On Presburger arithmetic extended with multiple
powers

Toghrul Karimov ~ Florian Luca
Joris Nieuwveld Joél Ouaknine
Mihir Vahanwala James Worrell

September 5th, 2024



How many m and n exist such that

2™ — 37| < 10000007




How many m and n exist such that

2™ — 37| < 10000007

Are there infinitely m and n such that

3n < 2m < 2m+1 < 3n+1 < 2m+2 < 2m+3 < 3”—{-2 < 2m+4




How many m and n exist such that

2™ — 37| < 10000007

Are there infinitely m and n such that
3n < 2m < 2m+1 < 3n+1 < 2m+2 < 2m+3 < 3”—{-2 < 2m+4

and
2M=3"=1 mod 1017




How many m and n exist such that

2™ — 37| < 10000007

Are there infinitely m and n such that

3n < 2m < 2m+1 < 3n+1 < 2m+2 < 2m+3 < 3n+2 < 2m+4

and
2M=3"=1 mod 1017

These problems can be encoded in the MSO theory of (N; <, Pows, Pows)
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We can answer such questions




Presburger arithmetic

Theorem (Presburger, 1929)
The theory of the structure (N; 0,1, <,+) is decidable
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Vo(a-2") = 2" when ais odd; (V2(24) = 8)
o (N;0,1,<,+,n+— 2" (Semenov, 1984)
e (N;0,1,<,+,n~ n!) (Point, 2000)
The following extensions of Presburger arithmetic are undecidable:
e (N;0,1,<,+, Vo, n— 2") (Cherlin, Point 1986)
o (N;0,1,<,+, Vo, V3) (Villemaire, 1992)
e (N;0,1,<,+, Vo, Pows) (Bes, 1997)
e (N;0,1, <, +, Pows, Pows) (Hieronymi, Schulz 2023)
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The 3V3-fragment of (N; 0, 1, <, +, Powy, Pows) is undecidable

The 3-fragment of (N; 0,1, <, +, Pow,, Pows) is decidable




Adding multiple powers to Presburger arithmetic

The 3-fragment of (N; 0,1, <, +, Pows,, Pows) is decidable

Sufficient to decide whether there exist my, ..., my, n1, ..., np such that

Az>0NCz=d

for z = (2™,...,2M 3Mm . . 37)T and the rest given matrices/vectors
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Equations

2m—-5.3M+15.3™ =8

Zero subsum? ny =npy+1  (myny,nm)=(3,m+1, m)
Assume ordering: 2 > 3™ > 3

Apply Baker's Theorem twice:

2M—5.3M =8+5-3™
2M—-5.3Mm4+15.3"” =38

m—C - Iog(nl) < ny
m — G -log(n) - (nm—m) <0

G-G- Iog2(n1) > m
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2Mm—-5.3Mm+15.3™ =8

(m, n, m)=(3, m+1, m), (7,3, 0), (15, 8, 1)
(2m, 3™, 3m) = (8, 3-3™, 3™), (128, 27, 1), (32768, 6561, 3)



Equations

2 —5.3Mm 4 15.3% =8 J

(m, n, m)=(3, m+1, m), (7,3, 0), (15, 8, 1)
(2m, 3™, 3m) = (8, 3-3™, 3™), (128, 27, 1), (32768, 6561, 3)

This set is semilinear

The solution to Cz=d is z = (2™,...,2™M 3™ ... 3") forms a
semilinear set which is effectively computable
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A pumping lemma for inequalities
Assume that

Let
2m
: 5 — 1 if zi = 2
o " 392 ifz=3
Al gm | > 0
Then
: 2mi+p
3m
myg+p
If |1 — 6| is sufficiently small A 23f | >0
612™M :
: 3netq
Ok 2™k e .
A Spp1 3™ >0 We have infinitely many solutions
: For some x,d > 0, there is a solution
Sppr 3 when 2™ /3™ € (K — 0,k +9) .
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Find ¢,0, k, A > 0 such that when 22 /3™ € (x — 0,k +§), 3™ > 2mi 37

2m2 2m2 2m2
2mk 2mk 2mk

v g | <(A—8)3” <(A+2)3™ < vy 3m B|5m | >0
3ne 3n 3n



For given a, b,d,¢,k, A > 0 solve
3n1 > 3!72

2™ /3™ ¢ (K — 0,k + ) and
(A —£)3™ < a2™ — h3™ < () +2)3™
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What about adding functions?

The existential fragment of (N; 0,1, <, 4+, x — 2%, x — 3¥)

Much harder! We access the base-2 and base-3 expansions of log,(3)

a = log,(3)2 = 1.100101011100000000011010001110011111101111010 - - -
B = log,(3)3 = 1.120210102211001112002001102221210000100212101 - - -

Let w € {0,1}*
@ Does w appear in a?
@ Does (w, w) appear in a x 37

e Does w appear in (a3n)22 7
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Arithmetic theories

Take an arithmetic theory: FO(N; 0,1, <), FO(N; 0,1, +, <),
MSO(N; <), ...

and add arithmetic predicates or functions:
Powers of 2, factorials, Fibonacci numbers, polynomials,. ..

Is the theory (un)decidable? Often difficult

Find an underlying dynamical system

@ expansion of a real number

@ continued fraction of a real number
@ automaton

@ Diophantine equation

@ rotation on a torus



