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Stéphanie Delaune1,3 and Florent Jacquemard2,3

1 France Télécom R&D
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Abstract. We investigate the resolution of a class of symbolic constraints modulo an equational
theory presented by a convergent rewriting system. These constraints are combinations of first-
order equations and so-called deduction constraints which can be seen as restricted second-order
unification problems. We propose an inference system based on basic narrowing techniques for
deciding satisfiability of such constraints, and show its completeness and termination when the
rewrite system satisfies some syntactic restrictions.

This result is applied to show NP-completeness of the cryptographic protocols insecurity problem
for a bounded number of sessions, when the protocol and intruder semantics are defined by an
arbitrary convergent rewrite system in our class. This generalizes former results, as we show that
the use of parameterized semantics permits to weaken the security hypotheses for verification,
i.e. to address a larger class of attacks.

1 Introduction

Security protocols are paramount in today’s secure transactions through public channels. It
is therefore essential to obtain through formal proofs as much as possible confidence in their
correctness. Many works have been devoted to the use of formal methods in order to automate
the proof of existence of logical attacks on such protocols.

This problem is undecidable in general, and the undecidability results from several factors:
the ability of agents to generate fresh random data (nonces), the unlimited size of terms, the
unboundedness of the number of sessions. Removing the last condition is however sufficient
for decidability (while removing the others is not, see [DLM99,CC04,AC02]), and several deci-
sion procedures (at least NP-complete) have been proposed (under this condition) for different
models of attackers [AL00,MS01,CE02,CLS03,CKR03,DJ04,RT01]. In these approaches, the
cryptographic operations like encryption, signature, application of one-way functions etc are
abstracted into function symbols and the messages are represented by logical terms rather
than bit-strings. In this setting, logical attacks can be characterized by sequences of abstract
messages exchanged by honest agents executing the protocol and a malicious agent (called
the intruder), and searching for such attacks amounts to solving systems of symbolic con-
straints [AL00,MS01,CLS03]. Most of the former decision procedures are based on a symbolic
constraint reduction system (i.e. a set of inference rules) which strongly depends on the ca-
pabilities of the intruder to analyze messages, and are therefore restricted to some particular
intruder model.
? This work has been partly supported by the RNTL project PROUVÉ 03V360 and the ACI-SI Rossignol.
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In this paper, we propose a generic narrowing based inference system for the resolution
of constraints modulo a convergent rewriting system which defines the semantics of operators
(including in particular cryptographic primitives for encryption and decryption). The con-
straints are combinations of first-order equations and so-called deduction constraints which
correspond semantically to a restricted kind of second-order equations1 x(t1, . . . , tn) = t where
t1, . . . , tn, t are first order terms and x is a second order variable which can take its values in
contexts made of public operators. We show that our constraint solving procedure is complete
and terminating for a certain class of rewriting systems and constraints, and that it can be
applied to decide the problem of protocol insecurity for a bounded number of sessions in
non-deterministic polynomial time.

The advantages of this approach are twofold. On one hand, we have a generic decision
procedure which can be applied to any model which can be axiomatized by rewriting systems
in our class. Modeling the properties of cryptographic operators (and hence the capabilities of
an intruder to analyze messages) with equational systems was already the approach of [DY83]
which is often cited as the pioneer paper in the domain. The class of rewriting systems which
are in the scope of our results contains the standard theory of [DY83] and other relevant
theories like the theory of involution which is mentioned in [RT01]. Moreover, the usage of
our constraint solving procedure is not limited to the verification of cryptographic protocols,
though the restrictions were tailored for this application.

On the other hand, our framework permits the specification of protocols in a language
which improves most of those used in the approaches cited above, both in readability and
expressiveness. First, since we are able to deal with first-order equations, we can add some
equations in protocol specifications, like in [CE02], in order to specify explicitly some tests
performed by the participants at some stage of the protocol. Second, some destruction op-
erators such as decryption or projections can be defined by the rewriting system, and these
operators may be used in the protocol specifications, in order to express unambiguously the
actions taken by the agents in protocol execution. For instance, if a protocol specifies that an
agent A who knows a symmetric key K shall receive a ciphertext {N}K (number N encrypted
with K), and answer N , it is often implicitly assumed that A must check whether this message
is indeed a ciphertext and that it is really encrypted with K before trying to decipher it and
posting the result. From a computational point of view, a decryption procedure satisfying
such an assumption needs some kind of integrity checking [Bel96], which is generally not the
case of procedures in use. In our settings, we can specify such a protocol in a more general
way: A, upon receiving some message X, replies with d(X, K). If X has the form {N}K , then
A’s reply will be indeed simplified to N , thanks to the rewrite rule d({x}y, y)→ x for the def-
inition of the decryption operator d. This relaxes the above implicit assumptions concerning
the verifications of X by A, and hence enables more attacks, as noticed in [Mil03].

After some motivating examples (Section 2) and preliminary definitions of our framework
(Section 3), we investigate first in Section 4 the verification of ground constraints with a
locality lemma from which it follows that this problem can be decided in polynomial time.
Then, we introduce our inference system for constraint solving (Section 5) and prove its
correctness, completeness and termination, and show that it provides a non-deterministic
polynomial algorithm for the decision of constraint satisfiability. Finally, we show how to
apply this procedure to the verification of cryptographic protocols for a bounded number of
sessions, by encoding the existence of an attack into the satisfiability of set of constraints.

1 Our procedure is however not comparable to general second order narrowing procedures such as in [Pre94].
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2 Motivations

Consider the following protocol for a symmetric key exchange in an asymmetric cryptosys-
tem. This is a simplification of the Denning-Sacco key distribution protocol [DS81], omitting
certificates and timestamps.

0. A→ B : A, {{Kab}apub(A)−1}apub(B)

1. B → A : {secret}sKab

In the first message, the agent A sends to B a freshly chosen symmetric key Kab for further
secure communications. This key is encrypted using an asymmetric encryption algorithm
(denoted by { }a) and the secret key of A, pub(A)−1. The result of this encryption is later
encrypted with B’s public key pub(B) so that only B shall be able to learn Kab. Moreover,
A appends its name at the beginning of the message so that the receiver B knows which
public key to use in order to obtain Kab. Then, B can extract the symmetric key Kab and
use it to encrypt (with a symmetric algorithm denoted { }s) a secret code secret he wants to
communicate to A (message 1).

It is well-known that the above common syntax used to describe cryptographic protocols
is ambiguous. For this reason, in most approaches, protocols are specified as sequence of
programs, one for each agent. In our running example, the program of B can be specified as
follows:

B’s role: recv(xA, {{xKab
}apub(xA)−1}apub(xB)); send({secret}sKab

) (1)

This version of the Denning-Sacco protocol is flawed: there exists an attack involving two
sessions of the protocol and an intruder. In the first session, an honest and naive agent a
playing A’s role initiates voluntarily a communication with the intruder (without knowing he
is an intruder). The intruder thus learns a, {{Kab}apub(a)−1}apub(I), where pub(I) is the intruder’s
public key. Hence, the intruder is able to extract the signed key {Kab}apub(a)−1 and the key
Kab itself (we assume that he knows the public key of a). Thereafter, the intruder can fool an
honest agent b playing B’s role (in another session) by sending him a, {{Kab}apub(a)−1}apub(b),
which makes b believe that he has received a symmetric key Kab from a. The secret in b’s
answer is thus not secure, because the intruder knows Kab.

As noted in introduction, in the above program (1), we implicitly assume that the agent B
checks that the second component of the received message is a ciphertext, with an encryption
with the private key of xA (the first component of the received tuple) and an encryption
with his public key (the value of the variable xB is the name of the agent B in the above
program). We may want to specify a more lax agent B which is not able of such a check, and
blindly applies the decryption algorithm twice to any received message. Such an agent B can
be specified by the following program, which makes use of asymmetric decryption (ad) and
left- and right-projection operators (resp. π1 and π2):

B’s role: recv(x); send({secret}sad(ad(π2(x),pub(xB)−1),pub(π1(x)))) (2)

The answer of B in the above program shall be simplified by rewrite rules defining ad and
π1, π2 presented later in Section 6.2. There are no ambiguities or implicit checks in program
(2) and its verification is performed under security properties which are strictly more gen-
eral (weaker) than for program (1). Indeed, there exists an attack of program (2) involving
only one session, where the intruder does not need to wait for an honest agent to initiate a
communication with him (see Section 6 for a complete description of this attack).
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Moreover, we can also use equations in programs to express explicitly some checks per-
formed by the agent B. Consider for instance a patched version of the above Denning-Sacco
protocol:

0. A→ B : A, {{A,B, Kab}apub(A)−1}apub(B)

1. B → A : {secret}sKab

Some redundancy as been added on purpose in the first message in order to prevent the above
first attack. In our setting, the program for B’s role can be specified as follows:

recv(x);
xB = π2(π1(ad(ad(π2(x), pub(xB)−1), pub(π1(x)))));
π1(x) = π1(π1(ad(ad(π2(x), pub(xB)−1), pub(π1(x)))));
send

(
{secret}ad(ad(π2(x),pub(xB)−1),pub(π1(x)))

)
With the first equation, B verifies whether he finds his name xB at the second position of the
ciphertext, and with the second equation he checks whether both occurrences of the name of
agent A (before and inside the ciphertext) are the same.

The use of explicit destructors and equations allows also to address a broader class of
protocols than the ones described in the standard role’s model. For instance, the following
protocol (see [Tur03]) can not be expressed in the standard role’s model.

0. A→ B : {M,B}sK
1. B → A : B
2. A→ B : K
3. B → A : M

The message {M,B}K is seen as a variable x by the agent B who does not know the decryption
key K, and one can not express that x must be decomposed after the reception of K in message
2 without the explicit use of a function symbol for symmetric decryption sd . In our approach
B’s role can be specified as follows:

B’s role recv(x); send(xB); recv(y);π2(sd(x, y)) = xB; send(π1(sd(x, y)))

We shall consider in the next sections the problem of constraint solving before returning
back to the verification of cryptographic protocols in Section 6.

3 Preliminaries

We now introduce some notations and basic definitions for terms and term rewriting systems
(the reader may refer to [DJ90] for a comprehensive survey on term rewriting systems), and
then proceed with the definition of the so-called deduction constraints.

3.1 Terms, Substitutions

We assume given a signature F and an infinite set of variables X . The set F is partitioned
into a subset PF of private functions symbols, and a subset VF of visible or public functions
symbols. The set of terms built with F and X is denoted T (F ,X ) and its subset of ground
terms (terms without variables) T (F). We denote vars(t) the set of variables occurring in
a term t ∈ T (F ,X ), st(t) the set of subterms of t and sst(t) = st(t) \ {t} the set of strict
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subterms of t. These notations are extended as expected to sets of terms and term rewriting
systems. The positions in a term t are represented as sequence of integers and are denoted by
Pos(t). The empty sequence Λ denotes the top-most position. If p is a position of t, then t|p
denotes the subterm of t at position p and t[s]p denotes the term obtained by replacement of
t|p by the term s. We denotes by head(t) the root symbol of t.

A replacement is the term morphism extension of a finite mapping {s1 7→ t1, . . . , sn 7→ tn}
where s1, . . . , sn, t1, . . . tn ∈ T (F ,X ). If t1, . . . tn ∈ T (F), the replacement is called ground. A
substitution is a replacement which domain is a subset of X . As usual, the application of a
replacement σ to a term t and the composition of replacements σ1 by σ2 are written in postfix
notation, respectively tσ and σ1σ2. A substitution σ is grounding for t if tσ ∈ T (F).

In the paper, |S| denotes the cardinal of the set S. The size ‖t‖ of a term t is the number
of positions in t. This notation is extended as expected to a set of terms (‖T‖). The dag-size
‖T‖d of a set of terms T is the number of distinct subterms of T (i.e. it is the number of
nodes in a representation of T as a dag with maximal sharing).

3.2 Term Rewriting Systems

A term rewriting system (TRS) is a finite set of rewrite rules l → r where l ∈ T (F ,X ) and
r ∈ T (F , vars(l)). A term t ∈ T (F ,X ) rewrites to s by a TRS R, denoted t →R s if there
is a rewrite rule l → r in R, a position p of t and a substitution σ such that t|p = lσ and
s = t[rσ]p. If p = Λ, we write t −→Λ R s. We write −→∗ R for the reflexive and transitive closure
of →R and ←−−→∗ R for its reflexive, transitive and symmetric closure. A R-unifier of two terms
s, t ∈ T (F ,X ) (also called R-solution of the equation s = t) is a substitution σ such that
sσ ←−−→∗R tσ. If R = ∅, we simply call σ an unifier. It is well-known that unifiable terms have
a most general unifier (mgu), i.e. a substitution σ such that σ ≤ τ (there exists ρ such that
σρ = τ) for every other unifier τ of s and t.

A TRS R is terminating if there are no infinite chains t1 →R t2 →R . . ., confluent if
for all t0, t1, t2 such that t1 ←−−∗R t0 −−→∗R t2, there exists t3 such that t1 −−→∗R t3 ←−−∗R t2, and
convergent if it is both terminating and confluent. A term t is in R-normal form if there is no
term s with t→R s and the set of R-normal forms is denoted NFR. If t −→∗ R s and s ∈ NFR
then we say that s is a R-normal form of t, and write s = t ↓R. A substitution σ is called
R-normal if for every variable x ∈ dom(σ), xσ ∈ NFR.

Definition 1. A TRS R is called public-collapsing if every rule ` → r ∈ R verifies the two
following conditions:

1. r ∈ vars(`) or r ∈ T (VF) ↓R and r 6= `,
2. if ` = f(l1, . . . , ln) with f ∈ VF , then for all i ≤ n, for all position p ∈ Pos(li) such that

li|p = g(t1, . . . , tm) with g ∈ VF , either g(t1, . . . , tm) ∈ T (VF) ↓R, or there exists j ≤ m
such that tj = r.

The following trivial lemma shall be used later while reasoning on public-collapsing systems.

Lemma 1. Let R be a public-collapsing TRS and let s, s1, . . . , sn ∈ T (F) be in R-normal
form. We have s = f(s1, . . . , sn) ↓R iff s = f(s1, . . . , sn) or f(s1, . . . , sn) −→Λ R s.

3.3 Intruder Deductions and Constraints

We assume from now on given a convergent public-collapsing TRS R. We assume given a
linear well-founded ordering ≺ on T (F) and a special term denoted by 0 such that 0 ∈ NFR
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and is minimal w.r.t. ≺. We shall use the extension � of ≺ to multisets of ground terms.
We are studying below the saturation of sets of ground terms under the application of visible
function symbols of VF and rewrite rules of R (R is supposed to define the semantics of the
symbols of F). This aims, in the context of protocol verification (see Section 6.2), at modeling
an intruder who is able to deduce messages from the ones collected on the insecure network.

Given a set of terms T ⊆ T (F), the intruder set IR(T ) is the smallest, w.r.t. inclusion,
subset of T (F) containing T , closed under ←−−→∗ R, and such that for all t1, . . . , tn ∈ IR(T ) and
all f ∈ VF of arity n, f(t1, . . . , tn) ∈ IR(T ).

A deduction constraint is a tuple of terms written t1, . . . , tn  r where t1, . . . , tn, r ∈
T (F ,X ). The terms t1, . . . , tn are called the hypotheses of the deduction constraint and r is
called its target. A deduction constraint is said to be basic when r ∈ X . Since the order of the
hypotheses does not matter, we shall sometimes write a deduction constraint T  r where
T is the finite set {t1, . . . , tn}. A R-solution of a deduction constraint T  r is a grounding
substitution σ such that rσ ∈ IR(Tσ).

Definition 2. A finite set of deduction constraints C is well-formed if its elements can be
ordered as T0  r0, . . . , Tl  rl such that the following conditions hold:

1. 0 ∈ T0 and st(R) ∩ T (VF) ↓R⊆ T0,
2. for all i < l, Ti ⊆ Ti+1,
3. for all i ≤ l, for all x ∈ vars(Ti), there exists j < i such that x ∈ vars(rj).

The definitions of constraints and solutions and the above restrictions have been validated
by the application to the verification of protocols presented in Section 6. Intuitively, T  r
is true if, knowing all the terms in T , an intruder is able to construct r. The condition 1
imposes that some terms are in the hypotheses of all the deduction constraints. However it is
not really a restriction since these terms, built with public symbols, can always be constructed
by the intruder. Condition 2 captures the fact that the intruder never forgets information
(every message read by the intruder is added to its knowledge) and Condition 3 says that
every variable of C appears for the first time on the right side of a constraint. Indeed, in our
application in Section 6, every variable of C corresponds to a message received by an agent
following the protocol, and the intruder must be able to send such a message.

These conditions are invariant (under some conditions) by application of a substitution
and normalization with R, and this result shall be used later while reasoning on well-formed
set of deduction constraints.

Lemma 2. Given a finite well-formed set of deduction constraints C = {T0  r0, . . . , Tl  rl}
and a substitution σ, Cσ is well-formed and if moreover for each i ≤ l, riσ ∈ NFR, then
Cσ ↓R is well-formed.

The proof of this lemma can be found in the long version of this paper [DJ04b]. Note that
the hypothesis riσ ∈ NFR is crucial. Indeed, let us consider for instance the well-formed
C =

{
T  sd({a}ax, y);T, x  b

}
, and the substitution σ = {x 7→ y}. The system Cσ ↓R=

{
{
T  a;T, x  b

}
does not fulfill Condition 3 of Definition 2 above, because sd({a}ax, y)σ =

sd({a}ay, y) /∈ NFR.

3.4 Proof trees

We find convenient for the proofs of the next sections to represent the intruder deductions
leading to a term of IR(T ) by a proof tree describing the deduction steps.
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Definition 3. Given a finite set T ⊆ T (F) and u ∈ T (F), a proof P of T `R u is a tree
labeled by terms of T (F) such that:

– every leaf of P is labeled with v ↓R for some v ∈ T ,
– every internal node of P with n sons P1,. . . ,Pn whose roots are respectively labeled with

v1,. . . ,vn is labeled by f(v1, . . . , vn) ↓R for some f ∈ VF ,
– the root of P is labeled with u ↓R, this label is denoted root(P ).

The size of a proof P is the number of its nodes.

Note that with this definition, every label of a proof is in NFR. A proof P of T `R u
(not reduced to a leaf) is called a composition proof if its direct subtrees P1,. . . , Pn are
such that root(P ) = f(root(P1), . . . , root(Pn)) for some f ∈ VF . Otherwise, it is called
a decomposition proof and, by Lemma 1, it means that there exists f ∈ VF such that
f(root(P1), . . . , root(Pn)) −→Λ R root(P ).

Example 1. Assume that sd ∈ VF and R = {sd({x}sy, y)→ x}, and let T = {{m1}sk, k, m2}.
The proof on the left below is a decomposition proof (m1 = sd({m1}sk, k) ↓R) and the one on
the right is a composition proof (because sd(m2, k) ∈ NFR).

T `R {m1}sk T `R k

T `R m1

T `R m2 T `R k

T `R sd(m2, k)

Lemma 3. Given a finite set T ⊆ T (F) and u ∈ T (F), u ∈ IR(T ) iff there exists a proof of
T `R u.

4 Checking Ground Constraints

In this section, we show how to solve deduction constraints without variables, i.e. how to
decide, given a finite set T ⊆ T (F) such that st(R)∩T (VF) ↓R⊆ T , 0 ∈ T and given a term
u ∈ T (F), whether u ∈ IR(T ) holds or not. Following the approach of [CLS03], we show first
that u ∈ IR(T ) ensures the existence of a local proof, i.e. a proof which only involves terms
in st(T ↓R ∪{u ↓R}). Then, we show that using this result, we can determine in polynomial
time in the size of T and u, whether u ∈ IR(T ).

Lemma 4 (locality). Let T be a finite subset of T (F) such that st(R)∩T (VF) ↓R⊆ T and
0 ∈ T , and let a term u ∈ T (F). Every minimal size proof P of T `R u is labeled by terms
in st(T ↓R ∪{u ↓R}) and if moreover P is a decomposition proof then it is labeled by terms
in st(T ↓R).

Proof. (sketch, see [DJ04b] for details). We prove the two results simultaneously by induction
on the proof P . The only difficult case is when we have to take into account a rewriting
step after the application of a visible function symbol, i.e when P is a decomposition proof.
Clearly, root(P ) is a subterm of one of the direct subproof of P , however it remains to show
that the root of the direct subproofs of P are labeled with subterms of T . It is treated by
case analysis on the condition verified by the rewrite rule involved in the reduction. 2
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Now, using this locality Lemma 4, we show that we can decide in polynomial time whether
u ∈ IR(T ).

Proposition 1. Given a finite set T ⊆ T (F) such that st(R) ∩ T (VF) ↓R⊆ T and 0 ∈ T ,
and a term u ∈ T (F), whether u ∈ IR(T ) can be decided in polynomial time in ‖T ∪ {u}‖d.

Proof. (sketch, see [DJ04b] for details). By Lemmas 3 and 4, if u ∈ IR(T ) then there exists
a proof P of T `R u labeled only with terms in st(T ↓R ∪{u ↓R}). To decide the existence
of such a proof tree, we construct (following [McA93]), a set S of ground Horn clauses of size
polynomial in ‖T ∪{u}‖d which implements a marking of every ground subterms t ∈ st(T ↓R
∪{u ↓R}) such that there exists a proof of T `R t. Therefore, the existence of a proof of
T `R u is equivalent to the HORN-SAT problem for S, and hence this problem can be solved
in polynomial time. 2

5 Satisfiability of Well-Formed Sets of Deduction Constraints

We shall lift the decision result of Section 4 with a non-deterministic polynomial time pro-
cedure to decide the satisfiability w.r.t. R of well-formed sets of basic deduction constraints
(with variables) and equations.

5.1 Constraints Transformation Rules

We present in Figure 1 a set of transformation rules which operate on tuples of the form
(P, C,S), called constraints systems where:

– P is a set of equations and basic deduction constraints,
– C is a set of deduction constraints,
– S is a set of equations in solved form representing bindings in the solution, i.e. S = {x1 =

t1, ..., xn = tn} where each xi ∈ X and has only one occurrence in S.

We may associate a substitution {x1 7→ t1, ..., xn 7→ tn} to the third component S of a
system. Below, we shall make no distinction between S and its associated substitution.

Definition 4. A R-solution of a system (P; C;S) is a grounding substitution σ such that σ
is a R-solution of each deduction constraint in P ∪ C, σ is a R-solution of each equation in
P, and σ is an unifier of each equation in S.

Given an initial system of the form (B ∪ E , ∅, ∅), where B is a finite well-formed set of
basic deduction constraints and E is a finite set of equations, the repeated non-deterministic
application of the rules of Figure 1 shall terminate (Section 5.2) and produce (in at least one
derivation branch) a system in solved form (∅, ∅,S) (such systems always have aR-solution) iff
(B∪E , ∅, ∅) has a R-solution (Sections 5.3 and 5.4). This gives a non-deterministic polynomial
time procedure for the decision of the satisfiability which is shown NP-hard in Section 7.

From now on, we shall note =⇒N, =⇒U,. . . the binary relation defined by the application
respectively of the above rule (N), (U). . . , =⇒ denotes the union of all these relations and
=⇒+ and =⇒∗ are the respective transitive and reflexive-transitive closures of =⇒.
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P ∪ {e[u]}; C; S
(N)

P ∪ {e[r]}; Cη; Sη ∪ η

Narrowing
e is an equation or a deduction constraint, u /∈ X , l → r is a
fresh variant of a rule of R, η = mgu(lS, uS), root(l) = root(u).

P ∪ {t1 = t2}; C; S
(U)

P; Cη; Sη ∪ η

Syntactic Unification
η = mgu(t1S, t2S).

P ∪ {c}; C; S
(B)

P; C ∪ {cS}; S
Blocking
c is a deduction constraint.

P; C; S
(VE)

P; C{x 7→ t}; S{x 7→ t} ∪ {x 7→ t}

Variable Elimination
x ∈ vars(C), t ∈ st(C) \ vars(C),
there is no occurrence of x in t.

P; C ∪ {T  u}; S
(G)

P; C; S

Ground
if all the terms in T and u are ground
and u ∈ IR(T ).

Fig. 1. Constraint transformation rules

5.2 Termination
Proposition 2 (Termination). The relation =⇒ is strongly terminating. Moreover, given
a system (P0; ∅; ∅), for every transformation sequence (P0; ∅; ∅) =⇒ (P1; C1;S1) =⇒ . . . =⇒
(Pn; Cn;Sn), the length n, the number of successors of every (Pi, Ci,Si) with =⇒ and the value
‖Pi‖+ ‖Ci ∪ Si‖d. (for every i ≤ n) are polynomial in ‖P0‖ and ‖R‖.

Proof. (sketch, see [DJ04b] for details). Let the complexity of system (P; C;S) be a tuple
ordered lexicographically with the following components:

1. |P|, the number of deduction constraints and equations in P,
2. nb(P), the number of terms in st(P) which are unifiable with a left member of a rule of R,
3. nbv(C), the number of distinct variables in C,
4. |C|, the number of deduction constraints in C.

We can show that each rule of Figure 1 reduces the complexity, hence that =⇒ terminates. 2

5.3 Correctness

The following proposition shows that the constraint system defined in Figure 1 is correct.

Proposition 3 (Correctness). For every system (P; ∅; ∅), if (P; ∅; ∅) =⇒∗ (∅; ∅;S) then
(P; ∅; ∅) has a R-solution.

Proof. (sketch, see [DJ04b] for details). By induction on the length of the derivation, we show
for every rule (R), that if (P1; C1;S1) =⇒R (P2; C2;S2) and the second system (P2; C2;S2) has
a R-solution σ, then σ is also a R-solution of (P1; C1;S1). 2



10 Stéphanie Delaune and Florent Jacquemard

5.4 Completeness

We show now the completeness of the constraint system defined in Figure 1 (Proposition 4).
We shall first give three technical lemmas (their complete proofs can be found in [DJ04b]):
Lemma 5 and Lemma 6 (which allows to apply replacements on proof tree labels) are used
in the proof of Lemma 7, which is used in the proof of the Proposition 4 to establish the
completeness of the rule (VE).

Lemma 5. Let T ⊆ NFR be such that st(R) ∩ T (VF) ↓R⊆ T , let u ∈ NFR, v ∈ st(u) such
that v /∈ st(T ), and let P be a proof of T `R u. There exists a composition proof of T `R v.

Lemma 6. Let v = g(v1, .., vk) ∈ NFR \ (st(R) ∩ T (VF) ↓R), with g ∈ VF , let δ be the
replacement δ = {v 7→ 0} and let u1, . . . , un ∈ NFR and u = f(u1, . . . , un) ↓R for some
f ∈ VF . If u 6= v, v1, . . . , vk, then uδ = f(u1δ, . . . , unδ) ↓R.

Given two substitutions σ1 and σ2, we write σ1 � σ2 iff {xσ1| x ∈ dom(σ1)} � {xσ2| x ∈
dom(σ2)}.

Lemma 7. Let σ be a minimal (w.r.t. �) R-solution of a well-formed set C of deduction
constraints such that all the terms in Cσ are in NFR. For all x ∈ vars(C), there exists
t ∈ st(C) \ vars(C) such that tσ = xσ.

Proof. (sketch). Let (C1, . . . , C`) be a sequence of the constraints of C as in Definition 2, and
for each i ≤ `, let Si and ri be respectively the set of hypotheses and target of Ci, and Ciσ
be the (ground) constraint obtained from Ci by instantiating all the terms in its hypotheses
and target with σ.

We reason by contradiction. Assume that there exists x ∈ vars(C) such that for all t ∈
st(C) \ vars(C), tσ 6= xσ, and let δ be the replacement {xσ 7→ 0}. We show that σ′ := σδ
is also a R-solution of C, which contradicts the minimality hypothesis. By Definition 2, if
xσ ∈ st(sσ) for some hypothesis s ∈ Si, then there exists j < i such that xσ ∈ st(rjσ) and
this allows us to define m = min{j

∣∣ xσ ∈ st(rjσ)}.
For each i < m, xσ /∈ st(Ciσ), hence Ciσ

′ = Ciσ and σ′ is a R-solution of Ci.
Let i ≥ m and let Pi be a proof of Siσ `R riσ. By Lemma 3, there exists a proof Pm of

Smσ `R rmσ on which we can apply Lemma 5 and deduce that a composition proof Px of
Smσ `R xσ. After applying some transformations on the proof tree Pi, using subproofs of Px

and Lemma 6, we obtain a proof P ′′
i of Siσ

′ `R riσ
′, showing that σ′ is a R-solution of Ci. 2

Proposition 4 (Completeness). Let B be a finite well-formed set of basic deduction con-
straints, E a finite set of first-order equations. If (B ∪ E ; ∅; ∅) has a R-solution, then there
exists a sequence of reductions of the form (B ∪ E , ∅, ∅) =⇒∗ (∅, ∅,S).

Proof. (sketch, see [DJ04b] for details). We show, by induction on the complexity of systems,
the more general result that if there exists a R-normal solution σ of a system (P, C,S ′) such
that the set of deduction constraints in PS ′ ↓R ∪C is well-formed, and the terms in Cσ are in
NFR, then there exists a sequence of reductions of the form (P, C,S ′) =⇒∗ (∅, ∅,S).

The base case (∅, ∅,S ′) is trivial. For the induction step, we assume that σ is a minimal
(w.r.t. �) R-normal solution as above, and we show that for each case of (P, C,S ′), we can
apply one of the constraint transformation rules of Figure 1, and that the system obtained
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has a R-normal solution σ′ of the above form. The difficult case is the application of the rule
(V E). It is treated by using Lemma 7. To conclude, we observe that the above result can be
applied to (B ∪ E ; ∅; ∅). 2

Using the above Propositions, we deduce a NP decision procedure for the decision of
satisfiability. The proof of the following theorem can be found in [DJ04b].

Theorem 1. Given a convergent public-collapsing TRS R, a finite well-formed set B of basic
deduction constraints and a finite set E of equations, the existence of R-solution of B ∪ E is
decidable in non-deterministic polynomial time.

6 Application to the Verification of Security Protocols

We apply the constraint solving procedure of the previous section in order to obtain a non-
deterministic polynomial time decision algorithm for the verification of security properties
of cryptographic protocols, assuming a bounded number of sessions. Our algorithm works
by associating a set of constraints to a protocol and a security property (Section 6.3), and
it is parameterized by a convergent public-collapsing TRS R which defines the semantics
of operators. Some examples of appropriate TRS are given in Section 6.2. As motivated in
Section 2, our approach permits to verify protocols modeled in a more expressive language
than in the standard approach, and under weaker security hypotheses.

6.1 Protocol Semantics

We consider a simple representation of cryptographic protocols and their execution by agents
which should fit with most of the formalisms in use.

A protocol is a finite set of programs, each program being a finite sequence of instructions
of the form recv(x); E ; send(s) with x ∈ X , s ∈ T (F ,X ) and E is a set (possibly empty) of
equations on terms of T (F ,X ).

Example 2. The first variant of the Denning-Sacco protocol described in Section 2 is made of
two programs:

A’s role : recv(x0
0);x

0
0 = 0; send

(
〈x0

A, {{x0
Kab}apub(x0

A)−1}apub(x0
B)
〉
)
; recv

(
x0

1); send(0)

B’s role : recv
(
x1

0

)
; send

(
{x1

S}sad(ad(π2(x1
0),pub(x1

B)−1),pub(π1(x1
0)))

)
The symbols x0

0, x
0
1, x

0
A . . . are all distinct variables of X . The second instruction of program

A implements only the reception of the last message by A.

Given a protocol P, an agent executing a program p of P is represented by a process (p, σ)
where σ is a ground substitution whose domain is a subset of vars(p). A configuration is a
pair (S, N) where S is a finite set of processes whose programs have disjoint sets of variables,
and N is a finite set of ground terms representing the network controlled by an intruder.
We define small step semantics for the execution of processes. Each step changes the running
configuration

(
{(p, σ)} ∪ S, N

)
to

(
{(p′, σ′)} ∪ S, N ′) if p = recv(x); E ; send(s); p′ and there

exists a R-solution θ of the equations in Eσ such that xθ ∈ IR(N), σ′ = σθ (execution of
recv(x) and control of the conditions in E), and N ′ = N ∪ {sσ′} (execution of send(s)).
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We call an initial configuration of
(
S0, N0

)
of P runnable if 0 ∈ N0 and at each execution

step as above, sσ′ is ground. It means that every agent is able to construct a term to be sent
with the substitution in its initial process (its initial knowledge) or with the values received
from other agents.

Example 3. The sequence of processes ((p0, σ0), (p1, σ1)), where p0 and p1 are respectively the
programs A’a role and B’s role of Example 2 and σ0 and σ1 are described below, is a runnable
initial configuration for the protocol of Example 2 (a, b, k, s are constants):

σ0 =
{

x0
A 7→ a, x0

B 7→ b, x0
Kab 7→ k

}
σ1 =

{
x1

B 7→ b, x1
S 7→ s

}
6.2 Useful Public-Collapsing Theories

Let PF = { −1} and VF = {{ }s, sd( , ), { }a, ad( , ), 〈 , 〉, π1( ), π2( ), pub( )}. We give in
this section some examples of relevant theories for the application we are considering which
fall in the class of convergent public-collapsing TRS built on this signature.

Dolev-Yao theory. The following TRS corresponds to the theory of [DY83] for public key en-
cryption (with an additional rule for symmetric keys decryption). This theory has been studied
in many works but, as noted in Section 2, the use of explicit that decryption and projections
symbols and equations in protocol specifications permits to generalize other approaches.

sd({x}sy, y)→ x, ad({x}ay, y−1)→ x, ad({x}ay−1 , y)→ x, x−1−1 → x, πi(〈x1, x2〉)→ xi (i = 1, 2)

Inverse-key theory. The two following rules extend the Dolev-Yao theory: {sd(x, y)}ay → x,
{ad(x, y)}ay−1 → x. They are useful when we assume that decryption is just an encryption
with the inverse key like for the cryptosystem RSA.

Theory of involution. It is mentioned in [RT01] and can also be encoded by a convergent
public collapsing TRS by adding the following rule to the standard theory: {{x}ay}ay−1 → x.
This approach improves the model presented in [RT01] since we consider cases where the rules
are applied everywhere in terms and not only at the top of messages.

Probabilistic encryption. We can consider rules such as: dec(enc(m, k, r), k)→ m, where enc
represents an encryption algorithm which takes a message m, a key k and a random input r.

6.3 Unsecurity Verification via Constraint Solving

We are interested here in verifying whether, given a protocol P, a runnable initial configuration
(S0, N0) of P, some given ground term s remains secret (i.e. s /∈ IR(N)) in every configuration
(S, N) reachable from (S0, N0). Otherwise, we say that there is a R-attack on P for s and
(S0, N0). Following the constraint solving approach of [AL00,MS01,CLS03], this problem can
be addressed as the guess of an interleaving I of executions steps by the processes of S0

(the reachability sequence) and the satisfiability of a set C of basic deduction constraints and
equations which express the feasibility of this interleaving I. Due to lack of space, we shall
not give the formal definition of an interleaving I and the general construction of C from I.
The reader is refereed to [DJ04b] for a more complete presentation. We shall instead describe
here the construction of C on our running example.
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Example 4. As announced in Section 2, there is an attack on the protocol of Example 2,
starting with the initial configuration (S0, N0) with S0 given in Example 3, and N0 =
{0, a, b, pub(a), pub(b)}, whenR is the standard Dolev-Yao theory of Section 6.2. In this attack,
an intruder, claiming to be a (process p0) sends to b (process p1) the “message” 〈a, {0}apub(b)〉.
The answer of b is then {s}ad(ad(π2(〈a,{0}a

pub(b)
〉),pub(b)−1),pub(π1(〈a,{0}a

pub(b)
〉))) −−→

∗
R {s}sad(0,pub(a))

and s is revealed since the encryption key ad(0, pub(a)) belongs to IR(N0). The interleaving
describing the trace of the attack is the sequence of length one ((1, 0)), (it consists in a sin-
gle instruction 0 of process p1), and the set of basic deduction constraints and equations C
associated to this interleaving is:

{N0  x1
0;N0, {s}ad(ad(π2(x1

0),pub(b)−1),pub(π1(x1
0)))  x;x = s}

Note that the subset of deduction constraints of C is well formed. The first deduction
constraint expresses that the process p0 is able to receive the expected message x1

0, i.e. that
the intruder can deduce it from its initial knowledge N0 (x1

0 ∈ IR(N0)). The second deduction
constraint expresses that from p0’s answer and N0, the intruder is able to deduce x. Finally, the
last equation expresses that x is the secret. Hence, the R-solvability of C implies the disclosure
of s, starting with state (S0, N0). We can check that σ = σ1 ∪ {x1

0 7→ 〈a, {0}apub(b)〉, x 7→ s} is
a solution.

With the construction of C from a chosen interleaving I (its size is polynomial in the sizes
of P, S0, N0 and s) and the Theorem 1, we obtain the following theorem.
Theorem 2. The existence of a R-attack on a given protocol P for a given secret s ∈ T (F)
and a given runnable initial configuration (S0, N0) is decidable in non-deterministic polyno-
mial time.

6.4 Related Works

Modeling the behavior of a cryptosystem in terms of rewrite rules is more expressive than the
standard approach which consist in modeling cryptosystems in terms of free algebras. Some
recent works [Mil03,LM04] compare both approaches, for the case of decryption operators,
and give conditions under which security for the free algebra implies security for the rewrite
rule model. Hence, under these conditions, explicit decryption operator is unnecessary because
it does not enable any new attacks, and formal cryptographic protocol analysis can be made
in the free algebra model. We show in this paper that the verification of protocol insecurity
in models with rewrite rules for explicit destructors has the same theoretical complexity as
in free algebras models.

In [CLT03], the authors prove the decidability of the deducibility by intruder for a class
of equational theories. However this class is incomparable with ours. Indeed, for example
they allow the homomorphism property but not the idempotence property. In [AC04], it is
shown that the problems of deducibility and indistinguishability (static equivalence) are both
decidable in PTIME in a model with explicit destructors and equational theories slightly
more general than those considered here. Note that these two works are limited to a passive
attacker (who can only listen to messages) whereas we treat both cases of passive (PTIME
decision procedure) and active attackers (NP decision procedure).

7 NP-hardness

We show now that the existence of a R-attack is a NP-hard problem for polynomial time re-
ductions by reduction of 3-SAT. The proof is inspired from the one given by [RT01]. However,
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the protocol built from the given instance of 3-SAT is reduced to a minimum thanks to the
flexibility of our formalism concerning the choice of a rewriting system.

Let X1, ..., Xn be propositional variables and let us consider the following instance of 3-
SAT:

∧m
i=1(X

εi,1
αi,1 ∨ X

εi,2
αi,2 ∨ X

εi,3
αi,3) where αi,j ∈ 1..n and εi,j ∈ {0, 1} and X1 means X, X0

means ¬X. We use a signature made of VF = {0, 1, π1( ), . . . , πn( ), 〈 , . . . , 〉} and PF =
{ ∧ , ∨ ,¬ , secret}, where 〈 〉 has arity n, π1,. . . , πn are unary and secret is a constant.
Let R be a convergent public collapsing TRS which defines the truth tables of ∧, ∨, ¬ with
0 ∧ 0 → 0. . . (0 is false and 1 is true) and the projections with πi

(
〈x1, . . . , xn〉

)
→ xi for

i = 1, . . . , n. We construct a protocol P with only one program made up of one instruction:

recv(x); f1(x) ∧ . . . ∧ fm(x) = 1; send(secret)

where, for all i ≤ n, fi(x) = παi,1(x)εi,1 ∨ παi,2(x)εi,2 ∨ παi,3(x)εi,3 (we omit the parenthesis
in the expressions with ∧ and ∨) . Finally, let S0 contains one process (p0, σ0) with σ0 = ∅
and N0 = {0, 1}. We can show that there exists a R-attack on P for secret and (S0, N0) iff
the instance of 3-SAT has a solution represented by x = 〈X1, . . . , Xn〉 (each Xi is 0 or 1) and
this term x is in IR(N0). Hence, the existence of R-attack (Theorem 2) is a NP-complete
problem, and, with the construction of Section 6.3, it implies that the problem of solvability of
well-formed sets of basic intruder constraints and equations (Theorem 1) is also NP-complete.

8 Conclusion

We have defined a complete inference system for solving equations and deduction constraints
modulo convergent and public-collapsing TRS, and we have shown how it provides a generic
non-deterministic polynomial time procedure for the verification of security of cryptographic
protocols in presence of a finite number of sessions, and with the addition of operators whose
semantics are defined by a convergent public-collapsing TRS.

A natural extension to this work is the search of public collapsing theories other than those
described in Section 6.2, for the weakening of security hypotheses. For instance, one may want
to consider dictionary attacks [DJ04]. An exclusive or operator + can be axiomatized by the
rewrite rules x + x → 0, x + 0 → x, x + x + y → y and associativity and commutativity
(AC) of +. The three first rules fulfill our public-collapsing condition. Hence, we should
consider to extend our solving procedure to a procedure modulo AC in order to deal with
xor, like [CKR03,CLS03]. We could also study the generalization of the class of convergent
TRS handled. An application could be for instance to model honest protocol transitions by
rewrite rules, making the guess of interleaving in the procedure of Theorem 2 unnecessary.

At last, and this is a more difficult task, we could try to extend our result to the decision
of static equivalence (following [AC04]). A solution could be to extend the class of constraints
under consideration. As noted in introduction, deduction constraints correspond to second
order equations (modulo a convergent TRS) of the form x(t1, . . . , tn) = t. Being able to deal
with equations of the form x(t1, . . . , tn) = x(s1, . . . , sn) could permit us to study properties
related to observation equivalence, hence to consider some properties more general than the
weak secrecy.
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