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How many m and n exist such that

|2m − 3n| ≤ 1000000?

Are there infinitely m and n such that

3n < 2m < 2m+1 < 3n+1 < 2m+2 < 2m+3 < 3n+2 < 2m+4

and
2m ≡ 3n ≡ 1 mod 101?

These problems can be encoded in the MSO theory of ⟨N;<,Pow2,Pow3⟩
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Does 

11 −9 2 −3
4 9 −5 2
7 −8 1 −3
−1 4 −1 −5
10 −6 1 −9
2 3 −2 1



2n1

2n2

3n3

3n4

 >



−100
100
0
0
0
0



combined with
15 · 3n1 − 5 · 3n2 + 2n3 = 8

have a solution.

We can answer such questions
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Presburger arithmetic

Theorem (Presburger, 1929)

The theory of the structure ⟨N; 0, 1, <,+⟩ is decidable



Extensions of Presburger arithmetic

The following extensions of Presburger arithmetic are decidable:

⟨N; 0, 1, <,+,V2⟩ (Büchi, Bruyère 1960, 1994)
V2(a · 2n) = 2n when a is odd; (V2(24) = 8)

⟨N; 0, 1, <,+, n 7→ 2n⟩ (Semenov, 1984)

⟨N; 0, 1, <,+, n 7→ n!⟩ (Point, 2000)
The following extensions of Presburger arithmetic are undecidable:

⟨N; 0, 1, <,+,V2, n 7→ 2n⟩ (Cherlin, Point 1986)
⟨N; 0, 1, <,+,V2,V3⟩ (Villemaire, 1992)

⟨N; 0, 1, <,+,V2,Pow3⟩ (Bès, 1997)
⟨N; 0, 1, <,+,Pow2,Pow3⟩ (Hieronymi, Schulz 2023)
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⟨N; 0, 1, <,+,V2⟩ (Büchi, Bruyère 1960, 1994)
V2(a · 2n) = 2n when a is odd; (V2(24) = 8)

⟨N; 0, 1, <,+, n 7→ 2n⟩ (Semenov, 1984)

⟨N; 0, 1, <,+, n 7→ n!⟩ (Point, 2000)
The following extensions of Presburger arithmetic are undecidable:

⟨N; 0, 1, <,+,V2, n 7→ 2n⟩ (Cherlin, Point 1986)
⟨N; 0, 1, <,+,V2,V3⟩ (Villemaire, 1992)

⟨N; 0, 1, <,+,V2,Pow3⟩ (Bès, 1997)
⟨N; 0, 1, <,+,Pow2,Pow3⟩ (Hieronymi, Schulz 2023)



Extensions of Presburger arithmetic

The following extensions of Presburger arithmetic are decidable:

⟨N; 0, 1, <,+,V2⟩ (Büchi, Bruyère 1960, 1994)
V2(a · 2n) = 2n when a is odd; (V2(24) = 8)

⟨N; 0, 1, <,+, n 7→ 2n⟩ (Semenov, 1984)

⟨N; 0, 1, <,+, n 7→ n!⟩ (Point, 2000)
The following extensions of Presburger arithmetic are undecidable:

⟨N; 0, 1, <,+,V2, n 7→ 2n⟩ (Cherlin, Point 1986)

⟨N; 0, 1, <,+,V2,V3⟩ (Villemaire, 1992)

⟨N; 0, 1, <,+,V2,Pow3⟩ (Bès, 1997)
⟨N; 0, 1, <,+,Pow2,Pow3⟩ (Hieronymi, Schulz 2023)



Extensions of Presburger arithmetic

The following extensions of Presburger arithmetic are decidable:
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The ∃∀∃-fragment of ⟨N; 0, 1, <,+,Pow2,Pow3⟩ is undecidable
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Adding multiple powers to Presburger arithmetic

Theorem

The ∃-fragment of ⟨N; 0, 1, <,+,Pow2,Pow3⟩ is decidable

Lemma

Sufficient to decide whether there exist m1, . . . ,mk , n1, . . . , nℓ such that

A z > 0 ∧ C z = d

for z = (2m1 , . . . , 2mk , 3n1 , . . . , 3nℓ)⊤ and the rest given matrices/vectors



Equations

2m − 5 · 3n1 + 15 · 3n2 = 8

Zero subsum? n1 = n2 + 1 (m, n1, n2) = (3, n2 + 1, n2)

Assume ordering: 2m ≥ 3n1 ≥ 3n2

Apply Baker’s Theorem twice:

2m − 5 · 3n1 = 8 + 5 · 3n2

2m − 5 · 3n1 + 15 · 3n2 = 8

n1 − C1 · log(n1) < n2

n1 − C2 · log(n1) · (n1 − n2) < 0

C1 · C2 · log2(n1) > n1
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(2m, 3n1 , 3n2) = (8, 3 · 3n1 , 3n1), (128, 27, 1), (32768, 6561, 3)

This set is semilinear

Theorem

The solution to Cz = d is z = (2m1 , . . . , 2mk , 3n1 , . . . , 3nℓ) forms a
semilinear set which is effectively computable
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A pumping lemma for inequalities

Assume that

A



2m1

...
2mk

3n1
...
3nℓ


> 0

If |1− δi | is sufficiently small

A



δ1 2
m1

...
δk 2

mk

δk+1 3
n1

...
δk+l 3

nℓ


> 0

Let

δi =

{
1 if zi = 2

3q/2p if zi = 3

Then

A



2m1+p

...
2mk+p

3n1+q

...
3nℓ+q


> 0

We have infinitely many solutions

For some κ, δ > 0, there is a solution
when 2m1/3n1 ∈ (κ− δ, κ+ δ) .
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Assume that

2m1 , 3n1 ≥ 3n2 ≥ 2mi , 3nj for i ≥ 2, j ≥ 3

v⊤−



2m2

...
2mk

3n2
...
3nℓ


< a2m1 − b3n1 < v⊤+



2m2

...
2mk

3n2
...
3nℓ


B



2m2

...
2mk

3n2
...
3nℓ


> 0 (⋆)

Lemma

(⋆) has a solution if and only if the following system has one:

(
B

v⊤+ − v⊤−

)


2m2

...
2mk

3n2
...
3nℓ


> 0, 3n2 > 2mi , 3nj

Find ε, δ, κ, λ > 0 such that when 2m2/3n2 ∈ (κ− δ, κ+ δ), 3n2 > 2mi , 3nj
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...
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For given a, b, δ, ε, κ, λ > 0 solve

3n1 ≥ 3n2

2m2/3n2 ∈ (κ− δ, κ+ δ) and

(λ− ε)3n2 < a2m1 − b3n1 < (λ+ ε)3n2

For some D, there is a n2 ∈ {N, . . . ,N + D − 1} and a m2 such that
2m2/3n2 ∈ (κ− δ, κ+ δ)
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Assume that

2m1 , 3n1 ≥ 3n2 ≥ 2mi , 3nj for i ≥ 2, j ≥ 3

v⊤−



2m2

...
2mk

3n2
...
3nℓ


< a2m1 − b3n1 < v⊤+



2m2

...
2mk

3n2
...
3nℓ


B



2m2

...
2mk

3n2
...
3nℓ


> 0 (⋆)

Lemma

(⋆) has a solution if and only if the following system has one:

(
B

v⊤+ − v⊤−

)


2m2

...
2mk

3n2
...
3nℓ


> 0, 3n2 > 2mi , 3nj



What about adding functions?

The existential fragment of ⟨N; 0, 1, <,+, x 7→ 2x , x 7→ 3x⟩

Much harder! We access the base-2 and base-3 expansions of log2(3)

α := log2(3)2 = 1.100101011100000000011010001110011111101111010 · · ·
β := log2(3)3 = 1.120210102211001112002001102221210000100212101 · · ·

Let w ∈ {0, 1}∗

Does w appear in α?

Does (w ,w) appear in α× β?

Does w appear in (α3n)
∞
n=0?
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Arithmetic theories

Take an arithmetic theory: FO(N; 0, 1, <), FO(N; 0, 1,+, <),
MSO(N;<), . . .

and add arithmetic predicates or functions:
Powers of 2, factorials, Fibonacci numbers, polynomials,. . .

Is the theory (un)decidable? Often difficult

Find an underlying dynamical system

expansion of a real number

continued fraction of a real number

automaton

Diophantine equation

rotation on a torus
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