tilings which are classified by their spectra

a substitution rule =a recipe for "expanding and subdividing"

- = \bullet \mathcal{A} : a finite set of tiles (the alphabet)
 - ρ : the rule of expanding $P \in \mathcal{A}$ and then subdivide it
 - $\lambda > 1$: an expansion factor

Example

$$\tau = \frac{1+\sqrt{5}}{2}$$
 :expansion factor $\mathcal{A} = \{[0,\tau], [0,1]\}$

$$\rho_F(T_1) = \{T_1, T_2 + \tau\} \qquad \rho_F(T_2) = \{T_1\}$$

Example
$$\tau = \frac{1+\sqrt{5}}{2}$$
: expansion factor $\mathcal{A} = \{[0,\tau],[0,1]\}$

$$\rho_F(T_1) = \{T_1,T_2+\tau\} \qquad \rho_F(T_2) = \{T_1\}$$

$$\frac{T_1}{0} \qquad \tau \qquad \frac{\text{expand by } \tau}{0} \qquad \tau^2$$

$$\text{subdivide}$$

$$\frac{T_1}{0} \qquad \frac{T_2+\tau}{\tau+1} \qquad \rho_F(T_1)$$

$$\frac{T_2}{0} \qquad \frac{\text{expand by } \tau}{0} \qquad \frac{T_1}{\tau} \qquad \rho_F(T_2)$$

Example
$$au = \frac{1+\sqrt{5}}{2}$$
 :expansion factor $\mathcal{A} = \{[0,\tau], [0,1]\}$ $ho_F(T_1) = \{T_1, T_2 + \tau\}$ $\rho_F(T_2) = \{T_1\}$

We extend the domain of ρ by setting $\rho(P+x) = \rho(P) + \lambda x$

S-adic tilings: tilings of the form $\mathcal{T} = \lim_{n \to \infty} \rho_{i_1} \circ \rho_{i_2} \circ \cdots \circ \rho_{i_{k_n}}(\mathcal{P}_n)$

 $\{\rho_1, \rho_2, \dots, \rho_{m_a}\}$: a finite family of substitutions with a common alphabet \mathcal{A}

 $i_1, i_2, \ldots \in \{1, 2, \ldots, m_a\}$: a directive sequence

in other words: a tiling $\mathcal{T} = \mathcal{T}^{(1)}$ that admits "de-substituted tilings"

$$\mathcal{T}^{(2)}, \mathcal{T}^{(3)}, \mathcal{T}^{(4)}, \dots$$

such that

$$\rho_{i_n}(\mathcal{T}^{(n+1)}) = \mathcal{T}^{(n)}, n = 1, 2, \dots$$

$$\rho_{i_n}(\mathcal{T}^{(n+1)}) = \mathcal{T}^{(n)}, n = 1, 2, \dots$$

Main question

Decide which S-adic tiling has pure point dynamical spectrum.

Pisot Conjecture:

Self-similar tilings by substitution rules with the Pisot condition have pure point spectrum

Today's result

- (1) Give a sufficient condition for a given S-adic tiling to be pure point
- (2) this condition is satisfied for one of the simplest classes

Contents

- (1) Definitions (done)
- (2) The first main result (Overlap algorithm)
- (3) The Second main result (binary irreducible one-dim substitutions)

The main idea

(1) Generalize Solomyak's overlap algorithm [Solomyak 1997] to the S-adic setting (2) apply the overlap algorithm to a class of S-adic tiligs of interest

Goes back to the coincidence condition for constant-length symbolic substitution

$$\mathcal{T}_1 \stackrel{\rho_1}{\leftarrow} \mathcal{T}_2 \stackrel{\rho_2}{\leftarrow} \mathcal{T}_3 \stackrel{\rho_3}{\leftarrow} \cdots,$$

where ρ_n : a substitution rule with a fixed alphabet $\mathscr A$ and non-fixed expansion factor λ_n

Set $\Lambda_n = \{x \in \mathbb{R} \mid \exists T \in \mathcal{T}_n (T + x \in \mathcal{T}_n)\}$

An overlap @n = a triple (S, x, T) such that $S, T \in \mathcal{T}_n$ and $x \in \Lambda_n$ with $int(S + x) \cap intT \neq \emptyset$

An overlap @n = a triple (S, x, T) such that $S, T \in \mathcal{T}_n$ and $x \in \Lambda_n$ with $int(S + x) \cap intT \neq \emptyset$

$$(S, x, T) \sim (S', x', T')$$

An overlap @n = a triple (S, x, T) such that $S, T \in \mathcal{T}_n$ and $x \in \Lambda_n$ with $int(S + x) \cap intT \neq \emptyset$

$$(S, x, T) \sim (S', x', T')$$

[S, x, T]: the equivalence class

$$V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$$

[S, x, T]: the equivalence class

 $V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$

$$(S, x, T) @ n + 1 \rightarrow (S', x', T') @ n$$

if $S' \in \rho_n(S)$, $T' \in \rho_n(T)$, and $x' = \lambda_n x$

$$S + x$$

$$T$$

$$\rho_n$$

$$\rho_n(S + x)$$

$$\rho_n(T)$$

$$\frac{S+x}{T} \qquad \text{Overlap @ } n+1$$

Overlap @ n

[S, x, T]: the equivalence class

 $V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$

$$(S, x, T) @ n + 1 \rightarrow (S', x', T') @ n$$

if $S' \in \rho_n(S), T' \in \rho_n(T)$, and $x' = \lambda_n x$

$$V_{n+1} \ni v \to w \in V_n$$
 if there are

$$(S, x, T) \in \mathcal{V}, (S', x', T') \in \mathcal{W}$$

such that $(S, x, T) \rightarrow (S', x', T')$

$$\frac{S+x}{T}$$
 Overlap @ $n+1$

Overlap @ n

[S, x, T]: the equivalence class

 $V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$

$$(S, x, T) @ n + 1 \rightarrow (S', x', T') @ n$$

if $S' \in \rho_n(S)$, $T' \in \rho_n(T)$, and $x' = \phi_n(x)$

 $V_{n+1} \ni v \to w \in V_n$ if there are

$$(S, x, T) \in v, (S', x', T') \in w$$

such that $(S, x, T) \rightarrow (S', x', T')$

[S, x, T]: the equivalence class

 $V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$

An overlap (S, x, T) is a coincidence if S + x = T

The first main theorem

```
Theorem (N-Thuswaldner)
```

If there are $n_1 < m_1 < n_2 < m_2 < \cdots$ such that,

for any j and $v \in V_{m_j}$, there is a path from v to a coincidence $w \in V_{n_j}$

+ a technical condition,

Then \mathcal{T}_1 has pure point dynamical spectrum

A combinatorial condition an analytic condition

A remark

● [Bustos-Mañibo-Yassawi 23+]: similar criterion for one-dimensional S-adic words

Contents

- (1) Definitions (done)
- (2) The first main result (Overlap algorithm) (done)
- (3) The Second main result (binary irreducible one-dim substitutions)

Setting

M: a 2 x 2 matrix with non-negative integer entries and irreducible characteristic polynomial (fix)

 $\rho_1, \rho_2, ..., \rho_{n_s}$: one-dimensional binary geometric substitution rules with M as the substitution matrix

$$\begin{pmatrix} \# \text{ of 0 in the image of 0} & \# \text{ of 0 in the image of 1} \\ \# \text{ of 1 in the image of 0} & \# \text{ of 1 in the image of 1} \end{pmatrix} = M$$

(Take a left PF eigenvector (l_1, l_2)

 \sim two tiles $[0,l_1],[0,l_2]$ form the alphabet)

Setting

M: a 2 x 2 matrix with non-negative integer entries and irreducible characteristic polynomial (fix)

 $\rho_1, \rho_2, ..., \rho_{n_s}$: one-dimensional binary geometric substitution rules with M as the substitution matrix

$$\begin{pmatrix} \# \text{ of 0 in the image of 0} & \# \text{ of 0 in the image of 1} \\ \# \text{ of 1 in the image of 0} & \# \text{ of 1 in the image of 1} \end{pmatrix} = M$$

Take a directive sequence $i_1, i_2, ... \in \{1, 2, ..., n_s\}$ and consider an S-adic tiling \mathcal{T}_1 belonging to $(i_k)_k$.

$$\mathcal{T}_1 \leftarrow \mathcal{T}_2 \leftarrow \mathcal{T}_3 \leftarrow \cdots \\ \rho_{i_1} \quad \rho_{i_2} \quad \rho_{i_3} \leftarrow \cdots$$

The second main theorem

Take a directive sequence $i_1, i_2, ... \in \{1, 2, ..., n_s\}$ and consider an S-adic tiling \mathcal{T}_1

belonging to $(i_k)_k$.

$$\mathcal{T}_1 \leftarrow \mathcal{T}_2 \leftarrow \mathcal{T}_3 \leftarrow \cdots \\ \rho_{i_1} \quad \rho_{i_2} \quad \rho_{i_3} \leftarrow \cdots$$

Assumption

 \mathcal{T}_1 is repetitive and has uniform patch frequency, and

The Perron-Frobenius eigenvalue λ for M is a Pisot number

Theorem

The tiling \mathcal{T}_1 has pure point spectrum.

(Single symbolic substitution case: Barge-Diamond 2002)

A related result

Theorem (Berthé-Minervino-Steiner-Thuswaldner 2016)

Under an assumption, generic symbolic S-adic Pisot conjecture for unimodular substitutions with two letters holds. (Matrix not fixed)

Thank you for your attention.