On Transcendence of Sturmian and Morphic Words over Algebraic Bases

P. Kebis, F. Luca, J. Ouaknine, A. Scoones and J. Worrell

Roscoff, September 2024

Hartmanis-Stearns Conjecture

Hartmanis-Stearns Conjecture (1965)

A number whose base-b expansion is computed by a **linear-time Turing machine** (prints first n digits in O(n) time) is either **rational or transcendental**.

"The Hartmanis-Stearns conjecture implies that there is no linear-time algorithm for integer multiplication."

J. Borwein and P. B. Borwein, 1988

Cobham Conjectures

Cobham's First Conjecture (1968)

A number whose base-*b* expansion is generated by a **finite automaton** is either **rational or transcendental**.

Cobham's Second Conjecture (1968)

A number whose base-*b* expansion is generated by a **morphism of** exponential growth is either rational or transcendental.

Morphisms capture a very simple kind of linear time computation

Thue-Morse Word:

• Fixed point of the 2-uniform morphism

 $\sigma: \mathbf{0} \mapsto \mathbf{01}, \quad \mathbf{1} \mapsto \mathbf{10}$

Fibonacci Word:

• Fixed point of morphism

 $\sigma: \mathbf{0} \mapsto \mathbf{01}, \quad \mathbf{1} \mapsto \mathbf{0}$

of exponential growth

Characteristic word of cubic numbers:

• Coding of morphism of polynomial growth

The Fibonacci word

 $F_{\infty} = 010010100100101001010\dots$

has subword complexity p(n) = n + 1 for all n and is thereby **Sturmian**.

Given $\theta \in [0, 1)$, consider rotation map $R_{\theta}(x) = (x + \theta) \mod 1$.

The θ -coding of $x \in [0, 1)$ is the sequence $(x_n)_{n=0}^{\infty}$, where

$$x_n := \begin{cases} 1 & \text{if } R_{\theta}^n(x) \in [0, \theta) \\ 0 & \text{otherwise} \end{cases}$$

Sturmian word with slope θ

• A primitive irreducible substitution is **Pisot** if the Perron-Frobenius eigenvalue of its incidence matrix is a Pisot number.

Example

The Tribonacci word is the limit of the sequence defined by

$$T_n = T_{n-1}T_{n-2}T_{n-3}$$
 $T_0 = 0, T_1 = 01, T_2 = 0102$

 $\lim_{n \to \infty} T_n = T_{\infty} = 0.0201001020100102010010201000...$

Also generated by the morphism $\sigma(0) = 01$, $\sigma(1) = 02$, $\sigma(2) = 0$.

Given an infinite word $u = u_1 u_2 u_3 \dots$ and integer base $b \ge 2$, is the number

$$S_b(u) := \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$

rational, irrational algebraic or transcendental?

How do you prove a number is transcendental?

Find rational approximations that are "too good".

Theorem (Roth 1955)

Let α be real and algebraic, then for all $\varepsilon > 0$ there are finitely many coprime integers p, q such that

$$\left| lpha - rac{p}{q}
ight| < rac{1}{q^{2+arepsilon}}$$

We use *p-adic Subspace Theorem*: a higher-dimensional generalisation of Roth's Theorem, proven by Schlickewei in 1977

The Fibonacci word yields a transcendental number

We look for periodicity

• Prefix of length 3

 $F_{\infty} = 01001010100101001000\dots$

• Prefix of length 5

 $F_{\infty} = 01001 01001 0 010100100000...$

• Prefix of length 8

 $F_{\infty} = 01001010 01001010 010 100100101 \dots$

Use *p*-adic Roth theorem to deduce transcendence

Theorem (Danilov 1972)

Let **u** be the **Fibonacci word**. Then for all integers $b \ge 2$ the number

$$S_b(\boldsymbol{u}) := \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$

is transcendental.

Theorem (Ferenczi and Mauduit 1997)

Let $b \ge 2$ be an integer and let $u \in \{0, 1, \dots, b-1\}^{\omega}$ be a Sturmian or Arnoux-Rauzy word. Then $S_b(u) := \sum_{n=0}^{\infty} \frac{u_n}{b^n}$ is transcendental.

Definition (Adamczewski and Bugeaud 2007)

The **Diophantine exponent** of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form UV^{α} , for $\alpha \geq 1$, satisfying

$$\frac{|UV^{\alpha}|}{|UV|} \ge \rho$$

- We have $1 \leq \mathrm{Dio}({\it u}) \leq \infty$ for all ${\it u}$
- Eventually periodic words have infinite Diophantine exponent.

Theorem (Adamczewski and Bugeaud 2007)

For an integer $b \ge 2$ and sequence $u \in \{0, ..., b-1\}$, if Dio(u) > 1 then $S_b(u)$ is either rational or transcendental.

Ferenczi and Mauduit 97

Sturmian words have Diophantine exponent > 2.

Adamczewski, Bugeaud, Luca 04

Automatic words have Diophantine exponent > 1. (Resolves Cobham's first conjecture.)

Adamczewski, Cassaigne, Le Gonidec 20

Words generated by morphisms of exponential growth have Diophantine exponent > 1. (Resolves Cobham's second conjecture.)

From Combinatorics to Arithmetic

1 Assume
$$\alpha = \sum_{n=0}^{\infty} \frac{u_n}{b^n}$$
 is algebraic

- Perenzci and Mauduit's condition yields a sequence of good rational approximations to α, yielding infinitely many points in Z² on which linear form L(x₁, x₂) = αx₁ x₂ is "small"
- Apply Ridout's *p*-adic version of the Thue-Siegel-Roth Theorem to obtain a contradiction.
- Weaker condition Dio(u) > 1 yields infinite sequence of points in Z³ on which linear form
 L(x₁, x₂, x₃) = αx₁ − αx₂ − x₃ is "small"
- **(5)** Apply Subspace Theorem to conclude that α is **rational**

We consider the sum

$$S_{\beta}(\boldsymbol{u}) := \sum_{n=0}^{\infty} \frac{u_n}{\beta^n},$$

where the base β is an algebraic number with $|\beta| > 1$.

Theorem (Adamczewski and Bugeaud 2007b)

Let β be an algebraic integer with $|\beta| > 1$. If $\text{Dio}(\boldsymbol{u}) > \frac{\log M(\beta)}{\log |\beta|}$. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Theorem (B. Adamczewski and C. Faverjon 2018)

For any algebraic number β with $|\beta| > 1$ and automatic word $u = u_0 u_1 \dots$ the number $S_{\beta}(u)$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Theorem (Loxton and van der Poorten 1977)

Let β be an algebraic integer with $|\beta| > 1$. For any non-constant polynomial $f(x) \in \mathbb{Z}[x]$ and irrational θ the sum $\sum_{n=0}^{\infty} f(\lfloor n\theta \rfloor)\beta^{-n}$ is transcendental.

Implies transcendence of $S_{\beta}(u)$ for standard Sturmian words u.

Theorem (LOW 24)

Let β be algebraic with $|\beta| > 1$. If u is Sturmian then $S_{\beta}(u)$ is transcendental.

This is shown in Bugeaud & Laurent 2023 using Mahler method

Theorem (LOW 24)

Let β be algebraic with $|\beta| > 1$. Let u_1, \ldots, u_k be **Sturmian** words, all having the same slope and such that no word is a tail of another. Then $\{1, S_{\beta}(u_1), \ldots, S_{\beta}(u_k)\}$ is **linearly independent** over $\overline{\mathbb{Q}}$.

Theorem

Let β be an algebraic integer with $|\beta| > 1$. For any non-constant polynomial $f(x) \in \mathbb{Z}[x]$, $\alpha \in \mathbb{R}$ and irrational θ the sum $\sum_{n=0}^{\infty} f(\lfloor n\theta + \alpha \rfloor)\beta^{-n}$ is transcendental.

Theorem (KLOSW 24)

Let β be algebraic with $|\beta| > 1$. Then $S_{\beta}(u)$ is transcendental where u is the Tribonacci word.

Theorem

Let u be the d-bonacci word. Then for any algebraic number β with $|\beta| > 1$ the number $S_{\beta}(u)$ is transcendental.

Theorem

Let u be the fixed point of a Pisot morphism on a binary alphabet. Then for any algebraic number β with $|\beta| > 1$ the number $S_{\beta}(u)$ is transcendental or belongs to $\mathbb{Q}(\beta)$.

Periodicity Modulo Errors

Let $(r_n)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_n letters.

$$F_{\infty} := \underbrace{010010}_{10}\underbrace{10}\underbrace{01001010}_{10}\underbrace{10}\underbrace{010010}_{10}\underbrace{10}$$

- Mismatches come in consecutive symmetric pairs
- Gaps between these pairs "expand with n''
- Mismatches contribute $\pm \beta^n (\beta 1)$ in base β

Let $(r_n)_{n=0}^{\infty}$ be Tribonacci word and write $T_{\infty}^{(n)}$ for the word obtained by dropping the first r_n letters

 $T_{\infty} := \underbrace{01020100102010} 102 \underbrace{010} 0102 \underbrace{01020100102010} 102010 \underbrace{0...} \\ T_{\infty}^{(13)} := \underbrace{01020100102010} 201 \underbrace{001} \underbrace{0201} \underbrace{01020100102010} \underbrace{010201} \underbrace{0...} \\$

There is now a finite alphabet of palindromic mismatches

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

- Expanding gaps between groups of mismatches
- Non-vanishing condition on groups of mismatches

Definition

A word **u** is **echoing** if for all $\rho > 0$ and $\varepsilon > 0$ there exist unbounded sequence $\langle r_n \rangle_{n=0}^{\infty}$ of **quasi-periods** and $d \ge 2$ such that, writing $s_n := \rho r_n$, we have

- **Few mismatches**: the set of mismatches between prefix u₀...u_{s_n} and factor u_{r_n}...u_{r_n+s_n} is a contained in a union of at most d intervals of total length at most εs_n.
- **2** Expanding gaps the gaps between intervals expand with *n*.
- Some interval in which the contributions of the mismatches is non-zero in base β.

Linear form in application of Subspace Theorem depends has d + 3 terms.

Theorem

Sturmian words are echoing.

Proof.

- Analysis of simple continued-fraction expansion of slope
- Quasi-periods are denominators of convergents
- Mismatches are always consecutive pairs

Tribonacci Word is Echoing

Alphabet:

$$\left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}, \begin{bmatrix} 0&1\\1&0 \end{bmatrix}, \begin{bmatrix} 0&2\\2&0 \end{bmatrix}, \begin{bmatrix} 1&0&2\\2&0&1 \end{bmatrix}, \begin{bmatrix} 0&1&0&2\\2&0&1 \end{bmatrix}, \dots \right\}$$
Matching Morphism:

$$\begin{bmatrix} 0\\0 \end{bmatrix} \mapsto \begin{bmatrix} 0\\0 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} \qquad \begin{bmatrix} 1\\1 \end{bmatrix} \mapsto \begin{bmatrix} 0\\0 \end{bmatrix} \begin{bmatrix} 2\\2 \end{bmatrix} \qquad \begin{bmatrix} 2\\2 \end{bmatrix} \mapsto \begin{bmatrix} 0\\0 \end{bmatrix}$$
$$\begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \mapsto \begin{bmatrix} 0\\0 \end{bmatrix} \begin{bmatrix} 1&0&2\\2&0&1 \end{bmatrix} \qquad \begin{bmatrix} 1&0&2\\2&0&1 \end{bmatrix} \mapsto \begin{bmatrix} 0\\0 \end{bmatrix} \begin{bmatrix} 2&0&1&0\\0&1&0&2 \end{bmatrix}$$
$$\begin{bmatrix} 2&0&1&0\\0&1&0&2 \end{bmatrix} \mapsto \begin{bmatrix} 0\\0 \end{bmatrix} \begin{bmatrix} 0&1\\1&0 \end{bmatrix} \begin{bmatrix} 0&2\\2&0 \end{bmatrix} \begin{bmatrix} 0&1\\1&0 \end{bmatrix}$$

Initial shift:

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdots$

Non-Vanishing Condition

Incidence graph of matching morphism has unique cycle cover:

Non-Vanishing Condition

Summary of the Results

Let β be algebraic with $|\beta| > 1$:

Theorem

If u is Sturmian then $S_{\beta}(u)$ is transcendental.

Theorem

For any non-constant polynomial $f(x) \in \mathbb{Z}[x]$, $\alpha \in \mathbb{R}$ and irrational θ the sum $\sum_{n=0}^{\infty} f(\lfloor n\theta + \alpha \rfloor)\beta^{-n}$ is transcendental.

Theorem

If **u** is a d-Bonacci word then $S_{\beta}(u)$ is transcendental.

Theorem

Let **u** be a Pisot morphic word on a binary alphabet. Then $S_{\beta}(u)$ is either transcendental or belongs to $\mathbb{Q}(\beta)$.

- Let \boldsymbol{u} be generated by a Pisot morphism. Assuming the Pisot conjecture, the balanced-pair algorithm terminates with coincidence. One obtains that $S_{\beta}(\boldsymbol{u})$ is either transcendental or lies in $\mathbb{Q}(\beta)$.
- Use non-vanishing condition to exclude the possibility that $S_{\beta}(\boldsymbol{u}) \in \mathbb{Q}(\beta)$. We are currently investigating when this holds.