Lwt: a Cooperative Thread Library

Jerome Vouillon

Laboratoire Preuves, Programmes et Systemes
Université Paris Diderot (Paris 7), CNRS
Paris, France

jerome.vouillon@pps.jussieu.fr

Abstract

We present a cooperative thread library for Objective Carhe
library is entirely written in Objective Caml and does nolyren
any external C function. Programs involving threads arétemiin

a monadic style. This makes it possible to write threadea aid
most as regular ML code, even though it has a different sdosant
Cooperative threads are especially well suited for coecumet-
work applications, where threads perform little compuatatand
spend most of their time waiting for input or output, at whtahe
other threads can run. This library has been successfiély imshe
Unison file synchronizer and the Ocsigen Web server.

Categories and Subject Descriptors D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming; D.1.3
[PROGRAMMING TECHNIQUES: Concurrent Programming;
D.3.3 [PROGRAMMING LANGUAGES]: Language Constructs
and FeaturesConcurrent programming structures

General Terms Design, Languages

Keywords Thread, Concurrency, Networking, Programming, Im-
plementation, Monad, Objective Caml, ML

1. Introduction

The Lwt (“lightweight threads”) library is a cooperative thread
library for Objective Caml (Leroy et al.): threads have tpl@itly
yield the control to other threads rather than being preethpy

a scheduler. The motivations for this library are two-fofdrst,
we believe that cooperative threads are easier to prograim wi
than preemptive threads. Indeed, as context switches afiiex
(typically through a call to ield function or due to a blocking
system call), there are much less opportunities for racditions.
Second, compared to system threads, the threads are elytreme
lightweight: they only hold the values required for the rémay of
the computation rather than a full stack. Therefore, thareaasily
be thousands of them. Context switch is also cheaper asststen
in just a few function calls. Cooperative threads are esgigaivell
suited for highly concurrent network applications (von Behet al.
2003), where threads perform little computation and speost wf
their time waiting for input or output, at which time othere¢hds
can run.

The library is entirely written in Objective Caml, contraty
the standard thread libraries (system threads and VM-tavedds)
which rely on external C functions. Programs involving s are
written in a monadic style. This makes it possible to writetted
code almost as regular ML code, even though it has a different
semantics.

This library has been successfully used since 2002 in theduini
file synchronizer (Balasubramaniam and Pierce 1998; Pande
Vouillon 2004) for the simultaneous synchronization of evey

files. It is now used in the Ocsigen Web server (Balat 2006¢ Th
library is available onlink It is also included in the Debian Linux
distribution.

We start with simple examples giving a feel of the libraryc{se
tion 2). We detail the library API (section 3). We provide raor
complex examples demonstrating how to use the libraryi(sed).
Finally, we describe the implementation (section 5).

2. A quick presentation of the library

In order to give a feel of the library, we present two simple ex
amples. With the first example, we explain how to write a func-
tion performing 1/0s asynchronously. The second one shows t
threads running concurrently.

First, consider the following function. It reads up to onlekite
from file descriptorin_£d, sleeps for three seconds and writes the
data to file descriptosut_£d. Any of the three system calls may
block, interrupting for some time the whole program.

let forward in_fd out_fd buffer

let n = Unix.read in_fd buffer 0 1024 in
Unix.sleep 3;

let n’ = Unix.write out_fd buffer O n in
QO

The core idea of the library is to replace a possibly blocKingg-
tion by a function that returns immediatelypromise, that is a
value that acts as a proxy for the value eventually compuyetid
function. Thus, instead of functidmix.sleep, one uses function
Lwt_unix.sleep Of type int -> unit Lwt.t whereLwt.t is
the type of promises. Likewise, the functinix . read is replaced
by a functionLwt_unix.read of type

file_descr -> string -> int -> int -> int Lwt.t

Type Lwt.t can also be interpreted as the typethfeads: the
functionLwt_unix.read returns a thread that reads from a given
file descriptor and terminates with return value the numibéryte
read. We adopt this interpretation for the remainder of tiqgep.

The library provides basic functions for handling threatise
function Lwt . bind is used to perform an action when the return
value of a thread becomes available: the expression

Lwt.bind e (fun x -> e’)

evaluates to a threatl that first waits for threa@ to terminates.
The return value is then bound to parametem order to ex-
ecute threads’. The threadt behaves thereafter as thread.
Intuitively, this can be read as aet expression for threads:
“let x = e in e’". Itis also a synchronization primitive: thread
e’ starts running only after threae is terminated. The thread
Lwt.return e is a thread that terminates immediately with value

Ihttp://www.pps.jussieu.fr/~vouillon/lwt/

the value of expressioa. The type of threads together with func-
tionsLwt .bind andLwt .return forms a monad.

In order to use the library, the functidtwrward is rewritten as
follows:

let forward in_fd out_fd buffer
Lwt.bind
(Lwt_unix.read in_fd buffer 0 1024)
(fun n ->
Lwt.bind
(Lwt_unix.sleep 3)
(fun () ->
Lwt.bind
(Lwt_unix.write out_fd buffer 0 n)
(fun n’> ->
Lwt.return ())))

Thus, the function now returns immediately (that is, withiolack-
ing in a system call) athread of typait Lwt.t. This thread first
reads up to one kilobyte. Whenbytes have been read, the thread
sleeps for three seconds. Then, it writesdhgytes. Finally, it re-
turns the unit value.

The syntax can be made more readable by using a binary oper-
ator forLwt.bind:

let (>>=) = Lwt.bind

Then, the function can be rewritten as follows.

let forward in_fd out_fd buffer
Lwt_unix.read in_fd buffer 0 1024 >>= fun n ->
Lwt_unix.sleep 3 >>= fun () ->
Lwt_unix.write out_fd buffer O n >>= fun n’
Lwt.return ()

->

The second example is self-contained. It presents thedhrea
scheduler. We first define a functidop. This function returns
a thread printing a text each second.

let rec loop s
Lwt_unix.sleep 1 >>= fun () ->
Format.printf "Hello %s@." s;
loop s

Next, two threads are created. This is done implicitly: doestarts
executing at once and there is no need to call a function ssich a

type ’a t

val return : ’a -> ’a t

val bind : ’a t -> (Pa -> b t) > b t
val fail : exn -> ’a t
val catch :

(unit -> ’a t) -> (exn -> ’a t) -> ’a t
val try_bind :

(unit -> ’a t) —>

(’a ->’bt) > (exn -> b t) > ’b t

val wait : unit -> ’a t

val wakeup : ’a t -> ’a -> unit

val wakeup_exn : ’a t -> exn -> unit
val poll : ’a t -> ’a option

Figure 1. The signature of modulewt

value of type’a. A thread can also run for ever, or fail with some
exception.

The threadreturn e is a thread that terminates immediately
with return value the value of expressiernThe threadind t fis
a thread which first waits for the completion of thremand then, if
the thread succeeds, behaves as the application of furfctmthe
return value of thread. If the threadt fails, bind t £ also fails,
with the same exception. As mentioned in section 2, it is eaient
to use the binary operater= as an alias for functiobind.

The typet together with functiorbind and return forms a
monad. The following laws are satisfied:

return e >>= fun x -> t let x = e in t

t >>= fun x -> return x t

(t >>= fun x -> t’) >>= fun y -> t’’

t >>= fun x -> (¢’ >>= fun y -> t’’)
These are the monad laws adapted to the effectful semafitidis.o
The threadfail e is a thread that fails immediately with
exceptione. The threadcatch (fun () -> t) f behaves as
threadt as long as this thread does not fail. If the thread fails with
some exceptior, it behaves thereafter as the thread resulting from
applying functionf to exceptione. Functionsfail and catch

spawn to launch them. The threads are immediately suspended assatisfy the following laws:

they callLwt_unix.sleep. Then, we enter the scheduler, which
takes care of resuming the appropriate threads when a systiém
terminates: the expressidwt_unix.run e executes the sched-
uler until threade terminates. Here, the scheduler runs for ever as
the thread.wt .wait () is a thread that never terminates.

let _ =
let threadl = loop "A" in
let thread2 = loop "B" in

Lwt_unix.run (Lwt.wait ())

3. Thelibrary API

The library has two main components, which we present in.turn
The moduleLwt provides the core functionalities. The module
Lwt_unix provides a scheduler and gives access to the Unix I/O
system calls. Some additional modules implement funclites
such as locks ant timeouts.

3.1 The core library

The interface of moduléwt is given in figure 1. The typea t
is the type of threads which, if they terminate successfylbld a

fail e >>= fun x >t = fail e

catch (fun () -> fail e) (fun x -> t)

catch (fun () -> return e) (fun x -> t)

return e

For the sake of convenience, the functioitch also captures ex-
ceptions raised by the usual ML exception mechanism. For in-
stance, in the following expression, the exceptiiit is caught
and applied to functioh.

catch (fun () -> raise Exit) h

The functiontry_bind is a generalization of functionsind
andcatch, as proposed in (Benton and Kennedy 2001). The thread
try_bind (fun () -> t) f gbehavesasind t f ifthreadt
does not fail (and no exception is raised during its evatumtilt
behaves asatch t g otherwise.

The last four functions are less useful for the casual usery T
provide the basic primitives on which can be built multigaded

libraries such agwt_unix. The threadrait () is a thread which
is suspended, possibly forever. The functigikeup terminates
such a thread with a given return value. The functiaReup_exn
makes it fail with a given exception. The expressparll t tests
the state of threatl. It returnsSome v if threadt is terminated and
returned the value. If the thread failed with some exception, this
exception is raised. If the thread is still running, the eldne is
returned without blocking.

3.2 The Lwt Unix module

This module provides all functionalities required to penfioJnix
1/0 system calls asynchronously. The module implementsvits
type of file descriptors. This ensures that all file descriptased
in the library are in non-blocking mode, which is mandatooy f
the library to work properly. The library also ensures tluice a
descriptor is closed, any attempt to access it fails. Thisisthe
case when using a standard Unix library, where a same descrip
can be reused for another file. This provides a protectiomaga
programming errors with thread continuing to write to a efbs
descriptor and ending up writing to the wrong file. Convarsio
functions from and to the file descriptors of the standdémdx
library are provided.

The module exports the usual I/O functions suchrasd,
write Or connect corresponding to the ones in theix library.
The types of functions that do not block suchcasse or listen
are unchanged:

val close : file_descr -> unit

Possibly blocking functions have their types changed tornea
thread:

val read : file_descr ->

string -> int -> int -> int Lwt.t

The module also implements a scheduler. The role of the sched
uler is to repeatedly wait for events (timeouts, file degortpready
for read or write, ...) and to resume the appropriate thre@le
scheduler is entered by calling functietn of type

’a Lwt.t -> ’a

The expressiorrun t executes thread (and other concurrent
threads) until it terminates. The expression evaluatebdaeturn
value of the thread. If the thread fails with some exceptitis
exception is raised. A thread can suspend itself tempgrarilet
other threads run by calling functigrield.

Finally, the functiomabort of type

file_descr -> exn -> unit

aborts all current and future operations on the given filede®r

with the given exception (except for functiedose so that the file
descriptor can be properly closed). This provides a coeveniay
to interrupt a thread that loops reading on or writing to agifile

descriptor, for instance after some timeout.

3.3 Additional modules
The following modules are also available:

e the moduleLwt_chan provides buffered I/O functions, similar
to the ones in moduleervasive of the Objective Caml stan-
dard library;

e the moduleLwt_mutex implements mutual exclusion locks
(see section 4.3 for details);

e the moduleLwt_timeout provides a timeout mechanism; it
can be used for instance withwt_unix.abort to close a
network connection after some idle time.

e the moduleLwt_preemptive allows to mix preemptive threads
with Lwt cooperative threads. It maintains an extensible pool of
preemptive threads on with computations can be performed.

3.4 Pitfalls

While using the library, we have noticed a number of pitfafiat
we document here.

First, it is mandatory to use the functionstch or try_bind
for handling thread exceptions rather than the usual exaepan-
dling mechanism: an expression

try t with e -> raise Some_Exception

will not catch any exception embedded in thread his is a point
that one must keep in mind when converting existing codeedhes
library. Indeed, the type checker properly force us tohisel and
return wherever needed but the expression above remains well-
typed whatever the type of expression

Second, the programmer expects uncaught exceptions toé term
nate the program. This is not the case with an exception embed
ded in a thread. For instance, the expresdianl e has no di-
rect effect. Thus, an exception handler should always b&ogtkp
wrapped around any thread that may fail with an exceptiothab
the exception is not silently ignored.

Last, it is very tempting to call functiobwt_unix.run to get
the result of a thread without using functieand when not in a
thread context, given the type of this function:

’a Lwt.t -> ’a

This works properly only as long as the call is not made from a
thread. Calling this function from a thread may result in adleck,

as it introduces spurious synchronizations between tkréadeed,
call to functionrun are regular function calls and thus must be
properly nested. Thus, if two threads call functiein, the first
thread cannot exit from the function before the second one.

4. Using the library

The following three larger examples illustrate the use eflifrary.
The first one, a port forwarder (section 4.1), is a typicalnepke

of network programming. The two other ones, a simple scteedul
(section 4.2) and an implementation of locks (section 41&jmon-
strate the expressivity of the short API of moditet.

4.1 Network programming

We present the implementation of a port forwarder. The @nogr
waits for connections on port 8080. When a client connecthito
port, a remote connection to port 80 gsogle . con is established.
Any data received on either side is then forwarded to therciide.

The auxiliary functionreally_write write 1 bytes of strings
starting at positiorp to file descriptoro. Several calls to function
Lwt_unix.write may be needed as the system call may write less
thanl bytes.

let rec really_write o s p 1l =
Lwt_unix.write o s p 1 >>= fun n ->
if 1 = n then
Lwt.return ()
else
really_write o s (p + n) (1 - n)

The functionf orward writes everything it reads on file descriptor
to file descriptoro. When theLwt_unix.read system call returns
zero, which indicates end of file, we shut down the sendingqfar
the other connection and stop transmitting.

let rec forward i o =
let s = String.create 1024 in

Lwt_unix.read i s 0 1024 >>= fun 1 ->

if 1 > 0 then begin
really_write o s 0 1 >>= fun () ->
forward i o

end else begin
Lwt_unix.shutdown o Unix.SHUTDOWN_SEND;
Lwt.return ()

end

The functionnew_socket creates a TCP socket. The program ex-
pects connections on addrekscal_addr and establish connec-
tions to addressemote_addr.

let new_socket () =
Lwt_unix.socket
Unix.PF_INET Unix.SOCK_STREAM O
let local_addr =
Unix.ADDR_INET (Unix.inet_addr_any, 8080)
let remote_addr =
let host_entry =
Unix.gethostbyname "google.com" in
let inet_addr =
host_entry.Unix.h_addr_list.(0) in
Unix.ADDR_INET (inet_addr, 80)

The functionaccept returns a thread that repeatedly accept con-
nections on the socketock. The thread blocks until a connec-
tion is established. Then, a thread dealing with the conmeds
started asynchronously (parenthesized expression) aridribtion

is called recursively to wait for another connection. Thedd con-
nects to the remote address. It starts two threads for foimgr
data in both directions. It then waits for the two threadsetoni-
nate and finally closes the file descriptors correspondingotb
connections.

let rec accept sock =

Lwt_unix.accept sock >>= fun (inp,) >

ignore
(let out = new_socket () in
Lwt_unix.connect

out remote_addr >>= fun () ->

let io = forward inp out in
let oi = forward out inp in
io >>= fun () -> oi >>= fun () ->
Lwt_unix.close out;
Lwt_unix.close inp;
Lwt.return ());

accept sock

We can now write the body of the program: it creates a socledt th
listens on the local address and starts accepting connsctio

let _ =
let socket =

Lwt_unix.

new_socket () in
setsockopt

socket Unix.SO_REUSEADDR true;
Lwt_unix.bind socket local_addr;
Lwt_unix.listen socket 1024;
Lwt_unix.run (accept socket)

Clearly, a robust version of this program should catch Unix e
rors so as to properly shutdown the connections. Besidas, wr
ing to a socket whose other end is closed results by defawt in
SIGPIPE signal. This signal should be ignored by the program so
thatLwt_unix.write fails with anEPIPE error instead.

4.2 A simple scheduler

We present a simple scheduler. The implementation of theemor
complete scheduler provided by modulet_unix is sketched

in section 5.6. Here, a thread can temporarily pause byngadi
functionyield, in order to allow other threads to execute. The task
of this scheduler is to then restart another thread. Thedsiéieis
started by calling a functiopun.

We first define the FIFO queue of suspended thread, using the
Queue module of Objective Caml standard library.

let queue = Queue.create ()

The scheduler repeatedly takes a thread from the queue and re
sumes it. The thread runs until a callfaeld, which gives back

the control to the scheduler which can then restart anotiread.

The scheduler stops when the queue becomes empty.

let rec run () =
match
try
Some (Queue.take queue)
with Queue.Empty ->
None
with
None -> 0
| Some t -> Lwt.wakeup t (); run ()

The functionyield creates a suspended thread, adds the thread to
the end of the queue and returns it. Thus, a thread waitingrior
expressioryield () to terminate is stopped until resumed by the
scheduler.

let yield () =
let res = Lwt.wait () in
Queue.push res queue;
res

Here is an example of use of the scheduler. Thep function
printsn times a strings, letting other threads run at each iteration.

let rec loop s n =
if n > O then begin
Format.printf "¥sQ@." s;
yield () >>= fun () ->
loop s (n - 1)
end else
Lwt.return ()

Two threads are started, that output alternatively and"b".

let _ =
let ta = loop "a" 6 in
let tb = loop "b" 5 in
run O
4.3 Mutexes

We present an implementation of mutual exclusion locksllofvs

the corresponding implementation in the Objective Canricdzad
thread library. Interestingly, this implementation onlgpgnds on
moduleLwt. It can thus be used with any scheduler. A mutex is a
pair of a boolean which indicates whether the mutex is lockedi

a list of threads waiting for the mutex to become unlocked.

type t =
{ mutable locked :
mutable waiting :

bool;
unit Lwt.t list }

A mutex is initially created unlocked.

let create () =
{ locked = false; waiting = [] }

The functionlock attempts to lock a mutex. If the mutex is not
locked, it is locked and the function returns immediatelyhéd-
wise, the thread is suspended: a suspended thread is cerated

added to the list of waiting threads. The function waits foist
thread to be resumed and then calls itself recursively.

let rec lock m =

if not m.locked then begin
m.locked <- true;
Lwt.return ()

end else begin
let res = Lwt.wait () in
m.waiting <- res :: m.waiting;
res >>= fun () ->
lock m

end

In order to release a mutex, a copy of the set of waiting ttgead
is extracted and the set is cleared. The mutex is then urdocke
Finally, the waiting threads are restarted. It is importarterform
this step last in order to avoid race conditions.

let unlock m =
let w = m.waiting in
m.waiting <- [];
m.locked <- false;
List.iter (fun t -> Lwt.wakeup t ()) w

5. Implementation

We first present in details the core modlie. The implementation
of moduleLwt_unix is then sketched in section 5.6. The code
presented here deviates slightly from the actual impleatemt for
the sake of readability.

5.1 The type of threads
Threads are represented by a memory cell with a mutable state

type ’a t =
{ mutable state :
and ’a state =
Return of ’a
| Fail of exn
| Sleep of (’a t -> unit) list ref
| Link of ’a t

’a state }

The three main states are:

e Return v: the thread has terminated successfully with the
valuev;

e Fail e:the thread has failed with exceptien

e Sleep w: the thread is not finished yet; the thunk functions in
setw are called when the thread terminates.

The last stat&ink t is used to implement a union-find datastruc-

ture® over threads in order to coalesce threads with an identical

behavior. This turns out to be crucial to avoid some memaakde
(see section 5.5.2 for details). Th&ind function returns the rep-
resentative of a thread.

let rec find t =
match t.state with
Link t’ -> find t’
| _ -> t

The actual implementation of functiafiind uses path compres-
sion: each visited thread gets directly linked to its repngstive.

5.2 Creating a thread
There is a function for creating a thread in each state.

’http://en.wikipedia.org/wiki/Union-find

let return v = { state = Return v }
let fail e = { state = Fail e }
let wait () = { state = Sleep (ref [1) }

5.3 Terminating a thread

We present the implementation of the two functicngeup and
wakeup_exn. They both rely on a functiofiinish that changes the
state of a thread from still running to terminated. Its arguats are
the threact and the new statet (which should be eitheketurn v

or Fail e). First, the representative of the thread is found. Then,
the list of waiters is extracted and the state of the threalasged

to st. Finally, the waiters are awaken. It is crucial to perforris th
step last in order to avoid a race condition where new waiegs
added while processing current waiters.

let finish t st =
let t = find t in
match t.state with
Sleep waiters —>
t.state <- st;
List.iter (fun f -> f t)
[

invalid_arg "finish"

'waiters

The implementation of functionsakeup andwakeup_exn is now
straightforward.

= finish t (Return v)
finish t (Fail e)

let wakeup t v
let wakeup_exn t e =

5.4 Thread synchronization

We present the implementation of functiosind, try_bind and
catch. These functions make use of a functierap for catching
ML exceptions and embed them into a failing thread.

let trap f x = try £ x with e -> fail e

They also rely on a functiononnect of type:

’at -> ’a t -> unit.

A call connect t t’, where threadt must not be terminated,
ensures that the behavior of threaghimics thereafter the behavior
of threadt’: threadt will terminate when thread’ terminates,
with the same result. The easy case is wheris already finished.
Then, threadt is terminated with the same state &5 (call to
function finish). Otherwise, the threads are both still running.
Then, the representative of is linked to the representative of
and the waiter sets are merged. The actual implementaties us
lists with constant-time append in order to make the coshisf t
last operation independent from the number of waiters.

let rec connect t t’ =
let t’ = find t’ in
match t’.state with
Sleep waiters’ ->
let t = find t in
begin match t.state with
Sleep waiters ->
waiters := !waiters’ @ !waiters;
t’.state <- Link t
| ->
invalid_arg "connect"

finish t t’.state

All three synchronization functions share a common conegtion
try_bind_rec. This function takes as argument a threadnd
two functionsf andg. If t is terminated with valuer, then the

application of functiorf to valuev is returned. Ift has failed with
exceptione, then the application of functiog to exceptione is
returned. Ift is not yet terminated, a fresh suspended thieadis
created. A thunk is added to the set of waiters of thread that,
when threadt terminates, the functiosry_bind_rec is called
again and the behavior aks follows the behavior of the thread
returned by this function. The threads is finally returned. The
functiontry_bind_rec is called recursively at most once, s
always terminated when the recursive call is performed.

let rec try_bind_rec t f g =
match (find t).state with
Return v ->
fv
| Fail e —>
g e
| Sleep waiters ->
let res = wait () in
waiters :=
(fun t ->
connect res
(try_bind_rec t (trap f) (trap g)))

'waiters;
res
| Link _ ->
assert false

From this function, all three synchronization operators easily
be written:

let bind t £ = try_bind_rec t f fail

let try_bind f g h =
try_bind_rec (trap £ ()) gh

let catch f g = try_bind f return g

The use of functiontrap in the functionstry_bind_rec and
try_bind is clarified in section 5.5.1
5.4.1 Polling for a thread state

The implementation of the function testing the state of adlris
straightforward.

let poll t =
match (repr t).state with
Fail e -> raise e
| Return v -> Some v
| Sleep -> None
| Repr _ -> assert false

5.5 Implementation difficulties

The implementation has now been presented in full. Thewviatig
explains in more details some subtle issues.

5.5.1 Dealing with exceptions

The functionLwt . catch as used in the expression below will catch
not just the exceptions embedded in threaffor instance, using
the functionfail) but also the exceptions raised by the usual ML
mechanism (using the operatatise).

Lwt.catch (fun () -> t) handler

This is implemented by calling functiotirap at suitable places.
When the exception is raised during the evaluation of thakhu
it is caught by the occurrence of this function in the body of
functiontry_bind. This covers the following example:

Lwt.catch
(fun O ->
raise Not_found;
Lwt.return ()
handler

The following second case, where functioint . bind is applied to

a thread which is already terminated, is also covered bydhees
call to functiontrap. Indeed, the exception is raised before the
whole thunk function exits.

Lwt.catch
(fun O ->
Lwt.return () >>= fun () ->
raise Not_found;
Lwt.return ())
handler

In the last case below, the evaluation of the thunk resulta in
suspended thread, and the exception is raised only aftéentéad
resumes. In this case, the exception is caught by the cdillattion
trap in functiontry_bind_rec.

Lwt.catch
(fun O ->
Lwt_unix.yield () >>= fun () ->
raise Not_found;
Lwt.return ())
handler

One has to be careful about where the calls to functioap are
performed. In particular, it would be incorrect to protegstemat-
ically the second argument of functierind, as this would break
tail-recursion. However, it is not an issue to do it after eursive
call to functiontry_bind_rec, that is, in response to a thread ter-
mination. Indeed, this termination is generally perfornbgd call

to functionwakeup or functionwakeup_exn from the scheduler,
and the scheduler body is a tail-recursive function andus #t a
fixed stack depth.

5.5.2 Avoiding memory leaks

It is crucial that the memory behavior of threads conformgh®
expectations of the programmer. In particular, a functidmiclv is
tail-recursive when written in a non-threaded way shoulddile
recursive when usingwt. This is not the case with a naive imple-
mentation that does not coalesce equivalent threads. dndee-
sider the following piece of code, using the scheduler itised.2.

let rec loop n =

if n = 0 then Lwt.return () else
yield () >>= fun () -> loop (n - 1)
in
let 1 = loop 100000 in
run ()

The function yield returns a suspended thread The func-
tion loop thus also initially returns a suspended threadLater,
the threact is successfully terminated by the scheduler. This trig-
gers a recursive call to functioroop returning a new thread,
which is connected to thread by function connect. This is re-
peated again and again, thus we get a longer and longer chain:

A straightforward implementation of functiatbnnect, when ap-
plied to threads; andt;11, would add a thunk to the list of waiters
of threadt; ;1. The goal of this thunk is to update threagwhen
threadt; 1 is terminated. But then, as long as the head of the chain
remains live (that is, as long as the loop has not ended), nbne

the chain can be garbage collected. Our implementation thees
fact that all these threads behave the same: they are sespentl

the loop ends, and then are all terminated with value uniakés
threadt; as the unique representative for them all. Then, all inter-
mediate threads can be garbage collected:

Link

We conjecture that, with this implementation, translatmgexist-
ing code to us@wt does not introduce any memory leak.

5.6 The Unix library

We sketch the implementation of the scheduler and present th
implementation of a possibly blocking system call. For thkes

of clarity, we only present the way the scheduler deals wjgh o
erations on file descriptors. The actual implementation dksals
with threads to be restarted after a given amount of timecffun
tions sleep and yield) and subprocesses termination (function
waitpid).

The threads waiting for 1/Os are stored in two datastrusture
inputs and outputs that associate to some file descriptors the
actions that should be performed when they become avaitable
spectively for reading and writing.

The scheduler (functiopun below) loops until the input thread
thr terminates. The status of the thread is checked at each it-
eration by calling functionLwt.poll. If it is not finished yet,
the scheduler proceeds to call the functibmnix. select to wait
for file descriptors to become available. The listsfds and
outfds of file descriptors to watch are computed by function
active_descriptors. The third list is for waiting for so-called
socket exceptions (that is, out-of-band data), which icnatently
supported (this socket feature is hardly ever used). Thée ftbz0
indicates that the wait is unbounded (no timeout). The systall
is interrupted with erroEINTR when a signal occurs, resulting in
an ML exception. This exception can be ignored. When theeayst
call returns, the corresponding actions are performed oh aaail-
able descriptor by calling functioperform_action. Finally, the
scheduler calls itself recursively.

let rec run thr
match Lwt.poll thr with
Some v ->

v
| None ->
let infds = active_descriptors inputs in
let outfds = active_descriptors outputs in
let (readers, writers, _) =
try
Unix.select infds outfds [] (-1.0)
with
Unix_error (Unix.EINTR, _, _) ->
I, 0o,
in

List.iter
(fun fd -> perform_actions inputs fd)
readers;

List.iter
(fun fd -> perform_actions outputs £fd)
writers;

run thr

In the actual implementation, timeouts (functisheep) are man-
aged by using a priority queue. A timeout value is given tafiom
select instead of the float1.0 in order to interrupt the system

call when a thread has to be resumed. Child termination {func
tion waitpid) is detected by catching the sigrsaiGCHILD.

The functionperform_actions eventually invokes the func-
tion wrap_syscall shown below to perform an actioiction
on file descriptorch. In order to be able requeue the action in
case it fails to complete, the function takes as additiomgl-a
ments the datastructurset that held the action and the thread
cont to be resumed when the action is completed. The func-
tion check_descriptor is called to check whether the function
abort was previously called on the file descriptor and raises the
corresponding exception if this is the case (see sectioh B.2
also raises an exception when the file descriptor is marked as
closed. The action is then attempted. If it fails with a Uniroe
EAGAIN, EWOULDBLOCK or EINTR, the action is requeued (function
add_action). Otherwise, the thread is resumed.

let rec wrap_syscall set ch cont action
let res
try
check_descriptor ch;
Success (action ())
with
Unix.Unix_error
((Unix.EAGAIN | Unix.EWOULDBLOCK |
Unix.EINTR),_,_) ->
add_action set ch cont action;
Requeued
| e —>
Exn e

in
match res with
Success v ->
Lwt.wakeup cont v
| Exn e ->
Lwt.wakeup_exn cont e
| Requeued ->

0O

We now show how the functiomrite is implemented. It first
checks the file descriptor. If this does not result in an etioapthe
system callirite is performed. The Unix errors indicating that the
write would block are caught and result in scheduling theemo

be attempted again when the file descriptor becomes awailBhis

is performed by calling functioregister_action which returns

a suspended thread that is resumed when the action compfetes
another error occurs, a failing thread is returned.

let write ch buf pos len
try
check_descriptor ch;
Lwt.return (Unix.write ch.fd buf pos len)
with
Unix.Unix_error
((Unix.EAGAIN | Unix.EWOULDBLOCK |
Unix.EINTR), _, _) —->
register_action outputs ch
(fun () -> Unix.write ch.fd buf pos len)
| e —>
Lwt.fail e

6. Related work

The idea to implement cooperative threads using a monadeis du
to Claessen (Claessen 1999). Li and Zdancewic have written a
implementation in Haskell (Li and Zdancewic 2007) with jpeff
mance in mind. They use the efficiento11 Linux mechanism in-
stead of the more portable but less efficisalect system call to

implement their scheduler. The company Liveops has deeélap
similar monad-based library (Waterson 2007) for Object\aenl.
They report that their library does not deal well with exdeps.
The library has not been publicly released yet.

These works all use some variants of a continuation monad,
which makes the semantics of their threads slightly difiefeom
ours. The type of threads is typically similar to the follogione:

’a t = (Pa -> unit) -> unit

This is a functional type: an expression of this type doe$-not
ing before being given a continuation. For instance, anesgion
read fd buffer 0 512 does not attempt at once to read on file
descriptorfd as is the case withwt. The read is only attempted
once a continuation is provided. Thread creation is therdi@xp
a function, usually calledork or spawn, must be called to apply
a thread to its final continuation and thus start the threamtiex
tion. As an expression of typea t is not a running thread, the
functionbind is just a sequencing operator and does not provide
a communication mechanism between threads. A separateamech
nism has to be provided.
An alternative to threads for highly concurrent network lapp
cations is event-based programming. Tgeue library, part of
the Ocamlnet (Stolpmann) library, is an Objective Camidifyrfor
event queues. It is used by a number of other libraries in Quzm
to parallelize network code. Compared.tet, the APl is very low-
level. It should be possible to builtlart scheduler on top of this
library, so that code written usiriget can interact with the library.
We have not performed any benchmark, but we believe that
our implementation is competitive performance-wise wihpect
to other Objective Caml thread implementations. Indeeely il
share the same limitation that only one thread is active ateng
time. An advantage of our library is the low cost of threachtia.

Acknowledgments

A first version of this library was written during a postdaeto
fellowship at the University of Pennsylvania. BenjaminrBéand
Zhe Yang contributed some documentation for this libraigcent
Balat encouraged me to expand the library.

References

S. Balasubramaniam and Benjamin C. Pierce. What is a filehsgnizer?
In Fourth Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom '98), October 1998. Full version
available as Indiana University CSCI technical report #59atil 1998.

Vincent Balat. Ocsigen: Typing Web interaction with ObjeetCaml. In
International Workshop on ML, pages 84-94. ACM Press, 2006. ISBN
1-59593-483-9. doi: http://doi.acm.org/10.1145/11508759889.

Nick Benton and Andrew Kennedy. Exceptional synthunct. Program.,
11(4):395-410, 2001. ISSN 0956-7968. doi: http://dxagi10.1017/
S0956796801004099.

Koen Claessen. A poor man’s concurrency monddFunct. Program.,
9(3):313-323, 1999. ISSN 0956-7968. doi: http://dx.doib0.1017/
S0956796899003342.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Jéeroraeilldn, and
Dider Remy. The Objective Caml system. Software and doczatien
available on the Welnttp://pauillac.inria.fr/ocaml/.

Peng Li and Steve Zdancewic. Combining events and threadscti-
able network services implementation and evaluation of adam
application-level concurrency primitives. FLDI '07: Proceedings of
the 2007 ACM SIGPLAN conference on Programming language design
and implementation, pages 189-199, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-633-2. doi: http://doi.acm.org/10.8/14250734.
1250756.

Benjamin C. Pierce and Jérome Vouillon. What's in Unisérf@rmal spec-
ification and reference implementation of a file synchranizéechni-

cal Report MS-CIS-03-36, Dept. of Computer and Informafmience,
University of Pennsylvania, 2004.

Gerd Stolpmann. The ocaminet library. Software and doctatien avail-
able on the Webhttp://projects.camlcity.org/projects/
ocamlnet.html.

Rob von Behren, Jeremy Condit, and Eric Brewer. Why evergsadrad
idea (for high-concurrency servers). HOTOS 03: Proceedings of the
9th conference on Hot Topicsin Operating Systems, pages 4—4, Berkeley,
CA, USA, 2003. USENIX Association.

Chris Waterson. An ocaml-based network services platfoim CUFP
'07: Proceedings of the 4th ACM SIGPLAN workshop on Commercial
users of functional programming, pages 1-2, New York, NY, USA, 2007.
ACM. doi: http://doi.acm.org/10.1145/1362702.1362711.

