
Transmitting Once to Elect a Leader on Wireless
Networks

ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

IRIF UMR CNRS 8243— University of Paris — France
ny-aina.andriambolamalala@irif.fr

vlad@irif.fr

Abstract. Distributed wireless network’s devices are battery-powered
most of the time and transmitting a message uses more energy than
receiving one which spends more energy than internal computations.
Therefore in this paper, we will focus on the energy complexity of leader
election, a fundamental problem in distributed computing. As the mes-
sage’s size impacts on the energy consumption, we highlight that our al-
gorithms have almost optimal time complexities: Each device is allowed
to send only once 1− bit message and to listen to the network during at
most 2 time slots. We will firstly work on Radio Networks on which the
devices can detect when a node transmits alone: RNstrongCD where both
senders and receivers have collision detection capability, RNsenderCD,
RNreceiverCD and RNnoCD. If the nodes know their number n, our al-
gorithm elects a leader in optimal O(logn) time slots with a probability
of 1− 1/poly(n).Then, if all nodes do not know n but know a common
value u such that logn = Θ(log u), it has O(log2 n) time complexity on
RNnoCD and RNsenderCD. For RNreceiverCD and RNstrongCD, it has
O(log1+α n) time complexity where α ∈]0, 1[is constant. For the Beeping
Networks model on which the devices cannot detect single transmissions,
our algorithm has O(nα) time complexity with probability 1−1/poly(n).

1 Introduction

Distributed leader election problem has been extensively studied over the years [11,
12, 17, 20, 21, 27]. It consists in all the n devices of the distributed system, de-
noted s1, s2, . . . , sn, agreeing on one device to be the leader in a decentralized
manner. The study of its energy complexity gained in importance with the design
of Low-power Wireless Sensor Devices [14, 24, 26]. On such devices, transmitting
uses more energy than listening to the network which spends more energy than
internal computations [3, 17, 24, 26]. For example, in [24], each device consumes
respectively 1.8 Watts, 0.6 W and 0.05 W when transmitting, receiving a mes-
sage and having radio switched off. Such energy consumption also depends on
the collision detection capability [6, 17] and the size of messages that a device
can send [2]. Recall that the energy complexity is the maximum over all devices
of the time slot number during which any device is awake1. In this paper, we
1 When it transmits or listens to the network.

2 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

design algorithms during which each node exchanges only a single bit message,
transmits at most once and listens to the network during at most two time slots.
This is in contrast with the works in [4, 11, 22] where the messages have O(log n)
or even larger size [6, 10]. We found some similarities on our model and a dis-
tributed real-time communication model (Time Triggered Protocols) on which a
unique sending slot is assigned to each node [18, 23]. This latter model was widely
used for designing energy-efficient algorithms on Wireless Sensor Networks [1,
15]. We consider the single-hop2 Networks defined below, the basic ingredient
out of which larger multi-hop networks are built [22, 27].
Single-hop Radio Networks or RN. Introduced by Chlamtac and Kutten in
the 80’s [7], communications occur in synchronous time slots. At any time slot, a
node independently decides whether to transmit, to listen to the network, or to
remain idle or asleep. The network can have four status: Single if exactly one
node transmits, Null if no node transmits and Collision if at least two nodes
transmit. Only the Single transmissions are received by the listening nodes.
We consider four models. On RNstrongCD, both transmitters and listeners have
collision detection capability and on RNsenderCD, only transmitters can detect
collision. On RNreceiverCD or RNCD, only listeners can detect collision but
transmitters can not and on RNnoCD, no device has collision detection.
Single-hop Beeping Networks or BN. This was introduced in 2010 by
Cornejo and Kuhn [8] and is strictly weaker than the RN models as far as the
message length and the collision detection capability are concerned [2]. It makes
little demands on the devices which need only be able to do carrier-sensing as
well as differentiating between a silence and the presence of a jamming signal on
the network. The communications occur synchronously as in RN but the trans-
mitting nodes cannot detect collisions and the listening nodes cannot distinguish
between single and more beeps emitted by their neighbors.

To use randomness, we assume that the devices can generate discrete ran-
dom variables (see for instance Devroye [19]). We also assume that these devices
are initially anonymous and indistinguishable and can do any internal computa-
tions [6, 21]. They cannot communicate on the network when in a sleeping state.
However, they can choose to wake up or to sleep at any time slot. All presented
algorithms in this paper succeed with high probability3 or w.h.p. for short.

1.1 Related works

Considering single-hop synchronous RNCD networks, in the late 70’s, Tsybakov [25]
and Capetanakis [5] designed deterministic leader election algorithms terminat-
ing in O(log n) time slots. Such algorithms are optimal since Greenberg and
Winograd [13] have established a lower bound of Ω(log n) on the time complex-
ity for deterministic algorithms when all nodes know n. On the randomized side,
Willard [27] designed protocols working in expected O(log log n) and in O(log n)
time slots under the high probability requirement when the nodes do not know

2 The underlying graph of the network is complete.
3 An event εn occurs w.h.p. if P[εn] ≥ 1− n−c where c is a positive constant.

Transmitting Once to Elect a Leader on Wireless Networks 3

n. Given an error rate ε, Nakano and Olariu [22] provided a randomized algo-
rithm terminating in O(log log n) + o(log log n) + O(log 1/ε) time slots with a
probability exceeding 1 − ε. They also provided a lower bound of Ω(log n) for
uniform leader election protocols. Ghaffari, Lynch and Sastry [12] extended this
lower bound to all protocols. Given an upper bound u of n to all the nodes,
they presented a lower bound of Ω(min{log (u/n), log (1/ε)}) for leader election
algorithms succeeding with probability greater than 1 − ε. Amongst other re-
sults, Kardas, Klonowski and Pająk [17] designed a leader election algorithm
for the RNstrongCD model where n is unknown, succeeding in O(logε n)4 ex-
pected time slots with O(log log log n) energy complexity. When the nodes know
Θ(n), Jurdziński, Kutyłowskiowski, and Zatopiański [16] designed an algorithm
with O(log∗ n)5 energy complexity and O(log n) time complexity on RNCD.
Bender, Kopelowitz, Pettie and Young [4] then gave an O(log(log∗ n)) upper
bound for the energy complexity of leader election and approximate counting in
the RNCD model when n is unknown by the nodes. In [6], Chang, Kopelowitz,
Pettie, Wang and Zhan presented a leader election protocol for RNreceiverCD
(resp. RNnoCD) with no(1) time complexity and O(log log∗ n) energy complex-
ity (resp. O(log∗ n)) when no node knows n. Amongst several important results,
they proved a Ω(log log∗ n) (resp. Ω(log∗ n)) lower bound for the energy com-
plexity of leader election in RNCD (resp. RNnoCD) for this setting.

1.2 Our results

The following table shows what differentiate our results from the existing results.
Our algorithm’s design stands out from regular randomized algorithms. It is

Existing results
Assumptions Model Time Energy Probability
n known RNCD [17] O(logn) O(log log logn) 1−O(1/n)

Θ(n) known RNCD [16] O(logn) O(log∗ n) 1−O (1/n)

n unknown RNCD, RNnoCD [6] O
(
no(1)

)
O(log∗ n) 1−O (1/n)

n unknown RNstrongCD, RNsenderCD O
(
no(1)

)
O(log log∗ n) 1−O (1/n)

Our results
n known RNCD, RNnoCD O(logn) 3 1−O (1/n)
n known RNstrongCD, O(logn) 2 1−O (1/n)

RNsenderCD Section 2.1
n unknown RNnoCD, O(log2 n) 3 1−O (1/n)

and RNsenderCD,Section 2.2 O(log2 n) 2 1−O (1/n)

Θ(logn) BN α ∈]0, 1[O(nα/(α+1)× 2 1−
known Section 3 logn) O(n−α/(α+1))

based on the nodes locally generating random values before communicating on
4 logε n = (logn)ε for any constant ε.
5 log∗ n represents the iterated logarithm of n.

4 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

the network in a deterministic way. Our algorithms have energy complexity of
no more than 3 where each node transmits at most once and listens to the
network during at most 2 time slots. As commonly assumed, the IDs of the
nodes fit in O(log n) bits, then u is such that log n = Θ(log u) i.e. u ∈]n, nc]
where c > 1. Note that when n is known, the presented algorithm in Section 2.1
is optimal in view of both time (Θ(log n)) [22] and energy complexities [17]
(see Appendix B.2).The shown result in [6] can be adapted to work on the
setting considered in Section 2.2, with the same O(log2 n) time complexity, O(1)
energy complexity and O(log n log log n) messages size (more details are given in
Appendix B.5). The best previous result on this scenario was the O(log n) time
complexity with O(log∗ n) energy presented in [16] when all nodes know Θ(n).

2 Radio Networks

2.1 The nodes initially know the exact value of n

We start by assuming that all the nodes initially know the exact value of n and
remembering that in the RNnoCD, only the listening nodes can differentiate
from single, no transmitter or multiple transmitters. We take advantage of this
ability to simulate loneliness detection [12] in such a model. Our goal is to cause
the following events to occur during the execution of such an algorithm:
-(i) If t0 = 0 is the initial time slot, there is a time slot tg = t0 + g when exactly
one node s1 transmits alone while a set Sz of nodes listens to the network.
-(ii) Then, exactly one second node s2 ∈ Sz transmits alone at tg + 1 (while s1
listens to the network) to notify s1 that it was elected. Thus, s2 is the unique wit-
ness of the probable election of s1. To fulfill this goal, our algorithm is based on
each node locally generating random values and communicating on the network
in a deterministic manner, to find out two consecutive unique6 values. There-
fore, we make each node generate one copy of a discrete random variable (r.v.
for short) X such that if X1, X2, . . . , XN are N independent copies of X:
(�) There are 2 unique consecutive values Xi, Xi+1 with a constant probability.
G(1/2)7, the geometric distribution with parameter 1/2 respects (�).

In the rest of the paper, we use lg a to denote the logarithm of a in base 2.
We suppose that log a, lg a and ea are integers for any value a. Due to space
constraint, all Theorem and Lemma’s proofs are postponed in the Appendix A.

Lemma 1. Let X1, X2, . . . , XN be N independent copies of a r.v. distribution
following G(1/2). I is a discrete interval of integers and Card(I) is the size of the
interval I. We then have I = {I0, I1, . . . ICard(I)−1} where Ir = I0 +r is an integer.
Let p be the probability that ∃(i, j) ∈ [1, N]2 such that Xi = lgN,Xj = lgN −
1 and Xl /∈ {lgN − 1, lgN}∀l /∈ {i, j}. We have

p >
1

5

(
1−O

(
1

N

))
6 A random value is said to be unique if it is held by exactly one node.
7 If X is a r.v. distributed as G(1/2), P[X = k] = 2−k−1 for all k ≥ 0.

Transmitting Once to Elect a Leader on Wireless Networks 5

Proof. Postponed in Appendix A.1. �
Overview of the algorithm: It works on RNnoCD and RNCD when each node
knows n. In what follows, each node si has a status denoted Status(si), which
can take one of the following values: Null is the initial status, Candidate if si
is candidate to be the leader, Eliminated if si cannot be elected, Marked if si
is temporarily marked to do some computations and Leader if si is the elected
node. Any node si having Status(si) = Null is designated as a Null node and
we do the same for all status. Each node is initially sleeping and is restricted to
send a 1− bit message only once. Our algorithm is designed to make each node
si aware of its final Status(si)∈ {Leader,Eliminated}.

Our main idea is to make each node si locally generate one random copy Xi

of a r.v. X distributed as G(1/2). Then, all nodes browse through8 the interval
I = [lg n − 1, lg n], in order to find out which two of them have consecutive
unique random values. For instance, by Lemma 1, a sequence of X1, X2, . . . , Xn

with unique node s1 (resp. s2) holding X1 = lg n − 1 (resp. X2 = lgn) occurs
with a constant probability. Thus such idea leads us to the election of s1 with a
constant probability in O(Card(I)) time slots. Then, to reach the high probability
requirement, we have to execute the latter described algorithm O(log n) times
by keeping the energy complexity at a maximum of 3. To do so, our algorithm
is subdivided into 2 log n + 1 steps. All nodes are firstly distributed such that
O(n/ log n) nodes participate to each step and each node participates to only
one step. During each such step, O(n/ log n) nodes then do a leader election
succeeding with a constant probability as described earlier.
Step 0: step’s choice. Each node chooses uniformly at random in which step
it will participate. Then, each step is subdivided into 3 Phases: candidacy, wit-
nessing and browsing. Let Sz be the set of nodes participating to Step z, ∀z > 0.

Lemma 2. Card(Sz) ∈ [2n/5 log n, 3n/5 log n] with a probability greater than
1− e−O(n/ logn).

Proof. In Appendix A.2. �
For the sake of clarity, we describe the execution of Step 1 but this will be
generalized for any Step z in the Algorithm 2. During the candidacy phase, each
node in S1 chooses to be Candidate or Eliminated. Then, on the witnessing9

phase, each Eliminated node in S1 chooses at which time slot of the browsing
phase it will witness for the election of a node. Finally, during the browsing
phase, all nodes in S1 browse through I to elect a leader. I is defined by Lemma 1
by replacing N with O (n/ log n). For greater clarity, we present Phase 3 before
Phase 2.
Step 1 Phase 1: candidacy. At t0, each node si ∈ S1 locally generates one
independent copy Xi of a r.v. X distributed as G(1/2). Based on Lemma 1, all
nodes in S1 having Xi ∈ I = [lg (2n/5 log n)− 1, lg (3n/5 log n)] then take the
Candidate status and the other nodes of S1 become Eliminated.

8 At each time slot t0, t1, . . . , tg, each node si checks if the corresponding value Ig in
the interval I is equal to its Xi, then transmits or does some computations at tg.

9 Listening to verify an election at the time slot.

6 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

Lemma 3. There are O(log n) Candidate nodes in each Step with a probability
greater than 1−O (log n/n).

Proof. In Appendix A.3. �
Step 1 Phase 3: browsing through I. This Phase uses an odd/even time
slots scheduling. Even time slots {t0, t2, . . . , t2g} are dedicated for transmissions
and odd time slots {t1, t3, . . . , t2g+1} are used for feedback. At t0, each Candi-
date node si ∈ S1 checks if Xi = I0 s.t. I0 = lg (2n/5 log n)−1, then, transmits
a 1 − bit message. Each S1’s Candidate node si having Xi = I1 listens to the
network. Then, at t1, the nodes with Xi = I0 listen in their turn and if the
listening nodes at t0 received a message, they send a single bit feedback at t1. A
transmitting node at t0 that receives the feedback at t1 becomes Leader and
the other nodes become Eliminated. Each Candidate node si ∈ S1 executes
these computations at each time slot t0, t1, . . . , tg, . . . , t2Card(I)−1, checking if its
Xi = Ig at tg. It is possible to have several consecutive unique random values in
the interval I, involving the election of multiple leaders. In order to bypass such
a problem, we add the following Phase 2 before Phase 3.
Step 1 Phase 2: witnessing an election at a time slot and flooding
the next rounds. After Phase 1, the O (n/ log n) Eliminated nodes in S1

(Lemma 2 and Lemma 3) are distributed to witness the probable election of a
leader at each time slot of Phase 3. Let T be the time complexity of Phase 3. We
have T = 2Card(I) ≤ 6. At the round t0, after executing Phase 1, each Elim-
inated node in S1 chooses uniformly at random or UAR10 one time slot tw or
time to witness from {t0, t2, . . . , tT−2}. So tw = UAR({t0, t2, t4}). These Elimi-
nated nodes listen to the network at tw and tw+1 during Phase 3. They receive
messages at both points if a leader is elected. So, to avoid another leader election,
each node chooses a time to flood11 tf = UAR({tw + 2, . . . , t(4Card(I) logn)−1})
and transmits at tf . By flooding all the remaining time slots, no other Candi-
date node can transmit alone. The following figure illustrates the execution of
one step of such algorithm whith 8 devices.

2

1

1

1

3

4

5

1 2 3 4 52

Generate r.v.
leader

Eliminated nodes

Candidate nodes

Witnessing election

Flooding

Fig. 1. Leader election succeeding with a constant probability for 8 devices and
Card(I) = 3.

10 UAR(B) return one value picked uniformly at random from the set B.
11 Sending a message at the time slot if a leader has already been elected.

Transmitting Once to Elect a Leader on Wireless Networks 7

Algorithm 2. LeaderElection(n).

Input : The exact value of n.
Output: Each node si with a Status(si) ∈ {Leader, Eliminated}.
1 Step 0: Each node enters a set UAR({S1, S2, . . . , S2 logn) where Sz is the set

of nodes that will participate in Step z.
2 Step 1 to Step 2 logn: for z from 1 to 2 logn do
3 Step z Phase 1: Each node si ∈ Sz locally generates a random value Xi

distributed as G(1/2).
4 if Xi ∈ I = [lg (2n/5 logn)− 1, lg (3n/5 logn)] then
5 si sets Status(si)← Candidate.
6 else
7 si sets Status(si)← Eliminated.
8 end
9 Step z Phase 2: Each Eliminated node in Sz sets

tw ← UAR({t(z−1)2Card(I), t(z−1)2Card(I)+2, . . . , t2zCard(I)−2}) and
tf ← UAR({tw + 2, . . . , t(4 lognCard(I))−1}).

10 Step z Phase 3: Each node runs the Browse(I) procedure.
11 Each remaining Candidate node si sets status(si)← Eliminated.
12 end

Algorithm 1. Browse(I): called at Step z.

Input : Interval I.
Output: Each node si with Status(si) ∈ {Leader, Eliminated}.
1 for g from 0 to Card(I)− 1 do
2 Each node sets t = t2(z−1) Card(I)+2g.
3 Each Candidate node si ∈ Sz with Xi = Ig sends 1− bit at time slot t

and listens at t+ 1.
4 Each Candidate node sj ∈ Sz with Xj = Ig+1 listens at t.
5 if sj receives a message at t then
6 sj transmits 1− bit message at t+ 1.
7 end
8 if si receives a message at t+ 1 then
9 si sets Status(si)← Leader.

10 end
11 Each Eliminated node se ∈ Sz having tw = t listens at t and t+ 1.
12 if se receives a message at both t and t+ 1 then
13 se sets Status(se)←Marked.
14 end
15 Each Marked node that has tf = t transmits at t and sets

Status(se)← Eliminated.
16 end

Lemma 4. At least one node witnesses and at least one node floods during
each time slot of the Algorithm 2 respectively with a probability greater than
1− e−O(n/ logn) and 1− e−O(n/ log

2 n).

Proof. Postponed in Appendix A.4. �

8 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

Lemma 5. During the execution of Algorithm 2, each node wakes up to transmit
one bit during at most one time slot and listens to the network during at most
two time slots.

Proof. See Appendix A.5 for the detailed proof. �

Remark 1 On the RNsenderCD and RNstrongCD models, each node can know
when it transmits alone. Then, the other nodes do not have to notify the leader
that it was elected. Thus, we can cause the Candidate nodes to never listen to
the network and the Eliminated nodes to witness at only one time slot.

Theorem 1. In single-hop RNnoCD and RNCD (resp. RNstrongCD and
RNsenderCD) networks of large size n, if all nodes know n, there is a randomized
Monte-Carlo leader election algorithm that elects a leader in O(log n) time slots
with a probability of at least 1−O

(
n−1/3

)
. Each node transmits 1− bit message

no more than once and listens to the network for a maximum of two (resp. one)
time slots.

Proof. The full proof is given in Appendix A.6. �

Remark 2 To simplify Algorithm 2, we made it run the Browse(I) protocol
2 log n times. Thus, it succeeds with probability 1 − O

(
n−1/3

)
. This can be im-

proved to reach 1 − O
(
n−1

)
by running Browse(I) 5 log n times. This remark

can be applied to all Theorems on Radio Networks.

2.2 The nodes do not know n

When the nodes do not know n but know its upper bound u such that log n =
Θ(log u) i.e. u ∈]n, nc] where c > 1, we adapt Algorithm 2 as follows. On Step
0, each node chooses UAR to participate in one of the remaining 2 log u Steps.
Let Sz be the set of nodes participating in Step z. By Lemma 2, Card(Sz) ∈
[2n/5 log u, 3n/5 log u] w.h.p. Then on Phase 1 of each Step z, in order to have an
interval containing the interval I = [lg (2n/5 log u)− 1, lg (3n/5 log u)], each node
sets a new interval J =

[
lg
(
2u1/c/5 log u

)
− 1, lg (3u/5 log u)

]
. Then, on Phase 2,

the nodes eliminated after Phase 1 set tw = UAR({t(z−1)2Card(J), t(z−1)2Card(J)+2, . . . , t2zCard(J)−2})
and tf = UAR({tw+2, . . . , t(4 log uCard(J))−1}). Finally, on Phase 3, all nodes run
the Browse(J) protocol.

Theorem 2. In single-hop RNnoCD and RNCD (resp. RNsenderCD and
RNstrongCD) networks of large size n, if no node knows the exact value of n, but
an upper bound u of n is given in advance to all the nodes, there is a randomized
Monte-Carlo leader election algorithm succeeding in O(log2 n) time slots with a
probability greater than 1−O

(
n−1

)
. Each node transmits during no more than

one time slot and listens to the network during at most two (resp. one) time
slots.

Proof. The full proof is postponed in Appendix A.7. �

Remark 3 The time complexity can be improved to be O(log1+α n) on RNCD
and RNstrongCD, using the collision detection capability. We detail such im-
provement in Appendix B.1.

Transmitting Once to Elect a Leader on Wireless Networks 9

3 Beeping Networks

In this section, we consider the BN model where neither a beeping node si nor
listening nodes can detect if si beeps alone or not. The goal here is to make a node
know that it beeped along w.h.p. without any feedback from the network. To do
so, our main idea is based on the uniqueness of the maximum of n independent
copies Y1, Y2, . . . , Yn of the following new r.v.

Definition 1 (Definition of the distribution of the r.v. Y). Throughout
this paper, let pk = P[Y = k] for all integers k ≥ 0 defined for some α ∈]0, 1[as
follows.

p0 = e−1 and pk = exp
(
−k1/(1+α)

)
−exp

(
−(k + 1)1/(1+α)

)
for all k > 0 . (1)

If such a maximum is unique with a probability p, we cause each node to generate
a random copy of Y and our algorithm has to localize which node holds such a
maximum. This latter node then becomes Leader.
The following observation is crucial for our purpose:

Lemma 6. Let Y1, Y2, · · · , YN be N independent copies of a r.v. distributed as
described by (1) and m = max1≤i≤N{Yi}
(a) P [Card{l such that Yl = m} = 1] ≥ 1−O (1/ logαN) .

(b) Let µ = P
[
(logN − log log logN)1+α ≤ m ≤ (logN + log logN)1+α

]
. We

have
µ ≥ 1−O (1/ logN) .

(c) Set L = [(logN − log log logN)1+α, (logN + log logN)1+α] ,
and let q be the random variable q = Card({l such that Yl ∈ L}). Then,

P[q ≥ 3 log logN] ≤ O
(

1

logN

)
.

Proof. Postponed in Appendix A.8. �
The time complexities of our algorithms on BN, when the nodes know and do
not know n are quite similar: O(nα/α+1 log n) and O(nα). See Append B.4 for
more details. Thus, we immediately consider the case when the nodes do not
know n.

3.1 The nodes do not know n

Each node knows an upper bound u of n such that log n = Θ(log u) i.e. u ∈]n, nc]
where c > 1 is known by the nodes. In order to reach the high probability
requirement, we adapt Algorithm 2 to work on BN model with the following 3
phases. For better clarity, we present Phase 3 before Phase 2.

10 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

– Phase 1: Let V = exp
(
uα/(c(α+1))

)
. Based on Lemma 6 (a), each node

si generates V random copies Yi,1, Yi,2, . . . , Yi,V of a r.v. Y distributed as
described by (1) and saves Yi = maxh=1,2,...V {Yi,h}. Then, according to
Lemma 6 (b), withN = nV , each node computes L0 = (log V − log log log V)

1+α

and LLast = (log(uV) + log log V)
1+α. Each node si having Yi in the inter-

val of integers L = [L0,LLast] = {L0,L1, . . . ,LLast} such that Lr = L0 +r,
becomes Candidate and the other nodes are Eliminated.

– Phase 3: Each Candidate node browses through the interval L one value
at a time as in the Browse(I) protocol but in reverse order from LLast

to L0 in order to find out which holds the maximum. This latter node
becomes Leader. Firstly, if a Candidate node si has Yi = LLast, it be-
comes Leader and beeps at t0. At each time slot t0, t1, . . . , tg, each Can-
didate node checks if Yi = LLast−(g + 1). If at any time slot tg, a Candi-
date node has Yi = LLast−(g + 1), it listens to the network at tg. If it does
not hear a beep at tg, it beeps at tg+1 and becomes Leader.

As some values in L may not be picked by any node i.e. there can be time slots
during Phase 3 where node neither beeps nor listens to the network, the algo-
rithm can elect more than one leader. To circumvent this problem, we introduce
the following new witnessing procedure which consists of flooding all time slots
after an election.

– Phase 2: All Eliminated nodes sets tw = UAR({t0, . . . , tCard(L)−1}). They
will listen to the network at tw on Phase 3. Then, if a node beeps at a time
slot tg of Phase 3, all nodes hearing a beep: the Candidate nodes with
Yi = LCard(L)−(g + 1) and the Eliminated nodes with tw = tg, have to
beep at tg+1 in order to notify the next Candidate nodes (which become
Eliminated) that a Leader has already been elected.

Due to space constraint, we present the Algorithm 3 in Appendix B.3.

Theorem 3. Fix α ∈]0, 1[, in single-hop BN networks of large size n, if no node
knows n, but an upper bound u of n is given in advance to all the nodes, there
is a randomized Monte-Carlo leader election algorithm that elects a leader in
O(nα) time slots with a probability of 1 − O

(
n−α

2/α+1
)
. Each node transmits

and listens during a maximum of one time slot.

Proof. We give detailed proof in Appendix A.9. �

Conclusion

We designed leader election algorithms taking into account their energy con-
sumption and their time complexities while each device can transmit 1 − bit
message once and can listen to the network during a maximum of 2 time slots.
Our algorithm design is based on each node locally generating random values
with a probability distribution and communicating in a deterministic manner on
the network to find out which node has a unique value. The latter node becomes

Transmitting Once to Elect a Leader on Wireless Networks 11

the leader. The time complexity only depends on the time slots spent to localize
such a node. Assuming that the nodes are initially indistinguishable and know
n, our randomized algorithm terminates in optimal O(log n) time slots w.h.p.
in the Radio Networks with and without collision detection. If a common value
α ∈]0, 1[is given to all nodes, it has O(nα/α+1) time complexity for the Beeping
Networks. For the realistic case when the nodes do not know n, if a common
upper bound u such that log n = Θ(log u) is given in advance to all the nodes,
our algorithms terminate in O(log2 n) time slots for the RN models and O(nα)
for BN. Some existing results can be adapted to reach O(1) energy complexity
on the models studied in this paper [4, 6] but we present the first results with
each node transmitting at most once and listening to the network during at
most two time slots, exchanging 1 − bit messages. Optimal energy complexity
has been reached in [6] for the Radio Networks models when the nodes have no
information about the topology of the network, but designing a polynomial time
leader election for the BN model matching such lower bounds is open.

References

1. Affoua Thérese Aby, Alexandre Guitton, Pascal Lafourcade, and Michel Misson.
Slack-mac: Adaptive mac protocol for low duty-cycle wireless sensor networks. In
International Conference on Ad Hoc Networks, pages 69–81. Springer, 2015.

2. Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler,
and Fabian Kuhn. Beeping a maximal independent set. Distributed computing,
26(4):195–208, 2013.

3. Matthew Barnes, Chris Conway, James Mathews, and DK Arvind. Ens: An energy
harvesting wireless sensor network platform. In 2010 Fifth International Confer-
ence on Systems and Networks Communications, pages 83–87. IEEE, 2010.

4. Michael A Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. Contention
resolution with log-logstar channel accesses. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 499–508. ACM, 2016.

5. John I CAPETANAKIS. Tree algorithms for packet broadcast channels. IEEE
Trans. on Information Theory, 25(5):505 – 515, 1979.

6. Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. Ex-
ponential separations in the energy complexity of leader election. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
771–783. ACM, 2017.

7. Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks–
problem analysis and protocol design. IEEE Transactions on Communications,
33(12):1240–1246, 1985.

8. Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In
International Symposium on Distributed Computing, pages 148–162, 2010.

9. Devdatt Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge, 2009.

10. Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory
for local distributed computing. Journal of the ACM (JACM), 60(5):35, 2013.

11. Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election in multi-hop
radio networks. In Proceedings of the twenty-fourth annual ACM-SIAM symposium
on Discrete algorithms, pages 748–766, 2013.

12 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

12. Mohsen Ghaffari, Nancy Lynch, and Srikanth Sastry. Leader election using loneli-
ness detection. Distributed Computing, 25(6):427–450, 2012.

13. Albert G Greenberg and Schmuel Winograd. A lower bound on the time needed
in the worst case to resolve conflicts deterministically in multiple access channels.
Journal of the ACM, 32(3):589 – 596, 1985.

14. Chunlong Guo, Lizhi Charlie Zhong, and Jan M Rabaey. Low power distributed
mac for ad hoc sensor radio networks. In GLOBECOM’01. IEEE Global Telecom-
munications Conference (Cat. No. 01CH37270), volume 5, pages 2944–2948. IEEE,
2001.

15. Yueshun He, Ping Du, Kun Li, and Shang Yong. An optimization algorithm based
on the monte carlo node localization of mobile sensor network. International Jour-
nal of Simulation–Systems, Science & Technology, 17(20), 2016.

16. Tomasz Jurdziński, Mirosław Kutyłowski, and Jan Zatopiański. Weak commu-
nication in single-hop radio networks: adjusting algorithms to industrial stan-
dards. Concurrency and Computation: practice and experience, 15(11-12):1117–
1131, 2003.

17. Marcin Kardas, Marek Klonowski, and Dominik Pająk. Energy-efficient leader
election protocols for single-hop radio networks. In Parallel Processing (ICPP),
2013 42nd International Conference on, pages 399–408. IEEE, 2013.

18. Fan Liu, Ajit Narayanan, and Quan Bai. Real-time systems. 2000.
19. Devroye Luc. Non-Uniform Random Variate Generation. Devroye’s web page,

2003.
20. Robert M Metcalfe and David R Boggs. Ethernet: Distributed packet switching

for local computer networks. Communications of the ACM, 19(7):395–404, 1976.
21. Koji Nakano and Stephan Olariu. Randomized leader election protocols in radio

networks with no collision detection. In International Symposium on Algorithms
and Computation, pages 362–373. Springer, 2000.

22. Koji Nakano and Stephan Olariu. Uniform leader election protocols for radio
networks. IEEE transactions on parallel and distributed systems, 13(5):516–526,
2002.

23. Hoon Oh and Trung-Dinh Han. A demand-based slot assignment algorithm for
energy-aware reliable data transmission in wireless sensor networks. Wireless net-
works, 18(5):523–534, 2012.

24. Krishna M Sivalingam, Mani B Srivastava, and Prathima Agrawal. Low power
link and access protocols for wireless multimedia networks. In 1997 IEEE 47th
Vehicular Technology Conference. Technology in Motion, volume 3, pages 1331–
1335. IEEE, 1997.

25. Boris S Tsybakov. Free synchronous packet access in a broadcast channel with
feedback. Problems Inform. Transmission, 14(4):259 – 280, 1978.

26. Marcos Augusto M Vieira, Claudionor N Coelho, DC Da Silva, and José Monteiro
da Mata. Survey on wireless sensor network devices. In EFTA 2003. 2003 IEEE
Conference on Emerging Technologies and Factory Automation. Proceedings (Cat.
No. 03TH8696), volume 1, pages 537–544. IEEE, 2003.

27. Dan Willard. Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM Journal on Computing, 15(2):468–477, 1986.

Transmitting Once to Elect a Leader on Wireless Networks 13

Appendix

A Detailed Proofs

A.1 Proof of Lemma 1

Let X1, X2, . . . , XN be N independent copies of a random variable X following
a geometric distribution with parameter 1/2, G(1/2). That is qk = P[Xj = k] =
2−k−1. Our main idea is to prove that for N copies of G(1/2), with a strictly
positive probability, there exists two consecutive unique values. Let p be the
probability

P[∃(i, j) ∈ [1, N]2 s.t. Xi = lgN,Xj = lgN−1, Xk /∈ {lgN−1, lgN}∀k /∈ {i, j}].
(2)

By independence of the Xi’s,

p =

lgN∑
k=lgN−1

2

(
N

2

)
qkqk−1 (1− qk − qk−1)N−2 .

We have

p > (N2 −N)

lgN∑
k=lgN−1

2−(2k+1)
(
1− 3

(
2−(k+1)

))N
.

Let f(k) = 2−(2k+1)
(
1− 3

(
2−(k+1)

))N
. For any constant c, we have

f (lgN + c) = 2−(2 lgN+2c+1)
(
1− 3

(
2−(lgN+c+1)

))N
.

As
p >

(
N2 −N

)
(f(lgN − 1) + f(lgN)) ,

a bit algebra leads to

p >

(
2e−3 +

e−3/2

2

)(
1−O

(
1

N

))
.

Numerically, we have

2e−3 +
e−3/2

2
' 0.211 >

1

5
,

so that,

p >
1

5

(
1−O

(
1

N

))
.

14 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

A.2 Proof of Lemma 2

If n nodes choose uniformly at random to enter into 2 log n groups, fix a group
and let r be the random variable representing the number of nodes in such
a group. We have E[r] = n/2 log n. By means of a Chernoff bound (see for
example [9, Theorem 1.1]),

P [r ≤ (1− δ)E[r]] < 1− e−E[r](δ
2/2), (3)

and
P [r ≥ (1 + δ)E[r]] < 1− e−E[r](δ

2/(2+δ)). (4)

Then, by taking δ = 1/5, we have

P
[
r ≤ 2n

5 log n

]
< 1− e−O(n/ logn),

and
P
[
r ≥ 3n

5 log n

]
< 1− e−O(n/ logn).

A.3 Proof of Lemma 3

Recall that Sz is the set of nodes participating to the Step z in Algorithm 2. Let
X1, X2, . . . , XCard(Sz) be Card(Sz) copies of a r.v. X distributed as G(1/2). We
know that Card(Sz) ∈ [2n/5 log n, 3n/5 log n] w.h.p. by Lemma 2. We have

q =

lg(3n/5 logn)∑
k=lg(2n/5 logn)−1

qk =
5 log n

n
− 5 log n

6n
.

If h is the random variable representing Card({i such that Xi ∈ [2n/5 log n, 3n/5 log n]}),
E[h] = Card(Sz) × q is constant and by means of a Chernoff bound, we reach
the desired result.

A.4 Proof of Lemma 4

According to Lemma 2 and Lemma 3, after the Step 0 of Algorithm 2, there are at
most log n Candidate nodes and at least 2n/5 log n− log n Eliminated nodes
in each set Sz w.h.p. Then, those Eliminated nodes choose uniformly at random
to witness one of the 2Card(I) time slots of the step in which they participate
(we have 2Card(I) ≤ 6). Let l be a random variable representing the number of
nodes witnessing each time slot. E[l] = O(n/ log n) and by means of a Chernoff
bound,

P
[
l < O

(
n

log n

)]
< 1− e−O(n/ logn). (5)

As a consequence, at least O(n/ log n) nodes (those witnessing the time slots cor-
responding to an election) are distributed to send a message during the remaining
O(log n) time slots. In the same way as for (5), at least O(n/ log2 n) nodes are
assigned to flood each time slot with probability greater than 1− e−O(n/ log2 n).

Transmitting Once to Elect a Leader on Wireless Networks 15

A.5 Proof of Lemma 5

The Candidate nodes in any set Sz only wake up during the Step z when they
run the Browse(I) protocol. Let us consider the case of a Candidate node s1.
It may only transmit at a time slot t2g when it finds the value Ig in the interval
I which is equal to X1. Such a value Ig is then said to be under checking at t2g.

s1 wakes up and listens to the network twice when the values Ia, Ib in I such
that Ia = X1 − 1 and Ib = X1 + 1 are under checking. On the other hand, an
Eliminated node s2 wakes up and listens to the network exactly twice in Phase
3, at tw and tw + 1. It may also transmit once at a time slot equal to tf , picked
by s2 in Phase 2, if it receives a message at both tw and tw + 1.

A.6 Proof of Theorem 1

By Lemma 1, a leader can be elected with a strictly positive constant probability
by running the Browse(I) protocol once. Thus, the Algorithm 2 elects a leader
w.h.p. in O(log n) time slots.
According to Lemma 4, a maximum of one leader is elected with a probability
greater than 1− e−O(n/ log

2 n) ≥ 1−O
(
n−1

)
for sufficiently large n. During its

execution, each node wakes up during at most three time slots, transmitting once
and listening to at most two time slots for the RNnoCD and RNCD (Lemma 5).
Applying Remark 1 to Algorithm 2, we have each node listening at exactly on
time slot for the RNstrongCD and RNsenderCD models.

A.7 Proof of Theorem 2

By Appendix A.6 and Remark 2, the presented adaptation of Algorithm 2 in
Section 2.2 terminates in 4Card(J) log n = O(log2 n) rounds with probability
greater than 1 − O

(
n−1

)
. Applying Card(J) = O(log n) to Lemma 4, no more

than one leader is elected with probability 1 − e−O(n/ log
4 n) ≥ 1 − O

(
n−1

)
for

large n. By Lemma 5, each node transmits during at most one time slot and
listens twice to the network for the RNnoCD and RNCD. Applying Remark 1
to Algorithm 2, we have each node listening to exactly one time slot for the
RNstrongCD and RNsenderCD models.

A.8 Proof of Lemma 6

Let Y1, Y2, . . . , YN be N independent copies of the r.v. Y distributed as described
by (1) Let m = Card{l such that Yl = max1≤i≤N Yi} and p = P[m = 1]. By
independence of the Yi’s,

p = N

∞∑
k=1

pk

(
k−1∑
i=0

pi

)N−1
.

16 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

Proof of (a) By the definition of pk,

k−1∑
i=0

pi = 1− exp
(
−k1/(1+α)

)
> exp

(
− exp

(
−k1/(1+α)

)
− exp

(
−2k1/(1+α)

))
,

and for k large enough,

pk =
exp

(
−k1/(1+α)

)
(1 + α)k(α/(1+α))

−O

(
exp

(
−k1/(1+α)

)
k2α/(1+α)

)
.

Let us set β = 1/(1 + α).

For some large values a an b such that 0� a < b <∞, we have

p >

b∑
k=a

A×B × C,

where

A = N

(
β exp

(
−kβ

)
k1−β

−O

(
exp

(
−kβ

)
kα2β

))
,

B = exp
(
−N exp

(
−kβ

))
,

and
C = exp

(
−N exp

(
−2kβ

))
.

As exp
(
−N exp

(
−2kβ

))
is increasing in k,

p > exp
(
−N exp

(
−2aβ

)) b∑
k=a

A×B . (6)

Let us first consider
∑b
k=aA×B. Let

φ(k) = N
β exp (−kα)

k1−β
exp

(
−N exp

(
−kβ

))
.

b∑
k=a

A×B =

b∑
k=a

φ(k)−O

(
b∑

k=a

N
β exp

(
−kβ

)
kα2β

exp
(
−N exp

(
−kβ

)))
.

At this step, applying the standard Euler-Maclaurin formula and noting that∫ s

r

φ(k)dk = exp
(
−N exp

(
−sβ

))
− exp

(
−N exp

(
−rβ

))
,

we obtain

b∑
k=a

φ(k) ≥
∫ s

r

φ(k)dk ≥
(
exp

(
−N−α

)
− exp

(
−N1/2

))
.

Transmitting Once to Elect a Leader on Wireless Networks 17

Since e−x > (1− x) for all x ∈]0, 12] and recalling that β = 1/(1 + α),

b∑
k=a

N
β exp

(
−kβ

)
k1−β

exp
(
−N exp

(
−kβ

))
≥ 1− 1

Nα
. (7)

Secondly, as −k−(1−β) is increasing in k, we have

−O

(
b∑

k=a

N
exp

(
−kβ

)
k2(1−β)

exp
(
−N exp

(
−kβ

)))
≥ −O

(
1

aβ

b∑
k=a

φ(k)

)
.

Using (7) and taking a = ((1− α) logN)1+α, it yields

−O

(
b∑

k=a

N
exp

(
−kβ

)
k2(1−β)

exp
(
−N exp

(
−kβ

)))
≥ −O

(
1

logαN

(
1− 1

Nα

))
.

(8)
Thirdly, let us consider exp

(
−N exp

(
−2aβ

))
in (6). Fix a = ((1−α) logN)1+α,

exp
(
−N exp

(
−2aβ

))
= exp (−N exp (−(2α− 2) logN)) > 1−O

(
1

n2α−1

)
.

(9)
Finally, by applying (7), (8) and (9) to (6), we reach the desired result.

Proof of (b) By independence of the Yi’s, all the values Y1, Y2, · · · , YN
are less than (logN + log logN)1+α with probability

q =
(
P
[
Y1 < (logN + log logN)1+α

])N
= (1− exp (− logN − log logN))

N
.

After some algebra, we obtain

q ≥ 1−O
(

1

logN

)
.

In the same way, there is at least one value Yi greater than (logN−log log logN)1+α

with probability

p = 1−
(
P
[
Y1 < (logN − log log logN)1+α

])N
.

By definition of pk,

p = 1− (1− exp (− logN + log log logN))
N

= 1−O
(

1

logN

)
.

Proof of (c) Let ψ = P[(logN − log log logN)1+α ≤ Y < (logN +
log logN)1+α]. By the definition of pk,

ψ =
log logN

N
− 1

N logN
.

18 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

Then, we obtain E[ψ] = log logN − 1/ logN . As a consequence, by means of a
Chernoff bound,

P[ψ ≥ 3 log logN] ≤ e− log logN ≤ O
(

1

logN

)
.

A.9 Proof of Theorem 3

The time complexity of Algorithm 3 comes from the time spent in Phase 2 when
all nodes browse through the interval L in reverse order. It takes Card(L) time
slots which is O

(
log1+α(nV)

)
= O(uα/c) = O(nα) where V = exp

(
uα/(c(1+α))

)
for some constant α ∈]0, 1[and L = [(log V − log log log V)1+α, (log(uV) +
log log V)1+α].

The success probability of Algorithm 3 firstly depends on the probability that
the maximum of all generated random values in Phase 1 is unique, which is
greater than 1−O

(
log−α(nV)

)
= 1−O

(
u−α

2/(c(1+α))
)
= 1−O

(
n−α

2/(1+α)
)
.

It also depends on the probability that each time slot of the Phase 3 is witnessed
by at least one node. By means of a Chernoff Bound, as by Lemma 6 (c), at least
n− log n Eliminated nodes are distributed to witness each of the Card(L) = nα

time slots of Algorithm 3, this probability is of at least 1 − e−O(n1−α) ≥ 1 −
O
(
n−α

2/(1+α)
)
for large n.

During the execution of Algorithm 3, a Candidate node only transmits once
during Phase 3 when it finds the value in L which is equal to its random value
Ys. In the same way, an Eliminated node transmits at most once in Phase 3
after its witnessed time slot tw. All Candidate nodes (resp. Eliminated) listen
to the network during one time slot, when the value in L corresponding to Yi+1
is under checking (resp. at its witnessed time slot tw).

B More about Algorithms

B.1 A faster algorithm for RNCD and RNstrongCD

On RNCD and RNstrongCD, as the listening nodes can detect collisions, we
only need to make the property (i) given in Section 2.1 occur with a constant
probability. So, we only need to have a unique node s1 transmitting alone at
any time slot tg while a set S of nodes listen to the network. Then the listening
nodes receive a message at tg and send feedback to the unique sender at tg + 1.
s1 listens at its turn at tg + 1, detects a collision and knows that it transmitted
alone. s1 is then elected. Thus, instead of the property (�) in Section 2.1, we
need a r.v. distribution Z such that, if each node si generates one random copy
Zi of Z, there exists a unique value Zj with a constant probability. For α ∈]0, 1[,
the following Lemma proves that the r.v. Z distributed as

P[Z = k] = exp
(
−k1/α

)
− exp

(
−(k − 1)1/α

)
verifies such a property (10)

Transmitting Once to Elect a Leader on Wireless Networks 19

and that the unique value is equal to logα n.

Lemma 7. Fix α ∈]0, 1[, let Z1, Z2, · · · , ZN be N independent copies of a r.v.
Z distributed as described by (10). Let ν be the probability that there exists a
value Zj = logαN such that Card(Zj) = 1. We have

ν >
1

e

(
1− 1

e

)(
1− 1

N

)
.

Proof. There exists a value Zj = logαN such that Card(Zj) = 1 with probability

ν =

(
N

1

)
P[Z = logαN] (1− P[Z = logαN])

N−1
.

By the definition of P[Z = k] and with ψ(N) = exp (− logN)−exp
(
−(logαN + 1)1/α

)
,

ν = Nψ(N) (1− ψ(N))
N
.

As (logαN + 1)1/α > logN + 1,

ν > N

(
1

N
− 1

eN

)(
1− 1

N

)N
>

(
1− 1

e

)
1

e

(
1− 1

N

)
.

�

When the nodes do not know n but know u ∈]n, nc], we adapt Algorithm 2 to
work on RNCD and RNstrongCD as follows. It is subdivided into 2 log u+1 Steps.

Step 0: step choice. Each node chooses UAR to participate in one of the re-
maining 2 log u Steps, as a leader may be elected at each step with a constant
probability by Lemma 7.

For the sake of clarity, we only describe the execution of Step 1, but all steps
work as Step 1.
Step 1: As for Algorithm 2, it is subdivided into 3 Phases.

Phase 1: candidacy. Each node si ∈ S1 locally generates one independent
copy Zi of a r.v. Z distributed as (10). In order to have an interval contain-
ing [logα (2n/5 log u) , logα (3n/5 log u)] by Lemma 7 with N = Card(S1), each
node sets J =

[
logα

(
2u1/c/5 log u

)
, logα (3u/5 log u)

]
. If a node has Zi ∈ J ,

it becomes Candidate and the other nodes become Eliminated. We have
Card(J) < logα(3u) = O(logα n).

Phase 2: witnessing an election at a time slot and flooding the re-
maining rounds after an election. Each Eliminated node after Phase 1 sets
tw = UAR({t0, t1, . . . , t2 logα(3u)−1}) and tf = UAR({tw+2, . . . , t4 logα(3u) log u−1}).

20 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

Phase 3: (browsing through J). It works as the Phase 3 of Algorithm 2 but
at any time slot t2g, if a node receives a message, it does not need to be Candi-
date to send feedback at t2g+1. All the listening nodes that received a message
at t2g: the Candidate nodes with Zi = Jg and the Eliminated nodes with
tw = t2g, send feedback to the unique sender s1 at t2g+1. So s1 detects collision
at t2g + 1 and knows that it transmitted alone. s1 becomes Leader and all the
Eliminated nodes that received a message at t2g flood all the remaining rounds
of the algorithm so that no other Candidate node can transmit alone.

All the nodes do these computations for S1, S2, . . . , S2 log u and we have the
following result.

Theorem 4. Fix α ∈]0, 1[, in single-hop RNCD (resp. RNstrongCD) networks
of large size n, if no node knows the exact value of n, but an upper bound u of
n is given in advance to all the nodes, there is a randomized Monte-Carlo leader
election algorithm succeeding in O(log1+α n) time slots with a probability greater
than 1−O

(
n−

1
2

)
. Each node transmits at most once and listens to the network

during at most two (resp. one) time slots.

Proof. The time complexity comes from 2Card(J) log u = O(log1+α n). As
browsing through J once elects a leader with a positive constant probability,
a unique leader is elected w.h.p. after O(log n) executions of such protocol.

Each Candidate node transmits once if the value in J corresponding to its
Zi is under checking and listens once to the network after such a time slot. An
Eliminated node listens once at tw and may transmit once at tf if it witnessed
the time slot corresponding to the first election. �

B.2 Energy bounds for leader election when n is known

We can see in [17] that if the nodes know n and if E denotes the maximum
number of time slots during which a node has to transmit in order to elect a
leader on a uniform randomized algorithm (see [17, Section III.A.]), for some
constant ε > 0,

P [E > ε] ≤ 10

9

(
e

ε+ 1

)ε+1

e−(ε−2)/2 logn +

(
1− 1

e

)√n
.

Then, by taking ε = 2, 3 and 4,

P [E > 2] ≤ cste,

P [E > 3] ≤ O
(

1√
n

)
,

P [E > 4] ≤ O
(
1

n

)
.

Transmitting Once to Elect a Leader on Wireless Networks 21

B.3 Algorithm 3

Algorithm 3. LeaderElection(u, α, c).

Input : An upper bound u of n, a constant α ∈]0, 1[and a constant c such
that u < nc.

Output: Each node si with a Status(si) ∈ {Leader, Eliminated}.
1 Phase 1: Each node si locally sets V = exp

(
uα/(c(α+1))

)
, generates V

random copies Yi,1, Yi,2, . . . , Yi,V of a r.v. Y distributed as described by
(1) and saves Yi = maxh=1,2,...,V {Yi,h}. Then, si sets
L0 = (log V − log log log V)

1+α and LLast = (log(uV) + log log V)
1+α.

2 if Yi ∈ L = [L0,LLast] then
3 si sets Status(si)← Candidate.
4 else
5 si sets Status(si)← Eliminated.
6 end
7 Phase 2: Each Eliminated node se sets

tw = UAR({t0, . . . , tCard(I)−1}).
8 Phase 3: Each Candidate node si having Yi = LLast beeps at t0 and

sets Status(si)← Leader.
9 for g from 0 to Card(L)− 2 do

10 Each Eliminated node se that has tw = tg listens to the network at
tg.

11 if se hears Beep at tg then
12 se beeps at tg + 1.
13 end
14 Each Candidate node si having Yi = LLast−(g + 1) listens to the

network at tg.
15 if si does not hears Beep at tg then
16 si beeps at tg + 1 and sets Status(si)← Leader.
17 else
18 si beeps at tg + 1 and sets Status(si)← Eliminated.
19 end
20 end

B.4 Leader election on Beeping Networks when n is known

When the nodes initially know n, Algorithm 3 can be adapted as follows. In
Phase 1, let V = exp

(
n1/1+α

)
/n. Each node si locally generates V random

copies Yi,1, Yi,2, . . . , Yi,V of Y distributed as described by (10) and saves Yi =
maxh=1,2,...,V {Yi,h}. Each node then computes L0 =

(
n1/1+α − log log n

)1+α
and

LLast =
(
n1/1+α + log n

)1+α
. After that, the candidacy, the witnessing and the

browsing procedures work exactly as in Algorithm 3.

Theorem 5. Fix α ∈]0, 1[, in single-hop BN networks of large size n, if all nodes
know the exact value of n, there is a randomized Monte-Carlo leader election

22 ANDRIAMBOLAMALALA Ny Aina and RAVELOMANANA Vlady

algorithm that elects a leader in O(nα/α+1 log n) time slots with probability 1 −
O
(
n−α/α+1

)
. Each node transmits exactly once and listens once to the network.

Proof. As in Appendix A.9, the time complexity is Card(L) = O(nα/α+1 log n)
and its probability of success is greater than 1− log−α(nV) = 1−O

(
n−α/α+1

)
.

�

B.5 Adapting [6] on Radio Networks when the nodes know u

The leader election algorithms designed in [6] work when the nodes have no
information about the topology of the network. If the nodes initially know an
upper bound u ∈]n, nc] for some constant c > 1, their algorithm [6, Section 6.3]
can be adapted to elect a leader with O(1) energy complexity as follows:

As all nodes know a value v ∈](1/c) log n, log n], each node sets a set of infinite
integers D = {d1, d2, . . . } where d1 = v and di = di−1 + v. The nodes do a
checkpoint at each time slot di ∈ D.

Initial Setup: Each node then gets a label k, with probability 1√
2k
, for each

integer k ≥ d1. Let Sk be the set of all nodes labeled k.

Finding an Estimate: For k = k0, k0 + 1, k0 + 2, . . . , with k0 = d1, each node
in Sk runs Verify

(√
2k
)
as described in [6, Section 6.1].

For the case that a checkpoint is met, i.e. k = di, let Le (resp. Lo) be the set
of leaders elected in Verify

(√
2l
)
for even (reps. odd) l so far. All nodes in Lo

simultaneously announce their labels, while the other nodes listen to the net-
work. If exactly one message is sent, the algorithm terminates, otherwise, repeat
it with Le.

As k = O(log n), the time complexity of Verify
(√

2k
)

is O
(
log
(√

2k
))

=

O(log n) [6, Section 6.1] and the time complexity of this adapted algorithm is
O(log2 n). The energy complexity of Verify(

√
2k) is as follows: During the As-

signment step (Step 1 in [6, Section 6.1]), each node may transmit during at
most β time slots where β is a sufficiently large constant. Then, during Step 2
(Checking the correctness of estimate), the energy complexity of the Census
algorithm is O(α(n)) which is the inverse Ackermann of n. By calling such a
Census algorithm, there is at least one node, the representative of a group [6,
Section 4.1], that has to send the list of all ID s of all nodes in the group. Thus, as
there are at most O(log n) ID s, taken from

[
1, log

(√
2k
)]

. Each ID is encoded
into O(log log n) bits, so the nodes must be able to transmit a message of size
O(log n log log n).

When a checkpoint is met, each leader may transmit once and all the nodes
may listen twice to the network. Thus, during the whole algorithm, each node

Transmitting Once to Elect a Leader on Wireless Networks 23

may transmit c(β+1+O(α(n))) = O(1) times and listen to the network during
c(β + 2 +O(α(n))) = O(1) time slots.
As this algorithm relies on collision detection, it cannot be adapted to work on
the BN, where the nodes cannot distinguish between one and multiple beeps.

B.6 Adapting [4] on Beeping Networks when u is known

In this section, we use the circuit simulation protocol designed in [4] to elect
a leader on the Beeping Networks if the nodes have a common upper bound
u ∈]n, nc] where c > 1. Let C be a boolean circuit with d constant-fan-in gates.
The control slot of the circuit simulation protocol [4, Section 2] takes expected
O (1 + d/n) energy per node. The circuit slot also has 2 +O(d/n) waking time.
The authors noted that if a node wants to know the result of C, it has to wake
up and listen to the network during d time slots where d is the number of
gates. Thus, the energy complexity of one distributed simulation of a circuit C is
d+ 3+O(d/n) in expectation. Let us give a trivial example of a leader election
algorithm using such circuit simulation. Each node firstly chooses uniformly
at random an ID from [u2] = [1, n2c[. Obviously whoever holds the maximum
number is unique with probability at least 1−1/nc−1. Each node encodes its ID
into a code-word R = R1, R2, . . . in base uα/n ∈]nα/n, nα] for some constant α ∈
]0, 1[. Using the circuit-simulation technique, one can find the maximum index
"R1" among all the ID s with d+3+O(d/n) energy complexity in expectation.
The nodes then find the maximum R2 among all nodes that have the maximum
R1 and so on. As the length of each Ri is at most lognα/c(n

2c) = 2c2/α, this
algorithm terminates in O(nα) time slots with (2c2(d + 3 + O(d/n)))/α energy
complexity. We note that this is at least 2(d+ 3) > 6.

