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Definition

Definition ((Null-)permeability)

Let RY be equipped with some norm || - ||.

@ Aset® c RY is null permeable if for any two points
x,y € R? and any § > 0, x and y can be connected by a
path ~ that is disjoint from © \ {x, y} and has length at
most || x — y|| + 6.
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Definition ((Null-)permeability)

Let RY be equipped with some norm || - ||.

@ Aset® c RY is null permeable if for any two points
x,y € R? and any § > 0, x and y can be connected by a
path ~ that is disjoint from © \ {x, y} and has length at
most || x — y|| + 9.

@ Aset© c RY is permeable if for any two points x, y € RY
and any 6 > 0, x and y can be connected by a path v with
© N countable and with length at most || x — y|| + 4.
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Definition

Definition ((Null-)permeability)

Let RY be equipped with some norm || - ||.

@ Aset® c RY is null permeable if for any two points
x,y € R? and any § > 0, x and y can be connected by a
path ~ that is disjoint from © \ {x, y} and has length at
most || x — y|| + 9.

@ Aset© c RY is permeable if for any two points x, y € RY
and any 6 > 0, x and y can be connected by a path v with
© N countable and with length at most || x — y|| + 4.

Which of the following sets is permeable in R? ?

Q * Q Qx(R\Q) Q@ (R\Q)?

A
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Dependence on norm

Indeed, we need to be careful, which norm we use:

Example (The set (R \ Q)?)
@ (R\ Q)? is null permeable in (R?, |-||;)-
e (R\ Q)? impermeable in (R?, |-,).
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Dependence on norm

Indeed, we need to be careful, which norm we use:

Example (The set (R \ Q)?)
@ (R\ Q)? is null permeable in (R?, |-||;)-
e (R\ Q)? impermeable in (R?, |-,).

However, we have the following theorem:

Theorem (Invariance of norms, LSRT 2024)

Let |-| be any norm on RY such that the boundary of its unit ball
is strictly convex. Then © c RY is null permeable in (R?, ||-|) if
and only if it is null permeable in (R, |-|,). The same
equivalence is true for permeability.

/17
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Dependence on norm

Indeed, we need to be careful, which norm we use:

Example (The set (R \ Q)?)
@ (R\ Q)? is null permeable in (R?, |-||;)-
e (R\ Q)? impermeable in (R?, |-,).

However, we have the following theorem:

Theorem (Invariance of norms, LSRT 2024)

Let |-| be any norm on RY such that the boundary of its unit ball
is strictly convex. Then © c RY is null permeable in (R?, ||-|) if
and only if it is null permeable in (R, |-|,). The same
equivalence is true for permeability.

We will work exclusively with the Euclidean norm.
/17
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Products

Theorem (LSRT 2024)

Let AC R/, BC RX. If Ais a Lebesgue nullset and B has dense
complement, then A x B ¢ RI*K s null permeable

y
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Products

Theorem (LSRT 2024)

Let AC R/, BC RX. If Ais a Lebesgue nullset and B has dense
complement, then A x B ¢ RI*K s null permeable

N

Theorem (LSRT 2024)

Let AC R, B C R. If Aand B have positive Lebesgue measure,
then A x B C R? js impermeable

v
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Products

Theorem (LSRT 2024)

Let AC R/, BC RX. If Ais a Lebesgue nullset and B has dense
complement, then A x B ¢ RI*K s null permeable

.

Theorem (LSRT 2024)

Let AC R, B C R. If Aand B have positive Lebesgue measure,
then A x B C R? js impermeable

v

Therefore the answer to Question 1 is:
@ Q?is null permeable
Q@ Q x (R\ Q) is null permeable

@ (R\ Q)? is impermeable (with the convention that we use
the Euclidean norm)
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Manifolds

Definition ((Null-)permeability)

Let || - || denote the Euclidean norm onRY.

@ Aset® c RY s null permeable if for any two points x,y € R and any § > 0, x
and y can be connected by a path ~ that is disjoint from © \ {x, y} and has
length at most || x — y|| + 6.

@ Aset© c RY js permeable if for any two points x, y € R? and any § > 0, x and
y can be connected by a path v with © N ~v countable and with length at most
[Ix =yl + 6.

4

Let© c RY be a d — 1-dimensional submanifold. Which of the
following conditions implies permeability ?

Q@ ©isC™
@ © is Lipschitz and closed (i.e. © = ©)
© O is the graph of a Hélder-continuous function

.
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Manifolds

f a countable set where
A contains a Cantor set

Connect A x (0,1)2 c R3
smoothly
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A a countable set where
A contains a Cantor set
Connect A x (0,1)% c R®
smoothly
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Manifolds

W
Www

A a countable set where Avoid the graph with a
A contains a Cantor set Lipschitz detour.
Connect A x (0,1)% c R®

smoothly
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N

Avoid the graph with a
Lipschitz detour.

‘Zoom in on finer scale’ if
necessary
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Manifolds

A a countable set where
A contains a Cantor set
Connect A x (0,1)% c R®
smoothly

00000

TN

Avoid the graph with a
Lipschitz detour.

‘Zoom in on finer scale’ if
necessary

Does not work for Holder
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Sets of large measure

Definition ((Null-)permeability)

Let || - || denote the Euclidean norm onRY.

@ Aset® c RY js null permeable if for any two points x,y € R and any § > 0, x
and y can be connected by a path ~ that is disjoint from © \ {x, y} and has
length at most || x — y|| + 6.

@ Aset© c RY js permeable if for any two points x, y € R? and any § > 0, x and
y can be connected by a path v with © N ~ countable and with length at most
lIx —yll + 6.

4

Let© C [0,1]9. Which of the following conditions implies

(im)permeability ?
@ O is a Lebesgue-nullset Q O is a simple curve
@ © has positive measure and has positive

measure

© © has measure 1

.
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A “large” null permeable set

(A).: open e-neighborhood of A c RY.

Example 1 (Null permeable with large Lebesgue measure)

@ Let (gj)ien be a sequence of all points in [0, 1]9 with
rational coordinates.

@ Xy denotes the line segment from x to y.
° © =0, 1]d\U1§i<jW-
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rational coordinates.
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A “large” null permeable set

(A).: open e-neighborhood of A c RY.

Example 1 (Null permeable with large Lebesgue measure)

@ Let (gj)ien be a sequence of all points in [0, 1]9 with
rational coordinates.

@ Xy denotes the line segment from x to y.

° ©=[0, 1]d\U1§i<quT’j-

® O, =1[0,1]9\ Ut<i<(QiG))2-i-i-n. )

@ O null permeable with A\(©) = 1.
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A “large” null permeable set

(A).: open e-neighborhood of A c RY.

Example 1 (Null permeable with large Lebesgue measure)

@ Let (gj)ien be a sequence of all points in [0, 1]9 with
rational coordinates.

@ Xy denotes the line segment from x to y.
° © =0, 1]d\U1§i<jW-
® 0,=0, 1]d \ U1§i<j(qi7qj)2*f*ifn-

@ O null permeable with A\(©) = 1.
@ O closed and null permeable with \(©,) — 1.
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An impermeable Osgood curve

Figure: 1, 2, and 4 iterations of an impermeable Osgood curve
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A permeable Osgood curve

Figure: Five iterations of a permeable Osgood curve
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Sets of low dimension

Definition ((Null-)permeability)

Let || - || denote the Euclidean norm on R,

@ Aset® c RY js null permeable if for any two points x,y € R? and any § > 0, x
and y can be connected by a path v that is disjoint from © \ {x, y} and has
length at most || x — y|| + 6.

@ Aset® c RY js permeable if for any two points x,y € R? and any 6 > 0, x and
y can be connected by a path v with © N ~ countable and with length at most
[Ix =yl + 6.

-

Let © c R9. Which of the following conditions implies
null-permeability ?

Q@ dm(©) =0

Q dm(©) <d -1

Q dim(©) < d
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Synopsis

Measure and dimension

If = d = impermable,
in [0,d — 2] everything

can happen

if <d— 1= null permeable,
in [d — 1,d] everything can happen
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permeability
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Fractal examples

Definition ((Null-)permeability)

Let|| - || denote the Euclidean norm on RY.

@ Aset® c RY js null permeable if for any two points x,y € R? and any § > 0, x
and y can be connected by a path ~ that is disjoint from © \ {x, y} and has
length at most ||x — y|| + 9.

@ Aset® c RY js permeable if for any two points x,y € R? and any 6 > 0, x and
y can be connected by a path v with © N ~ countable and with length at most
[Ix =yl + 6.

Which of the following sets is permeable?

M

@ Sierpinski gasket © Sierpiniski

@ Sierpinski carpet tetrahedron
@ Menger sponge
@ “(Fat) Cantor dust”

13/17



14/17



Fractal examples

The Sierpinski gasket is permeable
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Fractal examples

The Sierpinski gasket is permeable
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Fractal examples

The Sierpinski gasket is permeable, the Sierpinski carpet is not
(pictures taken from Wikipedia)
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Fractal examples
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Fractal examples

The Menger sponge is null permeable
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Fractal examples

The Menger sponge is null permeable

15/17



Analysis Measure and dimension Fractals
00000 000000 00000

Fractal examples

The Menger sponge is null permeable and so is the Sierpinski
tetrahedron (pictures taken from Wikipedia)

15/17



Analysis Measure and dimension Fractals
00000 000000 00080

Results on self-similar sets

[LRST 2024] Let K C R? be the attractor of a self-similar IFS
{fy,... fm} satisfying #f;(K) N fi(K) < ocofor1 <i<j<m. IfK
is connected and satisfies the finite type condition then K is
permeable.
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Results on self-similar sets

Theorem 2

[LRST 2024] Let K C R? be the attractor of a self-similar IFS
{fy,... fm} satisfying #f;(K) N fi(K) < ocofor1 <i<j<m. IfK
is connected and satisfies the finite type condition then K is
permeable.

.

Theorem 3

[LRST 2024] For d > 3 let K C RY be the attractor of a
self-similar IFS {f;, ..., fn} satisfying #1;(K) N f;(K) < oo for
1 <i < j < m. Suppose further that K satisfies the finite type
condition. Then K is null permeable.

.

The last result is a consequence of our result on the Nagata
dimension.
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Bedford-McMullen Carpets

Figure: Left: A path crossing a Bedford-McMullen carpet. Right: A
magnified section.
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Bedford-McMullen Carpets

Figure: Left: A path crossing a Bedford-McMullen carpet. Right: A
magnified section.
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Bedford-McMullen Carpets
(1

Figure: Left: A path crossing a Bedford-McMullen carpet. Right: A
magnified section.
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Theorem 4 (LRST 2024)

There exists an impermeable set in RY which is closed, has
Lebesgue measure 0 and topological dimension O.
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