
Inference with arbitrarily quantified variables:
preliminary report

Marco Alberti and Evelina Lamma

Dipartimento di Ingegneria
Università degli Studi di Ferrara

Via Saragat, 1
44100 Ferrara (Italy)

[malberti|elamma]@ing.unife.it

Abstract. First order reasoning requires to solve unification problems.
Most first-order unification algorithms have been designed to solve ex-
istentially quantified sets of equations, but also more general settings
where equations need to be solved under a mixed quantifier prefix have
been considered in the literature [Mil92]. In this work, we discuss the case
of inferences with arbitrarily quantified variables. We first introduce arbi-
trary quantifiers (possibly mixed) over variables as intensional notation
standing for a corresponding extensional, semantical counterpart. Unifi-
cation of variables (possibly differently quantified) is then mapped into
corresponding operations over these extensional counterparts. In the pa-
per, we also give soundness results for the proposed approach, and show
how resolution can be covered in the framework.

1 Introduction

First order reasoning requires to solve unification problems. Most first-order
unification algorithms have been designed to solve existentially quantified sets
of equations, such that:

∃x1 . . . ∃xn (t1 = s1 ∧ · · · ∧ tm = sm)

That is, the free variables of the terms t1, . . . , tm, s1, . . . sm are interpreted as
existentially quantified.

Nonetheless, the possibility of mixing different quantifiers in first-order ex-
pressions allows for a higher expressibility, but requires more complex unification
techniques.

In [Mil92], for instance, Miller has tackled a more general situation where
equations must be solved under a mixed quantifier prefix. That is, he considers
unification problems of the form:

Q1x1 . . . Qnxn (t1 = s1 ∧ · · · ∧ tm = sm)

where Q1 . . . Qn are universal and existential quantifiers. The terms t1, . . . , tm,
s1, . . . , sm can be simply typed λ-terms and the variables x1, . . . , xn can be of
primitive or functional type.



In this work, we tackle the problem of first-order reasoning with arbitrary
quantifications (among them, universal and existential quantification) possibly
mixed as in [Mil92].

The problem arose from a very concrete context, developed within the UE
IST-2001-32530 Project, where we have adopted a Computational Logic (CL)
approach for the specification and verification of interaction protocols governing
agent societies.

The CL-based approach has led to the definition of a language for specifying
interaction protocols where both universal and existential quantifiers co-exists,
and the operational counterpart for this language requires the definition of a
proper unification mechanism for variables.

After introducing the language that we rely upon in Section 2, we present in
Section 2.3 the notion of quantifier as intensional notation standing for a cor-
responding extensional, semantical counterpart. A set-based uniform treatment
of quantifiers is then discussed in Section 3; in Section 4 we define unification of
quantifiers, and use it to define an inference rule.

In the paper, we also give a soundness result for the proposed approach, and
also show how resolution is covered in this framework (Section 5).

Notation

– Given a n-ary predicate symbol p/n and k tuples a1, . . . , ak such that the
arity of ai is φi for i = 1, . . . , k and

∑k
i=1 φi = n, p(a1, . . . , ak) is sometimes

used as short form for p(a11, . . . , a1φ1 , . . . , ak1, . . . , akφk
).

Example 1.1. If α = 〈X, Y 〉 and β = 〈T, U〉, p(α, β) indicates p(X, Y, T, U).

– If i and j are integer numbers with i < j, [i..j] will sometimes indicate the
set {i, i + 1, . . . , j}

– Given an n-ary predicate p and a set A of n-ples of ground terms, we will
call

∧
a∈A p(a) the associated conjunction of A w.r.t. p.

2 A Logic Language

In this section, we introduce the logic languages that we will refer to in the re-
mainder of the paper. We define the languages starting with a core language of
which we define syntax and semantics; then we introduce quantifiers as syntac-
tical operators.

2.1 Core Languages Syntax

Alphabet. The alphabet of a language L is composed of:

– a finite set H of constant symbols;
– a set V of variable symbols;



– a set P of predicate symbols;
– the logical connectors ¬, ∧, ∨, →, ↔.

In order to have a finite term universe, we do not allow function symbols in our
language. This restriction is necessary to avoid infinitely long formulae in the
definition of quantifier (see Def. 2.3); however, we may release this restriction in
future work.

Well Formed Formulae. A well formed formula of a language L is defined as
follows:

– p(x1, . . . , xn) is a wff, if p ∈ P and xi ∈ H ∪ V for i = 1, . . . , n;
– if p and q are wffs, then ¬p, p ∧ q, p ∨ q, p → q and p ↔ q are wffs.

Example 2.1. Throughout this paper, we will show examples based on the
language L0, where:

– H = H0 = {1, 2, 3, 4, 5}
– P = P0 = {p, q, r}

2.2 Semantics

The semantics of our languages is defined as usual for first order languages (see,
for instance, [And86]), except for function symbols (which we do not have) and
quantifier symbols (which we define, as syntactical operators, in Sect. 2.3).

2.3 Quantifiers

In this section, we extend the languages defined in Sect. 2.1 with quantifiers,
defined as syntactical operators.

Definition 2.2. Given a core language L, LQ has the same alphabet of L, plus
a set Q of quantifier symbols. To each ∇ ∈ Q an integer number is associated
by the φ function, named its arity.

The following rule is added to those defining wffs:

– if p is a wff in which n distinct variable symbols occur, ∇ ∈ Q and φ(∇) ≥ n,
then ∇p is a wff.

Definition 2.3 allows for transforming each wff of LQ into a formula of L.

Definition 2.3. (Quantifier)
An m-ary quantifier ∇ is an operator which, given an injective map α :

[1..m] → [1..n] and applied to an n-ary predicate p(X1, . . . , Xn) gives an (n−m)-
ary predicate ∇αp, defined as a formula in which only p/n appears as a predicate
symbol and, in each occurrence of p/n, the αi-th argument is replaced by a ground
term, for i = 1, . . . , m.

The semantics of a LQ wff is the semantics of the corresponding L wff.



2.4 Significant quantifiers

In the following, we give the definition in our framework of the two “classical”
quantifiers: the universal (∀) and the existential (∃).

Definition 2.4. (Unary universal quantifier)
For a map α : {1} → [1..n], 1 7→ k, the unary universal quantifier ∀ is defined

by

∀αp(X1, . . . , Xk−1, Xk+1, . . . , Xn) =
∧

a∈H
p(X1, . . . , Xk−1, a, Xk+1, . . . , Xn) (1)

Definition 2.5. (Unary existential quantifier)
For a map α : {1} → [1..n], 1 7→ k, the unary universal quantifier ∃ is defined

by

∃αp(X1, . . . , Xk−1, Xk+1, . . . , Xn) =
∨

a∈H
p(X1, . . . , Xk−1, a, Xk+1, . . . , Xn) (2)

Example 2.6. Let us consider the L0 language, a map α : {1} → {1} and a
unary predicate p. In this case,

∀αp = p(1) ∧ p(2) ∧ p(3) ∧ p(4) ∧ p(5)

and

∃αp = p(1) ∨ p(2) ∨ p(3) ∨ p(4) ∨ p(5)

It can be easily seen that these definitions give the universal and existential
quantifiers the same semantics that they have in classical first order languages.

Note 2.7. Without loss of generality, it can be assumed that α : [1..m] → [1..n]
is defined by αi = i for i = 1, . . . , m. We will do so in the following: ∇p will
mean ∇αp, where α is built as before.

Proof. For a generic α, ∇αp equates to ∇βq, with βi = i for i = 1, . . . , m, by
imposing q(Xα1 , . . . , Xαm) = p(X1, . . . , Xn). ut

Definition 2.8. (Complete quantifier)
Given an n-ary predicate p, an n-ary quantifier ∇ is complete for p.

In the remainder of the paper, quantifiers will be assumed to be complete, unless
otherwise specified.



3 Set-based treatment of quantifiers

The following definitions introduce the concept of extension of a quantifier, which
allows a uniform, set-based treatment of all quantifiers defined in our framework.

Definition 3.1. (Instance of a quantifier)
A set A of m-ples of ground terms is an instance of an m-ary quantifier ∇

iff for each m-ary predicate p
∧

a∈A

p(a) |= ∇p (3)

Definition 3.2. (Minimal instance of a quantifier)
An instance A of a quantifier ∇ is minimal if no proper subset of A is an

instance of ∇.

In the following, unless otherwise specified, we will always consider minimal
instances.

3.1 Instances of universal and existential quantifiers

An instance of the universal quantifier ∀ is H. This instance is also easily shown
to be minimal and, thus, unique, since any other instance, being a set of ground
terms, would have to be included in H.

Any set A of ground terms such that A 6= ∅ and A ⊆ H is an instance of
the existential quantifier ∃. An instance of ∃ is minimal if it contains only one
element.

Definition 3.3. (Extension of a quantifier)
The extension of a quantifier is the set of all its minimal instances.

Example 3.4. (Extensions of universal and existential quantifiers)
The extension of ∀ is {H}.
The extension of ∃ is {{a} : a ∈ H}

The following proposition provides a link between the extension of a quantifier
and its logical meaning.

Proposition 3.5. Let A be the extension of a quantifier ∇. Then ∇p is logically
equivalent to

∨
A∈A

∧
a∈A p(a).

Proof. 1.
∨

A∈A
∧

a∈A p(a) |= ∇p
A model of the disjunction is a model of at least one of the conjunctions,
and thus of ∇p, by definition of instance.

2. ∇p |= ∨
A∈A

∧
a∈A p(a)

Let us write ∇p in disjunctive normal form, as
∨

B∈B
∧

b∈B p(b)
Each B in B is obviously an instance of ∇. Thus, its associated conjunction
entails the associated conjunction of a minimal instance (any one that is
included in B) and, thus, it also entails

∨
A∈A

∧
a∈A.

ut



This proposition shows that different quantifiers with the same extensions are
equivalent at the semantical level. Formally, we can define an equivalence relation
between quantifiers which holds between quantifiers with the same extension,
and deal with the quotient set w.r.t. this relation. However, for the aim of this
paper, it is sufficient to understand that quantifiers with the same extension are,
in practice, the same quantifier.

The following definition allows the expression of quantification over subsets
of the universe.

Definition 3.6. (Restricted quantifiers)
Given a quantifier ∇ with extension A and a set S ∈ H, ∇S (“∇ restricted

to S”) is the quantifier whose extension is:

{B : A ∈ A, B = A ∩ S, B 6= ∅} (4)

Example 3.1. – Restricted unary universal quantifier: given I ⊆ H,

∀Ip =
∧

a∈I
p(a) (5)

– Restricted unary existential quantifier: given I ⊆ H,

∃Ip =
∨

a∈I
p(a) (6)

3.2 Composing quantifiers

Def. 3.7 introduces composed quantifiers (such as ∀∃), defined in terms of their
components.

Definition 3.7. (Composed quantifier)
Let ∇1 be an m1-ary quantifier and ∇2 be an m2-ary quantifier.
Then the composition of ∇1 and ∇2 is an (m1 + m2)-ary quantifier (∇1∇2)

defined by

(∇1∇2)p = ∇1(∇2p) (7)

By definition, the expression for the composed quantifier is:

(∇1∇2)p =
∨

A∈A

∧

a∈A

∨

B∈B

∧

b∈B

p(a, b) (8)

Prop. 3.9 will show another expression, which allows to single out the instances
of the composed quantifier. The proof of Prop. 3.9 requires the following lemma:

Lemma 3.8. ∧

a∈A

∨

b∈B

p(a, b) =
∨

f∈FA,B

∧

a∈A

p(a, f(a)) (9)

where FA,B is the set of all functions from A to B.



Proof. By distributing ∧ over ∨, we obtain the disjunction of all the possible
conjunctions which have one conjunct for each a ∈ A, of the form p(a, b), where
b is an element of B. The possible conjunctions are exactly the possible ways of
associating an element of B to each element of A, i.e., FA,B .

ut
Proposition 3.9. Let ∇1 and ∇2 be quantifiers, and A and B their extensions,
respectively. Then

(∇1∇2)p =
∨

A∈A

∨

f∈FA,B

∧

a∈A

∧

b∈f(a)

p(a, b) (10)

Proof. Define qa(B) =
∧

b∈B p(a, b). Then Eq. (8) can be written as:

(∇1∇2)p =
∨

A∈A
(
∧

a∈A

∨

B∈B
qa(B)) (11)

Applying Lemma 3.8 to the part of Eq. (11) in brackets, we can write:

(∇1∇2)p =
∨

A∈A
(

∨

f∈FA,B

∧

a∈A

qa(f(a))) (12)

and finally, by definition of qa(f(a)), Eq. (10).
ut

Eq. (10) is useful because it shows explicitly the instances of the composed
quantifiers (the sets {〈a, b〉 : a ∈ A, b ∈ f(a)}, each determined by the choice of
an A ∈ A and an f ∈ FA,B).

Example 3.10. Let ∇1 = ∀{1,2} and ∇2 = ∃{3,4}

– ∇1∇2

Here, A = {{1, 2}}, so the only possible choice for A ∈ A is A = {1, 2}.
There are four possible choices for f :
• f(1) = {3}, f(2) = {3}
• f(1) = {3}, f(2) = {4}
• f(1) = {4}, f(2) = {3}
• f(1) = {4}, f(2) = {4}

The instances of ∇1∇2 are thus the following four:
• {〈1, 3〉, 〈2, 3〉}
• {〈1, 3〉, 〈2, 4〉}
• {〈1, 4〉, 〈2, 3〉}
• {〈1, 4〉, 〈2, 4〉}

– ∇2∇1

In this case, A = {{3}, {4}} and the possible choices for A ∈ A are A = {3}
and A = {4}. Chosen A, there is only one choice for f : f(a) = {1, 2}, where
a is the only element of A. Thus, the instances of ∇2∇1 are:
• {〈3, 1〉 〈3, 2〉}
• {〈4, 1〉 〈4, 2〉}



3.3 An order relation over quantifiers

In the following, we define a set-based partial order relation which semantically
maps into entailment.

Definition 3.11. (Weaker quantifier)
∇1 ¹ ∇2 iff each instance of ∇2 has a non-empty subset that is an instance

of ∇1.

Proposition 3.12. If ∇1 º ∇2, then for any predicate p ∇1p |= ∇2p

Proof. A model of ∇1p is also a model of the associated conjunction of an in-
stance (say A) of ∇1, because of Prop. 3.5. Since ∇1 º ∇2, there exists a subset
of A that is an instance of ∇2, and whose associated conjunction entails ∇2p.

ut

4 An inference rule

In this section, we propose (and prove sound) an inference rule which can be
applied, under the conditions of Def. 4.1, to predicates with different quantifica-
tions.

Definition 4.1. (Unifiable quantifiers)
Two quantifiers ∇1 (whose extension is A) and ∇2 (whose extension is B)

are said to be unifiable iff

A ∈ A, B ∈ B → A ∩B 6= ∅ (13)

Example 4.2. ∀[1..4] and ∀[2..5] are unifiable; ∃[1..4] and ∃[2..5] are not.

Definition 4.3. (Unification of quantifiers)
Let ∇1 and ∇2 be two unifiable quantifiers. Their unification is a quantifier

(∇1 ∪∇2) whose extension is given by:

{C : A ∈ A, B ∈ B, C = A ∩B} (14)

Example 4.4. Let∇1 = ∀[1..3] and∇2 = ∃[2..3]. The extension of∇1 is {{1, 2, 3}}
and the extension of ∇2 is {{2}, {3}}: ∇1 and ∇2 are unifiable and the extension
of their unification is {{2}, {3}}, which is the extension of ∃[2..3]. Thus,

∀[1..3] u ∃[2..3] = ∃[2..3] (15)

The following proposition proves sound an inference rule which, given two pred-
icates with (possibly) different quantifications, derives their conjunction, quan-
tified with the unification of the original quantifiers.

Proposition 4.5. Let ∇1 and ∇2 be two unifiable quantifiers. Then

∇1p ∧∇2q |= (∇1 u∇2)(p ∧ q) (16)



∇1 ∇2 Unifiable? ∇1 u∇2

∀ ∀ yes ∀
∀ ∃ yes ∃
∃ ∃ no -

∀S1 ∀S2 if S1 ∩ S2 6= ∅ ∀S1∩S2

∀S1 ∃S2 if S2 ⊆ S1 ∃S2

Table 1. Unification of particular quantifiers

Proof. A model of ∇1p∧∇2q is a model of the associated conjunction of at least
one instance of ∇1 (name it A) w.r.t. p and of the associated conjunction of one
instance of ∇2 (name it B) w.r.t. q. Therefore, it is the model of the associated
conjunction of A∩B w.r.t p∧ q. As A∩B is an instance of (∇1 u∇2), a model
of its associated conjunction w.r.t p ∧ q is also a model of (∇1 u∇2)(p ∧ q).

ut
Obviously, in practice, we do not want to compute the unification of two quan-
tifiers directly by the definition each time we need to make an inference. The
following proposition provides some ready-to-use results.

Proposition 4.6. Tab. 1 summarises particular cases of unification between
quantifiers.

Proof. By definition of unification.

The following proposition shows that the unification of composed quantifiers
equates to the composition of the unification of the components. Together with
Prop. 4.6, it allows for building the unification of composed quantifiers without
considering their extensions.

Proposition 4.7.

(∇1∇2) u (♦1♦2) = (∇1 u ♦1)(∇2 u ♦2) (17)

Proof. We will prove that (∇1∇2) u (♦1♦2) and (∇1 u ♦1)(∇2 u ♦2) have the
same instances.

Let A1, A2, B1 and B2 be the extensions of ∇1, ∇2, ♦1 and ♦2, respectively.

– An instance of (∇1∇2) is determined by an A1 ∈ A1 and by an f ∈ FA1,A2 ,
and has the form:

{〈a1, a2〉 : a1 ∈ A1, a2 ∈ f(a1)} (18)

Similarly, an instance of (♦1♦2) is defined by a B1 ∈ B1 and a g ∈ FB1,B2 ,
and has the form:

{〈b1, b2〉 : b1 ∈ B1, b2 ∈ g(b1)} (19)

Each instance of (∇1∇2)u(♦1♦2) is the intersection of an instance of (∇1∇2)
and an instance of (♦1♦2). Thus, it is determined by an A1 ∈ A1, a B1 ∈ B1,
an f ∈ FA1,A2 , and a g ∈ FB1,B2 , and has the form:

{〈c1, c2〉 : c1 ∈ (A1 ∩B1), c2 ∈ (f(c1) ∩ g(c1))} (20)



– Let C1 and C2 be the extensions of (∇1 u ♦1) and (∇2 u ♦2), respectively.
An instance of (∇1 u ♦1)(∇2 u ♦2) is determined by a C1 ∈ C1 and a
h ∈ FC1,C2 , and has the form:

{〈c1, c2〉 : c1 ∈ C1, c2 ∈ h(c1)} (21)

However, the extensions of (∇1 u ♦1) and (∇2 u ♦2) have the form:

C1 ={C1 : A1 ∈ A1, B1 ∈ B1, C1 = A1 ∩B1}
C2 ={C2 : A2 ∈ A2, B2 ∈ B2, C2 = A2 ∩B2}

(22)

Eq. (22) shows that each C1 ∈ C1 is determined by an A1 ∈ A1 and a B1 ∈
B1: those (possibly non unique) such that A1 ∩ B1 = C1. Each h ∈ FC1,C2
is, in turn, determined by an f ∈ FA1,A2 and a g ∈ FB1,B2 : namely, those
(possibly non unique) that respectively map each c1 ∈ C1 to an A2 ∈ A2

and a B2 ∈ B2 such that A2 ∩B2 = h(c1).
In conclusion, each instance of (∇1 u ♦1)(∇2 u ♦2) is determined by an
A1 ∈ A1, a B1 ∈ B1, an f ∈ FA1,A2 , and a g ∈ FB1,B2 , and has the form:

{〈c1, c2〉 : c1 ∈ (A1 ∩B1), c2 ∈ (f(c1) ∩ g(c1))} (23)

Summarizing, each instance of one member of Eq. (17) is determined by an
A1 ∈ A1, a B1 ∈ B1, an f ∈ FA1,A2 , and a g ∈ FB1,B2 that also determines
an instance of the other member, in the same way (shown by Eq. (20) and Eq.
(23)). In other words, the two members of Eq. (17), having the same instances,
are the same quantifier.

ut

5 Application to resolution

In this section, we apply the inference rule introduced in Sect. 4 to a kind of
resolution that operates on disjunctions with arbitrary quantfications.

Proposition 5.1. Let ∇1 and ∇2 be unifiable. Then

∇1(¬p ∨ q) ∧∇2(p ∨ r) |= (∇1 u∇2)(q ∨ r) (24)

Proof.
∇1(¬p ∨ q) ∧∇2(p ∨ r) |= (∇1 u∇2)((¬p ∨ q) ∧ (p ∨ r))

because of Prop. 4.5. Let A be the extension of (∇1u∇2); then, because of Prop.
3.5,

(∇1 u∇2)((¬p ∨ q) ∧ (p ∨ r)) ↔
∨

A∈A

∧

a∈A

((¬p(a) ∨ q(a)) ∧ (p(a) ∨ r(a)))



By applying propositional resolution to each conjunct,
∨

A∈A

∧

a∈A

((¬p(a) ∨ q(a)) ∧ (p(a) ∨ r(a))) |=
∨

A∈A

∧

a∈A

(q(a) ∨ r(a))

which, using Prop. 3.5 again, can be rewritten as

(∇1 u∇2)(q ∨ r)

ut
Example 5.2. Let us consider the following two formulae:

∀[1..4]∀[1..3](¬p ∨ q) (25)

∀[2..5]∃[2..3]p (26)

By Tab. 1, ∀[1..4] u∀[2..5] = ∀[2..4] and ∀[1..3] u∃[2..3] = ∃[2..3]. Thus (Eq. (17))
∀[1..4]∀[1..3] u ∀[2..5]∃[2..3] = ∀[2..4]∃[2..3] and Eqs. (25) and (26), because of Prop.
4.5, entail

∀[2..4]∃[2..3]((¬p ∨ q) ∧ p) (27)

and finally
∀[2..4]∃[2..3]q (28)

6 Discussion

The work presented in this paper is still at an early stage, and several points
remain to be defined. In particular, we believe that our work, in its current
status, has two main limitations, that we are currently trying to tackle.

– First of all, the inference rule presented in Sect. 4 can be applied only if
a strong condition holds: the two original quantifiers have to be unifiable.
However, it seems possible to perform reasoning steps even in many cases
where the quantifiers are not unifiable. Consider, for instance, the case of
two existential quantifiers1:

∃Xp(X) ∧ ∃Y q(Y ) (29)

the natural step would be to perform a case analysis, i.e., to branch the
reasoning into two cases:
• in one case, the arguments of the predicates are constrained to be equal

(X = Y ), which makes their quantifier unifiable, and possible to infer
∃Xp(X) ∧ q(X);

• in the other case, where X 6= Y , no inference is performed.
We are currently working on formalizing and dealing in a uniform way with
such cases.

1 In the following formulae, we express variable quantification explicitely.



– We have not yet defined how we deal with quantifiers with different arity, as
in the following case:

∀X∃Y p(X) → q(Y )
∃Zp(Z)

(30)

where we would obviously like to infer ∃Tq(T ). One possible way would be to
extend the quantification of the second formula with a “dummy” universally
quantified variable, to obtain ∃Z∀Up(Z), which would work in this particular
case because ∀∃ is unifiable with ∃∀ and their unification results in ∃∃.
We are currently researching a result that generalizes this kind of reasoning.

7 Conclusions

In this paper, we have presented a logic language where quantifiers can be arbi-
trary and are defined as syntactical operators. We have introduced a set-based
theory of quantifiers which allows performing inference over sets of formulae
with arbitrary quantification, and proved a soundness result for the inference
rule that we have introduced; finally, we have shown how our approach can be
applied to resolution.

Acknowledgements

This work is partially funded by the Information Society Technologies pro-
gramme of the European Commission under the IST-2001-32530 SOCS Project
[SOC], and by the MIUR COFIN 2003 project La Gestione e la negoziazione
automatica dei diritti sulle opere dell’ingegno digitali: aspetti giuridici e infor-
matici.

References

[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
to Truth through Proof. Academic Press, Orlando, Florida, 1986.

[Mil92] Dale Miller. Unification under a mixed prefix. Dale Miller, 14:321–358, 1992.
[SOC] Societies Of ComputeeS (SOCS): a computational logic model for the descrip-

tion, analysis and verification of global and open societies of heterogeneous
computees. http://lia.deis.unibo.it/Research/SOCS/.


