Tree Automata and Rewriting

Ralf Treinen

Université Paris Diderot
UFR Informatique
Laboratoire Preuves, Programmes et Systèmes

treinen@pps.jussieu.fr

July 23, 2010
What happened at the last episode

- Generalization of word automata to trees:
 Rules $q(f(x_1, \ldots, x_n)) \rightarrow f(q_1(x_1), \ldots, q_n(x_n))$

- Closure and decision results as for word automata (beware of non-linearity when generalizing from words to trees)

- Can even be extended to the case of infinite trees
Relating automata and logic

- A predicate-logic formula $\phi(x_1, \ldots, x_n)$, in a fixed interpretation, denotes a set of n-tuples of values: the solutions of the formula.
- A tree automata defines a set of trees.
- A tuple of trees can be encoded as one tree (will be explained soon).
- If we find an encoding of values as trees then we can use a tree automaton to represent a set of tuples of values.
- Use good closure and decision properties of automata to decide validity of formulas in a given interpretation.
Example: encoding a pair of trees as a tree

\[
\begin{array}{c}
\text{f} \\
\otimes \\
\text{g} \\
\text{g} \\
\text{b} \\
\text{c} \\
\text{a} \\
\end{array}
\]

\[
\begin{array}{c}
[f,g] \\
[g,b] \\
[\square,c] \\
[a,\square] \\
\end{array}
\]
Tuple signatures

Given a signature Σ, $n \geq 0$ and $\square \not\in \Sigma$, define $\Sigma_n^\square = \{(f_1, \ldots, f_n) \mid f_i \in \Sigma \cup \{\square\}\} - \{(\square, \ldots, \square)\}$

$$arity((f_1, \ldots, f_n)) = \max\{arity(f_i) \mid f_i \neq \square\}$$
Convolution of trees

Given $t_1, \ldots, t_n \in T(\Sigma)$. Define their convolution $t = t_1 \otimes \cdots \otimes t_n \in T(\Sigma^n)$ by

1. $O(t) = O(t_1) \cup \cdots \cup O(t_n)$
2. $t(\pi).i = \begin{cases} t_i(\pi) & \text{if } \pi \in O(t_i) \\ \Box & \text{if } \pi \notin O(t_i) \end{cases}$
Automatic Representation

An automatic representation of a relational structure \mathcal{A} with predicate symbols R_1, \ldots, R_r is given by:

- a finite signature Σ
- a regular language $L_\delta \subseteq T(\Sigma)$
- an onto function $\nu: L_\delta \rightarrow \mathcal{A}$
- regular languages $L_i \subseteq T(\Sigma^\Box_n), 1 \leq i \leq r, n = \text{arity}(R_i)$, such that all $x_1, \ldots, x_n \in L_\delta$:

$$x_1 \otimes \ldots \otimes x_n \in L_i \text{ iff } (\nu(x_1), \ldots, \nu(x_n)) \in R_i^\mathcal{A}$$

A structure is automatic if it has an automatic representation.
Example: Presburger Arithmetic

- Presburger Arithmetic: Natural numbers with addition only (no multiplication).
- Presburger (student of Tarski) 1929: Decidability of FO-theory by quantifier elimination.
- Büchi 1960: Decidability by coding in logic WS1S (will be explained later) which is shown to be automatic.
Automatic Presentation of Presburger Arithmetic

- Structure must be purely relational.
- Choose set of two predicates: $x_1 = 0$ and $x_1 + x_2 = x_3$.
- Choose signature $\Sigma_1 = \{0, 1\}$, $\Sigma_0 = \{\epsilon\}$ (words!). Idea: represent a natural number in binary notation.
- Least or most significant bit first? Least significant bit first, since bits must be aligned for the addition operation!
- Define an onto function $\nu : T(\Sigma) \rightarrow \mathbb{N}$: natural interpretation of binary notation.
- $L_\delta = 0 + (0 + 1)^*1$ (written as regular expression over words)
Automaton for $x_1 = 0$

An even simpler automaton?

We only care for L_δ, everything outside L_δ is junk!
Automaton for $x_1 + x_2 = x_3$
FO theory of automatic structures

Büchi 1960, Blumensath&Grädel 2000:

The first-order theory of any automatic structure is decidable.

Proof: construct inductively, for any formula $\phi(x_1, \ldots, x_n)$ an automaton A_ϕ such that for all $x_1, \ldots, x_n \in L_\delta$:

$$x_1 \otimes \ldots \otimes x_n \in L_{A_\phi} \text{ iff } (\nu(x_1), \ldots, \nu(x_n)) \in \phi^A$$
Inductive Construction of A_ϕ

- Base case: $\phi(x_1, \ldots, x_n)$ is a literal $R(x_1, \ldots, x_n)$: Automaton A_ϕ exists by definition of automatic structures!
- Negation: If A_ϕ is the automaton for $\phi(x_1, \ldots, x_n)$: then one possible automaton for $A_{\neg \phi}$ is the complement automaton of A_ϕ which recognizes $T(\Sigma^n_\Box) \setminus L(A_\phi)$. (There may be other automata which differ in the handling of junk.)
Inductive Construction in case of \exists

- Let $A\phi$ be an automaton for $\phi(x_1, \ldots, x_{n+1})$.
- Language recognized by $A\exists x_{n+1}\phi$?
- One “forgets” simply the $i + 1$-th component in the symbol (projection).
- Linear tree homomorphism: maps $(f_1, \ldots, f_n, f_{n+1})$ to term $(f_1, \ldots, f_n)(x_1, \ldots, x_i)$.
- Use simply the fact that recognizable languages are closed under linear tree homomorphisms!
Example Projection

Automaton for $\exists x_1 (x_1 + x_2 = x_3)$:

Does this automaton correspond to $x_2 \leq x_3$?
Inductive Construction in case of \land

- If A_1 is the automaton for ϕ_1 and A_2 the automaton for ϕ_2, then the automaton for $\phi_1 \land \phi_2$ must accept $L(A_1) \cap L(A_2)$, right?

- If A_1 is the automaton for $\phi_1(x_1)$ and A_2 the automaton for $\phi_2(x_2)$, then the automaton for $\phi_1(x_1) \land \phi_2(x_2)$ must accept $L(A_1) \cap L(A_2)$, right?

- Of course not in general. We must first assure that both formulas “talk” about the same variables.

- ϕ_1 and ϕ_2 must first be “lifted” to the same set of variables $\{x_1, x_2\}$. Only then one can construct the automaton by intersection.
Cylindrification

- Here: Given A for n variables, cylindrify to A^\uparrow by adding a “bogus” $n + 1$-th variable:
- This is exactly the inverse operation of projection, which is described by a tree homomorphism.
- One uses the fact that recognizable languages are closed under inverse tree homomorphisms!
Example Cylindrification

Automata for $x_1 = 0$ and $x_2 = 2$ cylindrified to $\{x_1, x_2\}$:

Product of the two automata (intersection of languages):
Finishing up the proof

- Automaton for a closed formula $\phi : A_\phi$ over alphabet Σ_0^\square.
- Alphabet Σ_0^\square = \emptyset since this alphabet contains only tuples with at least one non-blank component!
- Possible languages over alphabet \emptyset ? : \emptyset and $\{\epsilon\}$!
- ϕ is true iff A_ϕ recognizes $\{\epsilon\}$
- ϕ is false iff A_ϕ recognizes \emptyset
Exercises on Automatic structures

1. Any automatic structure \mathcal{A} containing the equality relation has an automatic presentation with a one-to-one function ν.

2. For any automatic structure, the theory of the first-order logic extended by the quantifier \exists^∞ is decidable.

$\exists^\infty x$: there exist infinitely many x such that . . .

Solutions: Blumensath & Grädel 2000 paper
Application 1: Words

- Structure \(\{a, b\}^* \), with relations:
 \[x_1 = x_2 a, \ x_1 = x_2 b, \ x_1 = ax_2, \ x_1 = bx_2 \]

- Automatic presentation: \(L_\delta = \{a, b\}^* \), \(\nu = \text{id} \)

- Automaton for \(x_1 = x_2 a \):

- Automaton for \(x_1 = ax_2 \): exercise (easy)!

- FO-theory decidable (but not for \(x_1 = x_2 x_3 \))
Application 2: Skolem Arithmetic

- Structure $\mathbb{N}_+\{1, 2, 3, \ldots\}$, with relations:
 $x_1 = x_2, x = c \ (c \in \mathbb{N}), x_1 * x_2 = x_3$.

- Challenge: find a representation that allows to express multiplication by an automaton!

- Enumeration of prime numbers: p_1, p_2, p_3, \ldots

- Represent n as (e_1, \ldots, e_i) where

 $$n = p_1^{e_1} * p_2^{e_2} * \ldots * p_i^{e_i}$$

- Multiplication translates to addition of exponents!
Representation of a number $n = p_1^{e_1} * p_2^{e_2} * p_3^{e_3} * \ldots$
Application 2: Skolem Arithmetic

- The automaton for $x_1 = x_2 = x_3$ travels down the f-spine, and verifies for each branch addition (see the automaton construction for Presburger Arithmetic).

- Consequence: The FO-theory of Skolem Arithmetic is decidable.

- Extension by the relation $x_1 = x_2 + 1$ makes the FO-theory undecidable.
Application 3: FO-theory of a monadic RPO

- Monadic signature: only constants and unary function symbols
- RPO: Recursive Path Ordering (it does not matter which one when the signature is monadic)
- The structure contains \(x \cdot t \) for all \(t \in T(\Sigma) \), and \(x_1 \prec x_2 \).
- Automatic presentation uses trees to represent strings.
- See Narendran & Rusinowitch, ICCL 2000.
Application 4: multiple equivalence relations

- Structure with universe $T(\Sigma)$
- **Multiple** congruence relations \equiv_{E_i}, for equational theories E_i.
- Relations $x = f(y, z)$ not allowed (otherwise FO-theory undecidable, even when all equational theories ground)
- For which classes of equational theories can the FO-theory of this structure be decidable?
Multiple equivalence relations

Problem with decidability proofs by quantifier elimination (simplification procedure by semantic-preserving rewriting):

\[
\exists x (x =_E y \land \phi) \\
\phi[y \mapsto x]
\]

is correct only when \(=_E\) is congruence w.r.t. all relations in \(\phi\). This is in general not the case with several equational theories \(E_1, E_2, E_3, \ldots\). Quantifier elimination is not modular!
Generalized Tree Transducers (GTT)

- A GTT is given by two tree automata A_1 and A_2 over the same signature Σ, and possibly with shared states.
- The GTT (A_1, A_2) recognizes the pair $(t, t') \in T(\Sigma) \times T(\Sigma)$ iff there exists a context C, terms $t_i, t'_i \in T(\Sigma)$, and states q_i for $1 \leq i \leq n$, such that $t = C[t_1, \ldots, t_n]$, $t' = C[t'_1, \ldots, t'_n]$, $t_i \in L(A_1, q_i)$ and $t'_i \in L(A_2, q_i)$ for all $1 \leq i \leq n$.
Example GTT

- Let $t_1 \rightarrow t_2$ be a linear rewrite rule with $V(t_1) \parallel V(t_2)$.
- Tree automaton A_1: recognizes set of ground instances of t_1.
- Tree automaton A_2: recognizes set of ground instances of t_2.
- The GTT (A_1, A_2) recognizes (t, t') iff t transforms to t' in one parallel rewrite step.
Results about GTTs

- Any relation defined by a GTT is recognizable (by a tree automaton).
- The set of GTT-definable relations is closed under union.
- The set of GTT-definable relations is closed under iteration (Kleene star).
Application of GTT: multiple equivalence relations

Let E be a set of linear and variable-disjoint equations (no shared variable on lhs and rhs of an equation).

\leftrightarrow_{E} is GTT-definable. Idea: one automaton recognizes instances of lhs, the other instances of rhs of axioms.

\equiv_{E} is the reflexive-transitive closure of that relation, hence recognizable.

This structure is automatic! (with $\nu = \text{id}$), FO-theory hence decidable.
Application 5: WS2S

- **Weak Second-Order Theory of 2 Successor Functions**
- This was the original motivation of Thatcher and Wright to study tree automata
- Two-sorted structure: words \{0, 1\}^*, and finite sets of words
- Predicates: \(x = y \cdot 0\), \(x = y \cdot 1\), \(x = \varepsilon\), \(x = y\), \(x \in X\).
- FO-theory (even first-order) undecidable with predicate \(x = y \cdot z\) (Quine 1946)
Automatic Presentation of $WS2S$

- Simplify structure: only one sort of finite sets of words.
- Only predicates in the simplified structure: $X \subseteq Y$, $S_0(X, Y)$, $S_1(X, Y)$.
- Meaning of $S_0(X, Y)$:

 exists word w with $X = \{w\}$ and $Y = \{w \cdot 0\}$.

- Tree signature is $\Sigma_0 = \{\epsilon\}$, $\Sigma_2 = \{0, 1\}$.

- Tree t represents the set of paths that lead to a 1-node:
 $\nu(t)\{\pi \in O(t) \mid t(\pi) = 1\}$

- One may choose $L_\delta = T(\Sigma)$
Automatic presentation of the predicates

- $X_1 \subseteq X_2$: check absence of $\begin{array}{c} 1 \\ 0 \end{array}$, $\begin{array}{c} 1 \\ \varepsilon \end{array}$, $\begin{array}{c} 1 \\ \square \end{array}$ in the tree.

- $S_0(X_1, X_2)$: Check that tree contains exactly one occurrence of the pattern

\[
\begin{array}{c}
 1 \\
 0 \\
\end{array}
\]

\[
\begin{array}{c}
 0 \\
\end{array}
\]

and 0, ε, \square everywhere else in both components!
Application 6: $S2S$

- Difference with $WS2S$: sets may be infinite.
- Automatic presentation (with tree automata on infinite trees): exactly as in the finite case.
- Consequence: $S2S$ is decidable.
- Prefix relation can be expressed: x is prefix of y iff

$$\forall S \left(x \in S \land \forall z (x \in S \rightarrow x0 \in S \land x1 \in S) \rightarrow y \in S \right)$$

- Almost all extensions of $S2S$ are undecidable, for instance extension by $|x| = |y|$, extension by suffix relation, or changing $x = y \cdot 1$ into $x = 1 \cdot y$.
Summary

- Automata can be used (in some cases) to model FO-structures.
- Crucial properties of automata: emptiness decidable, closure under Boolean operations, but also under projection and cylindrification.
- Automata on finite or infinite words or trees can be used.
- Yields decidability of the logic $S2S$, probably the “strongest” known decidability result of a FO theory.
Literature

- The references of the first lecture
- R.T.: Lecture Notes *Constraint Solving and Decision Problems of FO Theories of Concrete Domains*, chapter 9. See there for detailed references of individual results.