
Solving Satisfiability of Ground Term Algebras
Using DPLL and Unification

Bahareh Badban1, Jaco van de Pol1, Olga Tveretina2, Hans Zantema2

1 Centrum voor Wiskunde en Informatica, Dept. of Software Engineering
P.O.-Box 94.079, 1090 GB Amsterdam, The Netherlands
Bahareh.Badban@cwi.nl, Jaco.van.de.Pol@cwi.nl
2 Department of Computer Science, TU Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

o.tveretina@tue.nl, h.zantema@tue.nl

Abstract. Abstract datatypes can be viewed as sorted ground term al-
gebras. Unification can be used to solve conjunctions of equations. We
give a new algorithm to extend this to the full quantifier free fragment,
i.e. including formulas with disjunction and negation. The algorithm is
based on unification (to deal with equality) and DPLL (to deal with
propositional logic). In this paper we present our algorithm as an in-
stance of a generalized DPLL algorithm. We prove soundness and com-
pleteness of the class of generalized DPLL algorithms, in particular for
the algorithm for ground term algebras.

Keywords: abstract datatypes, ground term algebra, equality, satisfiability, DPLL
procedure, unification

1 Introduction

Many tools for deciding boolean combinations for certain theories have been
developed over the years. Typically, such procedures decide fragments of (Pres-
burger) arithmetic and uninterpreted functions. These theories are used in hard-
ware [9] and software [23] verification; other applications are in interactive the-
orem proving, static analysis and abstract interpretation.

In many algebraic systems, function symbols are divided in constructors and
defined operations. The values of the intended domains coincide with the ground
terms built from constructor symbols only. This is for instance the case with the
data specifications in µCRL [17], a language based on abstract data types and
process algebra. We will focus on formulas with constructor symbols only.

Our main motivation is to decide boolean combinations over algebraic data
types, which can be viewed as sorted ground term algebras. Although this logic
has been studied quite extensively from a theoretical point of view, we are not
aware of a complete tool to decide boolean combinations of equality over an
arbitrary ground term algebra.

Solving satisfiability of equalities between ground terms can be considered
as checking whether they are unifiable or not. Our algorithm uses standard

unification to deal with conjunctions of equalities. Our procedure solves not only
conjunctions of equations but it is also extended to disjunctions and negations.

To deal with a boolean structure of a formula we use the well-known DPLL
procedure since it is the basis of some of the most successful propositional
satisfiability solvers. The original DPLL procedure [13, 12] was developed as
a proof-procedure for first-order logic. It has been used so far almost exclusively
for propositional logic because of its highly inefficient treatment of quantifiers.
Robinson’s contribution [24] was the discovery of the resolution rule and unifica-
tion for this purpose. The idea of the DPLL procedure may be applied to other
kinds of logics too.

Contribution. In Section 2 we introduce a basic framework for satisfiability
problems. We focus on quantifier free fragments of first-order logic for which this
yields a sound, terminating and complete decision procedure for satisfiability.
Subsequently we introduce a framework for generalized DPLL procedures, called
GDPLL (Section 3). It is meant for various fragments of first-order logic with
equality, but without quantification. In case of equality in a ground term algebra,
we will use unification as well.

This is an algorithm with four basic modules, that have to be filled in for a
particular logic. These modules correspond to choosing an atom, adding it (or its
negation) as a fact, reducing the intermediate formulae and a simple satisfiability
criterion. We show sufficient conditions on these basic modules under which
GDPLL is sound, terminating and complete. The original propositional DPLL
algorithm (with or without unit resolution) can be obtained as an instance.

Finally, in Section 4 we investigate the quantifier-free logic of equality over
an infinite ground term algebra (sometimes referred to as abstract datatypes, or
inductive datatypes). An instance of a formula in this logic would be:

(x = S(y) ∨ y = S(head(tail(z)))) ∧ z = cons(x,w) ∧ (x = 0 ∨ z = nil)

We provide a concrete algorithm for this case. Our particular solution for
ground term algebras depends on well known unification theory [19, 3]. We fol-
low the almost linear implementation of [18]. Unification solves conjunctions of
equations in the ground term algebra. The full first-order theory of equality in
ground term algebras has been studied in [20, 11, 22]. Colmerauer [10] studied
a setting with conjunctions of both equations and inequations. Using a DNF
transformation, this is sufficient to solve any boolean combination. However, the
DNF transformation itself may cause an exponential blow-up. For this reason
we base our algorithm on DPLL, where after each case split the resulting CNFs
can be reduced (also known as constraint propagation). In particular, our reduc-
tion is based on a combination of unification and unit resolution. None of the
papers mentioned give concrete algorithms for use in verification, and the idea
to combine unification and DPLL seems to be new.

It is an instance of GDPLL, so we show its soundness and completeness by
checking the conditions mentioned above.

Related Work. ICS [25] (which is used in PVS) and CVC [6] are applicable
to a logic including uninterpreted function symbols and arithmetic with + and

>. They have sound but incomplete decision procedures for equality on abstract
datatypes. For instance, experiments show that CVC doesn’t prove validity of
the query x 6= succ(succ(x)).

Another sound but incomplete approach for general algebraic data types was
based on equational BDDs [16]. A complete algorithm for BDDs with equations,
zero and successor is treated in [4].

In the past several years various approaches based on the DPLL procedure
have been proposed [1, 2, 14, 15]. MathSAT [2] combines a SAT procedure, for
dealing efficiently with the propositional component of the problem and, within
the DPLL architecture, of a set of mathematical deciders for theories of increas-
ing expressive power. In [7] a full first-order theorem prover has been constructed
which combines DPLL and unification. and unification is used to determine when
two literals are contradictory. It differs from our approach where unification deals
with conjunctions of equations and is extended to disjunctions and negations.

The recent algorithm of [21] decides the theory of uninterpreted functions
with integer offsets. It is also based on an extension of DPLL, but it is interesting
to note that it cannot be described as an instance of our GDPLL, where all
decisions depend on the current CNF only. In the algorithm of [21], as well as in
the ICS and CVC algorithms, some decisions depend on a context of previously
asserted formulas.

A full version of the paper including full proofs can be found in [5]. Imple-
mentation in C is available at http://www.cwi.nl/ ∼ vdpol/gdpll.html.

2 A Common Satisfiability Framework

In this section we define satisfiability for a general setting of which we consider
four instances. Essentially we define satisfiability for instances of predicate logic.
Often satisfiability of CNFs in predicate logic means that all clauses are implic-
itly universally quantified, and all other symbols are called Skolem constants.
We work in quantifier free logics, possibly with interpreted symbols. Our vari-
ables (corresponding to the Skolem constants above) are implicitly existentially
quantified at the outermost level. This corresponds to the conventions used in
for instance unification theory [11, 20].

2.1 Syntax

Let Σ = (Fun, Pr) be a signature, where Fun = {f, g, h, . . . } is a set of function
symbols, and Pr = {p, q, r . . . } is a set of predicate symbols. For every function
symbol and every predicate symbol its arity is defined, being a non-negative
integer. The functions of arity zero are called constant symbols, the predicates of
arity zero are called propositional variables. We assume a set Var = {x, y, z, . . . }
of variables. The sets Var, Fun, Pr are pairwise disjoint.

The set Term(Σ, Var) of terms over the signature Σ is inductively defined in
the usual way. The set of ground terms Term(Σ) is defined as Term(Σ, ∅). An
atom a is defined to be an expression of the form p(t1, . . . , tn), where the ti are

terms, and p is a predicate symbol of arity n. The set of atoms over the signature
Σ is denoted by At(Σ,Var) or for simplicity by At .

A literal l is either an atom a or a negated atom ¬a. We say that a literal
l is positive if l coincides with an atom a, and negative if l coincides with a
negated atom ¬a. In the latter case, ¬l denotes the literal a. The set of all
literals is denoted by Lit. We denote by Litp and Litn the sets of all positive and
negative literals, respectively. A clause C is defined to be a finite set of literals.
For the empty clause we use the notation ⊥. A conjunctive normal form (CNF)
is defined to be a finite set of clauses. We denote by Cnf the set of all CNFs. In
the following, we write #S for the cardinality of any finite set S.

We use the following notations throughout the paper, for φ ∈ Cnf and l ∈ Lit:
Var(φ) is the set of all variables occurring in φ (similar for terms, literals and
clauses); Pr(φ), At(φ), Lit(φ), Litp(φ) and Litn(φ) are the sets of all predicate
symbols, all atoms, literals, positive literals, and negative literals occurring in φ,
respectively; We define φ|l = {C − {¬l} | C ∈ φ, l 6∈ C}; We write φ ∧ l as a
shortcut for φ ∪ {{l}}. Finally, we say that C ∈ Cnf is a purely positive clause if
l ∈ Litp for all l ∈ C; C is a unit clause if #C = 1; l ∈ Lit(φ) is a pure literal in
φ if ¬l 6∈ Lit(φ).

2.2 Semantics

A structure D over a signature Σ = (Fun,Pr) is defined to consist of

– a non-empty set D called the domain,
– for every f ∈ Fun of arity n a map fD : Dn → D, and
– for every p ∈ Pr of arity n a map pD : Dn → {true, false}.

Let D be a structure and σ : Var → D be an assignment. The interpretation
[[t]]σD : Term(Σ, Var) → D of a term t is inductively defined as usual. We also
define the interpretation of atoms, literals, clauses and formulas [[φ]]σD : Cnf →
{false, true}. We omit the details, but just note that a clause is interpreted as the
disjunction of its literals, and a CNF formula as the conjunction of its clauses.

In some instances of our framework for defining satisfiability all possible
structures are allowed, in others we have restrictions on the structures that are
allowed. Therefore in any instance we assume a notion of admissible structure.
Depending on this notion of admissible structure we have the following definition
of satisfiability.

Definition 1. An assignment σ : Var → D satisfies a CNF φ in a structure D,
if [[φ]]σD = true. CNF φ is called satisfiable if it is satisfied by some assignment
in some admissible structure. Otherwise φ is called unsatisfiable.

A particular logic will consist of a signature and a set of admissible structures.
By the latter, we can distinguish a completely uninterpreted setting (no restric-
tion on structures) from a completely interpreted setting (only one structure is
admissible). However, intermediate situations are possible as well.

2.3 Instances of the Satisfiability Framework

We now describe precisely various instances of the framework just described by
specifying the signature and the admissible structures.

Propositional Logic. The first instance we consider is propositional logic.
Here we have Σ = {Fun,Pr}, where Fun = ∅ and Pr is a set of predicate symbols
all having arity zero. In this way there are no terms at all occurring in atoms:
an atom coincides with such a predicate symbol of arity zero. Hence a CNF
in this instance coincides with a usual propositional CNF. Since there are no
terms in the formula, neither variables play a role, nor the assignments. The
only remaining ingredient of an interpretation is a map pD : D0 → {true, false}
for every predicate symbol p. Since D0 consists of one element independent of
D, this interpretation is only a map from the atoms to {true, false}, just like
intended for propositional logic. Since the domain does not play a role there is
no need for defining restrictions: as admissible structures we allow all structures.

Equality Logic. The next instance we consider is equality logic. By equality
logic formulas we mean formulas built from atoms of the shape x ≈ y, where x
and y are variables. We reserve the notation ≈ for a particular binary predicate
symbol for reasoning over equality. We write x ≈ y instead of ≈ xy. We will use
the shortcut x 6≈ y for ¬(x ≈ y). For ease of presentation, we will consider x ≈ y
and y ≈ x as the same atom.

Now we define equality formulas in conjunctive normal form as an instance
of the framework described above. For equality logic we have Σ = {Fun, Pr},
where Fun = ∅ and Pr = {≈}. In this way the variables are the only terms, and
all atoms are of the shape x ≈ y for variables x, y. The admissible structures
are defined to be all structures D for which ≈D= IdD, where the function IdD :
D × D → {true, false} is defined such that IdD(d1, d2) = true if d1 = d2, and
false otherwise.

3 GDPLL

Most of the techniques relevant in the setting of the DPLL procedure are also
applicable to GDPLL. Essentially, the DPLL procedure consists of the following
three rules: the unit clause rule, the splitting rule, and the pure literal rule. Both
the unit clause rule and the pure literal rule reduce the formula according some
criteria. Thus, in GDPLL we may assume a function Reduce which performs all
rules for formula reduction. GDPLL has a splitting rule, which carries out a case
analysis with respect to an atom a. The current set of clauses φ splits into two
sets: the one where a is true, and another where a is false.

In the following we assume a function Reduce : Cnf → Cnf. We define the set
Rcnf = {φ ∈ Reduce(Cnf) | ⊥ 6∈ φ}. We also assume functions

– Eligible : Rcnf → At,
– SatCriterion : Rcnf → {true, false},
– Filter, where Filter(φ, a) is defined for φ ∈ Rcnf and a ∈ Eligible(φ).

We now introduce the requirements on the functions above: for all ψ ∈ Cnf, for
all φ ∈ Rcnf, and for all a ∈ Eligible(φ) the functions should satisfy the following
properties.

1. Reduce(ψ) is satisfiable iff ψ is satisfiable,
2. φ is satisfiable iff at least one of Filter(φ, a) and Filter(φ,¬a) is satisfiable,
3. Reduce(Filter(φ, a)) ≺ φ and Reduce(Filter(φ,¬a)) ≺ φ, for some well-founded

order ≺ on Reduce(Cnf).
4. if SatCriterion(φ) = true then φ is satisfiable,
5. if SatCriterion(φ) = false then Eligible(φ) 6= ∅.

We next show the pseudo-code of the skeleton of the algorithm. The pro-
cedure takes as an input φ ∈ Cnf. GDPLL proceeds until either the function
SatCriterion has returned true for at least one branch, or the empty clause has
been derived for all branches. Respectively, either SAT or UNSAT is returned.

GDPLL(φ) : {SAT,UNSAT} =
begin

φ := Reduce(φ);
if (⊥ ∈ φ) then return UNSAT;
if (SatCriterion(φ)) then return SAT;
choose a ∈ Eligible(φ);
if GDPLL(Filter(φ, a)) = SAT then return SAT;
if GDPLL(Filter(φ,¬a)) = SAT then return SAT;
return UNSAT;

end;

Theorem 2 (soundness and completeness). Let φ ∈ Cnf. Assume properties
1–5 hold. Then we have:

– If φ is satisfiable then GDPLL(φ) = SAT.
– If φ is unsatisfiable then GDPLL(φ) = UNSAT.

Proof. Let φ ∈ Cnf. Assume (induction hypothesis) that the theorem holds
for all ψ such that Reduce(ψ) ≺ Reduce(φ). By property 1, Reduce(φ) is sat-
isfiable iff φ is satisfiable. If ⊥ ∈ Reduce(φ), then trivially φ is unsatisfiable,
and GDPLL(φ) returns UNSAT. Otherwise, if SatCriterion(Reduce(φ)) = true
then by property 4, φ is satisfiable, and GDPLL(φ) = SAT. Otherwise, by
property 5, Eligible(Reduce(φ)) 6= ∅. By property 3, for all φ ∈ Cnf and all
a ∈ Eligible(φ), we have Reduce(Filter(Reduce(φ), a)) ≺ Reduce(φ), and also
Reduce(Filter(Reduce(φ),¬a)) ≺ Reduce(φ), so we can apply induction, and ei-
ther SAT or UNSAT is returned. Now, using property 2 and the induction hy-
pothesis, Reduce(φ) is satisfiable, if and only if one of Filter(Reduce(φ), a) and
Filter(Reduce(φ),¬a) are satisfiable; if and only if GDPLL(Filter(Reduce(φ), a))
or GDPLL(Filter(Reduce(φ),¬a)) returns SAT; iff GDPLL(φ) returns SAT. ut

3.1 GDPLL for Propositional Logic

It can be seen that the DPLL procedure for propositional logic is a particu-
lar case of GDPLL. We have to provide Eligible, Filter, Reduce and SatCriterion.
All functions except Reduce are straightforward. In order to coincide with the
original DPLL procedure, we let an eligible atom be an arbitrary atom, i.e. to
coincide with the original DPLL procedure. So we put:

Eligible(φ) = At(φ) .
SatCriterion(φ) = true, if φ = ∅; false, otherwise.

Filter(φ, l) = φ ∧ l .

Two main operations of the DPLL procedure are unit propagation and pu-
rification. The literal of a unit clause must hold, in order to make the CNF
satisfiable. Unit clauses can be eliminated by replacing φ∧ l by φ|l. Elimination
of a unit clause can create a new unit clause, so this process has to be repeated
until no unit clauses are left. Also pure literals can be eliminated. If l is pure
in φ, we may replace φ by φ|l. Note that this cannot introduce unit clauses. In
GDPLL, unit resolution and purification are performed by Reduce. So Reduce(φ)
is defined as the result after eliminating all unit clauses and pure literals.

Theorem 3. The functions Reduce, Eligible, Filter, SatCriterion satisfy the Prop-
erties 1–5.

Proof. For property 3, define φ1 ≺ φ2 iff #Pr(φ1) < #Pr(φ2). ut

3.2 GDPLL for Equality Logic

We now define the functions Eligible, Filter, Reduce and SatCriterion for equality
logic. The function Reduce removes all clauses containing a literal of the shape
x ≈ x and literals of the shape x 6≈ x from other clauses. Recall that x ≈ y and
y ≈ x denote the same atom.

In case of propositional logic we chose any atom contained in a CNF to apply
the split rule. The correctness of GDPLL is not immediate for other instances.
For equality logic we define an atom to be eligible if it occurs as a positive literal
in the formula, i.e., Eligible(φ) = Litp(φ). We define the function SatCriterion, so
that it indicates that there are no purely positive clauses left:

SatCriterion(φ) =

{
true if C ∩ Litn 6= ∅ for all C ∈ φ

false otherwise

Example 4. Consider φ ≡ {{x ≈ y, y 6≈ z}, {x ≈ z, x 6≈ y, y ≈ z}, {x 6≈ z}}.
One can easily see that the formula is satisfied by an assignment σ such that
σ(x′) 6= σ(x′′) for all x′, x′′ ∈ Litn(φ).

We denote by φ[x := y] the formula φ, where all occurrences of x are replaced
by y. We define the function Filter as follows

– Filter(φ, x ≈ y) = φ|x≈y[x := y],
– Filter(φ, x 6≈ y) = φ|x6≈y ∧ (x 6≈ y).

Theorem 5. The functions Reduce, Eligible, Filter, SatCriterion satisfy the Prop-
erties 1–5.

Proof. For Property 3, define φ1 ≺ φ2 if #Litp(φ1) < #Litp(φ2). ut

4 Ground Term Algebra

In this section we show how to solve the satisfiability problem for CNFs over
ground term algebras (sometimes referred to as inductive datatypes, or abstract
datatypes). First we show how this logic fits in the framework of Section 2.

In this instance we have Σ = (Fun, Pr), where Fun is an arbitrary set of
function symbols and Pr consists only of the binary predicate symbol ≈ (written
infix). The idea is that ≈ again represents equality and that terms are inter-
preted by ground terms, i.e. in Term(Σ). Every symbol is interpreted by its term
constructor. We assume that there exists at least one constant symbol (i.e. some
f ∈ Fun has arity 0), to avoid that the set Term(Σ) of ground terms is empty.
Later, we will also make the assumption that the ground term algebra is infinite
(i.e. at least one symbol of arity > 0 exists, or the number of constant symbols
is infinite). Hence we allow only one admissible structure D, for which

– D = Term(Σ),
– fD(t1, . . . , tn) = f(t1, . . . , tn)
– ≈D= IdD.

For instance, in the term algebra the CNF {{f(x) = g(y)}} for f, g ∈ Fun, f 6=
g is unsatisfiable since for all ground terms t, u the terms f(t) and g(u) are
distinct. We will (tacitly) use the following properties of all ground term algebras:

Lemma 6. In every ground term algebra D for Σ, the following hold:

1. for all f, g ∈ Fun with f 6= g: ∀x, y : fD(x) 6= gD(y)
2. for all f ∈ Fun: ∀x, y : x 6= y ⇒ fD(x) 6= fD(y)
3. for all contexts C 6= []: ∀x : x 6= C[x]

After introducing some basic definitions and properties of substitutions and
most general unifiers, we will define the building blocks of GDPLL, and prove
the properties needed to conclude with Theorem 2 that the obtained procedure
is sound and complete.

4.1 Substitutions and most general unifiers

We introduce here the standard definitions of substitutions and unifiers, taken
from [19, 3]. A substitution is a function σ : Var → Term(Σ, Var) such that
σ(x) 6= x for only finitely many xs. We define the domain: Dom(σ) = {x ∈
Var | σ(x) 6= x}. If Dom(σ) = {x1, . . . , xn}, then we alternatively write σ as

σ = {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}. The variable range of σ is Var(σ) =⋃
x∈Dom(σ) Var(σ(x)). Furthermore, with Eq(σ) we denote the corresponding set

of equations {x1 ≈ σ(x1), . . . , xn ≈ σ(xn)}, and with ¬Eq(σ) the correspond-
ing set of inequations. A set of equations is in solved form if it is of the form
{x1 ≈ t1, . . . , xn ≈ tn}, with all xi different, and xi 6∈ Var(tj) (for all i, j).

Substitutions are homomorphically extended to terms and formulas in the
usual way. We write φσ for the CNF obtained by replacing each occurrence of a
variable x by σ(x). The composition σρ of substitutions σ and ρ is defined such
that σρ(x) = σ(ρ(x)). A substitution σ is idempotent if σσ = σ. A substitution
σ is more general than σ′ if σ′ = ρσ for some ρ. A unifier or solution of a set
S = {s1 ≈ t1, ..., sn ≈ tn} of finite number of atoms, is a substitution σ such
that sσ

i = tσi for i = 1, ..., n. A substitution σ is a most general unifier of S or
in short mgu(S), if σ is a unifier of S and moreover, it is more general than
each unifier σ′ of S. In the sequel, we will use the following well known fact on
substitutions and unifiers (cf. [19, 3]):

Lemma 7. If a set S of atoms has a unifier, then it has an idempotent mgu,
say σ. Moreover, Eq(σ) is in solved form, and logically equivalent to S.

If n = 1 we write mgu(s1 ≈ t1). When dealing with sets of unit clauses, by
σ = mgu({t1 ≈ u1}, ..., {tn ≈ un}) we mean σ = mgu({t1 ≈ u1, ..., tn ≈ un}). If
S has no unifier, we write mgu(S) = ⊥. From now on by an mgu we always mean
an idempotent mgu, which exists by the previous Lemma. As a consequence of
the above lemma and the conventions, if an mgu σ = {x1 7→ t1, ..., xn 7→ tn} then
xi 6∈ Var(tj) for all 1 ≤ i, j ≤ n. Another consequence is that mgu(x ≈ x) = ∅.

4.2 The GDPLL building blocks for ground term algebras

We now come to the definition of the building blocks for the GDPLL algorithm.
The functions Eligible and SatCriterion correspond to those in Section 3.2 on
Equality Logic. That is, only positive literals are eligible, and we may terminate
with SAT as soon as there is no purely positive clause. The function Filter cor-
responds to the filtering in Section 3.1 on Propositional Logic; that is we simply
put the CNF in conjunction with the chosen literal. This means that all work
specific for ground term algebras is done by Reduce. This function will be defined
by means of a set of transformation rules, that can be applied in any order.

Definition 8. We consider the following reduction rules, which should be ap-
plied repeatedly until φ cannot be modified.

1. if t ≈ t ∈ C ∈ φ then φ −→ φ− {C}
2. if ⊥ ∈ φ and φ 6= {⊥} then φ −→ {⊥}
3. if φ = φ1] {C] {t 6≈ u}}, and t ≈ u is non-solved, let σ = mgu(t ≈ u) and

– if σ = ⊥, then φ −→ φ1

– otherwise, φ −→ φ1 ∪ {C ∪ ¬Eq(σ)}
4. if φ1 = {C | C ∈ φ is a positive unit clause} 6= ∅, take σ = mgu(φ1) then

– if σ = ⊥, then φ −→ {⊥}

– otherwise let φ = φ1] φ2 then φ −→ φ2
σ

5. if φ = {{¬a}}] φ1 and a ∈ At(φ1) then φ −→ {{¬a}}] φ1|¬a

We define Reduce(φ) to be any normal form of φ with respect to the rules above.

We tacitly assume that x ≈ y and y ≈ x are treated identically. Rule 3
replaces a negative equation by its solved form. Note that solving positive equa-
tions would violate the CNF structure, so this is restricted to unit clauses, which
emerge by Filtering. Rules 4 and 5 above implement unit resolution adapted to
the equational case. Positive unit clauses lead to substitutions. All positive units
are dealt with at once, in order to minimize the calls to mgu and to detect more
inconsistencies. Negative unit clauses are put back, which is essential to prove
property 1 of GDPLL.

We will show that the rules are terminating, so at least one normal form
exists. We show by an example that the function Reduce is not uniquely defined.
An implementation may choose any normal form.

Example 9. φ = {{f(f(y)) 6≈ f(x)}, {x 6≈ x}}. We will subsequently apply rule 3
on f(f(y)) 6≈ f(x) (with σ : x 7→ f(y)); rule 3 on {x 6≈ x} (with σ = ⊥), and
rule 2: φ −→ {{x 6≈ f(y)}, {x 6≈ x}} −→ {{x 6≈ f(y)}, {}} −→ {⊥} .

Example 10. Consider φ = {{x 6≈ f(a, b)}, {x ≈ f(y, z)}, {y ≈ a, x ≈ f(a, b)}}.
We show reductions to two different reduced forms:

φ −→ {{x 6≈ f(a, b)}, {x ≈ f(y, z)}, {y ≈ a}} using 5
−→ {{f(y, z) 6≈ f(a, b)}, {y ≈ a}} applying 4 on {x ≈ f(y, z)}
−→ {{f(a, z) 6≈ f(a, b)}} applying 4 on {y ≈ a}
−→ {{z 6≈ b}} using 3

φ −→ {{f(y, z) 6≈ f(a, b)}, {y ≈ a, f(y, z) ≈ f(a, b)}} by 4 on {x ≈ f(y, z)}
−→ {{y 6≈ a, z 6≈ b}, {y ≈ a, f(y, z) ≈ f(a, b)}} using 3

We will now prove termination of the reduction system. Subsequently, we
will prove the correctness of the building blocks of the corresponding GDPLL
procedure (i.e. property 1–5).

Definition 11. pos(φ) is the number of occurrences of positive literals in φ.

Lemma 12. The reduction system is terminating. Moreover, pos(φ) does not
increase during the reduction process on φ.

Proof. Each rule application 1–5 lexicographically decreases the following pair
of numbers: norm(φ) = (pos(φ) + #φ, neg(φ)), where neg(φ) is the number of
occurrences of negative non-solved literals in φ. It can also be checked that pos
doesn’t increase with each rule application. ut
Lemma 13 (Termination criterion). pos(Reduce(φ ∧ l)) < pos(φ) for any
reduced formula φ and a literal l ∈ {t ≈ u, t 6≈ u}, where t ≈ u ∈ Litp(φ).

Proof. Since φ is reduced, the first step to reduce φ ∧ l will be by rule 4 or 5
(depending on whether l is positive or not). After applying rule 4, we have a
literal of the form tσ ≈ tσ. At some point in the reduction this literal (or an
instance of it) must be removed (otherwise rule 1 is applicable), and here pos is
decreased. The other steps don’t increase pos, by the previous Lemma. In rule
5 pos is immediately decreased, and it doesn’t increase by other steps. ut
Lemma 14 (Reduce criterion). Given a ground term algebra D and a for-
mula φ in it, φ is satisfiable if and only if Reduce(φ) is satisfiable.

Proof. If φ −→ φ′ by any of the rules 1–5, φ is satisfiable iff φ′ is satisfiable. ut
The following lemma can be derived from [19, Thm. 10], but we provide a

direct proof that reveals the satisfying assignment.

Lemma 15 (SAT criterion). Suppose D is an infinite ground term algebra.
Then a reduced formula φ is satisfiable if φ has no purely positive clause.

Proof. Let n = #φ; each clause of φ has a negative literal of the form xi 6≈ ti, for
1 ≤ i ≤ n. It suffices to provide an assignment σ which satisfies all these negative
literals. If we have infinitely many constants, then a satisfying assignment can be
easily provided. So we concentrate on the other case: Σ has at least one function
symbol g of arity m > 0.

First define S(t) for any term t to be the number of occurrences of non-
constant function symbols in t. Let c be a constant symbol in D, and define
a context F [] as: F [] = g(¤, c, . . . , c) (with m − 1 occurrences of c). Finally,
let M = 1 + Max1≤i≤nS(ti) and define the context C[] = FM [], the M -fold
application of F []. We claim that the following assignment satisfies xi 6≈ ti for
all 1 ≤ i ≤ n, and hence φ: σ(x) = Ci[c], if x = xi for some 1 ≤ i ≤ n;
σ(x) = c, otherwise. Indeed, note that S(σ(xi)) = M.i. Moreover, if S(ti) = 0,
then S(σ(ti)) = M.j with 0 ≤ j ≤ n and i 6= j (xi 6= ti because φ is reduced).
Otherwise, S(σ(ti)) = M.k + S(ti) for some k ≥ 0, and 0 < S(ti) < M . In both
cases, S(σ(xi)) 6= S(σ(ti)). ut

We can now combine the lemmas on the basic blocks and apply Theorem 2.
First we instantiate GDPLL as follows. We take the Reduce function defined in
Definition 8. We define for φ ∈ Reduce(Cnf) and l ∈ Litp(φ)

Eligible(φ) = Litp(φ)
Filter(φ, l) = φ ∧ l

SatCriterion(φ) = for all C ∈ φ, C ∩ Litn 6= ∅
Theorem 16. Let (Fun;≈) be a signature with an infinite ground term algebra
D. Let φ be a CNF. Let GDPLL be instantiated as indicated above. Then

– If φ is satisfiable in D then GDPLL(φ) = SAT.
– If φ is unsatisfiable in D then GDPLL(φ) = UNSAT.

Proof. In order to apply Theorem 2, we have to check Properties 1–5. Property
2 and 5 are obvious. Property 1 has been proved in Lemma 14. Property 3 has
been proved in Lemma 13; here we set φ ≺ ψ if and only if pos(φ) < pos(ψ),
which is obviously well-founded. Property 4 has been proved in Lemma 15. ut

5 Implementation and Experiments

The GDPLL algorithm instantiated for ground term algebras has been imple-
mented in C. We implemented the almost linear unification algorithm from [18,
3], which is based on a union-find data structure on terms. Linearity essen-
tially depends on the use of subterm sharing. The intermediate terms can even
be cyclic, so a separate loop-detection is needed, which implements the “occurs-
check”. We used the ATerm library [8], which represents terms as directed acyclic
graphs. The library provides maximal subterm sharing and automatic garbage
collection. Clauses and CNFs are implemented naively as (unidirected) linked
lists. We have neither implemented any form of subsumption, nor heuristics for
choosing a good splitting variable.

As benchmarks, we used some purely equational formulas (phe, circ) and
some formulas with function symbols (succ, evod):

phe : (
∧

1≤i<j≤N xi 6= xj) ∧ (
∧

1≤i≤N

∨
1≤j≤N,j 6=i xj = y)

circ : (
∨

1≤i≤N xi 6= xi+1) ∧ (
∧

1≤i<j≤N (xi = xi+1 ∨ xj = xj+1))
succ : (

∧
1≤i<j≤N (xi = S(xi+1) ∨ xj = S(xj+1))) ∧

∨
1≤i≤N xi = xi+1

evod : x1 = xN ∧∧
1≤i<N (xi = S(xi+1) ∨ S(xi) = xi+1)

The first conjunct of phe (equational pigeon hole) expresses that all xi’s are
different. The second, however, insists that at least two xi’s are equal to y.
This is a clear contradiction. These formulas also occur in [26]. circ (a ring
of equations) has variables x1, . . . , xN , which are on a ring: we will write xN+1

to denote syntactically the same variable as x1. Intuitively, the first conjunct
expresses that at least one equality on the ring is false. The second conjunct
makes sure that at most one equality is false. So exactly one conjunct on the
ring is false, which contradicts transitivity of equality. succ (natural numbers
with equality) also has its variables on a ring; xN+1 denotes the variable x1. We
also have a unary constant S. The first part expresses that for all i but some j,
we have xi = S(xi+1). Then xj+1 = SN (xj) by transitivity. This contradicts the
second part, which states that for some k, xk = xk+1. Finally, evod (on even and
odd natural numbers) has variables: x1, . . . , xN and a unary constant S. Note
that the second part implies that xi is odd for all odd i (or even). This formula
is satisfiable iff N is odd.

In the table below we show the experimental results. Each row corresponds
to a particular instance (N) of some formula type. For each formula instance
we show its size (number of literals), the time in seconds (on a Linux AMD
Athlon 2400+ processor with 2 GHz; here – means more than 600 seconds)
and the number of recursive calls to the GDPLL procedure. We compared two
approaches. The last two columns indicate the algorithm with full unit resolution
(i.e. with rules 4 and 5 of Definition 8). In the other two columns we omitted
unit resolution, reverting to a definition of Filter similar to Section 3.2.

phe without UR with UR

N # lit #sec #calls #sec #calls

40 2340 0 1639 0 77
80 9480 8 6479 0 157
120 21420 52 14519 2 237
160 38160 168 25759 4 317
200 59700 433 40199 10 397

circ without UR with UR

N # lit #sec #calls #sec #calls

100 10000 3 10097 0 199
200 40000 50 40197 3 399
300 90000 258 90297 9 599
400 160000 – – 22 799
500 250000 – – 43 999

succ without UR with UR

N # lit #sec #calls #sec #calls

50 2500 6 2741 1 2449
100 10000 92 10491 6 9899
150 22500 459 23241 20 22349
200 40000 – – 48 39799
250 62500 – – 103 62249

evod without UR with UR

N # lit #sec #calls #sec #calls

14 27 2 27487 2 12951
16 31 6 111337 9 52665
18 35 25 449927 31 213523
20 39 100 1815155 104 863819
22 43 407 7313663 505 3488871

For the instances phe, circ and succ, it can be concluded that without unit
resolution, the number of recursive calls is quadratic in N , i.e. linear in the input
size. With unit resolution, the number of recursive calls is linear in N for phe
and circ, and still quadratic for succ. Of course, this information can also be
easily obtained by an analytic argument. Still, in the latter case, the used time
is much better for the variant with full unit resolution (probably due to the fact
that the size of the intermediate CNFs is smaller). Finally, the evod formulas
are the hardest for our method; every next even instance takes around 4 times
more work. Here unit resolution roughly halves the number of calls to GDPLL,
but overall it costs a little more time.

In [26] some experiments on the same phe formula type are given. Several
encodings to propositional logic are tried. The best result was that phe with
N = 60 took 11 seconds on a 1 GHz Pentium 4. This solution used an encod-
ing that adds transitivity constraints and subsequently used zCHAFF to solve
the resulting propositional problem. This method performed clearly better than
methods based on bit-vector encoding, or the use of BDDs. We report 0.20 secs
for N=60, which is about 50 times better than the best method from [26], on a
machine which is at most 2.5 times faster.

6 Concluding Remarks and Further Research

In this paper we gave a framework generalizing the well-known DPLL procedure
for deciding satisfiability of propositional formulas in CNF. In our generalized
procedure GDPLL we kept the basic idea of choosing an atom and doing two
recursive calls: one for the case where this atom holds and one for the case where
this atom does not hold. All other ingredients were kept abstract: Reduce for
cleaning up a formula, SatCriterion for a simple criterion to decide satisfiability,
Eligible to describe which atoms are allowed to be chosen and Filter for describing
the case analysis. We collected a number of sufficient conditions on these four
abstract procedures for proving correctness and termination. In this way GDPLL

can be applied for any kind of logic as long as we have instantiations of the
abstract procedures satisfying these conditions.

Our procedure GDPLL was worked out for three such fragments of increasing
generality: propositional logic, equality logic and ground term algebra. For the
last one we succeeded in giving a powerful instance of the procedure Reduce
based on unification. In this way the other three abstract procedures could be
kept trivial yielding a powerful implementation for satisfiability of CNFs in which
the atoms are equations between open terms to be interpreted in ground term
algebra. Note that the resulting algorithm can be easily extended to compute a
satisfying assignment (if any).

Another interpretation of equations between terms is allowing an arbitrary
domain. This is usually called the logic of uninterpreted functions. How to find
suitable instances for the four abstract procedures in GDPLL for this logic is one
of the topics of ongoing research. Also the addition of other interpreted functions
(such as + or append) or predicates (like >) is subject to future research.

References

1. Armando, A., Castellini, C., Giunchiglia, E., Giunchiglia, F., and Tac-
chella, A. Sat-based decision procedures for automated reasoning: a unifying
perspective. IRST Technical Report 0202-05, Istituto Trentino di Cultura, Febru-
ary 2002.

2. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., and Sebastiani,
R. A sat based approach for solving formulas over boolean and linear mathematical
propositions. In Automated Deduction - CADE-18:18th International Conference
on Automated Deduction (Copenhagen, Denmark, July 27-30 2002), A. Voronkov,
Ed., Springer-Verlag Heidelberg, pp. 195–210.

3. Baader, F., and Nipkow, T. Term Rewriting and All That. Cambridge Univer-
sity Press, New York, 1998.

4. Badban, B., and Pol, J. v. d. Zero, successor and equal-
ity in BDDs. Annals of Pure and Applied Logic (2004). see
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0231.pdf.

5. Badban, B., Pol, J. v. d., Tveretina, O., and Zantema, H. Generalizing
DPLL and satisfiability for equalities. CSR Technical Report 04/14, Technical
University of Eindhoven, 2004.

6. Barrett, C. W., Dill, D. L., and Stump, A. A framework for cooperating
decision procedures. In Proceedings of the 17th International Conference on Au-
tomated Deduction (Pittsburgh, PA) (2000), D. A. McAllester, Ed., vol. 1831 of
Lecture Notes in Artificial Intelligence, Springer, pp. 79–98.

7. Baumgartner, P. FDPLL – A First-Order Davis-Putnam-Logeman-Loveland
Procedure. In CADE-17 (2000), D. McAllester, Ed., vol. 1831 of LNAI, Springer,
pp. 200–219.

8. Brand, M., Jong, H. d., Klint, P., and Olivier, P. Efficient Annotated Terms.
Software – Practice & Experience 30 (2000), 259–291.

9. Burch, J.R. and D.L. Dill. Automatic verification of pipelined microprocessors
control. In Proceedings of Computer Aided Verification, CAV’94 (June 1994), D.
L. Dill, Ed., LNCS 818, Springer-Verlag, pp. 68–80.

10. Colmerauer, A. Equations and Inequations on Finite and Infinite Trees. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems
(FGCS-84) (Tokyo, Japan, Nov. 1984), ICOT, pp. 85–99.

11. Comon, H., and Lescanne, P. Equational problems and disunification. Journal
of Symbolic Computation 7, 3–4 (1989), 371–425.

12. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem
proving. Communications of the ACM 5, 7 (1962), 394–397.

13. Davis, M., and Putnam, H. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery 7, 3 (1960), 201–215.

14. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Olivera, A., and Tinelli, C.
Dpll(t): Fast decision procedures. In 16th International Conference on Computer
Aided Verification (CAV) (2004), July.

15. Giunchiglia, F., and Sebastiani, R. Building decision procedures for modal
logics from propositional decision procedures: the case study of modal K. pp. 583–
597.

16. Groote, J., and Pol, J. v. d. Equational binary decision diagrams. In Proc. of
LPAR 2000 (2000), M. Parigot and A. Voronkov, Eds., LNAI 1955, Springer,
pp. 161–178.

17. Groote, J., and Reniers, M. Algebraic process verification. In Handbook of
Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. Elsevier, 2001, ch. 17.

18. Huet, G. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. PhD
thesis, Université Paris, 7, 1976.

19. Lassez, J.-L., Maher, M. J., and Marriott, K. Unification Revisited. In Foun-
dations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan
Kaufmann Publishers, Los Altos, California, 1987, pp. 587–625.

20. Maher, M. Complete axiomatizations of the algebras of finite, rational and infinite
trees. In Proceedings, Third Annual Symposium on Logic in Computer Science
(1988), IEEE Computer Society, pp. 348–357.

21. Nieuwenhuis, R., and Oliveras, A. Congruence closure with integer offsets.
In 10th Int. Conf. on Logics for Programming, AI and Reasoning (LPAR) (Sept.
2003).

22. Pichler. On the complexity of equational problems in CNF. Journal of Symbolic
Computation 36 (2003).

23. Pnueli, A., Rodeh, Y., Shtrichman, O., and Siegel, M. Deciding equality
formulas by small domains instantiations. In Proceedings of Computer Aided Veri-
fication, CAV’99 (1999), N. Halbwachs and D. Peled, Eds., LNCS 1633, Springer-
Verlag.

24. Robinson, J. A machine-oriented logic based on the resolution principle. Journal
of the ACM 12, 1 (1965), 23–49.

25. Shankar, N., and Rueß, H. Combining Shostak theories. In Proceedings of the
13th International Conference on Rewriting Techniques and Applications (Copen-
hagen, Denmark) (July 2002), S. Tison, Ed., vol. 2378 of Lecture Notes in Computer
Science, Springer, pp. 1–18.

26. Zantema, H., and Groote, J. F. Transforming equality logic to propositional
logic. In Proceedings of 4th International Workshop on First-Order Theorem Prov-
ing (FTP’03) (2003), vol. 86(1) of Electronic Notes in Theoretical Computer Sci-
ence.

