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Invited talk: Unification in Cryptographic
Protocol Analysis

Christopher Lynch

Clarkson University, Potsdam, NY, USA
clynch@clarkson.edu

Abstract. Symbolic cryptographic protocol analysis represents messages as
ground terms. Rules are given from the point of view of each principal, indicating
that if a principal receives a message of a particular type then that principal will
send out a message of a particular type. Variables are used to indicated that parts
of a message the principal receives are previously unknown to the principal, and
therefore the principal will accept anything for those parts of the message. We
assume that a malicious intruder can see everything on the network, read and
modify messages, and masquerade as the principals. Every message that is passed
on the network will be known to the intruder, so everything is represented as
intruder knowledge. The intruder also has the ability to perform functions on
the data. For example, if an intruder knows a message m and a key k then
the intruder can encrypt m with k. Also, if the intruder knows a message m
encrypted with k, and the intruder knows k, then the intruder will know m.
Intruders have some initial knowledge. Cryptographic protocol analysis asks the
question whether the intruder can mount an attack, which is often equivalent to
asking whether the intruder can learn a particular goal message, such as a secret
key.

The problem of cryptographic protocol analysis is to determine whether the
intruder, given the initial knowledge, actions of the principals, and abilities of
the intruders, can learn the goal message. This is a deduction problem, which is
solved by working through the search space. Unification is a key component of
this search, because we must unify messages that are sent with messages that
are expected to be received.

Much of the work on cryptographic protocol analysis considers the encryption
function as a black box. However, this level of abstraction misses many attacks.
In reality, encryption algorithms have certain properties. For example, exclusive
OR is often used in encryption, and XOR is associative, commutative, nilpotent
and has an identity. Encryption algorithms often involve multiplication which
has Abelian group properties. Homomorphisms are common in encryption, rep-
resenting the fact that an operation can be performed on encrypted data which
acts on the data itself. In order to reason about these algebraic theories, unifi-
cation must be performed modulo an equational theory.

We will discuss the work that has been done on incorporating equational
unification into cryptographic protocol analysis. New algorithms have been de-
veloped, because it is important to not only have efficient algorithms, but also
algorithms that create a small complete set of unifiers, to avoid blowing up the
search space. We will discuss new techniques used to develop these algorithms.



Computing Local Unifiers in the
Description Logic EL without the Top Concept

Franz Baader1?, Nguyen Thanh Binh2, Stefan Borgwardt1?, and
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1 TU Dresden, Germany, {baader,stefborg,morawska}@tcs.inf.tu-dresden.de
2 ETH Zürich, Switzerland, thannguy@inf.ethz.ch

Introduction

Unification in Description Logics (DLs) has been proposed in [7] as a novel
inference service that can, for example, be used to detect redundancies in on-
tologies. For instance, assume that one knowledge engineer defines the concept
of professors that are mothers as Person u Female u ∃child.> u ∃job.Professor,
whereas another knowledge engineer represents this notion in a somewhat dif-
ferent way, e.g., by using the concept term Motheru∃job.(TeacheruResearcher).
These two concept terms are not equivalent, i.e., they are not interpreted by
the same set of individuals in every interpretation, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by substituting the concept name Professor in the first term by the concept term
Teacher u Researcher and the concept name Mother in the second term by the
concept term Person u Female u ∃child.>. We call a substitution that makes two
concept terms equivalent a unifier of the two terms. Such a unifier proposes
definitions for the concept names that are used as variables. In our example,
we know that, if we define Mother as Person u Female u ∃child.> and Professor
as Teacher u Researcher, then the two concept terms from above are equivalent
w.r.t. these definitions.

The concept terms of the above example are formulated in the DL EL, which
has the concept constructors conjunction (u), existential restriction (∃r.C), and
the top concept (>). This DL has recently drawn considerable attention since,
on the one hand, important inference problems such as the subsumption problem
are polynomial in EL [1, 4]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies. For example, the large medical
ontology SNOMED CT3 can be expressed in EL. Unification in EL was first
investigated in [5], where it was shown that the decision problem is NP-complete.
Basically, the proof that one can check for the existence of an EL-unifier within
nondeterministic polynomial time given in [5] proceeds as follows. First, it is
shown that any solvable EL-unification problem has a local unifier, i.e., a unifier
that is “built from atoms” of the input problem. Second, since the definition
of locality implies that a local substitution can be guessed in polynomial time,

? Supported by DFG under grant BA 1122/14-1
3 see http://www.ihtsdo.org/snomed-ct/
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one can test for the existence of a local unifier within NP by guessing a local
substitution and then checking whether it is indeed a unifier. In particular, this
means that the results of [5] also show how to compute all local unifiers of a
given EL-unification problem. In [6] it was shown that one can employ a SAT
solver to search for local EL-unifiers.

Actually, if one takes a closer look at the concept definitions in SNOMED CT,
then one sees that they do not use the top concept, i.e., SNOMED CT is not
formulated in EL, but rather in its sub-logic EL−>, which differs from EL in
that the use of the top concept is disallowed. If we employ EL-unification to de-
tect redundancies in (extensions of) SNOMED CT, then a unifier may introduce
concept terms that contain the top concept, and thus propose definitions for
concept names that are of a form that is not used in SNOMED CT. Apart from
this practical motivation for investigating unification in EL−>, we also found
it interesting to see how such a small change in the logic influences the unifi-
cation problem. Surprisingly, it turned out that the complexity of the problem
increases considerably: we were able to show in [2] that deciding unifiability in
EL−> is PSpace-complete. In [2], we restricted the attention to the decision
problem, and did not address the problem of how to compute unifiers of solvable
EL−>-unification problems.

In the present paper we introduce a notion of locality for EL−>-unifiers, and
show that we can always compute a local unifier for a solvable EL−>-unification
problem. However, whereas any EL-unification problem has only exponentially
many local EL-unifiers, each of which can be represented in polynomial space
using structure sharing, a given EL−>-unification problem can have infinitely
many local EL−>-unifiers. We show that a solvable EL−>-unification problem
always has a local EL−>-unifier of at most exponential size, which can effectively
be computed.

The Description Logics EL and EL−>

Starting with a set NC of concept names and a set NR of role names, EL-concept
terms are built using the concept constructors top-concept (>), conjunction (Cu
D), and existential restriction (∃r.C for every r ∈ NR). The EL-concept term C
is an EL−>-concept term if > does not occur in C. Since EL−>-concept terms
are special EL-concept terms, most definitions transfer from EL to EL−>, and
thus we only formulate them for EL.

The semantics of EL and EL−> is defined in the usual way, using the notion
of an interpretation I = (DI , ·I), which consists of a nonempty domain DI
and an interpretation function ·I that assigns binary relations on DI to role
names and subsets of DI to concept terms, as shown in the semantics column
of Table 1. The concept term C is subsumed by the concept term D (written
C v D) iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent
to D (written C ≡ D) iff C v D and D v C, i.e., iff CI = DI holds for all
interpretations I.

In order to define locality of unifiers in EL, we need the notion of an atom.
An EL-concept term is called an atom iff it is a concept name A ∈ NC or an
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Name Syntax Semantics EL EL−>

concept name A AI ⊆ DI x x

role name r rI ⊆ DI ×DI x x

top-concept > >I = DI x

conjunction C uD (C uD)I = CI ∩DI x x

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x

subsumption C v D CI ⊆ DI x x

equivalence C ≡ D CI = DI x x

Table 1. Syntax and semantics of EL and EL−>.

existential restriction ∃r.D. Concept names and existential restrictions ∃r.D,
where D is a concept name or >, are called flat atoms. The set At(C) of atoms
of an EL-concept term C consists of all the subterms of C that are atoms.
For example, C = A u ∃r.(B u ∃r.>) has the atom set At(C) = {A,∃r.(B u
∃r.>), B,∃r.>}. Obviously, any EL-concept term C is a conjunction C = C1 u
. . .uCn of atoms and >. We call the atoms among C1, . . . , Cn the top-level atoms
of C. The EL-concept term C is called flat if all its top-level atoms are flat.

The notion of a top-level atom allows for a simple recursive characterization
of subsumption in EL. We have C v D iff every top-level atom of D subsumes
some top-level atom of C. In addition, the only atom subsumed by A ∈ NC is
A itself, and all atoms subsumed by ∃r.E are of the form ∃r.E′ with E′ v E.

In order to define locality of unifiers in EL−>, we additionally need the
notion of a particle: EL−>-concept terms of the form ∃r1. · · · ∃rn.A for n ≥ 0
role names r1, . . . , rn and a concept name A are called particles . The set Part(C)
of all particles of a given EL−>-concept term C is defined as

– Part(C) := {C} if C is a concept name,
– Part(C) := {∃r.E | E ∈ Part(D)} if C = ∃r.D,
– Part(C) := Part(C1) ∪ Part(C2) if C = C1 u C2.

For example, the particles of C = A u ∃r.(A u ∃r.B) are A,∃r.A, ∃r.∃r.B.

Unification in EL and EL−>

To define unification in EL and EL−> simultaneously, let L ∈ {EL, EL−>}.
When defining unification in L, we assume that the set of concept names is
partitioned into a set Nv of concept variables (which may be replaced by sub-
stitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). An L-substitution σ is a mapping from Nv into the set of all
L-concept terms. This mapping is extended to concept terms in the usual way,
i.e., by replacing all occurrences of variables in the term by their σ-images. An
L-concept term is called ground if it contains no variables, and an L-substitution
σ is called ground if the concept terms σ(X) are ground for all X ∈ Nv.

Unification tries to make concept terms equivalent by applying a substitution.
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Definition 0.1. An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution
σ is an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ , i.e., iff
σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called L-unifiable.

In the following, we will use the subsumption C v? D as an abbreviation for the
equation C uD ≡? C. Obviously, σ solves this equation iff σ(C) v σ(D).

Clearly, every EL−>-unification problem Γ is also an EL-unification problem.
Whether Γ is L-unifiable or not may depend, however, on whether L = EL or
L = EL−>. As an example, consider the problem Γ := {A v? X,B v? X},
where A,B are distinct concept constants and X is a concept variable. Obviously,
the substitution that replaces X by > is an EL-unifier of Γ . However, Γ does
not have an EL−>-unifier. In fact, for such a unifier σ, we would need to have
A v σ(X) and B v σ(X), and it is easy to see that this is only possible if
σ(X) ≡ >.

As shown in [5], we may without loss of generality restrict our attention to
ground unifiers of flat L-unification problems, i.e., unification problems in which
the left- and right-hand sides of equations are flat L-concept terms. Given a flat
L-unification problem Γ , we denote by At(Γ ) the set of all atoms of Γ , i.e., the
union of all sets of atoms of the concept terms occurring in Γ . By Var(Γ ) we
denote the variables that occur in Γ , and by NV(Γ ) := At(Γ ) \ Var(Γ ) the set
of all non-variable atoms of Γ .

Local unifiers

In EL, every solvable unification problem has a local EL-unifier, i.e., an EL-
unifier γ such that, for every variable X, the top-level atoms of γ(X) are of the
form γ(D) for D ∈ NV(Γ ).

Example 0.2. Consider the flat EL-unification problem Γ that consists of the
three equations

X ≡? Y uA, Y u ∃r.X ≡? ∃r.X, Z u ∃r.X ≡? ∃r.X.

Then the substitutions σ0 := {X 7→ A, Y 7→ >, Z 7→ >} and σ1 := {X 7→
A, Y 7→ >, Z 7→ ∃r.A} are the only local EL-unifiers of Γ . In fact, we have
NV(Γ ) = {A,∃r.X}, and thus the only possible image for X in a local unifier σ
is A (since σ(∃r.X) = ∃r.σ(X) obviously cannot be a conjunct of σ(X)). Since
the first equation implies that A = σ(X) v σ(Y ), we know that σ(Y ) can only
be > or A. However, the second equation prevents the second possibility. Finally,
the third equation ensures that σ(Z) is > or ∃r.A.

Note that σ0 and σ1 both contain >, and thus are not EL−>-unifiers. This
shows that Γ does not have an EL−>-unifier that is local in the sense defined
above. Nevertheless, Γ has an EL−>-unifier. For example, the substitution γ1 :=
{X 7→ Au∃r.A, Y 7→ ∃r.A, Z 7→ ∃r.∃r.A} is such a unifier. Except for the atom
A, the top-level atoms of γ1(X), γ1(Y ), γ1(Z) are not of the form γ(D) for some
D ∈ NV(Γ ), but the ones different from A are all particles of γ(D) for some
D ∈ NV(Γ ). This motivates the following definition.
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Definition 0.3. The EL−>-unifier γ of Γ is a local EL−>-unifier of Γ if, for
every variable X, each top-level atom of γ(X) is of the form γ(D) for some
D ∈ NV(Γ ) or a particle of γ(D) for some D ∈ NV(Γ ).

The unification problem of Example 0.2 can be used to demonstrate that a
given EL−>-unification problem can have infinitely many local EL−>-unifiers.
It is easy to see that the substitutions

γn := {X 7→ Au∃r.Au · · · u (∃r.)nA, Y 7→ ∃r.Au · · · u (∃r.)nA,Z 7→ (∃r.)n+1A}

are all local EL−>-unifiers of Γ in the sense of Definition 0.3. Indeed, every
top-level atom of γn(X), γn(Y ), and γn(Z) is either A or a particle of γn(∃r.X).

We are now ready to formulate the main result of this paper.

Theorem 0.4. Given a solvable EL−>-unification problem Γ , we can construct
a local EL−>-unifier of Γ of at most exponential size in time exponential in the
size of Γ .

We now provide a high-level description of the procedure for EL−>-unification
from [2, 3] and show how it can be adapted such that it produces a local EL−>-
unifier of size at most exponential in the size of Γ whenever there is an EL−>-
unifier.

Constructing local EL−>-unifiers

The first step of the EL−>-unification procedure reduces EL−>-unifiability of Γ
to solvability of a certain kind of linear language inclusions over the alphabet
NR. These inclusions are of the form Xi ⊆ L0 ∪ L1X1 ∪ · · · ∪ LnXn, where
X1, . . . , Xn are indeterminates, i ∈ {1, . . . , n}, and each Li (i ∈ {0, . . . , n}) is a
subset of NR ∪ {ε}. For each variable X ∈ Nv and each constant A ∈ Nc, there
is one indeterminate XA in these inclusions.

A solution θ of such an inclusion assigns sets θ(Xi) ⊆ N∗R to the indetermi-
nates such that θ(Xi) ⊆ L0 ∪ L1θ(X1) ∪ · · · ∪ Lnθ(Xn). A solution to a set I
of such inclusions is called admissible if, for every variable X ∈ Nv, there is a
constant A ∈ Nc such that θ(XA) is nonempty. This condition will ensure that
the constructed unifier of Γ is indeed an EL−>-substitution, i.e., it does not
contain >. We are also only interested in finite solutions, i.e., solutions θ such
that all the sets θ(Xi) are finite.

The problem of finding an EL−>-unifier for Γ can be reduced to the problem
of finding a finite, admissible solution to a certain set of such language inclu-
sions. More precisely, there is a set FΓ of exponentially many sets I of language
inclusions (of polynomial size) such that Γ is EL−>-unifiable iff there is a finite,
admissible solution for one I ∈ FΓ . This reduction uses nondeterministic poly-
nomial time in the size of Γ since we can guess an element of FΓ in polynomial
time.

Lemma 0.5. The EL−>-unification problem Γ has an EL−>-unifier iff there is
a set I ∈ FΓ that has a finite, admissible solution.
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In this paper, we are further concerned with local solutions and their con-
nection to local EL−>-unifiers of Γ .

Definition 0.6. Let I be a finite set of inclusions of the above form. A solution
θ of I is called local if all words w ∈ θ(X)\{ε} for some indeterminate X occur
on the right-hand side of some inclusion Xi ⊆ L0 ∪L1X1 ∪ · · · ∪LnXn under θ,
i.e., either w ∈ L0 or w ∈ (Li \ {ε})θ(Xi) for some i ∈ {1, . . . , n}.

The next lemma states the close connection between the two notions of lo-
cality.

Lemma 0.7. If there is a finite, local, admissible solution θ for one I ∈ FΓ , then
one can construct a local EL−>-unifier σ of Γ that is of size at most exponential
in the size of Γ and polynomial in the size of θ.

Example 0.8. One element of FΓ for the EL−>-unification problem Γ from Ex-
ample 0.2 consists of the inclusions

YA ⊆ XA, XA ⊆ {ε} ∪ YA, YA ⊆ {r}, ZA ⊆ {r}XA.

For any n ∈ N, the mapping {XA 7→ {ε, r, . . . , rn}, YA 7→ {r, . . . , rn}, ZA 7→
{rn+1}} is a finite, local, admissible solution of these inclusions, which corre-
sponds to the local EL−>-unifier γn of Γ (see Example 0.2).

This illustrates that there may be infinitely many such solutions for a given
I ∈ FΓ . However, there always is one of size at most exponential in the size
of Γ if there is one at all. To show this, we consider the remaining part of the
EL−>-unification algorithm. There we use the computational model of alter-
nating finite automata with ε-transitions (ε-AFA), which are a special case of
two-way alternating finite automata. In order to decide the existence of a finite,
admissible solution of I, for each variable XA an ε-AFA A(X,A) is constructed
that has the following property.

Lemma 0.9. The language accepted by A(X,A) is non-empty iff there is a finite
solution θ of I such that θ(XA) 6= ∅.

The emptiness test for such automata is a PSpace-complete task [8]. Fur-
thermore, if the language accepted by A(X,A) is non-empty, then one can con-
struct a run of this automaton of size at most exponential in the size of Γ . This
run can then be translated into a finite solution of I with the property that
θ(XA) 6= ∅. Using a weak condition on the structure of runs of A(X,A), we can
even construct a finite, local solution of I with this property.

Lemma 0.10. If the language accepted by A(X,A) is non-empty, then one can
construct a finite, local solution θ of I with θ(XA) 6= ∅.

The set of all solutions of I is closed under point-wise union, i.e., if θ1 and θ2
are solutions of I, then θ1 ∪ θ2 is also one, where (θ1 ∪ θ2)(X) := θ1(X)∪ θ2(X)
for each indeterminate X of I. Thus, I has a finite, admissible solution iff for
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each X ∈ Nv there is a constant A ∈ Nc such that A(X,A) accepts a non-
empty language. Since the union of local solutions is again local, it is possible to
construct a finite, local, admissible solution of I in exponential time in the size
of Γ if there exists a finite, admissible solution of I.

To summarize, assume that Γ is unifiable. Then we enumerate all elements I
of FΓ and check whether they have a finite, admissible solution. By Lemma 0.5,
at least one of them must have such a solution. Lemmata 0.9 and 0.10 show that
one can construct a finite, local, admissible solution θ of I that is of size at most
exponential in the size of Γ . Using Lemma 0.7, we can then construct a local
EL−>-unifier of Γ that is of size at most exponential in the size of Γ .

It is shown in [3] that this exponential bound is optimal, i.e., there is a
sequence Γn of solvable EL−>-unification problems of size polynomial in n such
that any local EL−>-unifier of Γn has size at least exponential in n.
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1 Introduction

Unification can be defined in terms of validity in equational logic. An instance
Γ = {t1 =? s1, . . . , tk =? sk} of the unification problem corresponds to the
problem: does ` φ hold, where φ ≡ ∃X̄[t1(x̄) = s1(x̄) ∧ . . . ∧tk(x̄) = sk(x̄)], i.e.
is φ valid? Similarly, an instance Γ of the E-unification problem corresponds to
the problem does E ` φ hold, i.e. is φ valid in every model of E .

The unification problems can be combined with negative constraints. The
(classical) disunification problem results from allowing negated equations. An
instance of the (classical) disunification problem is a set of equations, of the
form t =? s, and disequations, of the form t 6=? s, {t1 =? s1, . . . , tk =? sk,
t′1 6=? s′1, . . . , t

′
n 6=? s′n} and the question is to decide whether ` ∃x̄[t1(x̄) =

s1(x̄)∧ . . .∧ tk(x̄) = sk(x̄)∧ t′1(x̄) 6= s′1(x̄)∧ . . .∧ t′m(x̄) 6= s′m(x̄)] holds. We refer
to the aforementioned problem as the classical disunification problem, because
in [6] the disunification problem is defined as deciding validity of any equational
first order formula.

The (classical) disunification problem has been studied in presence of an
equational theory. Basically, ` has been replaced by E `. It has been studied
in [2] (the AC-case), [3] (the ACI-case) and related papers (see [3] for refer-
ences). Whereas the classical disunification problem modulo ACU is decidable,
the problem of deciding ACU ` φ for any equational formula φ is undecidable
[11]. The problem remains undecidable even for the ∃∗∀∗ fragment [7].

A subfragment of the ∃∗∀∗ fragment, called the complement problem in E , has
been intensively studied in the case E = AC ([8], [9], [10]). Let E be an equational
theory. An instance of the complement problem in E is a term t and a sequence
of terms s1, . . . , sk, such that x̄ are variables occurring in t, ȳ are variables
occurring in s1, . . . , sk and x̄ ∩ ȳ = ∅. The question is to decide whether E `
∃x̄∀ȳ[t 6= s1∧. . .∧t 6= sk] holds. The difference between the complement problem
and E-unification is essential, there are universally quantified variables in the
complement problem. Therefore, despite having well understood AC-unification
algorithms, the complement problem in AC is still an open problem.

Recently, Kirchner et. al. ([4], [5]) introduced another approach to combine
negative constraints with unification. Instead of modifying the unification prob-
lem itself, the set of possible instances has been extended by allowing anti-terms.

? The author is supported by MNiSW under grant N206 379837 2009-2011
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An anti-term is a term over Σ ∪ {k}. However, the symbol k is rather a logical
symbol than a function symbol. The interpretation of an anti-term k(t) is the
set of all ground terms that are not instances of t. Moreover, variables that occur
only below the k operator are considered as universally quantified.

The papers [4], [5] present matching with anti-patterns, that is solving the
equations where one side is an anti-term and the other is a ground term. It
has been shown that matching with anti-patterns is unitary and it is decidable
in polynomial time. Alos, they considered an A-matching of anti-patters, that
is matching modulo associativity. It has been shown that the A-matching of
anti-patters problem is decidable in NEXPTIME. However, the matching with
anti-patterns is very restricted. Thus, the question emerges: what happens when
both sides can be anti-terms? The unification of anti-terms problem is: given a
set of equations where both sides are anti-terms, does this set have a solution?

Having some form of negation in unification problems, it is possible to ex-
press more properties. Moreover, even properties that can be described by pure
unification equations can be described in a more concise way using negation. The
approach to combine negative constraints and unification by adjoining “nega-
tion” to the signature is novel and interesting.

In this paper we define the unification of anti-patterns problem and we in-
vestigate its properties. We will show that unification of anti-terms generalizes
disunification and the complement problem. We relate unification to aforemen-
tioned approaches and to fragments of the equational first order logic.

1.1 Preliminaries

The set T (Σ,X ) denotes the set of all terms over the signature Σ with variables
from X and T (Σ) = T (Σ, ∅) denotes the set of all ground terms over Σ. The set
of anti-terms AT (Σ,X ) is the smallest set containing the set of terms T (Σ,X ),
k(t) and f(t1, . . . , tk) where f ∈ Σ and t1, . . . , tk ∈ AT (Σ,X ).

Let E be an equational theory. For a term t we define JtKE = {s : s =E Θ(t)
and Θ is a grounding substitution }. For an anti-term t we define Jt[ks]ωKE =
Jt[x]ωKE \Jt[s]ωKE where x is a fresh variable and there is no k in t on any position
preceding ω. If E = ∅ we will write JtK instead of JtKE .

In order to avoid trivial cases, we assume that every signature Σ contains at
least one constant and one function symbol of arity at least one.

A set of free variables FVar(t) of the anti-term t is defined as:

– FVar(X) = {X} where X is a variable

– FVar(kq) = ∅
– FVar(f(t1, . . . , tk)) =

⋃
i∈{1,...,k} FVar(ti)

The definition of the free variables is straightforwardly generalized to equa-
tions and sets of equations as follows: FVar(t =? s) = FVar(t) ∪ FVar(s) and
FVar(Γ ) =

⋃
t=?s∈Γ FVar(t =? s). We assume that substitutions are applied

only to the free variables of anti-terms.



Unification of anti-terms 11

1.2 The definition of the unification of anti-terms problem

This paper follows work on matching with anti-patterns (see [4], [5]), but ac-
cording to our knowledge the notion of unification of anti-terms has not been
previously defined.

Definition 1.1. Let E be an equational theory and let ΣΓ , ΣΘ be signatures,
where ΣΓ ⊆ ΣΘ. Let Γ = {t1 =? s1, . . . , tk =? sk}, where t1, . . . , tk, s1, . . . , sk
are anti-terms over ΣΓ . A substitution Θ over ΣΘ is a solution of an instance
Γ of the unification of anti-terms problem modulo E if and only if dom(Θ) =
FVar(Γ ) and for every substitution Ξ with dom(Ξ) = FVar(Θ(Γ )) it holds that
JΞ(Θ(t))KE ∩ JΞ(Θ(s))KE 6= ∅.

Note that a solution Θ is defined only on the free variables of Γ and Ξ is
defined on the free variables of Θ(Γ ) = {Θ(ti) =? Θ(si) : ti =? si ∈ Γ}.

Unification of anti-terms generalizes the matching with anti-patterns. Also, it
can be shown that if t, s are terms, then for every substitution Ξ (with dom(Ξ) ⊆
FVar(Θ(Γ ))) it holds that JΞ(Θ(t))KE ∩ Jσ(Θ(s))KE 6= ∅ if and only if Θ(t) =E
Θ(s).

In case of unification, we can restrict ourselves to consider only substitutions
over the signature of unification equations without affecting solvability. In case
of unification of anti-terms it is not true anymore. Let us consider the set {X =?

kf(Y ), X =? kc}, it has no solution over the signature {f, c}, but it has a
solution X = h(Z) where h 6= f . This shows us that the signature ΣΘ is an
essential parameter of unification of anti-terms.

2 Results

2.1 The syntactic case

We will show that the unification of anti-terms problem is NP-complete in the
syntactic case, i.e. when E = ∅.

Definition 2.1. A set of equations Γ is in negation-solved form if and only if
for every equation t =? s ∈ Γ either t, s are terms (do not contain k) or t =? s
is of the form kx = y where x, y ∈ FVar(Γ ).

We say that Γ2 is a conservative extension of Γ1 if and only if FVars(Γ1) ⊆
FVars(Γ2), every solution of Γ2 is a solution of Γ1 and every solution of Γ1 can
be extended to a solution of Γ2. We define a set of inference rules I, such that
the following lemma holds:

Lemma 2.2. Let Γ be a set of equations. Using the rules I, Γ can be non-
deterministically transformed in linearly many steps into saturated set Γ s of
polynomial size, such that Γ s is a conservative extension of Γ and Γ s is in
negation-solved form.
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A set of equations in negation-solved form is an instance of the disunification
problem. However, there is a simple condition under which Γ in negation-solved
form is solvable.

Lemma 2.3. Let Γ be a set of equations in negation-solved form. Then, Γ =
ΓE∪ΓC , where ΓE contains only term equations and ΓC = {kx1 =? y1, . . . ,kxk =?

yk}, where xi, yi ∈ Fvar(Γ ). The set Γ has a solution iff ΓE is solvable and for
the mgu ΘE of ΓE and for i = 1, . . . , k we have ΘE(xi) 6= ΘE(yi).

To prove Lemma 2.3, it is sufficient to have a single constant and a single
function symbol of arity greater than 0. E.g. if Γ = {z1 = f(f(x, y), x), z2 =
f(f(x, y), x), z1 = k(z2), then f(f(x, y), x) 6= f(f(y, x), y) and x = f(c, c), y =
f(f(f(c, c), c), c) solves Γ . The general intuition is that having a sequence of
terms u1, . . . , up such that pairwise, a ration of sizes |ui|/|uj | (for |ui| > |uj |)
is big enough, then for two terms t, s of bounded size, we have that t[x1 ←
u1, . . . , xk ← uk] = s[x1 ← u1, . . . , xk ← uk] if and only if t = s.

It can be verified in polynomial time, whether the mgu Θ of Γ satisfies
Θ(X) = Θ(Y ). Hence, we have the following theorem:

Theorem 2.4. Unification of anti-terms is in NP.

On the other hand, by reduction of 3-SAT to the unification of anti-terms
problem, we have:

Theorem 2.5. Unification of anti-terms is NP-complete.

2.2 The expression power of unification with anti-terms

We will show a translation of unification of anti-terms to equational logic and a
fragment of equational logic that contains the unification with anti-terms. It is
possible to deduce necessary conditions to the opposite translation, i.e. to give
a translation of every formula from some fragment of equational logic to the
unification of anti-terms problem.

For an anti-term t we define reg(t) as the term resulting from removing all
k symbols from t. E.g. reg(f(k(g(x)))) = f(g(x)). The following fact is a direct
consequence of the definition of JtKE for an anti-term t:

Fact 2.6 Let t be an anti-term. The set JtKE is a Boolean combination of Jt1KE , . . . ,
JtsKE , where t1, . . . , ts are generalizations of reg(t) (and thus, terms). Such a
Boolean combination can be effectively computed.

By Definition 1.1, an instance Γ = {t1 =? s1, . . . , tk =? sk} of the unification
of anti-terms problem can be translated to the formula φ = ∃z̄∃x̄[z1 ∈ Jt1(x̄)KE ∧
z1 ∈ Js1(x̄)KE ∧ . . . ∧ zk ∈ Jtk(x̄)KE ∧ zk ∈ Jsk(x̄)KE ] where X̄ ⊆ FVars(Γ )
corresponds to a solving substitution. Due to Fact 2.6, the formula φ is equivalent
to an existentially quantified Boolean combination of the following atoms: zi ∈
Jtji (x̄)KE and zi ∈ Jsji (x̄)KE where tji , s

j
i are generalizations of reg(ti) and reg(si)
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resp. As every Boolean combination it can be written in conjunctive normal
form.

Note that terms t1, . . . , ts from Fact 2.6 may contain variables that do not
belong to FVars(Γ ). Then, for x̄ ⊆ FVars(Γ ) and ȳ ∩ FVars(Γ ) = ∅ we have
that zi ∈ Js(x̄)KE and zi /∈ Js(x̄)KE are equivalent to ∃ȳ[z = s(x̄, ȳ)] and ∀ȳ[z 6=
s(x̄, ȳ)] resp. The variables ȳ can be renamed, such that in every zi ∈ Js(x̄)KE
variables ȳ are different. Then, we have:

Proposition 2.7. Let Γ = {t1 =? s1, . . . , tk =? sk} where ti, si are anti-terms.
A formula ψΓ of equational logic can be computed such that Γ has a solution if
and only if ` ψΓ .

The formula Γ is a disjunction of formulae of the following form:

∃z̄∃x̄∀ȳz1 = u1 ∧ . . . ∧ zs = us ∧ z1 6= v1 ∧ . . . ∧ zs 6= vs

where vi, ui are terms.

It has been shown in [7], that the problem of validity in the ∃∗∀∗-fragment of
equational logic modulo ACI is undecidable. Roughly, a set X of pairs of words
has been described, which is closed under (v, w) ∧ v 6= w ∈ X ⇒ (v1v, w1w) ∈
X ∨ . . . ∨ (vkv, wkw). We see that the set X can be finite if and only if the in-
stance of Post Correspondence Problem {(v1, w1), . . . , (vk, wk)} has a solution.
The formulae defining the closure are ∃∗∀∗ formulae, but they are not of the
form given in Proposition 2.7. Intuitively, implication is not expressible by uni-
fication of anti-terms, so there are still chances to have an algorithm deciding
the unification of anti-terms modulo ACI.

2.3 Unification of anti-terms modulo an equational theory

Clearly, disunification is a special case of unification of anti-terms. Also, the
complement problem in E , defined in the introduction, is a special case of uni-
fication of anti-terms modulo E . Notice that the formula ∃x̄∀ȳt(x̄) 6=E s1(ȳ) ∧
. . . ∧ t(x̄) 6=E sk(ȳ) is valid if and only if an instance of the complement prob-
lem {t=?

Eks1, . . . , t=?
Eksk} is solvable. Clearly, the set Fvar(t) is equal to

{x1, . . . , xn} and for each i we have Fvar(si) = ∅, hence the variables x̄ are ex-
istentially quantified and the variables ȳ are universally quantified. However, for
special class of equational theories, there is a reduction in the opposite direction.

An equational theory E is finitary if and only if for every set of equations
there exists a finite complete set of most general unifiers. Exhaustive exposition
of unification types can be found in [1].

Proposition 2.8. Let E be a finitary theory having a recursive function which,
given a set of unification equations Γ , enumerates a complete set of most general
unifiers of Γ . If the signature Σ contains a free binary function symbol, then the
unification of anti-terms problem modulo E reduces to the complement problem
in E.

Due to Proposition 2.8 we have:
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Corollary 2.9. Unification of anti-terms modulo AC reduces to the complement
problem in AC.

The complement problem in AC had drawn much attention. Decidability of
the complement problem in AC is still an open problem, but some special cases
have been solved [8], [9], [10].

It has been shown in [4], [5] that matching with anti-patterns modulo AU is
decidable in NEXPTIME. In case of unification of anti-terms, we have:

Proposition 2.10. The complement problem in AU with a single unary func-
tion symbol and a single constant is undecidable.

Proposition 2.10 and the above discussion implies that unification of anti-
terms modulo AU is undecidable.
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Abstract. Abduction is generally understood as an inference technique
that from D and C derives an A such that D,A ` C. We formulate
the joint (i.e. simultaneous) abduction problem to which type inference
and invariant generation for programs using Generalized Algebraic Data
Types can be reduced. We also combine abduction algorithms for inde-
pendent sorts, in the simplest case where interaction occurs only via a
sort of finite trees.

1 Introduction

Consider a function eval defined by cases over a datatype Term(α) with con-
structors Lit : Int→ Term(Int), IsZero : Int→ Term(Bool), and

If : ∀α.Term(Bool)→ Term(α)→ Term(α)→ Term(α).

In a type system with Generalized Algebraic Data Types, the result of reduction
of the typing problem for eval to constraint solving resembles the following
constraint problem (side by side with the corresponding parts of the program):

∃τ, α, β∀γ.τ=̇α→ β ∧ eval x = case x of

(α=̇ Term(Int)⇒ β=̇ Int) ∧ Lit y -> y

(α=̇ Term(Bool)⇒ β=̇ Bool) ∧ IsZero y -> y=0

(α=̇ Term(γ)⇒ β=̇γ) If y1 y2 y3 ->

if eval y1 then eval y2

else eval y3

from which we would like to find the solution α = Term(β), τ = Term(β) → β,
leading to the inferred type eval : ∀β.Term(β) → β. For more information
about constraint-based type inference for GADTs, consult [8]. By iteratively
solving problems of this kind for the free algebra of terms and other theories,
not only could we infer types for programs with GADTs, but also generate
invariants of recursive functions. Deciding satisfiability of the constraint is not
enough as a solution, we would like to determine the satisfying substitution
for existentially quantified variables that was intended by the programmer. For
example, a substitution α = Bool, τ = Bool → β would satisfy the constraint
by contradicting each of the premises, but does not explain the behavior of the
program.
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Abduction is a reasoning technique concerned with the search for explana-
tions. An abduction problem is usually given by a background theory Θ and a
formula C, and the solution, or answer, is a formula A such that Θ ∪ {A} � C
(relevance), Θ 2 ¬A (consistency), and A has some restricted syntactical form,
see [7]. We are however interested in constraint abduction problems, with con-
straints expressed over a fixed modelM. A constraint abduction problem is then
given by formulas D,C and A is its answer when (at least) M � (D ∧ A) ⇒ C
(relevance) and M � ∃FV(D,A).D ∧ A (consistency), see [5]. We extend the
formulation of joint constraint abduction (see [5]) to constraints with quanti-
fiers; the quantifiers cannot be eliminated by Herbrandization (as in the general
abduction algorithms for FOL) because the model is fixed. We develop a combi-
nation procedure for abduction algorithms when their domains of constraints are
combined in a very simple way (yet sufficing for type-inference-driven invariant
generation).

We use the language of first order logic with function symbols and equality,
under standard interpretation. By the bar ē we denote a sequence (or a set,
depending on context) of elements e, by # we denote disjointness. With a free
index i, ei denotes (e1, . . . , en) for some n associated with the index i; similarly,
∧iΦi denotes Φ1∧ . . .∧Φn. In some contexts, for a quantifier prefix Q we write Q
to denote the set of variables quantified by Q. Let FV be a generic function re-
turning the free variables of any expression. For a set of variables V , let ∃(V c).Φ
denote ∃FV(Φ) \ V.Φ, i.e. existential closure of Φ except for variables from V ,
which are kept free. Let T (F ) be the set of ground terms (i.e. finite trees) for
signature F , and T (F,X) the set of (possibly multisorted) terms for signature
F and variables X. By Φ[ᾱ := t̄] we denote a substitution of terms t̄ for corre-
sponding variables ᾱ in the formula Φ (where ᾱ and t̄ are finite sequences of the
same length).

2 Formulating the Joint Constraint Abduction Problem

In joint, also called simultaneous, problems, we expect a single answer to solve
several problems, here: a conjunction of implications.

A solved form is a syntactically specified class of formulas, associated with
a class of problems, for which satisfiability is trivial to check. We restrict solved
forms to existentially quantified conjunctions of atoms, ∃ᾱ.A. The variables ᾱ of
a solved form ∃ᾱ.A that is an abduction problem answer, are “free parameters”
of the answer, they are required to be “unconstrained”.

The constraints that we need to solve form a joint constraint abduction un-
der a quantifier prefix problem (JCAQP problem for short) of the form Q. ∧i
(Di ⇒ Ci), where Di and Ci are conjunctions of atomic formulas, and Q is an
arbitrary quantifier prefix. We assume that FV(∧i (Di ⇒ Ci)) ⊆ Q.

Definition 2.1. ∃ᾱ.A is a JCAQPM answer (answer to a JCAQP problem
Q.∧i(Di ⇒ Ci) for modelM) when A is a conjunction of atoms, ᾱ# FV

(
¯Di, Ci
)
,

meeting relevance condition: M � ∧i(Di ∧ A ⇒ Ci), validity condition: M �
∀ᾱQ.A, and consistency condition: M � ∧i∀ᾱ∃(ᾱc).Di ∧A.
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We can also consider JCAQP problems for a logic, checking relevance con-
dition: � ∧i(Di ∧ A ⇒ Ci) and validity condition: � ∀ᾱQ.A. The consistency
conditions: for all i, Di 2 ¬A, are always met.

The natural setting for constraint abduction problems is with a fixed model.
We extend the definition to the case where instead of a model just a logic is given,
just to shed light on relations between constraint abduction, general abduction
and decision (i.e. validity or satisfiability) problems.

We call a JCAQPM problem Q.D ⇒ C (i.e. a non-simultaneous problem) a
simple constraint abduction under a quantifier prefix problem SCAQPM.

Proposition 2.2. If the JCAQPM problem Q. ∧i (Di ⇒ Ci) has an answer,
then M � Q. ∧i (Di ⇒ Ci).

We say that JCAQPM answer ∃ᾱ.A is more general than ∃β̄.B, when there
exist terms t̄ such that M � B ⇒ A[ᾱ := t̄].

An algorithm Abd
(
Q, Di, Ci

)
is a complete abduction algorithm for JCAQPM

if it generates a sequence of quantifed conjunctions of atoms ∃ᾱj .Aj , possibly
infinite, that are answers to the joint abduction under a quantifier prefix problem
Q.∧i (Di ⇒ Ci), and if there is a JCAQPM answer ∃ᾱ.A, there is a j and some
t̄ such that M � A⇒ Aj [ᾱj := t̄] (with variables renamed so that ᾱ# FV(Aj)).
If the sequence is empty, we write Abds

(
Q, Di, Ci

)
= ⊥.

Example 2.3. For a free term algebra T (F ) over signature F containing binary
functors f, g and constants a, b, and JCAQPT (F ) problem ∃x, y, z.(y=̇f(a, x)⇒
z=̇a) ∧ (y=̇f(b, x) ⇒ z=̇b), the (most general) answer is ∃α.y=̇f(z, α). Indeed,
∀α∃x, y, z.y=̇f(z, α) ∧ y=̇f(a, x) holds with x = α, y = f(a, α), z = a and
∀α∃x, y, z.y=̇f(z, α) ∧ y=̇f(b, x) holds with x = α, y = f(b, α), z = b. For the
JCAQPT (F ) problem ∃x, y, z.(y=̇f(a, x)⇒ z=̇a), the maximal set of answers is
{∃α.y=̇f(z, α), z=̇a}.

3 Combination of Domains

We combine non-interacting theories into a simple form of multisorted logic. In
the context of type inference, these sorts are independent means of specifying
properties of data structures; they are combined using data-type constructors
that are free, i.e. injective.

All sorts share the equality relation, which is the default means of dependence
between theories. We denote the set of sorts by sorts = {sty}∪̇ usorts, where sty
is the distinguished sort of “types proper”, finite trees. Let Ls be the languages
of the independent sorts s ∈ usorts. We call the combined model M. Due to
space constraints, we omit explicit construction of M (which is provided in the
accompanying technical report [9]). Below, when referring to JCAQPM, we omit
the index M when it is clear from context.

Consider a conjunction of atoms C interpreted in any free term algebra T . If
it is satisfiable, let U(C) be a conjunction of equations whose left-hand-sides are
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variables not occuring in any of the right-hand-sides, such that T � C ⇔ U(C),
otherwise let U(C) = ⊥. Let U(Q.C) in case T 6 �Q.C be ⊥, and otherwise be as
before but with equations directed so that variables later in the prefix are on the
left. U(Q.C) can be computed by unification with linear constant restrictions,
see [1].

Define an alien subterm (cf. [1]) of a term τ of sort sty to be a maximally
large subterm t of τ of sort s 6= sty.

3.1 Abduction Algorithm for The Combination of Domains

We provide a plug-in architecture where to add a new sort to the logic it is
enough to give an algorithm solving the JCAQP problem.

Let Lty = T (F,∪s∈sortsXs) be a language interpreted in a multisorted free
term algebra T = T (F ∪s∈usorts Ds) which, besides the term variables Xsty , has
alien subterm variables ∪s∈usortsXs (but no other subterms of sorts s ∈ usorts).

For conjunctions of equations A,Ai, ∃ᾱ.A,Ai is a joint constraint abduction
under a quantifier prefix problem with alien subterms (JCAQPAS) answer to
Q. ∧i (Di ⇒ Ci) when ᾱ# FV (∧i (Di ⇒ Ci)), ᾱ ⊂ Xty, T � ∀ᾱQ.A and T �
∧i∀ᾱ∃(ᾱc).Di ∧A, A is in solved form A = U(A) and only substitutes for term
variables Xsty (i.e. the left-hand-sides of A are Xsty variables), Ai are equations
over alien subterm variables only (i.e. equations with both sides in ∪s∈usortsXs),
and T � ∧i(Di ∧Ai ∧A⇒ Ci).

An algorithm AbdT
(
Q, Di, Ci

)
is a complete abduction algorithm for JCAQ-

PAS if it generates a sequence, possibly infinite, of answers ∃ᾱj .Aj , Aij (or ⊥,
identified with an empty sequence) that are answers to the JCAQPAS Q. ∧i
(Di ⇒ Ci), and if there is a JCAQPAS answer ∃ᾱ.A,Ai, ᾱ# FV(Aj), there is a
j and some t̄ such that T � A⇒ Aj [ᾱj := t̄] and T � Ai ⇒ Aij for all i.

Let Q be a quantifier prefix and Di, Ci be atomic conjunctions in L that
form a joint abduction problem Q.∧i (Di ⇒ Ci). Let Abds be complete JCAQP
algorithms for s ∈ usorts and AbdT be a complete JCAQPAS algorithm for sty.
We start the multisorted abduction procedure Abd

(
Q, Di, Ci

)
by performing

AbdT on the sty part of constraints with alien subterms replaced by variables. For

each JCAQPAS solution ∃ᾱj .Aj , Aij , we replace the sty part of the ith premise

by the “residual” formula Aij . We split the resulting JCAQP problem into single-
sort problems for each sort s ∈ usorts, and we solve them using Abds algorithms.
Finally, we build answers as conjunctions of answers for each sort. We present the
tedious but straightforward definition of Abd

(
Q, Di, Ci

)
and proof of theorem

3.1 in the accompanying technical report [9].

Theorem 3.1. Abd definied above is a complete abduction algorithm for JCAQPM:
Let Q be a quantifier prefix and Di, Ci be conjunctions of atoms in L that form
a joint abduction problem Q. ∧i (Di ⇒ Ci). Abd

(
Q, Di, Ci

)
results in a possi-

bly infinite sequence ∃αj .Aj of answers to the JCAQPM problem and for any
JCAQPM answer ∃ᾱ.A, there is an ∃αans.Aans ∈ Abd

(
Q, Di, Ci

)
and some t̄

such that M � A⇒ Aans[αans := t̄].



Joint Constraint Abduction Problems 19

4 Abduction for Terms

The JCAQP problem for first order logic with function symbols and equality is
undecidable, because it is equivalent, by Herbrandization, to simultaneous rigid
E-unification (see [3]): the substitution that is a solution to simultaneous rigid E-
unification when expressed as a conjunction of equations has the same properties
as a JCAQP answer (therefore the existence of JCAQP answers coincides with
intuitionistic satisfiability).

The decision problem T (F ) � Q.∧i (Di ⇒ Ci) is decidable, see [2]. Actually,
[2] provides a disjunction as a solution, each disjunct meeting the relevance and
validity conditions of the JCAQPT (F ) problem. It is often the case though that
each disjunct does not meet the consistency condition, despite the JCAQPT (F )

problem considered having answers.
A complementary approach is to find the “fully maximal answers” introduced

in [5], using non-simultaneous abduction algorithm from [6]: abduction answer
∃ᾱ.A to D ⇒ C is fully maximal when T (F ) � (∃ᾱ.D∧A)⇔ D∧C. [5] refers to
[4] as establishing that there are finitely many fully maximal answers. [6] gives
an algorithm finding fully maximal answers for simple (i.e. non-simultaneous)
constraint abduction problems. But joint abduction answers can be built from
simple abduction answers (see [5]): Consider a JCAQPT (F ) problem Q.∧i (Di ⇒
Ci). Let AbdS be a complete abduction algorithm for SCAQPT (F ), and

A0 =
{
J (∃αi.Ai) : ∃αi.Ai ∈ AbdS (Q, Di, Ci) ∧U(Q∃(∪iᾱi). ∧i Ai) 6= ⊥

}
,

where J (∃αi.Ai) = ∃ ((∪iᾱi) ∩ FV(A)) .A and A is built from U(Q∃(∪iᾱi). ∧i
Ai) by removing equations whose left-hand-sides belong to ∪iᾱi. Let A be A0

with elements that do not meet the consistency condition for JCAQPT (F ) prob-
lem Q. ∧i (Di ⇒ Ci) removed.

Theorem 4.1. Setting Abd
(
Q, Di, Ci

)
:= A gives a complete abduction algo-

rithm for JCAQPT (F ): elements of A meet the relevance, validity and consis-
tency conditions, and if ∃ᾱ.A is a JCAQPT (F ) answer to Q.∧i (Di ⇒ Ci), then
there is ∃ᾱans.A

ans ∈ A and some t̄ such that T (F ) � A⇒ Aans[αans := t̄].

Proof. Relevance and consistency conditions for answers in A follow directly
from the construction, validity follows from the fact that variables not occurring
on the left-hand-side of a solved form A can be arbitrarily substituted while
preserving validity of T (F ) � Q.A.

Since ∃ᾱ.A is a JCAQPT (F ) answer to Q. ∧i (Di ⇒ Ci), it is a SCAQPT (F )

answer to Q.Di ⇒ Ci for each i. Therefore, for each i there exist ∃αi.Ai ∈
AbdS (Q, Di, Ci) and t̄i such that T (F ) � A ⇒ Ai[αi := t̄i]. From T (F ) � Q.A
we have T (F ) � Q. ∧i Ai[αi := t̄i], i.e. T (F ) � Q∃(∪iᾱi). ∧i Ai. Therefore,
U(Q∃(∪iᾱi). ∧i Ai) 6= ⊥ and the corresponding ∃ ((∪iᾱi) ∩ FV(Aans)) .Aans ∈
A0. Let ᾱans be (∪iᾱi) ∩ FV(Aans). Since T (F ) � ∧i∀ᾱ∃(ᾱc).Di ∧ A, we have
T (F ) � ∧i∀ᾱ∃(ᾱc).Di ∧j Aj [αj := t̄j ], therefore T (F ) � ∧i∀ᾱ∃(ᾱc).Di ∧j Aj .
From it follows that T (F ) � ∧i∀ᾱ∃(ᾱc).Di∧Aans, and by renaming variables and
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dropping quantification over unused variables, T (F ) � ∧i∀ᾱans∃(ᾱcans).Di∧Aans.
We have shown that ∃ᾱans.A

ans ∈ A.

[5] remarks that the joint abduction problem for T (F ) is not known to be
decidable. It remains to be seen whether there are practical cases where the
intended answer cannot be built from fully maximal answers to the component
simple abduction problems.
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Projective Unifiers in Modal Logics
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Abstract. A projective unifier for a modal formula A, in a modal logic
L, is a unifier σ for A (i.e. a substitution making A a theorem of L) such
that A `L x[σ] ↔ x, for all variables x in A. Each projective unifier is
a most general unifier for A. Let L be a normal modal logic containing
S4. It is shown that every unifiable formula has a projective unifier in
L iff L contains S4.3 = S4 plus 2(2A → 2B) ∨ 2(2B → 2A). The
effective syntactic proof is given. As a corollary, we get that all normal
modal logics L containing S4.3 are almost structurally complete, that is,
all admissible rules having unifiable premises, are derivable in L.

Key words: unification, projective unifiers, modal logics S4, S4.3.

1 Introduction: Unification in Logic

Unification or E-unification is concerned with finding a substitution that makes
given terms equal, modulo an equational theory E. Such a substitution is called
a unifier for the terms in E. Unifiers can be seen as solutions of a system of
equations on terms. A theory can have unitry, finitary, infinitary or nullary
unification, depending on the number of general solutions that represent all
solutions, see e.g. [1].

In logic, unification is concerned with finding a substitution that makes a
given formula A a theorem of a logic L. A unifier for a formula A in a logic L
is a substitution σ such that `L σ(A). A formula A is unifiable in L, if such σ
exists. If τ , σ are substitutions, then σ is more general then τ , τ 4 σ, if there is
a substitution θ such that `L θ(σ(x)) ↔ τ(x). Classical propositional logic CL
has unitary unification. It means that every formula A, unifiable (= consistent)
in CL, has a mgu, i.e. a substitution σ such that `CL σ(A) and that every unifier
τ for A is a special case of σ, i.e. `CL θ(σ(x)) ↔ τ(x), for some θ. Unification
type of a logic can be unitary, finitary, infinitary or nullary depending on the
number of maximal unifiers, see e.g. [2], [4].

A projective unifier for a unifiable formula A in a logic L is a unifier σ for
A such that A `L σ(x) ↔ x for all x ∈ V ar(A), see [2]; a formula which has a
projective unifier is called a projective formula; this notion was introduced and
applied for modal logics by S. Ghilardi, see [9] [11].

Every projective unifier is an mgu but projective unifiers have many ad-
vantages over just mgu’s: they are preserved by extensions and they provide a
solution to the problem of admissibility of inference rules.
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S. Ghilardi showed that unification in logics K4, GL, S4, Grz is finitary, see
[9], [10], and unification in K4.2 and S4.2 is unitary, [11]. It is known that
unification in extensions of S4.2 is unitary or nullary, see [3]. In a joint paper
[6] it is shown that in a modal logic L (containing S4) each unifiable formula
has a projective unifier iff L contains modal logic S4.3 = S4 plus 2(2A →
2B)∨2(2B → 2A) (an analogous theorem for intermediate logics was proved by
A. Wroński, see [13], [14]). Unifiers have many applications in logic; they provide
uniform method of recognizing admissible rules. In particular, if a formula A has
a projective unifier, then the rule A

B is admissible iff it is derivable.
Projective unifiers are also considered in equational theories (or varieties of

algebras). In particular, the following modification of S.Burris theorem holds: in
every discriminator variety, unifiable terms have a projective unifier, see [5].

2 Modal Logics

We consider the modal language {→,⊥,2}. Let V ar = {x, x1, . . . , y, . . . , z, z1, . . . }
be the set of propositional variables and Fm be the set of modal propositional
formulas built up, in the standard way, from propositional variables and con-
stant ⊥ by means of the operators → and 2. For each formula A, let V ar(A)
denote the (finite) set of variables occurring in A. The remaining classical connec-
tives ∧,∨,∼,↔,> are defined in a standard way, as well as the modal operator
3A :=∼2 ∼A. Hence we get the algebra of the language F with the universe
Fm and the connectives as operations.

By a substitution we mean any finite mapping ε : V ar → Fm. We usually
write: ε := x1/B1 · · · xn/Bn, if {x1, . . . , xn} is the domain of ε and
the formulas B1, . . . , Bn are its values, i.e. ε is a substitution for the variables
x1, . . . , xn. The result of the substitution on a formula A is denoted by

A[ε] or A[x1/B1 · · ·xn/Bn].

We put x[ε] = x, if x /∈ {x1, . . . , xn}, hence each substitution can be extended to
a total mapping : V ar → Fm. Each substitution determines uniquely an endo-
morphism of the algebra F of the language. In our approach we use traditional
suffix-notation A[ε] instead of ε(A). The composition of substitutions ε and δ,
applied to a formula A is denoted by A[εδ]; first the substitution ε is applied to
a formula A to get A[ε], and then, after applying δ, we receive A[εδ] = (A[ε])[δ].

By a modal logic we mean here any consistent and normal extension of
S4 (= K4T ), that is, a proper subset of Fm containing all classical tautolo-
gies, containing the following S4 axioms:

K : 2(A→ B)→ (2A→ 2B)
4 : 22A→ 2A
T : 2A→ A.

and closed under substitutions and under the rules MP : A→B,AB and RG : A
2A ,
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It is shown later that weaker systems like K4 fail to have projective unifiers
and to get the results of this paper one must take S4 as a basic modal system.

Given a modal logic L, we consider here its global entailment relation `L.
Hence, X `L A means that A can be derived from X ∪ L using the rules MP
and RG, i.e. Necessitation rule RG is a postulated inference rule for `L. The
relation `L is structural: if X `L A, then X[ε] `L A[ε], for each substitution ε.

The following deduction theorem for a logic L ⊇ S4 is well known
X,B `L A iff X `L 2B → A.
For each modal logic L, the relation =L of L-equivalence, defined as follows

A =L B iff `L A↔ B, is a congruence in the algebra of the language. =L

is the largest congruence consistent with `L. The relation =L is a congruence
on F as S4 enjoys the so-called extensionality, or replacement property:

B ↔ C `L A[x/B]↔ A[x/C].
We identify L-equivalent formulas. In particular, we identify L-equivalent

substitutions, that is substitutions such that x[ε1] =L x[ε2] for each variable x,
i.e. ε1 =L ε2. Note that ε1 =L ε2 iff (A[ε1] =L A[ε2], for each formula A ).

The Lindenbaum-Tarski algebra of L is a quotient F/=L of the algebra of
the language F ; in our case F/=L is a topological Boolean algebra in which 2

gives rise to the interior operation. For each logic L, the constants {⊥,>} form
a subalgebra of the Lindenbaum-Tarski algebra, isomorphic to the two-element
Boolean algebra 2 in which 2a = a, for each a. The trivial modal logic, Tr, is
determined by 2; we have: S4 ⊆ L ⊆ Tr, for any consistent logic L ⊇ S4.

For a given modal logic L, a substitution ε is called a unifier for a formula
A in L, or L-unifier for A if `L A[ε]. A formula A is said to be unifiable in L if
there exists a L-unifier for A. Note: 3A ∧3∼A is not unifiable in any logic L.

Unifiers of the form v : V ar(A) → {⊥,>} are called ground unifiers for A.
They can be identified with valuations in 2 which satisfy the formula A. Given a
unifier ε for A and any substitution δ : V ar → {⊥,>} we get the ground unifier
εδ for the formula A. Hence, the following conditions are equivalent: (i) A is
L-unifiable ; (ii) there is a ground unifier for A in L; (iii) A is satisfiable in 2.

A substitution ε is projective for a formula A, on the ground of an L, if

A `L x[ε]↔ x for each variable x.

A projective unifier for a formula A in L is an L-unifier which is projective for A
on the ground of L. A formula which has a projective unifier is called projective.

Our main task is to find, for a given formula A, a substitution ε such that
(i) `L A[ε];
(ii) A `L x[ε]↔ x, for each variable x.

Corollary 2.1. Projective unifiers are preserved by extensions of logics: if ε is
a projective L1-unifier and L2 is an extension (by axiomax, rules and both) of
L1, then ε is a projective L2-unifier

The notions of a projective formula, a projective unifier and that of a pro-
jective substitution are due to S.Ghilardi, see [8] and [9] (‘projective unifier’ ap-
peared first in [2]). ”A is a projective formula” in L is the translation into logic
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of the fact that the free algebra generated by V ar(A) divided by the congruence
determined by ”A = >”, is projective in the variety of algebras determined by L.
It is known that projective algebras are retracts of free algebras, and ”retracts”
translated into logic give rise to the definition of projective unifiers.

S.Ghilardi, using projective formulas, proved that unification in logicsK4, GL,
S4, Grz is finitary and finite complete sets of unifiers can be effectively com-
puted, see [9], [10]. Moreover, unification in K4.2 and S4.2 is unitary, [11].

A ‘projective substitution’ satisfy the above condition (ii) but may not be a
unifier for A. One can extend (ii) to hold for any formula B: if ε is an L-projective
substitution for A, then

(a) A `L B[ε]↔ B, for each formula B;
(b) A `L A[ε].
Projective substitutions are closed under compositions and are preserved

under extensions of L.
If ε0 is a unifier for A in L, then ε0 is said to be a most general unifier (or,

an mgu) for A, on the ground of L, if for each L-unifier ε there is a substitution
δ such that ε =L ε0δ, (i.e. each L-unifier is an instantiation of ε0). Now, if δ is
any unifier for A and ε a projective unifier for A then, by (ii), `L x[εδ]↔ x[δ].
Hence each projective unifier for A is an mgu for A.

Classical logic has projective unifiers for each unifiable formula A. Let τ0 be
a ground unifier for A. Then, ε given by a formula (for x ∈ V ar(A)),

x[ε] = (A→ x) ∧ (A ∨ x[τ0]),

is a projective unifier for A. ε is equivalent to the ”Löwenheim unifier”, cf. [2].
First we use (i),(ii) to establish that a modal logic L having ”many” projective

unifiers must contain S4.3 = S4 plus 2(2A→ 2B) ∨2(2B → 2A).

Theorem 2.2. If every unifiable formula in a modal logic L has a projective
unifier, then 2(2y → 2z) ∨2(2z → 2y) ∈ L, that is, S4.3 ⊆ L.

Proof. Let ε be a projective L-unifier for a formula A. Then, by (ii),

`L (2A∧2x)→ 2x[ε] and `L 2x[ε]→ 2(2A→ 2x), for each variable x;

the above holds true if one takes A = 2(2y → 2z) ∨ 2(2z → 2y). One can
show that

(?) 2A ∧2x =L 2x and 2(2A→ 2x) =L 2x, for each x ∈ V ar(A).

Since each variable is ‘boxed’ in A, the above suffices to show that A[ε] =L A
which would give us `L A since ε is a unifier for A. ut

3 Building Projective Unifiers in S4.3

Now we present some main steps of the construction of a projective unifier for a
given unifiable formula A in S4.3, also using suitable examples.



Projective Unifiers in Modal Logics 25

Example 3.1. Assume: A is unifiable, v : V ar(A) → {>,⊥} is a ground unifier
for A. The substitution ε, for x ∈ V ar(A): x[ε] = (2A→ x) ∧ ((A ∨ x[v]), ) can
be extended to arbitrary formula B (to be a unifier)

B[ε] =

{
2A→ B if B[v] = >
2A ∧B if B[v] = ⊥

if 2(2A→ B1) = 2(2A→ B), but this holds only if 2A = 32A, which is not
S4.3 valid but S5 valid, we only get that ε is a projective unifier in S5.

Example 3.2. Let A = 2x ∨2∼x; two ground unfiers: two projective substitu-
tions

ε0 : x/A ∧ x, where A ∧ x = (2x ∨2 ∼x) ∧ x = 2x
ε1 : x/A→ x, where A→ x = (2x ∨2 ∼x)→ x = 3x

Neither ε0, nor ε1 is a unifier for A, but if one takes ε0ε1 and ε1ε0 then:
A[ε0ε1] = 323x→ 23x = >, A[ε1ε0] = 32x→ 232x = >. Hence, both
ε0ε1 and ε0ε1 are projective unifiers for A but x[ε0ε1] = 32x and x[ε1ε0] =
23x i.e. ε0ε1 and ε1ε0 are not equivalent. Hence, a unifiable formula may have,
if any, several non-equivalent projective unifiers.

Main idea. To get a projective unifier for a given unifiable formula A: • define
a sequence ε1, . . . , εn of projective substitutions for A in L, • take their com-
position ε = ε1 · · · εn. If sufficiently many projective substitutions is taken in
the sequence ε1, . . . , εn, a unifier for A can be expected. But - what ‘sufficiently
many’means ? and - the order of substitutions in the sequence is important.

Ghilardi’s simplified Löwenheim substitutions for A: 2A→ x or 2A ∧ x, for
each x ∈ V ar(A) are taken as ε1, . . . , εn. In logics containing S4, a formula A
is projective iff a suitable composition of simplified Löwenheim substitutions is
a unifier for A. We extend the class of simplified Löwenheim substitutions by
allowing x[εi] to be A → x, or A ∧ x (in addition to 2A → x or 2A ∧ x) and
allowing x[εi] = x, as simplified Löwenheim substitutions, but not for the master
formula A, but for its certain fragments.

The basic step is the reduction of a formula to its conjunctive normal form
(CNF ) in which only variables are ‘boxed’, at the cost of introducing fresh
variables.

Theorem 3.3. For every formula A one can find two disjoint sets of variables
X and Y and a CNF formula A? which is a conjunction of the following clauses:

(?) 2x1 ∨ · · · ∨2xn∨ ∼ 2y1 ∨ · · · ∨ ∼ 2ym ∨ l1 ∨ · · · ∨ lk

where xi ∈ X for 0 ≤ i ≤ n, and yi ∈ Y for 0 ≤ i ≤ m, and li is a variable – or
its negation – from the set X ∪ Y for 0 ≤ i ≤ k, and

(i) A is unifiable iff A? is unifiable;
(ii) if A? has a projective unifier, then A has a projective unifier, as well.

Example 3.4. Let A = z ∨C where z is a variable. If z /∈ V ar(C), take z/A→ z
as a projective unifier for A: A[z/A→ z] = (A→ z)∨C = (z∨C)→ (z∨C) = >.
If z ∈ C, take z/2A→ z.

Similarly, z/2A ∧ z is a projective unifier for A =∼ z ∨ C.
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Example 3.5. Let A = 2x1 ∨ · · · ∨2xn. Then x1/A→ x1 · · · xn/A→ xn. is
a projective unifier for A. It is evident for n = 2.

Example 3.6. The worst case, U -clauses: 2x1∨· · ·∨2xn∨ ∼ 2y1∨· · · ∨ ∼ 2ym,
where n ≥ 1. Let {y1, . . . , ym} = U and write down the above clause as
2U → 2x1∨· · ·∨2xn. Let ε be the substitution x1/A→ x1 · · · xn/A→ xn.
It is clear that ε is projective for A. Note that ε is a substitution for the variables
X and hence A[ε] = 2U → 2(A→ x1) ∨ · · · ∨2(A→ xn) =
2U →

(
2U ∧2(A→ x1)

)
∨ · · · ∨

(
2U ∧2(A→ xn)

)
=

2U → 2
(
(2x1 ∨ · · · ∨2xn)→ x1

)
∨ · · · ∨2

(
(2x1 ∨ · · · ∨2xn)→ xn

)
Theorem 3.7 ([6]). Each unifiable formula has a projective unifier in S4.3.

A projective unifier for a unifiable formula A is defined as the composition
ε1 · · · εn of the described ‘partial’ unifiers for A. The decisive step of the re-
duction procedure is the removal of all U -clauses, for any nonempty U ⊆ Y , in
accordance with a ’linearization’ of the inclusion relation on subsets of Y (similar
to Ghilardi [9]).

Corollary 3.8 ([6]). Every unifiable formula in a modal logic L containing S4
has a projective unifier if and only if S4.3 ⊆ L.

We give an alternative proof, based on Kripke semantics, of Theorem 3, by
means of Ghilardi’s [9] characterization of projective formulas in modal logics.
We recall his result. A variant of a Kripke model < F, u >, where F =< F,R, ρ >
is a finite rooted frame and u : F → P (V ar) is a Kripke model < F, u0 >
such that u(p) = u0(p) holds for all p 6∈ cl(ρ). A class K ⊆ ModL of Kripke
models over is said to have the extension property if for every Kripke model
< F, u >∈ ModL, if < Fp, up >∈ K holds for every p 6∈ cl(ρ), then there is a
variant < F, u0 > of < F, u >, such that < F, u0 >∈ K.

Theorem 3.9 (Ghilardi [9]). . The following conditions are equivalent:
(i) A is projective;
(iii) ModL(A) has the extension property.

ModS4.3(A) has the extension property since any S4.3-frame F is a quasi-chain.

Corollary 3.10. Let L be a logic containing S4.3. Then every formula A unifi-
able in L is projective, hence, A has a projective unifier.

The drawback of this approach is its (highly) exponential complexity.

This result is, in a sense, optimal: removing any axiom from S4.3 results in
lacking projective unifiers. The modal logic K4.3 (=S4.3 minus the axiom T ) is
axiomatized by the formulas: 4 : 22A → 2A;K : 2(A → B) → (2A →
2B); .3 : 2(2A → 2B) ∨ 2(2B → 2A). In K4.3 the formula 2x does not
have a projective unifier: the only unifier of 2x is x/>, but 2x `K4.3 x↔ > is
not valid as it would lead to K4.3 ` 2x→ x, a contradiction.
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Applications: Almost Structural Completeness
A (structural) rule r : A/B is admissible in L, if `L A[τ ] ⇒ `L B[τ ] , for

every τ ; a rule r : A/B is derivable in L if A `L B; a rule r : A/B is passive or
overflow if A is not unifiable. e.g. P2 : 3x ∧3¬ x/ ⊥ is passive in S5.

Hence, a rule r : A/B is admissible in L if `L B[σ] for any unifier σ for A. If
σ is a projective unifier for A then, immediately, r is derivable in L.

A logic L is Structurally Complete, SC, if every (structural) admissible rule
is is derivable in L. A logic L is Passively Structurally Complete,PSC, if each
passive rule is derivable in L. A logic L is Almost Structurally Complete, ASC,
if every (structural) admissible rule which is not passive (or: rule with unifiable
premises in L) is derivable in L. Hence, SC = ASC + PSC

Theorem 3.11. Every modal logic L extending S4.3 is almost structurally com-
plete. Moreover, L is hereditarily structurally complete iff McKinsey axiom M :
23α→ 32α is in L.
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12.  Loś J., Suszko R., Remarks on sentential logics; Indagationes Mathematicae 20

(1958), 177–183.
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Computing finite variants for subterm
convergent rewrite systems ?

Ştefan Ciobâcă

LSV, ENS Cachan & CNRS

Abstract. Driven by an application in the verification of security pro-
tocols, we introduce the strong finite variant property, an extention of
the finite variant property defined in [1] and we show that subterm con-
vergent rewrite systems enjoy the strong finite variant property modulo
the empty equational theory.

We argue that the strong finite variant property is more natural and
more useful in practice than the finite variant property. We also compare
the two properties and we provide a prototype implementation of an
algorithm that computes a finite strongly complete set of variants for
any term t with respect to a subterm convergent rewrite system.

1 Introduction

Given a term (e.g. t = dec(x, y)) and a convergent term rewriting system (e.g.
R = {dec(enc(x, y), y)→ x}), we are interested in having a convenient symbolic
representation of all normal forms tσ↓ of instantiations tσ of the term t.

In the above case, the normal form of tσ will fall into one of the following
two cases:

1. either σ(x) =R enc(s, σ(y)) for some term s, in which case tσ↓ = s↓
2. or σ(x) 6=R enc(s, σ(y)) for any term s, in which case tσ↓ = t(σ↓) (where
σ↓ denotes the normal form of σ).

Informally, rewrite systems for which instantiations of any term t can be
classified into a finite number of categories such as above are said to have the
finite variant property.

The finite variant property is useful in symbolic analysis of security proto-
cols [1] and in solving unification and disunification problems [1, 2].

Contributions. We work with subterm convergent rewrite systems, a class of
rewrite systems relevant to security protocol analysis [3]. We show that these
rewrite systems have the finite variant property and a slightly stronger property
which we call the strong finite variant property. The proofs are constructive
and we implement the algorithm for computing a strongly complete finite set of
variants of a term in the tool SubVariant.

? This work has been partly supported by the ANR SeSur AVOTÉ.



Computing finite variants for subterm convergent rewrite systems 29

Related work. The finite variant property was first introduced in [1]. In [4],
sufficient conditions and necessary conditions for the finite variant property are
introduced. Variant narrowing [2] is a complete procedure for equational uni-
fication inspired by the finite variant property. A modular proof method for
termination based on the notion of variant is proposed in [5]. Several tech-
niques [6, 7, 8] for verifying security protocols make use of the finite variant
property as a sub-step in the algorithm.

2 Preliminaries

We consider standard notations for a term algebra: a finite signature F , each
function symbol f ∈ F having an arity ar(f) ∈ N, a countably infinite set of X of
variables, the set T (X0) denoting all terms bulid inductively from the variables
X0 ⊆ X by applying function symbols from F . Given a term t, vars(t) is the set
of variables appearing in t.

Substitutions are defined as usual, with tσ denoting the term t after applica-
tion of the substitution σ. The identity substitution is denoted id. The restriction
of a substitution σ to a set X of variables is denoted σ[X].

We define positions as usual, with pos(t) denoting the positions of a term
t ∈ T (X ). We denote the subterm of t at position p ∈ pos(t) by t|p. The term t
with position p ∈ pos(t) instantiated to s is denoted t[s]p. If t ∈ T (X ), we will
denote by st(t) the set of subterms of t. If s ∈ st(t), we write s v t. By mgu(s, t)
we denote the most general unifier of two unifiable terms s and t.

If R is a rewrite system, we use →R for the one-step rewrite relation defined
by R and →∗R for the transitive and reflexive closure of →R. If R is convergent,
we will denote by t↓R the normal form of t. We say that two terms s and t are
equal modulo R, and we write s =R t, if s↓ = t↓.

We are interested in a particular class of convergent term rewriting systems:

Definition 2.1 (subterm convergent rewrite system).
A rewrite system R is called subterm convergent if it is convergent and if

for all rewrite rules l→ r of R we have:

1. either r v l (we then call l→ r a subterm rule)
2. or vars(r) = ∅ and r = r↓R (we then call l→ r an extended rule)

The first type of rewrite rule, which justifies the name of these rewrite sys-
tems, was introduced in [3]. Subsequently, in [9], the extended rules were intro-
duced. We treat here both types of rules.

3 The finite variant property

For any convergent term rewriting systemR and any term t, we define the notion
of complete set of variants of t with respect to R:
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Definition 3.1. A set of substitutions {σ1, . . . , σn} is a complete set of variants
of a term t (with respect to R) if for any substitution ω, we have that (tω)↓ =
(tσi)↓τ for some 1 ≤ i ≤ n and some substitution τ .

Note that the difficulty in the above definition is that the term (tσi)↓τ is
not normalized after the application of the substitution τ to the term (tσi)↓.
Therefore all the rewrite steps to reach a normal form from tω must be captured
by some substitution σi as it is demonstrated bellow in Example 3.2. This means
in particular that the set {id} consisting of the identity substitution is in general
not a finite complete set of variants.

A convergent term rewriting system R is said to have the finite variant prop-
erty if any term t admits a finite complete set of unifiers with respect to the
rewrite system R.

Example 3.2. Let t = dec(x, y) and R = {dec(enc(x, y), y) → x}. Then we
have that σ1 = id (the identity substitution) and σ2 = {x 7→ enc(z, y)} form a
complete set of variants of t.

Indeed, for any substitution ω in normal form, we have that dec(x, y)ω↓ =
dec(x, y)ω (if the decryption does not succeed at the head) or dec(x, y)ω↓ = t′

if the decryption succeeds and therefore xω = enc(t′, yω).

The following example illustrates that a finite complete set of variants does
not always exist.

Example 3.3. We consider the term rewriting system R = {f(g(x))→ g(f(x))}
and the term t = f(x). By analyzing the substitutions ωi = {x 7→ gi(y)} (i ∈ N)
and the normal forms tωi↓ = gi(f(y)) (i ∈ N), it can be proven that any complete
set of variants of t will contain all of the substitutions σi = {x 7→ gi(y)} for i ∈ N
and up to renaming of the variable y. Therefore this term rewriting system does
not have the finite variant property.

Rewrite systems for which any term t has a finite complete set of variants
are said to have the finite variant property.

4 The strong finite variant property

We now define what is a strongly complete set of variants of a term t with respect
to a convergent term rewriting system R:

Definition 4.1. A set of substitutions σ1, . . . , σn is a strongly complete set of
variants of t (with respect to the rewrite system R) if for any substitution ω,
we have that ω[X]↓ = (σi↓τ)[X]1 for some substitution τ and some σi such that
(tω)↓ = (tσi)↓τ , where X = vars(t) is the set of variables appearing in t.

1 Recall that the notation ω[X] denotes the restriction of the substitution ω to the
variables in X.
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Note that in the above definition the condition ω[X]↓ = (σi↓τ)[X] does not in
general imply (tω)↓ = (tσi)↓τ : take R = {dec(enc(x, y), y)→ x}, t = dec(x, y),
ω = enc(z, y), σi = id (the identity substitution). We have that τ = ω is such
that ω[X]↓ = (σi↓τ)[X] = τ [X] but (tω)↓ = z 6= (tσi)↓τ = dec(enc(z, y), y).

A convergent term rewriting system R is said to have the strong variant
property if any term t admits a finite strongly complete set of variants.

As with complete sets of variants, a finite strongly complete set of variants
does not exist in general.

The main difference is that in the strong version, we ask that the substitutions
σi match the normal forms of all variables appearing in t. The following example
illustrates this idea and shows that the notion of complete set of variants and
the notion of strongly complete set of variants do not coincide.

Example 4.2. We consider the (subterm convergent) term rewriting system

R = {h(f(x), y)→ y, h(g(x), y)→ y}

and the term t = h(x, y).

The S = {σ1 = id, σ2 = {x 7→ f(z)} is a complete finite set of variants of t.
Note that S does not contain the substitution σ3 = {x 7→ g(z)}.

However, S is not a strongly complete set of variants of t: if we consider the
substitution ω = {x→ g(a)} for some constant a, we have that:

1. ω↓ = σ1τ1 (with τ1 = {x 7→ g(a)}), but tω↓ 6= tσ1↓τ1.

2. ω↓ 6= σ2τ2 for any substitution τ2.

However, the set S ∪ {σ3} is a strongly complete set of variants of t.

One application of the finite variant property is in solving unification prob-

lems s
?

=R t modulo the rewrite system by treating the equality sign as a free
function symbol and then finding all variants of the equation. In this context of
equational unification, we argue that strongly complete sets of variants are more
natural:

Example 4.3. Continuing Example 4.2, if only complete sets of variants (and
not strongly complete sets) are used for equational unification, some unifiers are
missed. The equation

h(z, y)
?

=R y

has S (defined in Example 4.2) as a complete set of variants. Starting from
S, only the unifier {z 7→ f(x)} is found. However, by considering the strongly
complete set of variants S ∪ {σ3}, the unifier {z 7→ g(x)} is found as well.

Another application is the verification of security protocols where strongly
complete set of variants can be used to get rid of the equational theory.
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4.1 Strict containment

It is easy to see that a term rewriting system having the strong finite variant
property also has the finite variant property. The reverse is not true: term rewrit-
ing systems having the finite variant property need not have the strong finite
variant property. Let us consider the signature F = {f/1, g/1, c0/0, c1/0, . . .}
and the following convergent term rewriting system

R = {f(g(x))→ f(x)}.

It is easy to observe that any term t has a normal form which is either
t↓ = gn(fm(x)) or t↓ = gn(fm(ck)) for some variable x and some integers n,m, k.

The identity substitution id forms by itself a complete set of variants of any
term t built over the signature F .

However, R does not have the strong finite variant property. This is illus-
trated by the following example.

Example 4.4. Let t = f(x). By analyzing the instantiations tωi where the sub-
stitutions ωi are defined ωi = {x 7→ gi(y)} (i ∈ N), it can be shown that
σi[{x}] = {x 7→ gi(z)} (i ∈ N) must be contained in any strongly complete set of
variants (up to renaming of z). Therefore any strongly complete set of variants
of t is infinite.

4.2 In the presence of free symbols

The above example depends on the signature F . Indeed, in the presence of a
free symbol of arity greater than or equal to 2, we have that the two notions
coincide since a finite complete set of variants of the term tuple(t, x1, . . . , xn)
(where vars(t) = {x1, . . . , xn} and where tuple is a free function symbol) is a
strongly complete set of variants of the term t.

Note that the free symbol tuple of arity n + 1 can be encoded by a free
symbol of arity ≥ 2 by replacing, for example, the term tuple(t1, . . . , tk) with
f(t1, f(t2, f(. . . , f(tk−1, tk)))) in case f is a free binary symbol.

We have shown that the notions of strong finite variant property and finite
variant property coincide when the signature contains a free function symbol of
arity ≥ 2. This follows because a complete set of variants of tuple(t, x1, . . . , xn) is
a strongly complete set of variants of t. However note that even in the presence of
such a free symbol, a complete set of variants of t is not always strongly complete
for t (see Example 4.2).

5 Algorithm for a (strongly) complete set of finite
variants

We show that subterm convergent term rewriting systems have the strong finite
variant property by giving an algorithm that computes a finite strongly complete
set of variants for a term t and for a subterm convergent rewrite system R.
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In the following we denote by p↑ the set of all positions that are descendants
of p (including p itself): p↑ = {q | q = p · p′ for some p′}.

The algorithm we present for computing a strongly complete finite set of
variants is based on a refinement of narrowing. Each narrowing step (denoted
hereafter ↪→) works on a configuration (t,P, σ) consisting of a term t, a set of
positions P of t at which we will apply narrowing and a substitution σ in which
a variant will be accumulated.

p ∈ P
l→ r ∈ R vars({l, r}) ∩ vars(t) = ∅
θ = mgu(l, t|p)

(t,P, σ) ↪→ (tθ[rθ]p,P \ p↑, σ ◦ θ)

Fig. 1. Narrowing step

To compute a complete finite set of variants of some term t, we will begin
with the initial configuration C0 = (t, posinit(t), id) where posinit(t) denotes all
non-variable positions of t and non-deterministically apply narrowing steps.

Each narrowing step non-deterministically chooses a rewrite rule l → r and
a position p from P where narrowing is performed. The choice of P = posinit(t)
in the initial configuration is a way to enforce the basic restriction, that is,
narrowing is only performed strictly inside t (and not inside the variables of t).
Furthermore, if we have performed narrowing at a position p and because of the
specificity of subterm convergent rewrite systems, there is no need to consider
this position or any of its descendants anymore and therefore they are removed
from P. At each narrowing step, the variant of the initial term is accumulated
in σ. If by ↪→∗ we denote the reflexive-transitive closure of ↪→, we have that:

Theorem 5.1 (Correctness).
If R is a subterm convergent rewrite system, then the set

Σ = {σ | (t, posinit(t), id) ↪→∗ (t′,P ′, σ)}

is a finite complete set of variants of t with respect to R.

A subterm convergent rewrite system remains subterm convergent by the
addition of a free function symbol tuple. Therefore, to compute a finite strongly
complete set of variants of a term t it is sufficient to compute a finite complete
set of variants of the term tuple(t, x1, . . . xn), where vars(t) = {x1, . . . , xn}.

6 Conclusion and further work

We have shown that subterm convergent rewrite systems have the strong fi-
nite variant property and we have implemented our algorithm in Section 5 in
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the prototype tool SubVariant (available at http://www.lsv.ens-cachan.fr/

~ciobaca/subvariant).
We are currently using this result to obtain a decision procedure for verifying

equivalences between cryptographic processes. Another possible direction for
future work is to find algorithms for computing strongly complete set of variants
modulo associative-commutative function symbols. An extended version of this
paper, including the proofs missing due to space constraints is available as a
research report [10].
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Abstract. We extend the unification algorithm from previous work of
the authors to cover the call-by-need λ-calculus LR. The main task of
the unification algorithm is to compute all possible overlaps (also called
forks) between the reduction rules of LR and a set of program trans-
formations. The new contribution is that the variable-binding chains (a
form of indirections) that occur in the rules and the transformations are
in the scope of the unification method. This is achieved through the use
of additional term syntax to treat variable-binding chains of any length.
The result is a unification algorithm that terminates and computes a
finite and complete set of overlaps (i.e. critical pairs) between all rules
and given transformations.

1 Introduction and Motivation

Proving correctness of program transformations in call-by-need λ-calculi can be
done using a method that heavily relies on sets of reduction diagrams, which can
be interpreted as a description of local confluence between program transforma-
tions and the reduction rules of the λ-calculus. The material step to generate such
diagram sets is the determination of overlaps (also called forks) between reduc-
tions and transformations. The work in [5] presented a terminating and complete
unification algorithm that computes all forks and thus the critical pairs between
the reduction rules and a set of transformation rules in the calculus Lneed , a
call-by-need lambda calculus with a recursive let. In this paper we extend this
work to the more expressive call-by-need lambda calculus LR which was used
in [7] to model the functional part of the programming language Haskell. The
calculus LR extends Lneed in several aspects: (i) There are data types in the
form of data constructors and a syntax for case analysis, (ii) The reduction rules
are defined using variable-binding chains, and (iii) there is a seq-construct for
enforcing sequential reduction. The variable chains are required in this calculus
to enable correctness proofs of the reduction rules seen as transformations.

The main motivation for this work is to make a step forward towards the
automatic verification of the correctness of program transformations in the LR-
calculus. Therefore, as an intermediate goal we are interested in the automatic

? The authors are supported by the DFG under grant SCHM 986/9-1.
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verification of the reduction diagrams given in [7]. Another motivation is to
develop tools that are also applicable to other, non deterministic and concurrent
calculi aiming at automatically detecting program transformation and proving
them to be correct.

The central idea for computing all overlaps is to use (a variant of) first-order
unification. It works as follows: The expressions in the reduction rules (of the λ-
calculus LR), which are in fact rule schemes, are translated into many sorted first-
order terms. These terms are extended with several special syntactic constructs
to finitely capture the infiniteness of reduction rule sets, the letrec-construct,
the binding primitives and the different classes of context variables. The letrec-
construct is translated using the equational theory of left-commutativity. The
higher-order feature of bound variables is translated such that bound variables
are terms (i.e. variables) of an empty sort, i.e. without ground terms. Moreover,
syntactical restrictions like enforcing different variable names in letrecs together
with the distinct variable convention provide a means that can be checked in the
first-order translation to avoid illegal or unsound unifiers that otherwise would
equate variables that must be kept different, like in the first-order translation of
λx.x and λx.y. Context names in rules are encoded as context variables at the
term level. All these aspects of the first-order encoding of a higher order calculus
are treated as in [5].

The novelty of our unification algorithm is that it can unify terms s1, s2,
where both s1 and s2 may contain variable chains. Variable chains are the first-
order encodings of environments like (letrec x1 = v, x2 = x1, x3 = x2, . . . , xn =
xn−1 in A[xn]). There are also the binding chains with bindings x = A[y], where
A is a context variable. The additional complication is that it is unavoidable that
these binding chains occur on both sides of equations in unification problems,
in contrast to the (proper) binding chains in [5] that only appear on one side
of equations. We devise a unification procedure that can treat binding chains
of any length, first-order encoded as VCh(x, y, n) for variable-only chains and
NCh(x, y, n′) for other binding chains. The unification rules exploit the equa-
tional theory of left-commutativity as well as the distinct variable convention-
restrictions and so can enforce termination without losing completeness.

The main result of this work is a translation of the higher-order overlapping
problems into extended first-order unification problems (called initial problems)
and a complete and terminating unification algorithm for these initial problems.
This enables the automation of the computation of complete diagram sets for
the calculus LR, in particular for the transformations that are derived from the
reduction rules of the calculus.

2 Motivating Example for the Unification Algorithm

We demonstrate the main ideas and effects of the encoding and the unification
rules by an extended example, since a formal development would exceed the space
limit. Therefore we illustrate how the overlap of the reduction rule (no, cp-e)
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with the transformation rule (cp-in) in the calculus LR can be computed. The
respective rules are in Fig. 1, where C,A denote contexts.

(no, cp-e) letrec x1 = v, x2 = x1, . . . , xm = xm−1, y1 = A1[xm],
y2 = A2[y1], . . . , yn = An[yn−1],Env in A[yn]

→ letrec x1 = v, x2 = x1, . . . , xm = xm−1, y1 = A1[v],
y2 = A2[y1], . . . , yn = An[yn−1],Env in A[yn]

(cp-in) (letrec x1 = v, x2 = x1, . . . , xk = xk−1,Env in C[xk])
→ (letrec x1 = v, x2 = x1, xk = xk−1,Env in C[v])

Where v is an abstraction and A1 is a non-empty context.

Fig. 1. Reduction rule and Transformation rule of the calculus LR

The initial unification problem corresponding to the overlap of (no, cp-e)
with the transformation (cp-in) is an equation between the first-order encoded
left hand sides of the rules (with a context variable S indicating that the (cp-in)
transformation may not occur at top position). It looks as follows:

let(env*

(
{bind(x1, lam(v, s))} ∪ VCh(x1, x,m)∪
{bind(y1, A1(var(x)))} ∪ NCh(y1, y, n) ∪ Env

)
, A(var(y)))

.
=

S(let(env*({bind(x′1, lam(v′, s′))} ∪ VCh(x′1, x
′, k) ∪ Env ′), C(var(x′))))

(1)

We briefly elaborate on the translation used to arrive at the above unifica-
tion problem: the letrec-environment (that is the set of LR-expression of form
x = s) is encoded by a nesting of a binary function symbol env , similar to a
list or set representation. The irrelevance of the order of elements in letrec-
environments is achieved by the equality axiom LC env := {env(x, env(y, z)) =
env(y, env(x, z))}, i.e. env is a left-commutative function symbol (For the
LC -theory and unification modulo LC see [2, 1]). We use the abbreviation
env*({t1, . . . , tm} ∪ r) to denote the term env(t1, env(t2, . . . , env(tm, r) . . .)),
and usually use union-notation within the first argument of env*. A bind-
ing x = y is encoded as bind(x, var(y)). Some terms in the first order en-
coding may not possess syntactical admissible counterparts in LR: for exam-
ple env*({bind(x, var(y)), bind(x, var(z))} ∪ Env), because x occurs twice at a
binder position. Such terms are called syntactically incorrect w.r.t. LR.

The binding chains of variable length in the left hand sides of the LR-
reductions (i.e. x2 = x1, . . . , xm = xm−1 etc.) are encoded as VCh(x, y, n),
and NCh(x, y, n), respectively, where x, y are the variables starting and end-
ing the chain; they may also occur in the environment outside of the chain
(which is the case for the encoding of the LR reductions and transforma-
tions). The integer variable n stands for the length, and it is assumed that
the (implicit) intermediate variables and context variables are fresh. The
meaning is that such a chain-construct expands to n bindings, for exam-
ple VCh(x, y, 2) represents z = x, y = z, and in the first-order encoding:
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env(bind(z, var(x)), env(bind(y, var(z)), [.])), where z is a fresh variable. Sim-
ilarly, NCh(x, y, 2) represents z = A1[x], y = A2[z], and its first-order encod-
ing is: env(bind(z,A1(var(x))), env(bind(y, (A2(var(z)))), [.])), where A1, A2 are
fresh context variables. The constructs for binding chains describe (possibly in-
finite) sets of terms. They bear some similarities to term schematizations used
in [6, 3, 4].

We proceed to solve equation (1). Therefore we first use the unification
rules as in [5]: One possibility is to guess the context variable S as empty.
After that we decompose the let-terms. It remains to solve the equation
A(var(y))

.
= C(var(x′)) and

env*

(
{bind(x1, lam(v, s))} ∪ VCh(x1, x,m)∪
{bind(y1, A1(var(x)))} ∪ NCh(y1, y, n) ∪ Env

)
.
= env*({bind(x′1, lam(v′, s′))} ∪ VCh(x′1, x

′, k) ∪ Env ′)

(2)

Again the first equation can be treated using similar methods as in [5], taking
care of the extended signature. The second equation (2), however, requires special
treatment because of the variable chains occurring in both terms. We have to
treat the integer variables m,n, k (for the lengths of chains) in a general way
avoiding guessing natural numbers, since this would lead to an infinite number of
solutions. Our unification method employs some crucial properties of the to-be-
solved problems, such that infinite solution sets can be avoided, therefore leading
to a terminating procedure without sacrificing completeness of the algorithm.
The new unification rule that achieves this goal is U-Chain in Fig. 2, which
states that there are two possibilities for unifying chains Ch1 and Ch2: They are

U-Chain:
{env*(Ch(x1, y1, l1) ∪M1 ∪ r1)

.
= env*(Ch(x2, y2, l2) ∪M2 ∪ r2)} ] P

choose one of the following possibilities

1) {l1
.
= l′1+l+l′′1 , l2

.
= l+l′2, env*(Ch(x1, x2, l

′
1),Ch(z, y1, l

′′
1 ) ∪M1 ∪ r1)

.
=

.. env*(Ch(z, y2, l
′
2) ∪M2 ∪ r2)} ∪ P

2) {l1
.
= l2, x1

.
= x2, y1

.
= y2, env*(M1 ∪ r1)

.
= env*(M2 ∪ r2)} ∪ P

Where z is a fresh variable of sort BV and l, l′1, l
′′
1 , l
′
2 are fresh integer variables.

Dec-Chain
{env*({s1} ∪M1 ∪ r1)

.
= env*(Ch(x, y, l) ∪M2 ∪ r2)} ] P

select one of the following possibilities

1) {l .= 1, s1
.
= bind(y,A(var(x))), env*(M1 ∪ r1)

.
= env*(M2 ∪ r2)} ∪ P

2) {l .= 1+l1, s1
.
= bind(z,A(var(x))), env*(M1 ∪ r1)

.
= env*(Ch(z, y, l1) ∪M2 ∪ r2)} ∪ P

3) {l .= l1+1, s1
.
= bind(y,A(var(z))), env*(M1 ∪ r1)

.
= env*(Ch(x, z, l1) ∪M2 ∪ r2)} ∪ P ;

4) {l .= l1+1+l2, s1
.
= bind(z2, A(var(z1))),

env*(M1 ∪ r1)
.
= env*(Ch(x, z1, l1) ∪ Ch(z2, y, l2) ∪M2 ∪ r2)} ∪ P

Where s1 is a binding expression. z, z1, z2 are fresh variables of sort BV and A is
either a fresh context variable of class A if Ch=NCh

Fig. 2. Two unification rules dealing with variable chains. (Here we use the symbol Ch
to denote either chain construct.)
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either identical (described by case 2, where the length of the chains and their
start- and end-points are equated), or the initial part of Ch2 is equal to some
intermediate part of Ch1 and both tails of Ch2 and Ch1 and the initial sequence
of Ch1 are disjoint (case 1). These (and the symmetrical case, where Ch1 and
Ch2 are swapped) are the sole possibilities of equating bindings from chains: All
other unification schemes of chain-bindings would result in terms that do not
represent syntactically admissible LR-expressions. We will elaborate on this by
applying the rule U-Chain to the equation (2) from our continued example,
where one possible transformation (i.e. case 1) of U-Chain) yields:

m
.
= m1 + l +m2, k

.
= l + k1,

env*

(
{bind(x1, lam(v, s))} ∪ VCh(x1, x

′
1,m1) ∪ VCh(z, x,m2)∪

{bind(y1, A1(var(x)))} ∪ NCh(y1, y, n) ∪ Env

)
(a)

.
= env*({bind(x′1, lam(v′, s′))} ∪ VCh(z, x′, k1) ∪ Env ′) (b)

(3)

Now we can solve the last equation from (3) by setting Env
.
= (b) and

Env ′
.
= (a) where in the equations (a) and (b) the environment variables Env

and Env ′ are replaced by Env ′′. Now the system is in solved form. Applying the
resulting unifier to one term of the original problem (1) yields:

. . . let(env*
(
{bind(x′1, lam(v′, s′))} ∪ . . .VCh(x1, x

′
1,m1) ∪ . . .

)
, . . .)

Instantiating m1 with 1 and back-translating the term into LR results in
(letrec x′1 = λv′.s′, . . . , x′1 = x1 in . . .); a expression that is syntactically
not admissible because the variable x′1 occurs twice at a binder position. Hence
in the context of the specific unification problems (initial problems) we want to
solve, case 1) of the rule U-Chain can be simplified to

{l1
.
= l+l′1, l2

.
= l+l′2, x1

.
= x2,

env*(Ch(z, y1, l
′
1) ∪M1 ∪ r1)

.
= env*(Ch(z, y2, l

′
2) ∪M2 ∪ r2)} ∪ P.

I.e. two chains are equated beginning from their starting point up to some
point from where they are disjoint. Here the justification is that initial problems
have an additional property: bindings in variable chains are equipped with a
(strict partial) order (like a linear list) with a least element called anchor-binding.
In the case of VCh-constructs these bindings are always of the form bind(x, v)
where v is either an abstraction or a constructor application. The partial order
in conjunction with the syntactical correctness criterion ensures the following: If
some bindings of two chains are equated then all chain bindings that are smaller
are also equated, until one anchor-binding is reached. The equation between such
an anchor-binding and a non-anchor chain-binding (e.g. bind(y,A(var(z)))) can
never hold, i.e. bind(x, v)

.
= bind(y,A(var(z))) has no solution. Therefore our

algorithm avoids the derivation of such unsolvable equations by equating initial
parts of variable chains starting from their anchor-bindings. This strategy is
crucial for the termination of the algorithm but it is only complete for initial
problems (where each variable chain comes equipped with an anchor). Together
with some additional unification rules and conditions that control the application
of rules, termination of the algorithm can be assured.
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One of those other rules, also concerned with solving equations with binding
chains, is the rule Dec-Chain from Fig. 2. It covers the cases where a non-chain
binding s1 is equated with a chain binding. The possibilities are: 1) The chain
consists only of one binding which is equated with s1, or 2) the first binding
of the chain is equated with binding s1, or 3) the last chain binding is equated
with s1, or 4) a binding from the middle of the chain is equated with s1 and the
original chain is split around this externalized binding. All of these cases require
that some of the internal chain variables (context and BV -sorted) are made
explicit. These variables are always chosen as fresh (i.e. not occurring anywhere
else in the unification problem).

Note that syntactical correctness and the distinct variable convention of the
re-translated terms are enforced by the unification rules and by failure rules, and
that without these precautions our rule-based unification algorithm would not
terminate.

3 Overview of the Algorithm and Results

The unification algorithm for computing the overlaps in LR is applied to (initial)
unification problems of the form {S[lT,i]

.
= lno,j} where lT,i and lno,j are encoded

left hand sides of LR reduction rules. Initial problems are restricted: They are
linear in the variables and context variables, with the exception of variables of
sort Bind , which is an empty sort. The occurrence of chains in initial problems is
also restricted. These restrictions stem from the syntactical form of the reduction
rules and the transformations of the LR calculus.

The unification rules of our algorithm consist of (i) rules from [5] that are
adapted to the extended signature, and (ii) rules for dealing with equations
env*(. . .)

.
= env*(. . .), where both sides contain binding chains.

The following holds:

– The (nondeterministic) algorithm terminates on initial unification problems.
– The algorithm is sound and complete on initial unification problems, un-

der the sensible restriction that only solutions are permitted that lead to
syntactically correct expressions after translating them back to LR.

– The result of all nondeterministic executions is a finite set of final represen-
tations. These can be re-translated and lead to a finite set of overlaps of
reduction rules and transformations.

4 Conclusion and Further Work

We devised an algorithm that computes complete sets of forks for the calculus LR
from [7]. Therefore we first encode left hand sides of reduction rules into a term
representation and use it to generate initial unification problems that describe all
overlaps. Then we solve those unification problems using the sketched unification
algorithm. After these steps we eventually instantiate the unification problems
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that describe the forks with the computed solutions and translate them back to
yield all forks in the LR calculus.

We plan to implement the computation and thus the verification of most of
the diagrams of LR as presented in [7]. The core will be the unification algorithm
as sketched above. This requires in addition closing the critical pairs using the
normal-order reduction.
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Higher-Order Unification for the λαν calculus

Ben Kavanagh and James Cheney

University of Edinburgh

Abstract. In this paper we propose an equational theory of a lambda
calculus with names, name abstraction, and restriction, and a derived
unification algorithm for this theory. Our calculus is very closely related
to the calculus of Pitts 2011 [3]. We restrict the calculus presented there
to obtain soundness of additional equalities, allowing us to define a uni-
fication algorithm very similar to the one given for the lambda calculus.
We discuss the properties of this algorithm and give examples of its util-
ity in meta-programming.

1 Introduction

Unification, the problem of finding a substitution under which a set of equations
(i.e pairs or terms) are valid, is an essential tool used in automated reasoning,
interactive theorem proving, and logic programming. Nominal terms, initially
developed by Gabbay and Pitts in [1] offer an elegant way to represent alpha-
equivalence classes. Unification for nominal terms was investigated by Urban et
al. [5], and has been employed in nominal logic programming and rewriting.

More recently, Pitts [3] has developed the a calculus which extends the λ-
calculus with both name-abstraction αa.e and a name-restriction operator νa.e.
The name abstraction αa.e, which is a binding form replaces < a > e in nominal
terms which is not. Although both represent equivalence classes, and both have
elimination forms, called concretions, which instantiate the equivalence class at
a particular representative, concretion over the new form αa.e is a total function
and therefore there is an equational theory. We present a higher order unification
algorithm over a variant of this calculus We aim to use this calculus to define
a higher order logic, which may then be used to define a higher-order logic
programming language with built in support for alpha equivalence classes.

Our calculus, λαν , is based on that of Pitts [3] and has a similar denotation.
The unification problem for terms in Pitts calculus are complicated by the name-
restriction operation, which motivate changes. The two main differences are the
removal of computational operators that inspect names (in particular ’=’) and
the addition of two additional equations allowing us to move restriction operators
up and down through terms. These allow us to decompose applications terms to
simplify a unification problem. Our main results are an eta-long, permutation
free, normal form over the additional equations, proofs that the equations are
sound, and a sound constraint rewriting system to solve unification problems.

To illustrate our unification algorithm we will examine two example problems
based on the lambda calculus. Imagine as part of semantic definition of the
language we have the following rules.
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(λx.e)e′ −→ e[e′/a]

e −→ e′

C[e] −→ C[e′]

which would correspond in our logic to rules constructed from terms in the
λαν calculus as follows.

app(lam(αa.E@a), E′) −→ E[E′/a]

E −→ E′

CE −→ CE′

The first rule is just beta reduction, and the second is a common
rule to express congruence, usually seen in call-by-name calculi, where C
represents a lambda term with a single hole. To reduce the term t =
app(lam(αb.b), 0), i.e. (λb.b)0 by calling a query -? t --> ?V we must unify t
with app(lam(αa.E@a), E′). A second example that uses the higher order prop-
erties is the reduction of t′ = lam(αa.app(lam(αb.e), e′)), i.e. λa.(λb.e)e′ where
we must unify t′ with CE

2 The λαν calculus

Let � be a countably infinite set of names with decidable equality and inequality.
Let a ∈ �, then the terms of our calculus are as follows:

e ::= x | a | c | λx.e | e1 e2 | αa.e | e@a | (a o b)e | νa.e

The forms for variables, constants, lambda-abstractions and applications, are
standard. The purpose of name-abstraction, αa.e, is to represent equivalence
classes. Our equational theory for this form will not perform substitution (i.e.
computation) but will only permute fresh names. Concretions, e@a, represent the
extraction of a particular representative from the alpha equivalence class. We can
understand concretion as a limited form of substitution where we can substitute
only another name, implemented using permutation. The calculus includes terms
to represent the pair-swapping permutations (a o b)e, since permuations are the
basis of the equivalence classes and are thus required to give them an equational
theory. Lastly we have the name-restriction operation νa.e which is required to
give a purely equational theory for concretion.

Motivation, background, and detailed semantics for this calculus can be found
in Pitts [3]. The main two main differences between our calculus and the one
presnted there are as follows: firstly we remove the pairs and booleans, secondly
we use concretion, an equivalent form of name abstraction elimination, instead
of the let form. We do this to have better properties for unification, i.e to be
easier to adapt an existing higher order unification algorithm.

Types are defined as below where S is a metavariable that stands for type
constants such as bool, int, etc.:

τ ∈ T ::= S | Name | τ1 → τ2 | Name α−→ τ
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Here, type constants and function types are standard. We introduce a name type
for names and a name arrow type for name-abstractions. The typing rules are
given in Figure 1. In particular, note that both swapping and name-restriction
preserve the type of their expression argument. Below when we discuss terms
with arity of 2 or greater we use types of the form e : τ1

?1−→ τ2
?2−→ . . . τn

?n−→ γ
where γ is a metavariable indicating a base type. We also use the notation
e ?1 e

′
1 . . . ?n e

′
n where ?i is either @ or ’ ’ (i.e. function application),

In figure 1 we also summarize the denotational semantics of λαν , based on [3].
The semantics employs constructions in the category Res of nominal sets with
a swapping operator (a b)x, a finite support property, and a restriction operator
a\x. Space limits preclude a complete discussion of the semantics, however it is
largely the same as in [3]. One difference is that we require the interpretation of

terms of type τ → τ ′ to be an element of the exponential in Res, Jτ ′KJτKτ
τ , which

consists of functions with finite support that satisfy the equation

a\(f x) = a\f a\x.

This restriction will give us a stronger equational theory than in [3] and will
give us a simpler unification procedure. Note that the restriction rules out, for
example, built-in functions such as name-equality a = b. For our semantics to
be well defined we need to prove that the semantics for each typed term has this
property. In particular we need the following lemma.

Lemma 2.1. For all Γ, e, τ , ρ ∈ JΓ Kτ , Γ ` e : τ =⇒ JeKe ∈ JτKτ

We will also require the following property, which will allow us to push a ν
operator below a concretion.

Lemma 2.2. For all a, a′, Γ, e, τ, ρ ∈ JΓ Kτ , a 6= a′ =⇒ a\((JeKτρ)@a′) =
(a\JeKτρ)@a′

In the bottom of Figure 1 we give the equational laws of our variant of λαν .
These include standard βη laws and an analogous β law for name-abstraction
(1), alpha-equivalence laws (2), the four standard laws for name-restriction (3),
the additional name-restriction laws for our calculus (4), and the rules for permu-
tation (5). We assume the usual rules stating that the equality is a congruence
and an equivalence relation. The rules given are shorthand since we are in a
typed theory. Equality is a quaternary relation Γ ` e = e′ : τ that can be read
as saying in context Γ both e and e′ are well-typed with type τ and are equal.
We elide this notation in the rules given for simplicity.

Theorem 2.3 (Soundness). Γ ` e = e′ : τ =⇒ ∀ρ ∈ JΓ Kτ , JeKeρ = Je′Keρ

Proof. straightforward proof by induction following the approach in Pitts [3]
using Lemma 2.1 and Lemma 2.2 for the new rules for ν.

As in previous approaches to higher-order unification we will require canon-
ical normal forms that allow us to compare terms up to our notion of equality.
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Well-Typed Terms

(x : τ) ∈ Γ

Γ ` x : τ

f : τ ∈ Σ

Γ ` f : τ

a ∈ �

Γ ` a : Name

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` e : τ1 → τ2 Γ ` e′ : τ1

Γ ` ee′ : τ2

Γ ` e : τ a ∈ �

Γ ` αa.e : Name α−→ τ

Γ ` e : Name α−→ τ a ∈ �

Γ ` e@a : τ

Γ ` e : τ a, b ∈ �

Γ ` (a o b)e : τ

Γ ` e : τ a ∈ �

Γ ` νa.e : τ

Denotations

JSKτ = JSKΣ
JNameKτ =�+ 1

Jτ1 → τ2Kτ = Jτ2KJτ1Kτ
τ in Res

JName α−→ τKτ = [�]JτKτ

JxKeρ= ρx
JaKeρ= Just(a)

Jλx.τ1eKeρ= λv : Jτ1Kτ .JeKe((ρ[x 7→ d]))
Jee′Keρ= JeKeρ(Je′Keρ)

Jαa.eKeρ= a\〈a〉(JeKeρ) where a#ρ
Je@aKeρ= a′\(a′ a)JeKeρ@a′ where a′#{ρ, JeKeρ}

J(a o b)eKeρ= (a b) · JeKeρ
Jνa.eKeρ= a\JeKeρ where a#ρ

Equational Theory

(λx.e)e′ =βην e[e
′/x] (αa.e)@a′ =βην νa.(a o a′)e

x /∈ fv(e)

λx.ex =βην e
(1)

x /∈ fv(e2), e1 =βην e2[x/y]

λx.e1 =βην λy.e2

a /∈ fn(e), e =βην (a o a′)e′, ∆ ∈ {ν, α}

∆a.e =βην ∆a
′.e′

(2)

a /∈ fn(e)

νa.e =βην e νa.νa′.e =βην νa
′.νa.e νa.λx.e =βην λx.νa.e

a 6= a′

νa.αa′.e =βην αa
′.νa.e

(3)

νa.(ee′) =βην (νa.e)(νa.e′)

a 6= a′

νa.(e@a′) =βην (νa.e)@a′
(4)

(a o b)(a′) =βην (a b)a′

c ∈ Σ

(a o b)(c) =βην c
(5)

(a o b)λx.e =βην λx.(a o b)(e[(a o b)x/x])

∆ ∈ {ν, α}

(a o b)∆a′.e =βην ∆(a b)a′.(a o b)e

(a o b)(e1 e2) =βην ((a o b)e1)((a o b)e2) (a o b)(e@a′) =βην (a o b)e@(a b)a′

Fig. 1. Well-typed terms, denotation, and equational theory for λαν
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As with β and η equations we take the right hand sides of the ν equations as
reduced. We then consider η-long βν-reduced normal and neutral forms defined
as :

n∈Nf ::= λx.n | αa.n | u : γ (where γ a base type)
u ∈Ne ::= a | Anon | νa.πx | un | u@a | νa.u@a

where π stands for an arbitrary composition of swappings, equivalent to a
finite name permutation, that is, a permutation of names where the set of names
not mapped to themselves {a | π(a) 6= a} is a finite set.

To normalise we first we first η-expand according to types, and then apply
β-reductions and rules for pushing swappings and ν down into abstractions,
applications, and concretions. All swappings can be pushed down to variables x,
yielding a permutation π.

Name-restrictions can be pushed down until the argument is either the re-
stricted name, a permuted variable, or a concretion of the same name. There are
three neutral terms that describe where ν binders can exist in normal forms. One
term is the Anon term described in Pitts [3]. The remaining two are a concretion
term with a ν and a vector of ν quantifiers surrounding a suspension. We call
this last term a ν−suspension.

We define equality over the normal forms =nf as the congruence relation gen-
erated by alpha equivalence rules identical to those for =βην and the additional
rule below.

(a, π) ≈νπ (b, π′)

νa.π =nf νa.π

This rule says that two ν-suspensions are equal if and only if the number of
ν quantifiers are equal and the permutations π, π′, are equal up to re-labeling of
the ν-quantified names. We use the relation ≈νπ to represent these properties,
that is,

(a, π) ≈νπ (b, π′) ::=
a =

b ∧ ∃π′′. dom(π′′) ⊆ b ∧ π = π′ · π′′

This relation can be computed straightforwardly by computing the cycle
graph of the two permutations and verifying that their cycles are equal on the
vertices with names not bound by the ν quantifier. This comparison can be
computed in linear time. For brevity we omit the algorithm. There is a trivial
injection of the normal forms into Tλαν . We denote this as pnq.

3 Unification

Definition 3.1. A problem P is a sequence of pairs of λαν-terms in normal
form
{〈n1, n′1〉, . . . , 〈nn, n′n〉}. A substitution is a total function σ : X → Nf with finite
domain
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{x | σ(x) 6= x}. A unifier for problem P is a substitution σ, such that for
each pair 〈ei, e′i〉 in P , σ(ei) and σ(e′i) are convertible in the λαν calculus, i.e.
σ(ei) =βην σ(e′i). The set of unifiers for a problem P is denoted U(P ). A problem
P is solved for variable X if P = 〈X, e〉 ∪ P ′ and X does not occur in P ′. A
problem P is solved if P is solved for all free variables occuring in P . A problem
P is pre-solved if every variable in P that is not solved occurs only in flexible-
flexible pairs.

The standard definitions for substitutions of ’more general than’ (≤), composi-
tion (◦), union (∪) apply.

We present a pre-unification algorithm as a rewrite system, an approach
initially developed by Martelli and Montanari [2]. Our rules are largely based
on the rules used by Gallier and Snyder [4]. The main difference is that due to
the presence of restrictions we cannot use a multiple application shorthand (e.g.
ft1 . . . tn) in decomposition but must instead decompose binary function and
name application. Also since we give a pre-unification algorithm we can only use
it for unification if all types are inhabited. The imitation and projection rule
have the same basic form as that in [4] and require a term form that lifts all
ν quantifiers above the head of the term. This term form is called unification-
normal form. To produce this from the normal form we simply bubble up all
ν-quantifiers in suspensions and name applications to the position above the
head term. We describe the unification normal form below.

nu ∈Nfu ::= λx.nu | αa.nu | νa.uu
uu ∈Neu ::= a | Anon | πx | uunu | uu@a

Thus the terms are of the form ∆1p1 . . . ∆kpk.νa.h ?1 t1 . . . ?n tn where ∆i

is either λ or α and and h is a meta-variable that denotes the head of normal
terms, which is either a constant or a variable. As in the case for normal terms
we represent the injection of this form into Tλαν as pnuq. Below we use bound
elements p, q, and r to represent either a name or a variable. As in the classic
literature on higher order unification we partition terms into flexible terms, i.e.
those where the head h is a free variable, and rigid terms, i.e. those where the
head h is a constant or a bound variable.

Lemma 3.2. ∀n ∈ Nf.∃nu ∈ Nfu.pnq =βην pnuq

Proof. simple induction on neutral form construction.

We now give a set of sound and complete transformations to rewrite problems
to a solved form when a unifier exists. From the solved problem a unifier for the
original problem can be constructed. Some of the transformations use the normal
form, in particular the identity rule and the decomposition rule. The two rules
for imitation and projection use the unification-normal form. Lemma 3.2 allows
to switch between forms. To make the rules more readable we write the binders
and arguments in vector form thus we write ∆1p1 . . . ∆kpk.νa.h ?1 t1 . . . ?n tn as
∆pk.νa.h?tn.
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Definition 3.3. (Set of transformations HT αν) We define the set of transfor-
mations HT αν as the rewriting system on unification problems defined by the
rules below.

We may eliminate pairs of identical terms.

{〈e, e′〉} ∪ P =⇒ P if nf(e) =nf nf(e′). (1)

If nf(e) = ∆pk.F?pk, i.e. the eta-long form of a variable, we can substitute
the variable to eliminate the variable from all other constraints. Here P ↓ means
converting all terms in P to their normal form.

{〈e, e′〉} ∪ P =⇒ {〈F, e′〉} ∪ σ(P ) ↓ where σ = [e′/F ], F /∈ fv(e) (2)

If head(e) = head(e′) = h, a rigid head, and a′ /∈ fn({e, e′}), then we may
decompose the constraint using the following three rules

{〈∆pk.e1 ? t, ∆pk.e′1 ? t′〉} ∪ P
=⇒ {〈∆pk.e1, ∆pk.e′1〉, 〈∆pk.t, ∆pk.t′〉} ∪ P

(3a)

{〈∆pk.νa.e@a, ∆pk.νb.e′@b〉} ∪ P
=⇒ {〈∆pk.νa′.(a o a′)e, ∆pk.νa′.(b o a′)e′〉} ∪ P

(3b)

Let e1 = ∆pk.νa.F?tn, e2 = ∆pk.νb.h?t
′
m, h a constant of type τ = τ1

?1−→
. . . τm

?m−−→ γ, and b′ = b ∩ {t′ | ∃b ∈ Name. ?i t
′
i = @b} the top level name

applications in e2 with ν-quantified names, then

{〈e1, e2〉} ∪ P
=⇒ {〈F, ∆qn.νb′′.h?Ĥm〉} ∪ {〈e1, e2〉} ∪ P

(4)

where b′′ is a vector of names fresh for qi . . . qn with length (
b′−a) ≤b′′ ≤ b, and Ĥi as follows where nArgs collects all names that are α-

bound in ∆qn.

Ĥi =

{
a ∈ (nArgs(∆qn) ∪ b′′) if ∃b ∈ Name. ?i t′i = @b

∆rτi.Hi?qn@b′′ ?rτi otherwise

with e, e′ as in previous rule, if ti : τ ′1
?1−→ . . . τ ′mi

?m−−→ γi,

{〈e1, e2〉} ∪ P
=⇒ {〈F, ∆qn.νb′.qi?Ĥmi〉} ∪ {〈e1, e2〉} ∪ P

(5)

where b′′ as before and

Ĥi =


a ∈ (nArgs(qn) ∪ b′′) if τ ′i = Name ∧ ?i−→ = α−→
a ∈ (nArgs(∆qn) ∪ b′′) if ∃b ∈ Name. ?i t′i = @b

∆rτ ′
i

.Hi?qn@b′ ?rτ ′
i

 otherwise
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3.1 Correctness of HT αν

First we show soundness of the transformations.

Lemma 3.4. if P =⇒ P ′ by rules (1), (2), or (3) then U(P ′) = U(P ).

Lemma 3.5. if P =⇒ P ′ by rules (4) or (5) then U(P ′) ⊆ U(P ).

Theorem 3.6 (Soundness). if P =⇒∗ P ′, and P ′ is in pre-solved form then
σ ∈ U(P ) where σ = {〈Xi, tXi〉 | Xi solved in P ′} ∪ {〈Yi, ξYi〉 | Yi ∈ res(P ′)}
with res(P ′) the variables remaining in flex-flex pairs and ξXi = ∆pn.kγ where

Xi : τ1
?1−→ . . . τn

?n−→ γ and kγ a special constant for type γ.

Proof. By induction on the length of the rewrite sequence using Lemma 3.4 and
Lemma 3.5.

We give a completeness result similar to that of Huet in that we do not solve
for complete sets of unifiers but only guarantee we will find a substitution if one
exists.

We first show that any term can be be decomposed using a partial binding
and a substitution, where a partial binding is a binding 〈F, t〉 generated by either
the imitation or projection rule.

Lemma 3.7. Given a λαν term s in eta-long normal form, i.e. s = ∆pk.νa.h?tm
with h a constant or bound variable, there exists a partial binding t and a sub-
stitution η such that η(t) =βην s.

We then show that we can form an equivalent substitution which decomposes
one of its pairs.

Lemma 3.8. let σ = [s/F ] ∪ σ′ then for a unique variant of a partial binding t
valid for F and s such that

σ = ([s/F ] ∪ η ∪ σ′)|D(σ)

= ([t/F ] ◦ η ∪ σ′)|D(σ)

Definition 3.9. We define a rewrite system for pairs of substitutions and prob-
lems

σ
==⇒ as follows

P =⇒ P ′ via rules (1)(2)(3) ∧ σ ∈ U(P )

σ, P
σ

==⇒ σ, P ′

{〈e1, e2〉} ∪ P =⇒ {〈F, t〉} ∪ [t/F ]({〈e1, e2〉} ∪ P ) ∧ [s/F ] ∪ σ′ ∈ U({〈e1, e2〉} ∪ P )

[s/F ] ∪ σ, ({〈e1, e2〉} ∪ P )
σ

==⇒ [s/F ] ∪ η ∪ σ, {〈F, t〉, 〈e1, e2〉} ∪ P

We now show that if the problem is not solved we can always make progress.

Lemma 3.10 (Progress). If σ ∈ U(P ) for P is not in solved form then there

exists σ′, P ′ such that σ, P
σ

==⇒ σ′, P ′ ∧ σ′ ∈ U(P ′) ∧ P =⇒ P ′.
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Theorem 3.11 (Completeness). if ∃σ ∈ U(P ) then there is a P ′ such that
P =⇒∗ P ′, and P ′ is in pre-solved form.

Proof. Let the complexity measure of a substitution-problem µ(σ, P ) = 〈M, N〉,
where M is the sum of term size (# atomic terms) for the range of σ over
variables that are not solved and N is the sum of the termsizes of all terms in P .
All substitution transitions decrease complexity. Using well-founded induction
over complexity and our progress lemma we can show that we will always reach
a solved form.

We can now return to the two examples we gave in the introduction. The
problems described there translate into the following two unification problems.

P1
def
= {〈app(lam(αb.b), 0), app(lam(αa.E@a), E′)〉}

P2
def
= {〈lam(αa.app(lam(αb.e), e′)), CE〉}

By applying our rewrite rules both problems can be rewritten to pre-solved
forms with the substitutions given below. The derivations are outlined in figure
3.1 with some repetitive steps elided.

– P1 succeeds with σ = [E 7→ αa.a,E′ 7→ 0]
– P2 succeeds with σ = [C 7→ λx.lam(αa.x@a), E 7→ αx.app(lam(αy.e))e′]

P1 =⇒ {〈(Lam(αa.E@a)), (Lam(αb.b))〉, 〈E′, 0〉} (decompose)
=⇒ {〈αa.E@a, αb.b〉, 〈E′, 0〉} (decompose)

= {〈αa.E@a, αa.a〉, 〈E′, 0〉} α− equality
=⇒ {〈E, αa.a〉, 〈αa.E@a, αa.a〉, 〈E′, 0〉} (projection)
=⇒ {〈αa.a, αa.a〉, 〈E′, 0〉} (var-elim)
=⇒ {E′}0 (ident-elim)
=⇒ {} (var-elim)

P2 =⇒ {〈C, λx.lam(αa.Hx@a)〉, 〈CE, lam(αx.app(lam(αy.e))e′)〉} (imitation)
=⇒ {〈lam(αa.HE@a), lam(αx.app(lam(αy.e))e′)〉} (var-elim)
=⇒ {〈αa.HE@a, αx.app(lam(αy.e))e′〉} (decompose)
=⇒ {〈H, λx.αa.x@a〉, 〈αa.HE@a, αx.app(lam(αy.e))e′〉} (projection)
=⇒ {〈αa.E@a, αx.app(lam(αy.e))e′〉} (var-elim)

. . . . . . (seq of imitate/decomp)
=⇒ {}

4 Conclusions

This paper reports work in progress on combining higher-order nominal unifi-
cation. To adapt known techniques such as Huet’s algorithm, we have adapted
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Pitts’ λαν system to provide βη-normal forms that are amenable to the stan-
dard imitation, projection and decomposition steps, and have shown that these
changes are compatible with normalization and with the semantics of Pitts’ cal-
culus. Implementation and full proofs of soundness and completeness are the
subject of ongoing work.

Since it extends the lambda calculus, unification over this calculus is undecid-
able. Nevertheless we may expect that as with higher order unification there will
be useful decidable fragments. Our original interest in investigating this calculus
was to give a unification algorithm for nominal terms with context variables,
which may be represented as linear second order terms in our proposed calculus.
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Abstract. In this paper, we present a preprocessor for rules based on
unification, which has the potential to enable faster search for poten-
tial redexes in normalization. We implement this idea in Laboratory for
Rapid Rewriting (LRR) [2] and compare our method with ELAN [9] and
Maude [8] using both favorable and unfavorable examples to demonstrate
the performance.

1 Introduction

Fast rewriting is needed for equational programming, rewrite based formal ver-
ification methods, and symbolic computing systems. In any implementation of
rewriting techniques efficiency is a critical issue [6]. The goals of this paper are
to enhance the efficiency of the normalization by integrating a preprocessor for
rules and to determine how much can unification help in future matching at-
tempts in practice, especially when built-in operators such as arithmetic present
complications. The immediate motivation is to effectively cut the time spent in
traversing both the term and the rules in order to find a match. The preprocessor
for rules utilizes the unification results obtained from a set of rules to facilitate
matching. Our idea is applicable to any interpreter. Since we have been working
on LRR , an interpreter for a rule-based programming language with an efficient
history option, we use it as a platform to demonstrate our idea.

The rest of this paper is organized as follows. We first present some pre-
liminaries including a brief introduction to LRR in Section 2. Then we discuss
how unification helps in normalization in Section 3. The experimental results are
presented in Section 4. In Section 5, we conclude the paper with some promising
directions for future research.

2 Preliminaries

A Term Rewriting System is a set of rewriting rules, R, and a given term t0.
The objective is to compute a normal form of t0, tn. We denote the ith rule as
rulei : lhsi ⇒ rhsi;. We define that the ith step of the normalization is a process
that builds a new term ti by applying rulej at a subterm of term ti−1, in which
i ∈ N, 0 < i ≤ n. We use ti−1 →(i,j) ti to denote the ith step of the normaliza-
tion. Thus, the whole process of normalization can be denoted as a sequence,
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t0 →(1,j) t1, ..., ti →(i+1,j′) ti+1, ..., tn−1 →(n,j′′) tn. Terms t1, ..., ti, ..., tn−1 are
called intermediate results.

A position of a term t is a sequence of natural numbers that is used to
identify the locations of subterms of t. The subterm of t = f(s1, . . . , sn) at
position p, denoted t|p, is defined recursively: t|λ = t, where λ is the empty
sequence, t|k = sk, and t|k.l = (t|k)|l for 1 ≤ k ≤ n and undefined otherwise [7].

LRR is one of the interpreters for rule based programming. The input of
LRR is a file representing the rules R and a file representing the given term t0.
It consists of a term graph interpreter TGR, and a term graph rewriter storing
the history of its reductions, called Smaran, based on the Congruence Closure
based Normalization Approach (CCNA) [4]. Smaran constructs signatures rep-
resenting the terms and equivalence classes consisting of equivalent signatures.
Please consult [4, 5] for more details. TGR uses Term Graph Rewriting which
has no class or signature.

An extension of almost linear unification (ALU). The objective of
unification is, given two terms l, r, to find a substitution σ such that σ(l) and σ(r)
are syntactically identical. The ALU algorithm uses Directed Acyclic Graphs
(DAGs) as the data structures of the terms and requires variables to be shared,
which reduces the complexity from exponential to almost linear (please see [1]
for more details). We extend the concept of unification as follows. Under strict
unification, a constant never unifies with a function having at least one child.
But if a function can be evaluated during the normalization and the constant is
one of the possible results, we consider that they “unify”. For example, consider
the Fibonacci function in appendix, either term true or false is the result of
term > (x, 1) and here we consider that true and false unify with > (x, 1).

3 How Does ALU Help in Normalization

We find that many matches found in normalization happen between an instance
σ(r|p) of a subterm r|p of a RHS r and an LHS l. This implies that the LHS unifies
with this subterm of the RHS, since their variables are “effectively” disjoint. And
if a subterm from a RHS can unify with a LHS, there is a great chance to find
a match between the instance of the subterm and the LHS when the instance is
built by the RHS. Before normalization starts, we add a preprocessor for rules
which collects the unification results between LHS’s and RHS’s using ALU. In
normalization procedure, we introduce a list, the ALU-list, to let the unification
results help to find a match. In one step of normalization, instead of looking
for a match by scanning all subterms of the term to be normalized and all the
rules, our normalization procedure first looks for a match from the ALU-list. In
Figure 1 below, in ti−1 →(i,j) ti, a match is found between a subterm u of ti−1
and lhsj . Then the subterm u is replaced by v, the instance of rhsj , and we get
ti. Term v shares the same overall structure as rhsj . If we know that a subterm
x = rhsj |p can unify with lhsk, there is a great chance to find a match between
term w = v|p, the instance of term x, and lhsk in the next step. In the i + 1th
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step, normalization can try the term w and lhsk first. If a match is found, term
w is replaced by the instance of rhsk.

Fig. 1. Unification results can help in normalization

Actually, significant parts of all the intermediate results, t1, ..., ti, ..., tn−1
and the normal form tn are constructed from the RHS’s and much of the overall
structure of terms can be safely predicted from the RHS’s (the exceptions are the
variable substitutions and unexplored parts of the intermediate terms). If before
normalization, we know the unification results between each subterm in every
RHS and each LHS, we can use the results to find the matches in normalization
efficiently. But not all the unification results lead to successful matches. In this
case, and for normalizing t0, LRR calls original Smaran or TGR to find matches.

A preprocessor for rules tries to unify every subterm in every RHS with
every LHS and stores the successful results denoted by a list of pairs (C,P )
before normalization. In Figure 1, subterm x from rhsj unifies with lhsk. We
say that rulek is a candidate and for this example C = k. We define the position
a point, which for this example would be stored in P = p. Storing term x in
the node does not help normalization but storing P does because normalization
needs to find w by following P from v. The preprocessor stores the indexes of the
rule in C and uses a single linked list to store P which is essentially a sequence
of natural numbers. There may be more than one pair for each RHS. For every
RHS, the preprocessor uses a single linked list to store the nodes.

The ALU-list is a singly-linked list to store the information obtained from
the unification results during the normalization. Each node in the list is a 3-tuple
(i, c, s), where i indicates the ith step of normalization, c indicates a candidate,
in which c = C, and s represents the term that is possible to match lhsc, such
as w = v|P in Figure 1. We use stack operations to implement a depth-first
order in normalization. In one step, tuples obtained from the nodes of the RHS
that is applied in this step are pushed into the ALU-list. In the next step, the
ALU-list pops a tuple (i′, c′, s′) and tries to match the term s′ and lhsc′ . If they
match, LRR continues normalization. If not, the ALU-list pops the next tuple.
When the ALU-list is empty, normalization goes back to the original algorithm
searching for new match. In LRR, normalization goes back to Smaran or TGR.
In Figure 1, rhsj has a node (k, p) in which x = rhsj |p. Normalization locates
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term w = v|p and pushes the tuple (i, k, w) into the ALU-list. If the tuple is
popped at the i+ 1th step, rulek is applied at term w to form term ti+1.

3.1 Optimizations

In order to improve the efficiency of integration of the preprocessor and the
normalization procedure, we implemented the following optimizations.

Mutually exclusive detection is a method to cut unnecessary insertions
into the ALU-list caused by the extension of ALU. For example, both terms true
and false are considered as candidates for the term > (x, 1). We add two nodes
in unification. But only one tuple will succeed in matching. So, by evaluating
the term > (x, 1) before pushing a candidate into the ALU-list, normalization
picks up only the “right” tuple.

Candidate elimination contains three ways to delete tuples from the ALU-
list. Same point elimination is a method to cut unnecessary matching attempts.
Tuples having the same value of i and same value of s apply at the same point
of the same instance of the RHS. Once we find the first match from these tuples,
which have the same value of s, the intermediate term probably will change
in the next reduction step and the remaining tuples are deleted. Descendants
elimination also cuts unnecessary matching attempts. If the parent succeeds
in matching, the matching attempts for its children are unnecessary since the
intermediate term probably will change. Changed signature check cuts unneces-
sary matching attempts only when the preprocessor works with Smaran. Smaran
checks whether the unreduced signature of the class has changed since the tuple
containing the class was added into the ALU-list. If yes, LRR deletes the tuple.

4 Experimental Results

The preprocessor for rules has still some room for improvement. A Linux ver-
sion of LRR v3.0 and some examples can be downloaded from http:/www.

cs.uh.edu/~evangui. LRR v3.0 provides: i) the original Smaran and TGR,
ii) a preprocessor for rules with original Smaran and with original TGR. In
the reference [2, 3, 4], several optimizations are discussed including structure
sharing, and CCNA. We use Maude 2.6 32-bit version which can be found at
http://maude.cs.uiuc.edu/download. We use ELAN interpreter 3.6g which
can be found at http://webloria.loria.fr/equipes/protheo/SOFTWARES/

ELAN/manual/index-manual.html.
Performance Results. We present the experimental results on nine bench-

marks (rules can be found in [10] for lack of space) to illustrate the level of
efficiency. LRR is implemented in C and runs on Linux. Normalization times are
on a 2.67GHz Intel i5 560M Ubuntu 10.10 linux kernel 2.6.35-22 system with
8GB of memory using gcc compiler (v. 4.4.5) with optimization level 3. We are
aware of the difficulties of comparing different software systems. Each bench-
mark for three systems uses exactly same algorithm. Rules in the benchmark
are semantically identical. Syntactic differences are due to differences in the rule
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specifications for the three interpreters. Table 1 shows the average results of
10 executions in seconds for nine benchmarks, which can be found at the URL
given above. From Table 1, even though we find that Maude without memo is

Table 1. Experimental Results on normalization time

Benchmark ELAN Maude LRR

w/o memo w/ memo Smaran Smaran+ALU TGR TGR+ALU

binsort(1500) 164.2228 0.6936 463.6586 2.2301 2.6398 1.8197 1.7829

bintree(380) 0.1152 0.0044 0.0936 0.0160 0.0144 0.0116 0.0116

dfa(1363) 0.0016 0.0000 0.0008 0.0540 0.0540 0.0396 0.0424

fib(20) 1.4416 0.0272 0.0000 0.0000 0.0004 4.4851 4.5507

merge(20000) 17.8455 0.0404 70.2658 0.0460 0.0524 0.0300 0.0296

qsort(1800) 66.6180 1.1872 30.7426 10.0294 8.8518 3.4254 3.3874

rev(19900) 66.6304 0.0380 129.6359 0.0484 0.0548 0.0328 0.0332

rfrom(19996) 1.7005 0.0408 44.1588 0.0384 0.0408 0.0224 0.0220

sieve(10000) 169.6300 0.4900 29.6235 1.5889 1.7709 0.8277 0.8257

the fastest option in most benchmarks, Smaran and/or TGR are close. It is in-
teresting to see that Smaran is not far behind even in examples that do not use
history, despite saving the entire history of rule applications. ELAN interpreter
runs slow in most cases. We are aware that the ELAN project focuses more on
the compiler than the interpreter. Maude with memo runs faster for fib(20) and
dfa but is much slower for the other benchmarks tested. The preprocessor does
not completely beat TGR or Smaran. Apparently there is some inefficiency in the
implementation of the preprocessor. We think we can improve it in the following
ways. First, we plan to write a new function for matching since we have a great
accuracy in prediction. The new function should explore the unification results
deeper. The other, when the preprocessor cannot initiate a match, LRR should
find the next match in a more efficient way. We plan to track the positions of
variables in a RHS and direct LRR to try terms covered by the variables rather
than traversing from the root. The preprocessor of rules runs slower than orig-
inal methods in most examples, but it cuts the unnecessary matching attempts
significantly. Although it does not yet control the normalization independently,
the percentage of successful matches is relatively high.

Related work. We did an extensive search for rule-based programming
interpreters using the papers [6, 11] and the Rewriting Page on the web, but we
have been unable to find any interpreter that includes any such application of
unification to speed up the matching process during normalization. Apart from
Maude, in [11] a compiler for rules is described, but there is no comparable effort
on speeding up normalization. The only other interpreter that we could find is
CRSX [12], which does not include built-ins and could only handle a string of
length 819 in the dfa example.
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5 Discussion and Future Work

We presented a preprocessor for rules, a method to improve the efficiency of
normalization. The preprocessor beats the earlier strategy in accurately finding
the next match. We plan to implement the preprocessor in a more efficient
way and try to use more information from unification to help speed up the
normalization even more.

Acknowledgments. We want to thank S. Senanayake, J. Thigpen, and H. Shi
for initial work on LRR, and Z. Liang for some examples.
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A Concrete Example
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To illustrate the details, we use a concrete example in LRR which computes
Fibonacci numbers (we use Fibo for short).

fib(x)⇒ f(> (x, 1), x) (1)

f(true, x)⇒ +(fib(−(x, 1)), fib(−(x, 2))) (2)

f(false, x)⇒ 1; (3)

The normalization process using TGR is (under a depth-first left-most order)
below:

fib(2)→(1,1) f(true, 2)

→(2,2) +(fib(1), fib(0))

→(3,1) +(f(false, 1), fib(0))

→(4,3) +(1, fib(0))

→(5,1) +(1, f(false, 0))

→(6,3) 2 (4)

In the 1st step, LRR calls Smaran or TGR to initiate matching because the
preprocessor has no information. rule1 is picked up and t1 = f(true, 2). Then,
the preprocessor knows that the term f(> (x, 1), x) unifies with lhs2:f(true, x),
and lhs3:f(false, x). It looks like LRR tries to match f(true, 2) with f(true, x)
and f(false, x). But in Section 3.1, we show that LRR picks up only f(true, x)
while the original LRR attempts to match f(true, 2) with all 3 rules. LRR picks
up rule2 and gets t2 = +(fib(1), fib(0)). The preprocessor still knows that
the terms fib(−(x, 1)) and fib(−(x, 2)) unify with lhs1:fib(x). Under a depth-
first left-most order, LRR starts from fib(1) and succeeds in matching fib(1)
with fib(x) while the original LRR traverses from the root of +(fib(1), fib(0))
searching for a match. LRR picks rule1 and gets t3 = +(f(false, 1), fib(0)).
After 6 steps, LRR stops at the normal form, 2.

In ALU, for each RHS, it is possible that some subterms unify with multiple
rules. Thus, there may be more than one pair for each RHS. After LRR parses all
the rules and before it starts the normalization, for each RHS, the preprocessor
tries to unify every subterm with every LHS and stores the results for each RHS.
In Fibo, f(> (x, 1), x) unifies with lhs2:f(true, x), lhs3:f(false, x); fib(−(x, 1))
and fib(−(x, 2)) unify with lhs1:fib(x). So, rule1 has a list of two pairs (2, λ),
(3, λ). rule2 has a list of two pairs (1, (1)), (1, (2)).

In normalization, for the combination of Smaran and ALU, s in the 3-tuple
(i, c, s) is the number of the class containing the term, indicating the unreduced
signature of the class. For the combination of TGR and ALU, s is the term.

In Fibo, rule2 is used in the 2nd step. So LRR (using TGR) gets two nodes
from rule2, (1, (1)), (1, (2)), creates two tuples (2, 1, fib(1)) and (2, 1, fib(0)),
and pushes them into the ALU-list. In the 3rd step, (2, 1, fib(1)) is at the top of
the ALU-list. So LRR pops the tuple and tries to match fib(1) with lhs1. Since
they match, LRR builds t3 and evaluates the built-in operations. LRR creates
2 tuples (3, 2, f(false, 1)), (3, 3, f(false, 1)) but only pushes (3, 3, f(false, 1))
into the ALU-list because of mutually exclusive detection.
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Abstract. A new extension of equational unification, called asymmet-
ric unification, is introduced. In asymmetric unification, the equational
theory is divided into a set R of rewrite rules and a set E of equations.
A substitution σ is an asymmetric unifier of a set of equations P iff for
every s = t ∈ P , sσ is equivalent to tσ modulo R ∪ E, and further-
more tσ is in E\R normal form. This problem is at least as hard as
the unification problem modulo R∪E and sometimes harder. The prob-
lem is motivated from cryptographic protocol analysis using unification
techniques for handling equational properties of operators such as XOR.

1 Introduction

The problem we consider is inspired by our work on cryptographic protocol
analysis in the Maude-NPA, where terms represent messages sent by a principal
involved in a protocol. A query represents a possible secret to be learned by an
intruder, and the tool explores symbolically whether there is a way back from
the attack goal to an initial state. In the search, messages sent are unified with
the message that a principal is expecting to receive. A key feature of the Maude-
NPA is that it can handle equational theories [6], which represent properties
of a cryptographic algorithm. For example, cryptographic algorithms involve
exclusive OR (henceforth called XOR), so that the terms that represent messages
are assumed to be associative and commutative, there is an identity element, and
each term is its own inverse (nilpotent).

The fact that terms have equational properties means that the unification
that is done to match sent messages with expected received messages must be
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performed modulo the equational theory. Therefore, we have been building equa-
tional unification algorithms into the Maude-NPA [5]. But recently we have re-
alized that more than equational unification is required.

Received messages use variables to indicate a part of the message that is
unknown to the principal. For example, a principal may receive a message Y
and check whether it is of the form X+ c, where X is a variable, c is a constant,
and + is the XOR operator. This means that the principal expects to receive
the XOR of something unknown with c. To check whether the principal accepts
the message, we unify the sent message with X + c. If the principal receives the
message b + c then the principal will accept it. But what if an intruder sends
the message a? Because of the self-cancellation properties of XOR, the principal
will also accept that message, because a = a+ c+ c, so we use the substitution
[X 7→ c+ a].

We can account for both of these instances with the single unifier [X 7→ Y +c],
thus giving a single solution. However, although this allows us to perform reach-
ability analysis efficiently, it causes problems when we want to prune the search
space; problems arise because search space pruning in Maude-NPA (as well as
many other tools) depends upon syntactic, not equational, properties of terms.
Suppose, for example, that c is a random nonce. Maude-NPA automatically dis-
cards any state in which an intruder learns a term containing a nonce that is not
generated until a future state. Thus, if Maude-NPA encounters a state in which
an honest principal generates the nonce c, and then searches backwards until
it reaches a state in which the intruder learns X + c, it will discard that state.
But suppose that if Maude-NPA had continued further in its backwards search
it would have reached a state in which the substitution [X 7→ c + a] occurred.
Then the subterm c would vanish and the state would be potentially reachable
again, thus rendering the search algorithm incomplete.

This reliance upon syntactic checking is not unique to Maude-NPA, but ap-
pears in other unification-based tools, such as CPSA [1] and ProVerif [3]. CPSA
constructs DAGs representing potential executions by using outgoing and in-
coming test pairs that are syntactically defined (e.g. they must contain the same
nonce as a subterm). ProVerif includes the option of enforcing termination by
substituting variables for certain terms whose depth is greater than a certain
bound [1].

CPSA avoids these pitfalls by restricting itself to certain types of order-sorted
equational theories, which guarantee that, under the appropriate circumstances,
if a subterm appears at a certain position, then it continues to appear in that
position even after substitution [7]. Instead, ProVerif avoids the problem by han-
dling destructors (and the rewrite rules that describe their behavior) separately
from constructors. Maude-NPA has taken a somewhat different approach, how-
ever. In that tool an equational theory is divided into R∪E such that R is a set
of rewrite rules and E is a set of equations, and R is convergent modulo E and
has the finite variant property with respect to E [2]. This has the consequence
that for any term m, there is a finite set of substitutions Σ, such that, for any
substitution θ, there is a σ ∈ Σ and a substitution τ such that mθ↓ =E ((mσ)↓)τ .
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In Maude-NPA each state S in which a message m is expected by a principal is
replaced by a set of states {Sσ↓ | σ ∈ Σ}. Unification of sent messages with ex-
pected messages is performed via a general-purpose unification algorithm known
as folding variant narrowing [4], which can guarantee that any unifier θ of a sent
message with mσ↓ preserves the irreducibility of that term. Thus the syntactic
checks necessary for search termination can proceed without affecting complete-
ness, as long as they are invariant under E and any substitution that preserves
irreducibility modulo R.

This solves the state space reduction for Maude-NPA, and has the potential
for being applicable to other unification-based protocol analysis tools as well.
However, it comes at a price, namely, that narrowing is inefficient. Ideally, we
would like to be able to adapt special-purpose algorithms to this approach as
well. This motivates the problem of asymmetric unification: given a theory R∪E,
and two terms u and v where v is in E\R normal form, find a complete set of

ER unifiers of u
?
= v that preserves the irreducibility of v. We write u

?
=•v to

denote an asymmetric unification problem.
In the next section, we define asymmetric unification precisely, by first defin-

ing equational unification, and then extending the definition. In the following
two sections, we focus on asymmetric XOR unification. We choose this theory
for two purposes. One purpose is to give illustrative examples of asymmetric
unification. The other purpose is that we have devised a set of inference rules
for asymmetric XOR unification that will be implemented in the Maude-NPA.
The only other work we are aware of that can deal with asymmetric unification
is the work on folding variant narrowing [4].

2 Preliminaries

Given a set of equations E and a substitution σ, we say that σ is an E-unifier

of u
?
= v if uσ =E vσ. If P is a set of equations, then σ is an E-unifier of P if σ

is an E-unifier of every equation in P . If substitutions σ and θ are E-unifiers of
P , then we write σ ≤E θ|P iff there is a substitution τ such that xστ =E xθ for
all variables x in P . We sometimes just write σ ≤E θ if P is obvious, and say
that σ is more general than θ. If σ ≤E θ|P and θ ≤E σ|P , we say that σ and θ
are equivalent modulo E over P . Again, we often leave out P if it is obvious.

A complete set of E-unifiers for P is a set Σ of substitutions such that: (i)
every member of Σ is an E-unifier of P and (ii) for every E-unifier θ of P there
exists σ ∈ Σ such that σ ≤E θ. If Σ contains only one element, we call that
element a most general unifier.

Let R be a set of rewrite rules and E be a set of equations. We consider class
rewriting modulo E, denoted by →R/E , which is defined as =E ◦ →R ◦ =E and
extended rewriting modulo E, denoted by u →E\R v, where a term u rewrites
to a term v if there is a rule s → t in R, a subterm s′ of u at position p, a
substitution σ such that sσ =E s′, and v = u[tσ]p. Clearly →E\R⊆→R/E . We

define
∗→E\R as the reflexive transitive closure of→E\R. We say R is E-confluent
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iff whenever s
∗→E\R t and s

∗→E\R u then there exists a v such that t
∗→E\R v

and u
∗→E\R v. R is E-convergent iff R is E-confluent and the relation →R/E

is well founded. A term u is in E\R normal form iff there is no v such that
u→E\R v.

Now we extend the definition of E-unification to asymmetric E-unification.
Given a set of rewrite rules R, let Eq(R) = {s = t | s→ t ∈ R}. Let ER and E
be sets of equations and R be a set of E-convergent rewrite rules such that the
theory of ER is equivalent to the theory of E ∪Eq(R). We say that substitution

σ is an asymmetric (R,E)-unifier of s
?
=•t iff σ is an ER-unifier of s

?
= t and tσ

is in E\R normal form. Substitution σ is an asymmetric (R,E)-unifier of P iff

σ is an asymmetric (R,E)-unifier of every s
?
=•t in P . A set of substitutions Σ

is a complete set of asymmetric (R,E) unifiers of P iff (i) every member of Σ is
an asymmetric (R,E)-unifier of P , and (ii) for every (R,E)-unifier θ of P there
exists σ ∈ Σ such that σ ≤ER θ (over V ar(P )).

Given a complete set of ER-unifiers Σ of P , if θ is in Σ then θτ is an E-
unifier of P for any substitution τ . However, this is not the case for asymmetric
(R,E) unification. An example illustrating this is given in the next section.

It is easy to see that asymmetric (R,E) unification is at least as hard as ER

unification. Given an ER asymmetric unification problem {s1
?
= t1, · · · , sn

?
=

tn}, we replace every equation si
?
= ti by a pair of equations si

?
= Xi and

ti
?
= Xi, where each Xi is a fresh variable. The set of asymmetric (R,E) unifiers

of the new set of equations over the original set of variables is the same as the
set of ER unifiers of the original set of equations.

3 Examples of asymmetric XOR unification

In this section, we illustrate the above definitions for the case when ER is the
XOR theory. We have developed an algorithm for generating a complete set of
asymmetric unifiers for the XOR theory. In the next section, we review the key
ideas employed in the algorithm. The details are omitted for lack of space.

Let E be the following set of equations:

X + Y = Y +X (X + Y ) + Z = X + (Y + Z)

Let R be the following set of rewrite rules:

X + 0→ X X +X → 0 X +X + Y → Y

Notice that the third equation is an extension of the second one, and it must be
added to make R be E-confluent.

Consider the asymmetric unification problem:

c
?
=•X + Y

The substitution σ = [X 7→ Y +c] is a most general XOR-unifier for c
?
= X+Y .

However, σ is not an asymmetric (R,E) unifier, because Y +c+Y is not in E\R
normal form. In fact, this problem has no asymmetric (R,E) unifier.
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Consider another example:

a+ b
?
=•X + Y

In this case, σ = [X 7→ Y + a + b] is a most general XOR-unifier, but it is not
an asymmetric (R,E) unifier. However, this problem does have an asymmetric
(R,E) unifier. The complete set of asymmetric XOR unifiers here is {[X 7→
a, Y 7→ b], [X 7→ b, Y 7→ a]}, which are instances of the initial XOR-unifier.

Now consider the following example:

X
?
=•Y + Z

The substitution σ = [Y 7→ X + Z] is an XOR-unifier, but not an asymmetric
(R,E) unifier. But in this case, θ = [X 7→ Y + Z] is equivalent to σ modulo
XOR, and is also an asymmetric (R,E) unifier.

Finally, we consider one more XOR unification problem:

Z
?
=•X1 +X2 Z

?
=•Y1 + Y2

This problem has a most general XOR unifier σ = [X1 7→ Z+X2, Y1 7→ Z+Y2].
This is not an asymmetric (R,E) unifier. Unlike the previous example, we cannot
swap some variables to get an equivalent unifier. However, we can solve this
problem by adding some fresh variables. The unifier θ = [Z 7→ X1+V +Y2, X2 7→
V + Y2, Y1 7→ X1 + V ] is an asymmetric (R,E) unifier that is equivalent to σ
modulo XOR.

As stated above, even though θ is a most general asymmetric (R,E) unifier,
its instances need not be asymmetric (R,E) unifiers; for example, θτ is not an
asymmetric (R,E) unifier if τ = [X1 7→ c, Y2 7→ c].

4 An approach for solving asymmetric unification: The
case of asymmetric XOR unification

We have developed a general strategy for solving the asymmetric (R,E) unifi-
cation problem: (i) use an ER unification algorithm to generate a complete set
of ER unifiers, and (ii) for each unifier in the complete set, determine whether
it is also an asymmetric (R,E) unifier, in which case, it is retained; otherwise,
determine if there is an equivalent ER unifier that is also an asymmetric (R,E)
unifier; if so, generate it and retain it. In the case in which there does not exist
an equivalent asymmetric (R,E) unifier corresponding to a given ER unifier, (a)
if no instances of the ER unifier could serve as an asymmetric (R,E) unifier,
discard that unifier; otherwise (b) find appropriate instances of the ER unifier
and repeat the process.

We have instantiated this strategy for the case of asymmetric XOR unifica-
tion with uninterpreted function symbols, to give an efficient algorithm, which
we plan to implement in the Maude-NPA. Recall that E consists of AC equa-
tions for +; and R consists of three rules. To solve XOR unification, we use a
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rule based XOR unification algorithm given in [8], which works well in practice
and is already implemented in Maude-NPA. There are some deterministic rules
and some nondeterministic ones. The deterministic rules are given precedence.
Often, the deterministic rules completely solve the problem, and that will run in
polynomial time, whereas the XOR unification problem is NP-complete in the
presence of uninterpreted function symbols.

After solving XOR unification, we must solve the asymmetric unification
problem. As in the XOR unification algorithm, the inference rules for asymmetric
unification are also divided into deterministic and nondeterministic rules, with
deterministic rules having preference over nondeterministic rules for efficiency.
For lack of space, we do not give the inference rules here.

The asymmetric XOR unification problem, even without uninterpreted func-
tion symbols, is NP-complete. This can be shown by reducing 1-in-3 SAT to this
problem. Note that XOR unification without uninterpreted function symbols is
solvable in polynomial time. This shows that asymmetric (R,E) unification is
harder than ER unification.

An XOR unification problem, without uninterpreted function symbols, al-
ways has a most general unifier when solvable. However, an asymmetric XOR
unification problem may have a complete set of unifiers with cardinality greater

than one, such as in the example {a+ b
?
=•X + Y } above.
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