
News from EDOS: Finding Outdated Packages

Ralf Treinen

PPS, Université Paris Diderot

Debconf 12, July 14, 2012



Joint work with

Pietro Abate Roberto Di Cosmo Zack



Starting point: Edos-debcheck

Find packages that are not installable

by looking only at package relations (Depends, Conflicts, . . .)

Use a complete solving algorithm (search through all possible
alternatives)

Edos-{dist,deb,rpm}check: fast implementation based on a
SAT solver.



Let’s run distcheck on the Debian sid



Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p’s fault: the packages that p depends on must be fixed.

4 p’s fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

Goal

Distinguish (3) and (4): Who is to blame when a package is not
installable?



Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p’s fault: the packages that p depends on must be fixed.

4 p’s fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

Goal

Distinguish (3) and (4): Who is to blame when a package is not
installable?



Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p’s fault: the packages that p depends on must be fixed.

4 p’s fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

Goal

Distinguish (3) and (4): Who is to blame when a package is not
installable?



Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p’s fault: the packages that p depends on must be fixed.

4 p’s fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

Goal

Distinguish (3) and (4): Who is to blame when a package is not
installable?



Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p’s fault: the packages that p depends on must be fixed.

4 p’s fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

Goal

Distinguish (3) and (4): Who is to blame when a package is not
installable?



Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p’s fault: the packages that p depends on must be fixed.

4 p’s fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

Goal

Distinguish (3) and (4): Who is to blame when a package is not
installable?



How to be sure when it is p’s fault?

Idea

When is it the fault of package p in version n that it is not
installable in a repository R?

if (p, n) is not installable in R, and

no matter how all the other packages evolve, if package p
stays at version n then it will never be installable.

Definition

A package (p, n) is outdated in a repository R iff (p, n) is not
installable in all possible futures of R.



How to be sure when it is p’s fault?

Idea

When is it the fault of package p in version n that it is not
installable in a repository R?

if (p, n) is not installable in R, and

no matter how all the other packages evolve, if package p
stays at version n then it will never be installable.

Definition

A package (p, n) is outdated in a repository R iff (p, n) is not
installable in all possible futures of R.



How to be sure when it is p’s fault?

Idea

When is it the fault of package p in version n that it is not
installable in a repository R?

if (p, n) is not installable in R, and

no matter how all the other packages evolve, if package p
stays at version n then it will never be installable.

Definition

A package (p, n) is outdated in a repository R iff (p, n) is not
installable in all possible futures of R.



Example 1: Is (foo,1) installable?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2

Package: baz

Vers ion : 2

Con f l i c t s : bar (< 3)



Example 1: Is (foo,1) outdated?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2

Package: baz

Vers ion : 2

Con f l i c t s : bar (< 3)



Example 2: Is (foo,1) outdated?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2.3

Package: baz

Vers ion : 2.5

Con f l i c t s : bar (> 2.6)



What are possible futures of R?

Possible Evolutions of a Repository

Packages may be removed.

Packages can move to newer versions.

Newer versions of packages may change their relations in any
way (crude approximation).

New packages may pop up.

ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.



What are possible futures of R?

Possible Evolutions of a Repository

Packages may be removed.

Packages can move to newer versions.

Newer versions of packages may change their relations in any
way (crude approximation).

New packages may pop up.

ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.



What are possible futures of R?

Possible Evolutions of a Repository

Packages may be removed.

Packages can move to newer versions.

Newer versions of packages may change their relations in any
way (crude approximation).

New packages may pop up.

ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.



What are possible futures of R?

Possible Evolutions of a Repository

Packages may be removed.

Packages can move to newer versions.

Newer versions of packages may change their relations in any
way (crude approximation).

New packages may pop up.

ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.



What are possible futures of R?

Possible Evolutions of a Repository

Packages may be removed.

Packages can move to newer versions.

Newer versions of packages may change their relations in any
way (crude approximation).

New packages may pop up.

ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.



What are possible futures of R?

Possible Evolutions of a Repository

Packages may be removed.

Packages can move to newer versions.

Newer versions of packages may change their relations in any
way (crude approximation).

New packages may pop up.

ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.



Futures: do we have to care about package removals?

Reasoning

If (p, n) not installable in any future where we do not have
removed packages,

then (p, n) not installable in any future

Since: Package removal from the repository may not make
stuff installable.

Consequence

We may ignore package removals from R.



Futures: do we have to care about package removals?

Reasoning

If (p, n) not installable in any future where we do not have
removed packages,

then (p, n) not installable in any future

Since: Package removal from the repository may not make
stuff installable.

Consequence

We may ignore package removals from R.



Futures: do we have to care about package removals?

Reasoning

If (p, n) not installable in any future where we do not have
removed packages,

then (p, n) not installable in any future

Since: Package removal from the repository may not make
stuff installable.

Consequence

We may ignore package removals from R.



Futures: do we have to care about package removals?

Reasoning

If (p, n) not installable in any future where we do not have
removed packages,

then (p, n) not installable in any future

Since: Package removal from the repository may not make
stuff installable.

Consequence

We may ignore package removals from R.



Futures: relations of future versions of packages?

Reasoning

If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

then (p, n) is not installable in any future

Since: Adding dependencies and conflicts cannot make stuff
installable.

Consequence

We may assume that all future versions of packages behave as
nicely as possible: no dependencies, no conflicts.



Futures: relations of future versions of packages?

Reasoning

If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

then (p, n) is not installable in any future

Since: Adding dependencies and conflicts cannot make stuff
installable.

Consequence

We may assume that all future versions of packages behave as
nicely as possible: no dependencies, no conflicts.



Futures: relations of future versions of packages?

Reasoning

If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

then (p, n) is not installable in any future

Since: Adding dependencies and conflicts cannot make stuff
installable.

Consequence

We may assume that all future versions of packages behave as
nicely as possible: no dependencies, no conflicts.



Futures: relations of future versions of packages?

Reasoning

If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

then (p, n) is not installable in any future

Since: Adding dependencies and conflicts cannot make stuff
installable.

Consequence

We may assume that all future versions of packages behave as
nicely as possible: no dependencies, no conflicts.



Futures: do we have to care about new packages?

Reasoning

yes: introducing new packages may make stuff installable,

but that may happen only if its name is mentioned in a
dependency of an existing package.

Since: adding packages that noone depends on cannot make
stuff installable.

Consequence

We only have to consider new packages that are mentioned in
dependencies.



Futures: do we have to care about new packages?

Reasoning

yes: introducing new packages may make stuff installable,

but that may happen only if its name is mentioned in a
dependency of an existing package.

Since: adding packages that noone depends on cannot make
stuff installable.

Consequence

We only have to consider new packages that are mentioned in
dependencies.



Futures: do we have to care about new packages?

Reasoning

yes: introducing new packages may make stuff installable,

but that may happen only if its name is mentioned in a
dependency of an existing package.

Since: adding packages that noone depends on cannot make
stuff installable.

Consequence

We only have to consider new packages that are mentioned in
dependencies.



Futures: do we have to care about new packages?

Reasoning

yes: introducing new packages may make stuff installable,

but that may happen only if its name is mentioned in a
dependency of an existing package.

Since: adding packages that noone depends on cannot make
stuff installable.

Consequence

We only have to consider new packages that are mentioned in
dependencies.



What we have so far

When looking at all possible futures . . .

we have only a finite set of new package names,

we may ignore package removals,

we know what new packages look like (for our purpose): no
dependencies, no conflicts

Remaining problem

Infinitely many future versions of packages, hence infinitely many
future repositories!



What we have so far

When looking at all possible futures . . .

we have only a finite set of new package names,

we may ignore package removals,

we know what new packages look like (for our purpose): no
dependencies, no conflicts

Remaining problem

Infinitely many future versions of packages, hence infinitely many
future repositories!



What we have so far

When looking at all possible futures . . .

we have only a finite set of new package names,

we may ignore package removals,

we know what new packages look like (for our purpose): no
dependencies, no conflicts

Remaining problem

Infinitely many future versions of packages, hence infinitely many
future repositories!



What we have so far

When looking at all possible futures . . .

we have only a finite set of new package names,

we may ignore package removals,

we know what new packages look like (for our purpose): no
dependencies, no conflicts

Remaining problem

Infinitely many future versions of packages, hence infinitely many
future repositories!



How to get finitely many versions

Example

We have package p in version 5.
Other packages have conflicts/dependencies on p :

p(≤ 9), p(6= 12)

Representative versions

It is sufficient to consider all the versions that explicitly
mentioned:

5, 9, 12

plus one between two versions, plus one that is greater than all

5, 6, 9, 10, 12, 13



How to get finitely many versions

Example

We have package p in version 5.
Other packages have conflicts/dependencies on p :

p(≤ 9), p(6= 12)

Representative versions

It is sufficient to consider all the versions that explicitly
mentioned:

5, 9, 12

plus one between two versions, plus one that is greater than all

5, 6, 9, 10, 12, 13



How to get finitely many versions

Example

We have package p in version 5.
Other packages have conflicts/dependencies on p :

p(≤ 9), p(6= 12)

Representative versions

It is sufficient to consider all the versions that explicitly
mentioned:

5, 9, 12

plus one between two versions, plus one that is greater than all

5, 6, 9, 10, 12, 13



Further reduction: observational equivalence

In the example:

Conflicts/dependencies on p :

p(≤ 9), p( 6= 12)

Finitely many versions:

5, 6, 9, 10, 12, 13

Observational Equivalence

10 and 13 behave the same, as do 6 and 9:

5, 9, 10, 12



Further reduction: observational equivalence

In the example:

Conflicts/dependencies on p :

p(≤ 9), p( 6= 12)

Finitely many versions:

5, 6, 9, 10, 12, 13

Observational Equivalence

10 and 13 behave the same, as do 6 and 9:

5, 9, 10, 12



Are we done, now?

In theory, yes

We have a finite set (but huge) set F of possible futures.

With 35.000 packages, two possible versions per package
⇒ 235.000 possible futures.

Idea

Put all present and future versions in one big repository U.

Size: 2× 35.000

U allows precisely the same installations as all the future
repositories together

There is one problem with that solution . . .



Are we done, now?

In theory, yes

We have a finite set (but huge) set F of possible futures.

With 35.000 packages, two possible versions per package
⇒ 235.000 possible futures.

Idea

Put all present and future versions in one big repository U.

Size: 2× 35.000

U allows precisely the same installations as all the future
repositories together

There is one problem with that solution . . .



Are we done, now?

In theory, yes

We have a finite set (but huge) set F of possible futures.

With 35.000 packages, two possible versions per package
⇒ 235.000 possible futures.

Idea

Put all present and future versions in one big repository U.

Size: 2× 35.000

U allows precisely the same installations as all the future
repositories together

There is one problem with that solution . . .



Are we done, now?

In theory, yes

We have a finite set (but huge) set F of possible futures.

With 35.000 packages, two possible versions per package
⇒ 235.000 possible futures.

Idea

Put all present and future versions in one big repository U.

Size: 2× 35.000

U allows precisely the same installations as all the future
repositories together

There is one problem with that solution . . .



Are we done, now?

In theory, yes

We have a finite set (but huge) set F of possible futures.

With 35.000 packages, two possible versions per package
⇒ 235.000 possible futures.

Idea

Put all present and future versions in one big repository U.

Size: 2× 35.000

U allows precisely the same installations as all the future
repositories together

There is one problem with that solution . . .



Are we done, now?

In theory, yes

We have a finite set (but huge) set F of possible futures.

With 35.000 packages, two possible versions per package
⇒ 235.000 possible futures.

Idea

Put all present and future versions in one big repository U.

Size: 2× 35.000

U allows precisely the same installations as all the future
repositories together

There is one problem with that solution . . .



Synchronization

Binary packages coming from the same source are
synchronized !

When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

We do this only when packages of the same source currently
have “similar” version numbers.

Finally : One single distcheck run on a large repository .



Synchronization

Binary packages coming from the same source are
synchronized !

When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

We do this only when packages of the same source currently
have “similar” version numbers.

Finally : One single distcheck run on a large repository .



Synchronization

Binary packages coming from the same source are
synchronized !

When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

We do this only when packages of the same source currently
have “similar” version numbers.

Finally : One single distcheck run on a large repository .



Synchronization

Binary packages coming from the same source are
synchronized !

When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

We do this only when packages of the same source currently
have “similar” version numbers.

Finally : One single distcheck run on a large repository .



Synchronization

Binary packages coming from the same source are
synchronized !

When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

We do this only when packages of the same source currently
have “similar” version numbers.

Finally : One single distcheck run on a large repository .



Synchronization

Binary packages coming from the same source are
synchronized !

When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

We do this only when packages of the same source currently
have “similar” version numbers.

Finally : One single distcheck run on a large repository .



Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package

Runs 1m41s

Reports 119 outdated packages



Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package

Runs 1m41s

Reports 119 outdated packages



Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package

Runs 1m41s

Reports 119 outdated packages



Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package

Runs 1m41s

Reports 119 outdated packages



Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package

Runs 1m41s

Reports 119 outdated packages



What packages do we find?

package: zhone-illume-glue

version: 0-git20090610-7

source: zhone (= 0-git20090610-7)

reasons:

-

missing:

pkg:

package: zhone-illume-glue

version: 0-git20090610-7

unsat-dependency: python (< 2.7)



Ignoring the python transition

Just add to the repository a dummy package

Package: python

Version: 2.6-1



Example: a very old python dependency

package: salome

version: 5.1.3-9

source: salome (= 5.1.3-9)

reasons:

-

missing:

pkg:

package: salome

version: 5.1.3-9

unsat-dependency: python (< 2.6)



Example: outdated dependency

package: asterisk-chan-capi

version: 1.1.5-1

source: asterisk-chan-capi (= 1.1.5-1)

reasons:

-

missing:

pkg:

package: asterisk-chan-capi

version: 1.1.5-1

unsat-dependency: asterisk (< 1:1.8)



Example: needs binNMU

package: nitpic

version: 0.1-12

source: nitpic (= 0.1-12)

-

missing:

pkg:

package: nitpic

version: 0.1-12

unsat-dependency: binutils (< 2.21.53.20110923)



Example: wrong dependencies

package: cyrus-admin-2.2

version: 2.4.12-1

source: cyrus-imapd-2.4 (= 2.4.12-1)

-

conflict:

pkg1:

package: cyrus-admin-2.4

version: 2.4.12-1

source: cyrus-imapd-2.4 (= 2.4.12-1)

unsat-conflict: cyrus-admin-2.2

pkg2:

package: cyrus-admin-2.2

version: 2.4.12-1

source: cyrus-imapd-2.4 (= 2.4.12-1)

depchain1:

package: cyrus-admin-2.2

version: 2.4.12-1

depends: cyrus-admin-2.4



EDOS, Mancoosi, Dose

EDOS European project: Jan 2004 −→ Jun 2007

Mancoosi European project: Feb 2008 −→ May 2011

New implementation: dose

This tool: debian package dose-outdated

Also has a much improved debcheck: debian-package
dose-distcheck



What remains to do

Better classification of results:

Cruft (packages no longer built from source)
Packages that just need a recompilation-NMU
Packages that are involved in an official transition

Improve the analysis itself:

A more precise model how packages may evolve?

Improve explanations



What remains to do

Better classification of results:

Cruft (packages no longer built from source)
Packages that just need a recompilation-NMU
Packages that are involved in an official transition

Improve the analysis itself:

A more precise model how packages may evolve?

Improve explanations



What remains to do

Better classification of results:

Cruft (packages no longer built from source)
Packages that just need a recompilation-NMU
Packages that are involved in an official transition

Improve the analysis itself:

A more precise model how packages may evolve?

Improve explanations


