The Topology of Asynchronous Byzantine Colorless Tasks

Hammurabi Mendesa, Christine Tassonb, and Maurice Herlihy*a

a Computer Science Dept., Brown University, Providence, RI, USA,
\{hmendes, mph\}@cs.brown.edu

b Univ. Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205, Paris,
France, Christine.Tasson@pps.univ-paris-diderot.fr

Contact: Hammurabi Mendes <hmendes@cs.brown.edu>
Address: Box 1910, Computer Science Department, Brown University
115 Waterman Street
Providence RI 02906, USA
Telephone: +1 (401) 580 3458

Abstract

In this paper, we extend the topological model that characterizes task solvability in crash-failure systems to colorless tasks in Byzantine asynchronous systems. We give the first theorem with necessary and sufficient conditions to solve \textit{arbitrary} colorless tasks in such model, capturing the relation between the total number of processes, the number of faulty processes, and the topological structure of the task’s simplicial complexes. In the interim, we provide novel asynchronous protocols for \textit{k}-set agreement and barycentric agreement with optimal Byzantine fault tolerance.

Regular submission.

Please consider for student paper award: Hammurabi Mendes is a full-time student.

*Supported by NSF 000830491.
1 Introduction

A task is a distributed coordination problem in which each process starts with a private input from a finite set, communicates with other processes, and eventually decides on a private output, also from a finite set.

One of the central questions in distributed computing is characterizing which tasks can be solved in which models of computation. Tools adapted from combinatorial topology have been successful in characterizing task solvability in synchronous and asynchronous crash-failure models [16], where faulty processes simply halt and fail silently. In this paper, we extend the approach to the asynchronous Byzantine model, where communication has unbounded delay and faulty processes can display arbitrary behavior.

We focus on an important class of tasks called colorless tasks [4], which includes well-studied problems such as consensus [9], k-set agreement [8], and approximate agreement [1]. As explained more formally below, a colorless task is one that can be defined entirely in terms of sets of input and output values assigned, without the need to specify which value is assigned to which process, or how many times an assigned value appears.

1.1 Our Contributions

Our first contribution is to extend the application of the topological model from [16], formerly used to characterize solvability in crash-failure systems, to colorless tasks in asynchronous Byzantine systems. This approach leads to novel conclusions, suggesting that the model is well-suited and robust among a multitude of communication and failure abstractions. Besides, it opens up new questions, such as how to further extend the application to colored tasks, as well as other timing models. Background information on the topological model in distributed computing is presented in Sec. 2.

Our second contribution is to give new protocols for k-set agreement and barycentric agreement in the Byzantine-failure model. It is well-known that asynchronous Byzantine consensus is impossible [9], as well as wait-free asynchronous set-agreement [1, 16, 21]. Our protocols limn the boundary between the possible and impossible in the presence of Byzantine failures. Using powerful algorithmic tools, presented in Sec. 3, our k-set agreement and barycentric agreement protocols, which are discussed in Sec. 4, will provide the appropriate support for our main theorem.

Finally, our principal contribution is to give the first theorem with necessary and sufficient conditions to solve non-trivial colorless tasks in the asynchronous Byzantine model. The task itself is defined in terms of a pair of combinatorial structures called simplicial complexes [20, 18]. Whether a task is solvable is equivalent to the existence of a certain structure-preserving map between the task’s simplicial complexes. This equivalence captures the relation between $n + 1$, the number of processes, t, the number of failures, and the topological structure of the task’s simplicial complexes. While an analogous characterization has long been known for crash failures [16], our solvability theorem, presented in Sec. 5, is the first such characterization for Byzantine failures.

1 The renaming task [2] is an example of a task that is not colorless, as each process chooses a distinct name.

2 Our results extend to the core/survivor-set model [17] (Appendix C).
2 Topological Model

We now overview some important notions from combinatorial topology, and describe how they are applied to model concurrent computation. For details, please refer to Munkres [20] or Kozlov [18].

2.1 Combinatorial Tools

A simplicial complex is a finite set V along with a collection of subsets K of V closed under containment. An element of V is a vertex of K. Each set in K is called a simplex, usually denoted by lower-case Greek letters: σ, τ. A subset of a simplex is called a face. The dimension $\dim(\sigma)$ of a simplex σ is $|\sigma| - 1$. We use “k-simplex” as shorthand for “k-dimensional simplex”, and similarly for “k-face”. The dimension $\dim(K)$ of a complex is the maximal dimension of its simplices. The set of simplices of K of dimension at most ℓ is a subcomplex of K, which is called ℓ-skeleton of K, denoted by $\text{skel}^\ell(K)$.

Let K and L be complexes. A vertex map f carries vertices of K to vertices of L. If f additionally carries simplices of K to simplices of L, it is called a simplicial map. A carrier map Φ from K to L takes each simplex $\sigma \in K$ to a subcomplex $\Phi(\sigma) \subseteq L$, such that for all $\sigma, \tau \in K$, we have that $\Phi(\sigma \cap \tau) \subseteq \Phi(\sigma) \cap \Phi(\tau)$. A simplicial map $\phi : K \to L$ is carried by the carrier map $\Phi : K \to 2^L$ if, for every simplex $\sigma \in K$, we have $\phi(\sigma) \subseteq \Phi(\sigma)$.

Although we defined simplices and complexes in a purely combinatorial way, they can also be interpreted geometrically. An n-simplex can be identified with the convex hull of $(n + 1)$ affinely-independent points in the Euclidean space of appropriate dimension. This geometric interpretation can be extended to complexes. The point-set underlying such geometric complex K is called its polyhedron, and is denoted $|K|$. We can define simplicial and carrier maps in geometrical complexes. Given a simplicial map $\phi : K \to L$ (resp. carrier map $\Phi : K \to 2^L$), the polyhedrons of every simplex in K and L induce a continuous simplicial map $\phi_c : |K| \to |L|$ (resp. continuous carrier map $\Phi_c : |K| \to 2^{|L|}$). Furthermore, we say that ϕ (resp. ϕ_c) is carried by Φ if, for every simplex $\sigma \in K$, we have that $|\phi(\sigma)| \subseteq |\Phi(\sigma)|$ (resp. $\phi_c(|\sigma|) \subseteq \Phi_c(|\sigma|)$).

2.1.1 Simplicial Approximations

For any simplex σ, the boundary of σ, denoted $\partial \sigma$, is the simplicial complex of proper faces of σ. The interior of σ is formally defined as $\text{Int} \sigma = |\sigma| \setminus |\partial \sigma|$. The open star of $\sigma \in A$, denoted $\text{Ost} \sigma$, is the union of the interiors of all simplices in A containing σ. See Fig. 1.

Intuitively speaking, given a continuous map, a simplicial approximation is a “sufficiently close” combinatorial counterpart. We define it formally below.
Definition 2.1. A simplicial map \(\mu : K \to L \) is a simplicial approximation of \(\Phi_c : |K| \to |L| \) if

\[
\Phi_c(\text{Int } \sigma) \subseteq \bigcap_{v \in \sigma} \text{Ost } \mu(v) = |\text{Ost } \mu(\sigma)|, \quad \text{for all } \sigma \in K.
\]

We introduce new concepts in order to define the conditions for the existence of a simplicial approximation. A subdivision of a complex \(A \) is a complex \(B \) such that: (i) for any \(\tau \in B \), \(|\tau| \) is contained in the polyhedron of some \(\sigma \in A \). (ii) for any \(\sigma \in A \), \(|\sigma| \) is the union of disjoint polyhedrons of simplices belonging to \(B \). We understand the subdivision as an operator \(\text{Div} \) over complexes. A mesh-shrinking subdivision \(\text{Div} A \) of \(A \) is one such the longest polyhedron of an edge in \(\text{Div} A \) (i.e., a 1-simplex in \(\text{skel}^1(\text{Div} A) \)) is strictly smaller than the corresponding one in \(A \).

Theorem 2.2. (Simplicial Approximation Theorem [20]) Given a continuous map \(\Phi_c : |K| \to |L| \), and any mesh-shrinking subdivision operator \(\text{Div} \), there is an \(N > 0 \) such that \(\Phi_c \) has a simplicial approximation \(\mu : \text{Div}^N K \to L \).

2.1.2 Connectivity

We say that a simplicial complex \(K \) is x-connected if every continuous map of a x-sphere in \(|K| \) can be extended into the continuous map of a \((x+1)\)-disk in \(|K| \). In analogy, think of a pencil as a 1-disk, and its extremes as a 0-sphere; a coin as a 2-disk, and its border as a 1-sphere; a billiard ball as a 3-disk, and its outer layer as a 2-sphere. In addition, \((-1)\)-connected is defined as non-empty.

Fact 2.3. [20] For any \(k \)-simplex \(\sigma \), the boundary of \(\sigma \) is homeomorphic to a \((k-1)\)-sphere, and \(\sigma \) is homeomorphic to a \(k \)-disk.

2.2 Model for Concurrent Computation

We now present a simplified version of the general combinatorial model of [10, 11, 13, 14, 16] that is specially suitable for colorless tasks. We initially describe our operational context.

We have \(n+1 \) sequential processes \(P_0, \ldots, P_n \), that communicate via message-passing through a fully-connected, asynchronous network of reliable FIFO channels. Every message sent is eventually delivered after a finite, but unbounded delay, with the message’s sender reliably identified. Processes are asynchronous as well, having no bound on their relative speed. Up to \(t \) processes might be faulty, displaying arbitrary, “Byzantine” behavior. We abstract the asynchronous communication in discrete rounds of related messages, in a full-information protocol.

2.2.1 Colorless Tasks

An initial configuration is an assignment of input values to processes, and a final configuration is the analogous for output values. A task specification consists of a set of legal initial configurations, and, for each of them, its corresponding set of legal final configurations.

A colorless task [13, 6] is a triple \((I, O, \Delta) \), where \(I \) is the input complex, \(O \) is the output complex, and \(\Delta : I \to 2^O \) is a carrier map. Each vertex in \(I \) is an input value, and each simplex is an initial configuration with possible initial configurations closed under inclusion. The output

\[3\] Intuitively, we are effectively shrinking the borders of the simplexes.

\[4\] Choosing \(n+1 \) processes rather than \(n \) simplifies the topological notation but slightly complicates the computing notation. Choosing \(n \) processes makes the opposite trade-off. We choose \(n+1 \) for compatibility with prior work.
complex is analogous in regard to final configurations. Given an initial configuration, the carrier map Δ specifies which final configurations are legal.

With colorless tasks, input and output simplexes represent sets of input and output values, held by the processes in the appropriate initial/final configuration. Such sets are closed under inclusion, that is, if σ represents a valid initial or final configuration, so is any face $\tau \subseteq \sigma$. The admissible sets of output values depend solely on the starting set of input values picked by processes.

Indeed, in k-set agreement [8], which is colorless, a process can adopt the input of any other process, or two processes can exchange their inputs, and the initial configuration remains valid, and similarly for outputs. Conversely, in renaming [2], which is colored, the specific input/output assignments cannot be manipulated in such ways.

To illustrate the relation between the carrier map and the task specification, in binary consensus the input complex I has two vertices, labeled 0 and 1, joined by an edge, and the output complex O has two isolated vertices, labeled 0 and 1. The carrier map Δ sends each vertex of I to the output vertex with the same label, and the edge of I to both vertices of O.

2.2.2 Byzantine Colorless Tasks

In our model for Byzantine colorless tasks, we require that outputs of non-faulty processes depend solely on inputs of non-faulty processes. We formalize the concept below.

For any non-faulty process P_i, its input is denoted I_i and its output is denoted O_i. The set of non-faulty inputs is defined as $\sigma_I = \{I_i : P_i \text{ is non-faulty}\}$, and the set of non-faulty outputs is defined as $\sigma_O = \{O_i : P_i \text{ is non-faulty}\}$. A Byzantine colorless task requires that

$$\sigma_O \in \Delta(\sigma_I).$$

In other words, the admissible non-faulty output sets depend solely on the starting non-faulty input set held by non-faulty processes. So, we only care about inputs and outputs of non-Byzantine processes, and Byzantine inputs do not "influence" outputs of non-Byzantine processes.

We model such requirement by making our task specification (I, O, Δ) constrain the behavior of non-faulty processes only. Now, initial and final configurations refer to non-faulty processes, and inputs and output simplexes represent non-faulty input and output sets, as defined before. Conceptually, non-faulty processes start on vertices of a simplex σ in I, and halt on vertices of a simplex $\tau \in \Delta(\sigma)$. Multiple non-faulty processes may start on the same input vertex and halt on the same output vertex.

Therefore, the same task definition triple (I, O, Δ) is used both for crash and Byzantine failure models, with the nature of the failures affecting only protocols (algorithms), but not specifications (models) – failures only alter the specification scope, but not its definition. Perhaps contrary to intuition, we extend the model to Byzantine tasks by constraining the specification semantics to non-faulty processes only.

2.2.3 Protocols and Complexes

Informally, we abstract protocols as continuous exchanges of internal states, in a full-information fashion [15]. Given a model for communication and failures, we can define a protocol complex $P(I)$ for any task (I, O, Δ). A vertex in $v \in P(I)$ is a tuple with a non-faulty process identifier and

5 If one process adopts the output of another process, the output configuration becomes forbidden.
its final state. A simplex $\sigma = \{(Q_1, s_1), \ldots, (Q_x, s_x)\}$ in $\mathcal{P}(\mathcal{I})$ indicates that, in some execution, non-faulty processes Q_1, \ldots, Q_x finish with states s_1, \ldots, s_x, respectively. The formal definition of protocol is identical to [14], here presented for completeness:

Definition 2.4. A protocol for $(\mathcal{I}, \mathcal{O}, \Delta)$ is a carrier map \mathcal{P} taking $\sigma \in \mathcal{I}$ to a protocol complex denoted $\mathcal{P}(\sigma) \subseteq \mathcal{P}(\mathcal{I})$. For any $\sigma, \tau \in \mathcal{I}$, we have that $\mathcal{P}(\sigma \cap \tau) = \mathcal{P}(\sigma) \cap \mathcal{P}(\tau)$.

Definition 2.5. A protocol \mathcal{P} solves $(\mathcal{I}, \mathcal{O}, \Delta)$ if there exists a simplicial map $\delta : \mathcal{P}(\mathcal{I}) \to \mathcal{O}$ carried by Δ.

3 Basic Algorithmic Tools

In this work, we use two well-known constructions from prior work: reliable broadcast [6, 22, 3, 7] and stable vectors [2]. In the following sections, we overview these primitives, and define our concept of quorum that underlies our algorithms for Byzantine colorless tasks.

3.1 Reliable Broadcast

The reliable broadcast technique forces Byzantine processes to communicate consistently with other processes. Communication is organized in asynchronous rounds, where a round may involve several message exchanges. Messages have the form (P, r, c), where P is the sending process, r is the current round, and c is the actual content. Messages not conforming to this structure can safely be discarded. The technique, which works as long as $n > 3t$, guarantees the following [6, 22, 3, 7]:

Non-Faulty Integrity: If a non-faulty P never reliably broadcasts (P, r, c), no non-faulty process ever reliably receives (P, r, c).

Non-Faulty Liveness: If a non-faulty P does reliably broadcast (P, r, c), all non-faulty processes will reliably receive (P, r, c) eventually.

Global Uniqueness: If two non-faulty processes Q and R reliably receive, respectively, (P, r, c) and (P, r, c'), then the messages are equal ($c = c'$), even if the sender P is Byzantine.

Global Liveness: For two non-faulty processes Q and R, if Q reliably receives (P, r, c), then R will reliably receive (P, r, c) eventually, even if the sender P is Byzantine.

For completeness, we provide the algorithms in Appendix [A]. Here, $P.RBSend(M)$ denotes the reliable broadcast of message M by process P, and $P.RBRecv(M)$ the reliable receipt of M by P.

3.2 Quorums

Let \mathcal{M}^r be the set of all messages reliably broadcast by all processes during a discrete round r, and let $\mathcal{M}^r_i \subseteq \mathcal{M}^r$ be the subset reliably received by a non-faulty process P_i. By the global uniqueness of the reliable broadcast, if (P, r, c) and (P', r', c') are distinct messages in \mathcal{M}^r then the senders are distinct: $P \neq P'$. Furthermore, by definition of \mathcal{M}^r_i, we have that $r = r'$. Let $Good(\mathcal{M}^r)$ denote the set of distinct message contents in \mathcal{M}^r that were reliably broadcast by the non-faulty processes.

Definition 3.1. We say that a content c has a quorum in \mathcal{M}^r_i, written $c \in Quorum(\mathcal{M}^r_i)$, if c was reliably received in \mathcal{M}^r_i from $t + 1$ or more different processes.
For any $M \subseteq \mathcal{M}$, we know that $\text{Quorum}(M) \subseteq \text{Good}(\mathcal{M})$: if P_i obtained a quorum for c, P_i becomes aware that c was sent by a non-faulty process. Conversely, any content received from less than $t+1$ processes cannot be “trusted” – recall that non-faulty process outputs must depend only on non-faulty process inputs.

Algorithm 1 shows the procedure by which non-faulty processes get a set of messages containing a quorum in a communication round r. It works as long as $n+1 > t \cdot \max \{3, |\text{Good}(\mathcal{M})| + 1\}$. We denote by M_i^r the set M received by process P_i at round r.

\begin{algorithm}
\caption{$P.\text{RecvQuorum}(r)$}
\begin{algorithmic}
\Require $n + 1 > t \cdot \max \{3, |\text{Good}(\mathcal{M})| + 1\}$
\State $M \leftarrow \emptyset$
\While{$|M| < (n + 1) - t$ or $\text{Quorum}(M) = \emptyset$}
\State \textbf{upon} $\text{RBRecv}((Q, r, c))$
\State $M \leftarrow M \cup \{(Q, r, c)\}$
\EndWhile
\Return M
\end{algorithmic}
\end{algorithm}

Informally, the procedure eventually finishes since all $(n + 1) - t$ non-faulty processes eventually show up, and, since $(n + 1) - t > t \cdot |\text{Good}(\mathcal{M})|$, some value will appear $t + 1$ or more times. The following properties, formally proved in in Appendix B, present the guarantees of the algorithm.

\begin{property}
If $n + 1 > t \cdot \max \{3, |\text{Good}(\mathcal{M})| + 1\}$, then $\text{RecvQuorum}(r)$ eventually returns, and, for any non-faulty process P_i,

$$|M_i^r| \geq (n + 1) - t \quad \text{and} \quad \text{Quorum}(M_i^r) \neq \emptyset.$$ \end{property}

\begin{property}
After $\text{RecvQuorum}(r)$, any two non-faulty processes P_i and P_j have $|M_i^r \setminus M_j^r| \leq t$.
\end{property}

\subsection{Stable Vectors}

Algorithm 1 ensures that any two non-faulty processes P_i and P_j collect at least $n + 1 - 2t$ messages in common. Indeed, $|M_i^r| \geq (n + 1) - t$ by Property 3.2 and $|M_i^r \setminus M_j^r| \leq t$ by Property 3.3, therefore $|M_i^r \cap M_j^r| \geq (n + 1) - 2t$.

In Algorithm 1, we adapt the \textit{stable vectors} technique presented in [2] to ensure that the two non-faulty processes P_i and P_j have $(n + 1) - t$ messages in common in M_i^r and M_j^r, with a common value in $\text{Quorum}(M_i^r \cap M_j^r)$ and with sets of messages totally ordered by containment. Since we use the $\text{RecvQuorum}()$ procedure, it requires that $n + 1 > t \cdot \max \{3, |\text{Good}(\mathcal{M})| + 1\}$.

The technique works as follows. (1) P uses $\text{RecvQuorum}()$ to obtain a set of messages M with $\text{Quorum}(M) \neq \emptyset$. (2) P reliably transmits its \textit{report}, containing those messages. (3) Any further message reliably received in M causes P to reliably broadcast an updated report of M. (4) P keeps reliably receiving reports, stored in a vector R, until it identifies $(n + 1) - t$ \textit{buddies} in B, where a buddy is a process P_j whose last report R_j is M. (5) P decides, but keeps updating M and sending updated reports in the background (Algorithm 3).

The following lemmas (proved in Appendix B) show that the procedure terminates, and give the stable vector properties. Intuitively, any two non-faulty processes identify a common non-faulty buddy, which reliably broadcasts monotonically increasing reports, guaranteeing the properties.

\begin{lemma}
For any non-faulty process P_i, the sequence of transmitted reports is monotonically increasing. All other non-faulty processes receive those reports in such order.
\end{lemma}
Algorithm 2 \(P.\text{RecvStable}(r) \)

Require: \(n + 1 > t \cdot \max \{3, |\text{Good}(M^r)| + 1 \} \)

1: \(M, B \leftarrow \emptyset \)
2: \(R[x] \leftarrow \emptyset \) for all \(0 \leq x \leq n \)
3: \(M \leftarrow \text{RecvQuorum}(r) \)
4: \(\text{RBSend}((P, r\{\text{report}\}, M)) \)
5: while \(|B| < (n + 1) - t \) do
6: \(\text{upon } \text{RBRecv}((P_j, r, c)) \) do
7: \(M \leftarrow M \cup \{(P_j, r, c)\} \)
8: \(\text{RBSend}((P, r\{\text{report}\}, M)) \)
9: \(\text{upon } \text{RBRecv}((P_j, r\{\text{report}\}, R_j)) \) do
10: \(R[j] \leftarrow R_j \)
11: \(B \leftarrow \{P_x : R[x] = M, 0 \leq x \leq n\} \)
12: return \(M \) \quad \triangleright \text{while activating } \text{RSEcho}(M, r) \)

Algorithm 3 \(P.\text{RSEcho}(M, r) \)

1: \(\text{upon } \text{RBRecv}((Q, r, c)) \) do
2: \(M \leftarrow M \cup \{(Q, r, c)\} \)
3: \(\text{RBSend}((P, r\{\text{report}\}, M)) \)

Lemma 3.5. \(\text{RecvStable}(r) \) eventually returns.

Lemma 3.6. After \(\text{RecvStable}(r) \), any two non-faulty processes \(P_i \) and \(P_j \) satisfy the following: (i) \(|M^r_i \cap M^r_j| \geq (n + 1) - t \); (ii) \(\text{Quorum}(M^r_i \cap M^r_j) \neq \emptyset \); and (iii) \(M^r_i \subseteq M^r_j \) or \(M^r_j \subseteq M^r_i \).

4 \(k \)-Set Agreement and Barycentric Agreement

Our solvability theorem for colorless tasks builds on two novel asynchronous Byzantine protocols: \(k \)-set agreement \([S]\), and barycentric agreement \([T]\), which depend, in turn, on our previous communication primitives. We describe the protocols in the following sections.

4.1 \(k \)-Set Agreement

In the \(k \)-set agreement task \([S]\), processes decide up to \(k \) values originally input. In our model, non-faulty processes start on vertices of a simplex \(\sigma \) and halt on vertices of a simplex of \(\text{skel}^{k-1}(\sigma) \). Informally, they decide on up to \(k \) values originally input by non-faulty processes.

Algorithm 4 \(P.\text{KSetAgree}(v) \)

Require: \(k > t \) and \(n + 1 > t(d + 2) \), with \(\text{dim}(\mathcal{I}) = d > 0 \).
1: \(\text{RBSend}((P, 1, v)) \)
2: \(M \leftarrow \text{RecvQuorum}(1) \)
3: return least-ranked element in \(\text{Quorum}(M) \)

Algorithm \([T]\) shows a \(k \)-set agreement protocol assuming that \(k > t \) and \(n + 1 > t(d + 2) \), with
dim(\mathcal{I}) = d > 0. Since at most \(d + 1\) distinct values are reliably broadcast by non-faulty processes, \(|Good(\mathcal{M}^1)| \leq d + 1\), and Algorithm 4 becomes applicable as \(n + 1 > t \cdot \max\{3, |Good(\mathcal{M}^1)| + 1\}\).

Lemma 4.1. Algorithm 4 solves the \(k\)-set agreement problem for Byzantine colorless tasks.

Proof. Non-faulty processes decide values in \(Quorum(M) \subseteq Quorum(\mathcal{M}^1) \subseteq Good(\mathcal{M}^1)\). For any non-faulty process \(P_i\), \(|M| \geq (n + 1) - t\) and \(Quorum(M) \neq \emptyset\) (Property 3.2), so

\[|\mathcal{M}^1 \setminus M| \leq t \Rightarrow |Quorum(\mathcal{M}^1) \setminus Quorum(M)| \leq t.\]

Therefore, \(P_i\) misses up to \(t\) decidable values in \(Quorum(\mathcal{M}^1)\), so \(P_i\)'s decision is among the \((t + 1)\) least-ranked elements. Since \(P_i\) was taken arbitrarily, all non-faulty processes decide similarly, and the claim follows because \(k \geq t + 1\).

4.2 Barycentric Agreement

The barycentric subdivision of simplex \(\sigma\) is constructed, informally speaking, by subdividing \(\sigma\) along the barycenters of its faces, as shown in Figure 2. Formally, the barycentric subdivision of \(\sigma\) is a simplicial complex \(\text{Bary} \sigma\) whose vertices are faces of \(\sigma\), and whose simplices are chains of distinct faces totally ordered by containment. Every \(m\)-simplex \(\tau \in \text{Bary} \sigma\) might be written as \(\{\sigma_0, \ldots, \sigma_m\}\), where \(\sigma_0 \subset \cdots \subset \sigma_m \subseteq \sigma\).

![Barycentric subdivision of \(\sigma = \{v_0, v_1, v_2\}\), and one of its simplices \(\{\{v_0\}, \{v_0, v_1\}, \{v_0, v_1, v_2\}\}\).](image)

In the barycentric agreement task, non-faulty processes start on vertices of a simplex \(\sigma\) and halt on vertices of a simplex in \(\text{Bary} \sigma\). Formally, for each \(\sigma \in \mathcal{I}\), we have \(\Delta(\sigma) = \text{Bary} \sigma\).

Algorithm 5 shows a barycentric agreement protocol assuming that \(n + 1 > t(d + 2)\), with \(\dim(\mathcal{I}) = d > 0\). Since at most \(d + 1\) distinct values are reliably broadcast by non-faulty processes, \(|Good(\mathcal{M}^1)| \leq d + 1\), and Algorithm 4 becomes applicable as \(n + 1 > t \cdot \max\{3, |Good(\mathcal{M}^1)| + 1\}\).

Algorithm 5 P:BaryAgree(v)

Require: \(n + 1 > t(d + 2)\), with \(\dim(\mathcal{I}) = d > 0\).

1: \(\text{RBSend}((P, 1, \{v\}))\)
2: \(M \leftarrow \text{RecvStable}(1)\)
3: \(\text{return} \ Quorum(M)\)

Lemma 4.2. Algorithm 5 solves the barycentric agreement problem for Byzantine colorless tasks.

Proof. By Lemma 3.3, for any two non-faulty processes \(P_i\) and \(P_j\), we have that \(M_i \subseteq M_j\) or \(M_j \subseteq M_i\), and also that \(Quorum(M_i \cap M_j) \neq \emptyset\). Therefore, \(Quorum(M_i) \subseteq Quorum(M_j)\) or \(Quorum(M_j) \subseteq Quorum(M_i)\), implicating that the decided values, which are faces of \(\sigma\), are totally ordered by containment.
5 The Solvability Theorem

In this section we present our main theorem. We first clarify which tasks are deemed trivial, and later characterize the solvability of non-trivial Byzantine colorless tasks.

Informally, a task is trivial if all non-faulty processes can choose an output directly from their own inputs, without communicating with any other processes. Formally, $(\mathcal{I}, \mathcal{O}, \Delta)$ is trivial if there is a simplicial map $\delta : \mathcal{I} \to \mathcal{O}$ carried by Δ. In non-trivial tasks, non-faulty processes cannot decide solely based on their own inputs: some non-faulty process must become aware of inputs from other non-faulty processes. Our Byzantine model requires $t+1$ processes granting the existence of the input before it is “learned”:

Definition 5.1. A process P learns a value v if it receives $t+1$ messages m_1, \ldots, m_{t+1} from different processes, with m_i granting p_i as having input v ($p_i \neq p_j$ when $i \neq j$).

We now proceed with our main solvability theorem.

Theorem 5.2. A non-trivial colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a t-resilient protocol in the asynchronous Byzantine model if and only if

1. $n+1 > t \dim(\mathcal{I}) + 2$
2. there is a continuous map $f : |\text{skel}'(\mathcal{I})| \to |\mathcal{O}|$ carried by Δ.

Proof. Conditions imply protocol. Say that the map f exists. By the simplicial approximation theorem \[20, 13\] (shown in Theorem 2.2), f has a simplicial approximation $\phi : \text{Bary}^N \text{skel}'(\mathcal{I}) \to \mathcal{O}$, for some $N > 0$, also carried by Δ. The protocol for non-faulty processes is shown below, presuming that $n+1 > t \dim(\mathcal{I}) + 2$ with $\dim(\mathcal{I}) > 0$.

1. Execute the Byzantine k-set agreement protocol, for $k = t+1$, choosing vertices on a simplex in $\text{skel}'(\mathcal{I})$.
2. Execute the Byzantine barycentric agreement protocol N times, choosing vertices on a simplex in $\text{Bary}^N \text{skel}'(\mathcal{I})$.
3. Apply $\phi : \text{Bary}^N \text{skel}'(\mathcal{I}) \to \mathcal{O}$ to choose vertices on a simplex in \mathcal{O}.

Since ϕ and f are carried by Δ, non-faulty processes starting on vertices of $\sigma_I \in \mathcal{I}$ finish on vertices of $\sigma_O \in \Delta(\sigma)$. Also, since $1 \leq \dim(\sigma_I) \leq \dim(\mathcal{I})$, by definition, the preconditions are satisfied for calling the protocols in steps (1) and (2).

Protocol implies conditions. Say that the protocol exists.

Condition (1). Assume, for the sake of contradiction, that $n+1 \leq t \dim(\mathcal{I}) + 2$. Consider an execution where Byzantine processes never send messages, and the $(n+1) - t$ non-faulty processes start on vertices of an arbitrary $\sigma \in \mathcal{I}$, with $\dim(\sigma) = \dim(\mathcal{I})$. Furthermore, say that less than $t+1$ non-faulty processes input any particular vertex of σ, since $(n+1) - t \leq t \dim(\mathcal{I} + 1) = t \dim(\sigma)$. However, no process can learn any value in this case, by Definition \[5, 4\], and since we presumed a protocol solving $(\mathcal{I}, \mathcal{O}, \Delta)$, we must have a simplicial map $\delta : \mathcal{I} \to \mathcal{O}$ carried by Δ. The map contradicts the fact that $(\mathcal{I}, \mathcal{O}, \Delta)$ is non-trivial, so we must have $n+1 > t \dim(\mathcal{I}) + 2$.

Condition (2). We argue by reduction to the crash-failure case. Note that any t-resilient Byzantine protocol is also a t-resilient crash-failure protocol for colorless tasks. From \[12, 13\], for

\[6\] These papers characterize connectivity in terms of c, the minimum core size, as defined by Junqueira and Marzullo \[17\]. For t-resilient tasks in the crash-failure model, $t = c + 1$. See also Appendix 4.
any $\sigma \in I$, the protocol complex $P(\sigma)$ is $(t-1)$-connected in the crash-failure model, so, in light of the previous observation, it is also $(t-1)$ connected in the Byzantine-failure model. This implicates that $\text{skel}^x(P(\sigma))$ is $(x-1)$-connected for $0 \leq x \leq t$. We will inductively construct a sequence of continuous maps $g_x : |\text{skel}^x(I)| \to |P(\text{skel}^x(I))|$, considering $0 \leq x \leq t$, mapping skeletons of I to skeletons of $P(I)$.

Base. Let g_0 map any vertex $v \in \sigma$ to any vertex $v' \in P(v)$, which exists because $\text{skel}^x(P(v))$ is (-1)-connected by hypothesis. We just constructed $g_0 : |\text{skel}^0(I)| \to |P(\text{skel}^0(I))|$.

Induction Hypothesis. Assume

$$g_{x-1} : |\text{skel}^{x-1}(I)| \to |P(\text{skel}^{x-1}(I))|,$$

with $x \leq t$, sending the geometrical boundary of a x-simplex σ^x in $\text{skel}^x(I)$ to $|P(\text{skel}^{x-1}(\sigma^x))|$. Formally, $g_{x-1}(|\partial \sigma^x|) \subseteq |P(\text{skel}^{x-1}(\sigma^x))|$. By hypothesis, $P(\sigma^x)$ is x-connected, so the continuous image of the $(x-1)$-sphere $|\partial \sigma^x|$ could be extended to a continuous x-disk $|\sigma^x|$, defining g_x such that $g_x(|\sigma^x|) \subseteq |P(\text{skel}^x(I))|$. As all such maps agree on their intersections, in light of definition 2.4, we just constructed

$$g_x : |\text{skel}^x(I)| \to |P(\text{skel}^x(I))| \subseteq |P(I)|.$$

As we assumed a protocol solving (I, O, Δ), we have a simplicial map $\delta : P(I) \to O$ carried by Δ (given by definition 2.5). Our map is induced by the composition $g_t \circ \delta$. For details, on the induced composition, see 20, 18.

We note that the barycentric agreement, which we employed in the “conditions imply protocol” part of the previous proof, can be similarly accomplished using a multidimensional approximate agreement protocol such as 19. For the interested reader, we discuss such approach in Appendix D.

6 Conclusion

In this work, we give the first necessary and sufficient conditions for the solvability of non-trivial colorless tasks in asynchronous Byzantine systems. This particular characterization is interesting per se, as previous, analogous results exist for crash-failure systems 16. However, this work also evidences (i) the power and suitability of the combinatorial topology tools, and (ii) novel, yet simple algorithms for the fundamental k-set agreement and barycentric agreement problems in asynchronous Byzantine systems.

We saw how combinatorial topology tools can produce novel results in distributed computing by virtue of being capable to support existential arguments without complicated, model-specific constructive arguments. Indeed, we used or slightly adapted basic communication primitives (reliable broadcast, quorums, stable vectors) and straightforward algorithmic tools (k-set agreement and barycentric agreement) to demonstrate our solvability theorem, relying on powerful, model-independent observations from combinatorial topology to complement the proof.

Our necessary and sufficient conditions capture the relation between the number of processes, the number of failures, and the topological structure of the task’s simplicial complexes. This differs from the case of crash-failure systems, and opens similar questions for other scenarios, such as synchronous systems and colored tasks, which we intend to carry as future work.
A Algorithms for Reliable Broadcast

Algorithms 6 to 8 show the reliable broadcast protocol for sender P, round r, and content c. The symbol “$_$” represents a wildcard, matching any value.

Algorithm 6 P.RBSend(P, r, c)

send(P, r, c) to all processes

Algorithm 7 P.RBEcho()

upon recv(Q, r, c) from Q do
 if never sent ($Q, r\{\text{echo}\}, ____$) then
 send($Q, r\{\text{echo}\}, c$) to all processes

upon recv($__, r\{\text{echo}\}, c$) from $\geq (n+1)-t$ processes do
 if never sent ($P, r\{\text{ready}\}, ____$) then
 send($P, r\{\text{ready}\}, c$) to all processes

upon recv($__, r\{\text{ready}\}, c$) from $\geq t+1$ processes do
 if never sent ($P, r\{\text{ready}\}, ____$) then
 send($P, r\{\text{ready}\}, c$) to all processes

Algorithm 8 P.RBRecv(P, r, c)

recv($__, r\{\text{ready}\}, c$) from $(n+1)-t$ processes
return (P, r, c)

B Proofs for Communication Primitives

In this section, we prove lemmas related to quorum and stable vectors. The proofs on stable vector guarantees are variations from those in [2].

B.1 Proof of Property 3.2

Proof. Since $n+1 > 3t$, the processes can perform reliable broadcast. Note that the $(n+1)-t$ messages sent by the non-faulty processes can be grouped by their contents:

$$(n+1)-t = \sum_{c \in \text{Good}(\mathcal{M}^r)} |\{(P, r, c) : (P, r, c) \in \mathcal{M}^r, P \text{ is non-faulty}\}|.$$

If every content c in $\text{Good}(\mathcal{M}^r)$ was reliably broadcast by at most t non-faulty processes, we would have $(n+1)-t \leq |\text{Good}(\mathcal{M}^r)| \cdot t$, which contradicts the hypothesis. Hence, at least one content in $\text{Good}(\mathcal{M}^r)$ was reliably broadcast by more than $t+1$ non-faulty processes. By the non-faulty liveness of the reliable broadcast, such content will eventually be reliably received by all non-faulty processes. \hfill \qed
B.2 Proof of Property 3.3

Proof. If \(|M^r_i \setminus M^r_j| > t\), then \(M^r_j\) missed more than \(t\) messages in \(M^r\), the messages reliably broadcast in round \(r\). However, this contradicts the fact that \(|M^r_j| \geq (n + 1) - t\) with \(M^r_j\) being obtained by reliable broadcast.

B.3 Proof of Lemma 3.4

Proof. First, note that the set \(M\) of \(P_i\) is monotonically increasing, so the sequence of transmitted reports is also monotonically increasing. As we assume FIFO channels, any other non-faulty process \(P_j\) receives those reports in the same order.

B.4 Proof of Lemma 3.5

Proof. Consider \(S\), the set of all messages reliably received by at least one non-faulty process. By the non-faulty liveness of the reliable broadcast, all non-faulty processes will eventually obtain \(M = S\), which is never expanded, or we would contradict the definition of \(S\). All non-faulty processes then send reports \(R = S\), which are final, for the same reason as before.

Again, by the non-faulty liveness property of the reliable broadcast, all these processes will eventually receive \((n + 1) - t\) reports \(R\). By the monotonicity of received reports (Lemma 3.4) and FIFO message delivery, those reports are not overwritten, matching the local \(M = S\). All non-faulty processes then return from \(\text{RecvStable}\).

B.5 Proof of Lemma 3.6

Proof. Call \(B^r_i\) the set of buddies whose reports are stored in \(R\), for process \(P_i\) and round \(r\), right before it decides. Since all reports are transmitted via reliable broadcast, and every non-faulty process collects \((n + 1) - t\) reports, \(|B^r_i \setminus B^r_j| \leq t\) with \(|B^r_i| \geq (n + 1) - t\), which implies that \(|B^r_i \cap B^r_j| \geq n + 1 - 2t\). In other words, any two non-faulty processes identify \(n + 1 - 2t > t + 1\) buddies in common, including a non-faulty process \(P_k\). Therefore, \(M^r_i = R^r_k\) and \(M^r_j = R^r_k\), where \(R^r_k\) and \(R^r_k\) are reports sent by \(P_k\) at possibly different occasions.

Since the set \(M^r_j\) is monotonically increasing, either \(R^r_k \subseteq R^r_k\) or \(R^r_k \subseteq R^r_k\), guaranteeing property (iii). Both \(R^r_k\) and \(R^r_k\) contain \(R_k\), the first report sent by \(P_k\), by Lemma 3.4. Finally, \(|R_k| \geq (n + 1) - t\) and \(\text{Quorum}(R_k) \neq \emptyset\), by Lemma 3.2, which guarantee properties (i) and (ii).

C Solvability for Non-Independent Faults

The \(t\)-resilient model presumes independent, identically distributed process failures, however in practice they correlate to the same processor, machine, etc. The core/survivor-set model from Junqueira and Marzullo [17] assumes an adversarial scheduler that defines sets of possibly faulty/correct processes. Although we provided our results in the more well-known uniform model, our algorithms and theorem \textbf{do apply} to such extended failure model, as we discuss below.

In the model, a \textit{core} is a minimal set of processes that will never fail together in any admissible execution. The minimum core size is denoted as \(c\), and processes can always wait for \((n + 1) - (c - 1)\) messages. Note that \(t\)-resilient tasks have \(c = t + 1\).

In the non-uniform failure model, we redefine the variable \(t\) to be \(c - 1\), one less than the minimum core size, in the reliable broadcast, quorum, and stable vector protocols. As any process
can always wait for \((n + 1) - (c - 1) = (n + 1) - t\) messages, our correctness arguments for these protocols remain identical, and therefore algorithms 1 and 2 allow us to solve \(c\)-set agreement and barycentric agreement, respectively.

We here overview the changes in the proof of our solvability theorem between its principal formulation, and in the one following the model of Junqueira and Marzullo \cite{Junqueira}. The overall proof structure is identical to the one for Theorem 5.2 -- we highlight only changes to make it work in the non-uniform failure model, which are trivial and short in nature.

\textbf{Theorem C.1.} A non-trivial colorless task \((\mathcal{I}, \mathcal{O}, \Delta)\) has a protocol in the asynchronous Byzantine model with core size \(c\) if and only if \(n + 1 > (c - 1) \cdot (\dim(\mathcal{I}) + 2)\) and there is a continuous map \(f : |\text{ske}l^{c-1}(\mathcal{I})| \to |\mathcal{O}|\) carried by \(\Delta\).

\textbf{Proof. Conditions imply protocol.} Assuming the map \(f\) exists, proceed as before, but use the \(c\)-set agreement protocol to jump to \(\text{ske}l^{c-1}(\mathcal{I})\). The application of the barycentric agreement protocol and of the simplicial approximation theorem remain identical.

\textbf{Protocol implies conditions.} For the first condition, the argument remains identical, as we still presume non-trivial tasks. The second condition also preserves our argument, as \cite{Dwork, Dwork2} actually define the connectivity of the protocol complexes in terms of \(c\): for any \(\sigma \in \mathcal{I}\), we have that \(\mathcal{P}(\sigma)\) is \((c - 2)\)-connected. As we defined \(c = t + 1\), the argument remains identical.

\section{D Barycentric Agreement via Approximate Agreement}

In this section, we show how to transform the multi-dimensional approximate agreement protocol of \cite{Dwork} into barycentric agreement. The point-set occupied by \(\mathcal{I}\) is compact, and the open stars of the vertices of Bary \(\mathcal{I}\) form an open cover of \(\mathcal{I}\). Any such cover has a Lebesgue number \(\lambda > 0\) \cite{Lebesgue}, such that every set of diameter less than \(\lambda\) is contained in some member of the cover.

Here is a Byzantine barycentric agreement protocol. Suppose the non-faulty processes start at the vertices of an input simplex \(\sigma\). Using \((\lambda/2)\)-approximate agreement, each non-faulty process \(p_i\) chooses a point inside \(\sigma\), the convex hull of the inputs, such that the distance between any pair of points is less than \(\lambda/2\). Equivalently, each open ball of radius \(\lambda/2\) around \(v_i\) contains all values chosen by the approximate agreement protocol. Because the diameter of this set is less than the Lebesgue number \(\lambda\), there is at least one vertex \(u_i\) in Bary \(\mathcal{I}\) such that \(B(v_i, \lambda/2)\) lies in the open star around \(u_i\). Let each \(P_i\) choose any such \(u_i\).

We must still show that the vertices \(u_i\) chosen by the processes \(P_i\) lie on a single simplex of Bary \(\sigma\). Note that \(u_i, u_j\) are vertices of a common simplex if and only if the open star around \(u_i\) intersects the open star around \(u_j\). By construction, \(v_j \in B(v_i, \lambda/2)\), which is in the open star around \(u_i\), and \(v_j\) is in the open star around \(u_j\), hence \(u_i, u_j\) are vertices of a single simplex.
References

