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Abstract
We propose a type system based on regular tree grammars, where
algebraic datatypes are interpreted in a structural way. Thus, the
same constructors can be reused for different types and a flexible
subtyping relation can be defined between types, corresponding
to the inclusion of their semantics. For instance, one can define
a type for lists and a subtype of this type corresponding to lists
of even length. Patterns are simply types annotated with binders.
This provides a generalization of algebraic patterns with the ability
of matching arbitrarily deep in a value. Our main contribution,
compared to languages such as XDuce and CDuce, is that we are
able to deal with both polymorphism and function types.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Patterns, Polymor-
phism, and Data Types and Structures; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs – Type Structure

General Terms Algorithms, Design, Languages, Theory.

Keywords Polymorphism, Subtyping, Tree Automata.

1. Introduction
We investigate an ML-style type system, with variants, function
types and prenex polymorphism, but trade type inference for a
powerful subtyping relation. Our main motivation for this work is
the design of an extension of XDuce [7] with function types and
polymorphism, which are crucial for programming in the large.

The type system is based on regular tree grammars. Types are
similar to the algebraic datatypes of functional languages. For in-
stance, we can define a list Cons (1, Cons (2, Nil)). A type
for this value can be specified using the following definition of a
type list with two variants.

type list =
Cons (int, list)

| Nil

This definition is usually interpreted as specifying an opaque type
list with two constructors Cons and Nil of respective types
int--->list--->list and list. We rather interpret it in a structural
way: a value has type list if it is the variant Nil or if it is a
variant of constructor Cons with one argument of type int and
one argument recursively of type list. But we can also have a
value Cons (1, 2), of type Cons (int, int), with the same
constructor but arguments of different types.

Reusing the same constructor for different types make it possi-
ble to define refinements of a given type. For instance, here are the
type of non empty lists and the type of lists of even length.

type non_empty_list = Cons (int, list)

type even_length_list =
Cons (int, Cons (int, even_length_list))

| Nil

e ::= x variable
λπ.e abstraction
e e application
let x = e in e let construction
c(e, e) variant
() unit
match e with πi → ei pattern matching
Λα.e type abstraction
e [τ ] type application

Figure 1. Syntax of Expressions e

There is a flexible subtyping relation between types. In particular,
both even lists and non-empty lists are subtype of the list type. Type
inference seems intractable. Thus, the type of function parameters
must be explicitly given. Type application is also explicit, though it
can sometimes be inferred.

Patterns are simply types annotated with binders. This provides
a generalization of algebraic patterns which the ability of matching
arbitrarily deep in a value. For instance, this is a recursive pattern
which extracts the last element of a non-empty list:

last = Cons(int, last) | Cons(x : int, Nil)) .

The paper is organized as follows. We start by describing a cal-
culus with a typeful semantics. We then present some interesting
semantic properties of the subtyping relation. As a typeful seman-
tics can be difficult to implement efficiently, we finally isolate a
subset of the calculus which does not require runtime type opera-
tions and should be easier to implement efficiently.

2. Typed Semantics
We provide a standard presentation of our calculus: syntax, small-
step reduction semantics, typing rules, and soundness. For the sake
of clarity, we start from high-level constructions and progressively
present the details.

2.1 Expressions

The grammar of expressions e is given in figure 1. The syntax of
the calculus is a blend of a mini ML (let construction, variants,
unit and pattern matching) and System F (explicit type abstraction
and application). Most constructions are standard. We comment the
most interesting ones below.

We assume given infinite sets of variables x, type variables α
and constructors c. Expressions are considered up to renaming
of bound variables. The symbol π denotes a pattern while the
symbol τ denotes a type. These two concepts are described in
section 2.3.

The abstraction construction λπ.e is a generalization of the
usual construction λ(x : τ).e, which can be encoded here by using
the pattern x : τ as parameter (this pattern matches values of type
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let x = v in e −→ e[v/x] (Λα.e) [τ ] −→ e[τ/α]

v / π ; θ

(λπ.e) v −→ θ(e)

v / πj ; θ

match v with πi → ei −→ θ(ej)

e −→ e′

F [e] −→ F [e′]

Figure 2. Reduction Relation e −→ e

τ and binds them to the variable x). For the sake of simplicity, we
only consider variants c(e, e) of arity two. Our work can be easily
generalized with variants of arbitrary arity1. The pattern matching
construction is composed of an input expression e and a finite
number of branches πi → ei. When branches are written explicitly,
we separate them by a vertical bar. For instance, we write

match e with π1 → e1 | π2 → e2

for a pattern with two branches. As the type system features sub-
typing, we believe type inference is not tractable. Hence, type ab-
straction and application are explicit. Partial inference of type ap-
plications should be possible in simple cases using the algorithm
proposed by Hosoya, Frisch and Castagna [6]. But, it is not always
possible to infer a best type due to function type contravariance.

2.2 Semantics

We give a small step semantics to the calculus. Values v are a
subgrammar of expressions.

v ::= x
c(v, v)
()
λπ.e
Λα.e

Often, this category of expressions is called non-expansive expres-
sions and values do not include variables x. In practice, there is no
inconvenience in using this larger category as values and this avoid
the need for two similar definitions.

The reduction relation e −→ e is defined in figure 2. The
two rules for the let construction and the type application are
standard. (The notation e[v/x] stands for the usual capture avoiding
substitution of the variable x by the value v in the expression e,
while the notation e[τ/α] stands for the substitution of the type
variable α by the type τ in the expression e.)

The rules for the application and the pattern matching construc-
tion bear some similarity. Both make use of a matching relation
v / π ; θ (defined in section 2.4). This relation asserts that the
value v matches the pattern π producing a substitution θ (that is, a
finite mapping from variables x to values v). We write θ(e) for the
simultaneous substitution in an expression e of these variables by
the corresponding values. In the case of the application, the applied
value v must match the input pattern π of the function, produc-
ing a substitution θ. The application then reduces to the body e of
the function where variables bound in the pattern have been sub-
stituted. For the pattern matching construction, the input value v
must match the pattern πj of one of the branches. The construction
then reduces to the body ej of this branch where variables bound
in the pattern have been substituted. Note that the pattern matching
semantics is not deterministic.

1 For instance, by encoding an n-ary variant c(e1, . . . , en) using variants
of arity two and the unit expression: c((), ∗(e1, ∗(e2, . . . ∗(en, ()) . . .))),
where ∗ is a distinguished constructor.

π ::= c(π, π) variant pattern
() unit pattern
π → π function pattern
π ∪ π pattern union
⊥ empty pattern
µ(α)π recursive pattern
α pattern variable
x : π binder pattern

wildcard

Figure 3. Syntax of Patterns π

c(π1, π2)
c

−→ (π1,π2) π1 ∪ π2
ε

−→ π1 π1 ∪ π2
ε

−→ π2

µ(α)π
ε

−→ π[µ(α)π/α] x : π
ε

−→ π

Figure 4. Transition Relations π −→c (π,π) and π −→ε π

The last rule specifies where the reduction may occur deeper
in an expression. It is defined using frames F (that is, one-hole
expression pieces) defined by the following grammar.

F ::= c( , e)
c(v, )
e

v
[τ ]

let x = in e
match with πi → ei

Often, the reduction relation is specified using contexts (that is, full
expressions with one hole), rather than frames. However, frames
are sufficient for our needs and are simpler to reason with as they
are not defined inductively.

2.3 Patterns and Types

The syntax of patterns π is given in figure 3. Their semantics will
be given in section 2.4. Variant patterns c(π, π), the unit pattern ()
and function patterns π → π match the corresponding values. The
binary union of patterns π ∪ π and the empty pattern ⊥ (empty
union) make it possible to define arbitrary unions of patterns. Re-
cursive patterns µ(α)π can be used to explore a value arbitrarily
deeply. A pattern variable α is either introduced by this construc-
tion or by a type abstraction Λα.e. A binder pattern x : π extracts a
subvalue and binds it to a variable x. Finally, the wildcard pattern
matches anything.

Patterns are considered up to renaming of bound variables. We
write π[π′/α] for the substitution of the variable α by the pattern π′

in the pattern π.
We find it convenient to define two relations π −→c (π,π),

between three patterns (a source pattern and two target patterns)
and a constructor, and π −→ε π, between two patterns (figure 4).
These relations can be understood as the transition relations of a
tree automaton. Indeed, looking at the semantics of patterns in
section 2.4, one can see that if first we have a transition π −→c

(π1,π2), second the value v1 matches the pattern π1, and third the
value v2 matches the pattern π2, then the value c(v1, v2) matches
the pattern π. Likewise, if we have an epsilon transition π −→ε

π′ and the value v matches the pattern π′, then this value also
matches the pattern π. As an example, the transition relations for
a simple pattern are depicted in figure 5. Note that a transition
π −→c (π1,π2) is represented by two arrows starting from the
same state π and labelled by the constructor c. The two relations
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π
ε

c(π, ) ∪ ()
ε

ε

()

c(π, )
c

Figure 5. Transitions for Pattern π = µ(α)(c(α, ) ∪ ())

do not completely characterize the behavior of a pattern. Indeed,
some kind of acceptance relation would be required to describe the
semantics of the unit pattern, the function patterns and the wildcard
pattern. Furthermore, binders are not taken into account. Still, these
relations are sufficient for our needs.

The semantics of some patterns is unclear. For instance, should
the recursive pattern µ(α)α matches all values, no value, or some-
thing in-between? For this pattern, a reasonable choice can be either
the minimal or the maximal interpretation. However, the meaning
of a pattern such as µ(α)(α ∪ (α → ())) is not clear at all, as
there does not exist a minimal nor a maximal interpretation for this
pattern. Thus, we choose to disallow this kind of patterns. We say
that a type variable α is not guarded in a pattern π if it is reachable
from the pattern by a sequence of epsilon transitions:

π
ε

−→ . . .
ε

−→ α .

Then, a pattern is well-formed if, for all its subpatterns µ(α)π, the
type variable α is guarded in the pattern π. For instance, the pattern
µ(α)(x : (()∪α)) is ill-formed as we have the transition sequence:

x : (() ∪ α)
ε

−→ () ∪ α
ε

−→ α .

On the other hand, the patterns µ(α)(c(α, )) and µ(α)(α → ⊥)
are both well-formed. Indeed, the occurrence of the type variable α
is “guarded” by a pattern constructor in both cases. In the remainder
of the paper, we only consider well-formed patterns.

Well-formedness is preserved by substitution. It is also closed
under the transition relations:

REMARK 1 (Transition and Well-Formedness). Well-formedness
is preserved by transition: if π is well-formed and π −→c (π1,π2),
then both π1 and π2 are well-formed; likewise, if π is well-formed
and π −→ε π′, then π′ is well-formed.

Another significant point is that one can reason by induction on the
length of sequences of epsilon transitions starting from a pattern π,
thanks to the following remark.

REMARK 2 (Finite Epsilon Sequences). There is no infinite se-
quence of epsilon transitions π1 −→ε π2 −→ε π3 −→ε . . .

Types are a simple restriction of patterns: a type τ is a (well-
formed) pattern which contains no binder x : π and no wildcard .
The reason for not allowing the wildcard in types is given in
section 2.7.

2.4 Pattern Semantics

The matching relation v / π ; θ, which specifies the semantics
of patterns, is given in figure 6. As mentioned earlier, this relation
asserts that the value v matches the pattern π producing a substitu-
tion θ. We write v / π when there exists a substitution θ such that
v / π ; θ.

We use a list-like notation for substitutions. The empty substi-
tution [], when applied to an expression e, leaves it unchanged. The
one-variable substitution [v/x] replaces all occurrences of the vari-
able x by the value v. The concatenation θ1 + θ2 of two substi-
tutions θ1 and θ2 performs simultaneously the two substitutions.
When the substitutions operate on a common variable, the second

v1 / π1 ; θ1 v2 / π2 ; θ2

c(v1, v2) / c(π1, π2) ; θ1 + θ2
() / () ; []

v / π1 ; θ

v / π1 ∪ π2 ; θ

v / π2 ; θ

v / π1 ∪ π2 ; θ

v / π[µ(α)π/α] ; θ

v / µ(α)π ; θ

v / π ; θ

v / x : π ; θ + [v/x]

v / ; []
∅ ` v # π2 → π1

v / π2 → π1 ; []

Figure 6. Matching Relation v / π ; θ

substitution θ2 takes precedence. For instance, applying the sub-
stitution [v1/x] + [v2/x] to the expression c(x, x) results in the
expression c(v2, v2), rather than c(v1, v1) or even c(v2, v1). This
choice is actually not important, as the type system enforce the lin-
earity of patterns, which ensures that, whenever two substitutions
are concatenated during the evaluation of a well-typed term, they
operate on distinct sets of type variables (see remark 4).

The first matching rules are straightforward. A variant value
c(v1, v2) matches a variant pattern c(π1, π2) if the constructors
are identical and the values v1 and v2 respectively match the pat-
terns π1 and π2. The resulting substitution is the concatenation of
the substitutions of each submatch. The unit value () matches the
unit pattern (), producing an empty substitution. A value matches
a union pattern π1 ∪ π2 if it matches either the pattern π1 or the
pattern π2. A value matches a recursive pattern µ(α)π if it matches
its unrolling π[µ(α)π/α]. A value v matches a binder pattern x : π
if it matches the pattern π. The resulting substitution is extended
with the substitution of the binder variable x by the whole value v.
All values match the wildcard pattern .

Clearly, one cannot match a functional value against a function
pattern π2 → π1 by decomposing it into two values v1 and v2

and matching these values against the corresponding patterns π1

and π2. Thus, we resort to using the type of the value to perform
the matching: a value v matches a function pattern π2 → π1 if
it has type π2 → π1 in the empty environment (written ∅ `
v # π2 → π1, see section 2.5). There is no rule for the empty
pattern ⊥ nor for pattern variables α. Indeed, no value should match
the empty pattern. In the case of pattern variables, we make the
conservative assumption that they match no value, as we do not
know what they stand for. The typing rules actually ensure that
when a matching is performed during the reduction, the pattern
contains no free variable. For instance, we can have the following
reduction for the identity applied to the unit value:

(Λα.λ(x : α).x) [()] () −→ (λ(x : ()).x) () −→ ()

Though the pattern initially contained a type variable, this variable
is substituted before the matching is performed. On the other hand,
the expression (λ(x : (() ∪ α)).x) (), even though it reduces to the
unit value (), is ill-typed as the type variable α is not bound.

Note that binders are allowed in the subpatterns π1 and π2 of
a function pattern π2 → π1 but are ignored. It would certainly
be cleaner to disallow them in a actual implementation. However,
from a specification point of view, it is simpler to just ignore them.

There is a strong connection between the definition of the
matching relation v / π ; θ and the transition relations π −→ε π
and π −→c (π,π). Indeed, for each rule with a non-empty set of
premises, there is a transition relating the pattern in the conclu-
sion and the patterns in the premises. For instance, the transition
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Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` c(e1, e2) : c(τ1, τ2)
Γ ` () : ()

x : σ ∈ Γ

Γ ` x : σ

Γ; bπc ` e : τ

Γ ` λπ.e : dπe → τ

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ; α ` e : σ

Γ ` Λα.e : ∀α.σ

Γ ` e : ∀α.σ

Γ ` e [τ ] : σ[τ/α]

Γ ` e2 : σ Γ; x : σ ` e1 : τ

Γ ` let x = e2 in e1 : τ

Γ ` e #
[

i
πi For all i, Γ; bπic ` ei : τ

Γ ` match e with πi → ei : τ

Γ ` e : σ′ σ′ <: σ

Γ ` e : σ

Γ ` e : τ τ <: π

Γ ` e # π

Figure 7. Typing Judgments Γ ` e : σ and Γ ` e # π

c(π1, π2) −→
c (π1,π2) corresponds to the first rule and the transi-

tion π1 ∪ π2 −→ε π1 corresponds to the third rule. Conversely, for
each possible transition, there is a corresponding matching rule.

The semantics of patterns is not deterministic. This makes it
simpler to formalize the calculus and reason about it. An actual
implementation may choose a particular strategy, for instance, a
first match policy. Clearly, our soundness results would apply, but
our analyses may be cruder as they are not tuned to any particular
strategy.

2.5 Typing Judgments

We define two typing judgments. The first one, Γ ` e : σ, is
the usual typing judgment. It asserts that an expression e has type
scheme σ in an environment Γ. The second one, Γ ` e # π, is
used specifically for typing patterns. It asserts that an expression e
is accepted by the pattern π in an environment Γ. A type scheme is
a type preceded by universal quantifiers:

σ ::= τ
∀α.σ

A typing environment is a sequence of bindings:

Γ ::= ∅ empty environment
Γ; x : σ variable binding
Γ; α type variable binding

We write Γ; Γ′ for the concatenation of two environments Γ and Γ′.
We adopt standard well-formedness conditions for patterns,

type schemes, expressions and environments: a pattern π, a type
scheme σ or an expression e are well-formed in a environment Γ if
all their free variables are bound in the environment. An environ-
ment is well-formed if for all its variable bindings Γ; x : σ the type
scheme σ is well-formed in the environment Γ.

Typing judgments are defined in figure 7. For any occurrence
of an assertion Γ ` e : σ (resp. Γ ` e # π) in these rules, we
implicitly require that the environment Γ, the expression e and the
type scheme σ (resp. the pattern π) are all well-formed. Most of the
rules are straightforward. We comment the most interesting ones.

Given a pattern π, we write dπe for the type representing what
is accepted by the pattern and bπc for the piece of environment
corresponding to the variables bound in the pattern. These two op-
erations are specified in section 2.6. In order to type an abstraction

dc(π1, π2)e = c(dπ1e, dπ2e)
d()e = ()
dπ1 → π2e = dπ1e → dπ2e
dπ1 ∪ π2e = dπ1e ∪ dπ2e
d⊥e = ⊥
dαe = α
dµ(α)πe = µ(α)dπe
dx : πe = dπe

Figure 8. Type of a Pattern dπe

π
c

−→ (π1,π2)

π ≺ π1

π
c

−→ (π1,π2)

π ≺ π2

π
ε

−→ π′

π ≺ π′

π ≺ π
π1 ≺ π2 π2 ≺ π3

π1 ≺ π3

Figure 9. Reachability Relation π ≺ π

λπ.e, its body e must have some type τ in the environment ex-
tended with the bindings bπc of the pattern π. Then, the type of the
abstraction is a function type with argument type dπe and return
type τ . For pattern matching, the input expression e must be ac-
cepted by the union of the patterns πi (this ensures that the pattern
matching is exhaustive). Then, the body ei of each branch is typed
in an environment extended with the corresponding pattern bind-
ings bπic. The type of the whole construction is a type τ common
to all these bodies. In this typing rule, we use n-ary unions of pat-
terns, which can be defined in term of the empty union ⊥ and the
binary union π1 ∪ π2. Though there is no canonical definition, one
can show that, thanks to subtyping, all possible definitions yield the
same definition of the typing judgements (see lemma 8).

The judgement for patterns is introduced by the last rule: we
rely on subtyping to define when an expression is accepted by a
pattern. Note that the two typing judgments coincide on types: for
any type τ , one have Γ ` e : τ if and only if Γ ` e # τ .

Though there is no explicit construction for recursion, a fixpoint
operator can be typed using recursive types.

2.6 Type and Bindings of a Pattern

The type dπe of a pattern π is defined in figure 8. This type is
actually just the pattern where binders have been erased. Note
that it is only defined when the pattern contains no wildcard . In
particular, there can be no wildcard in a function input pattern. For
instance, the function λ(x : ).() is ill-typed.

The definition of the bindings bπc of a pattern π is more in-
volved. We first define a reachability relation π ≺ π (figure 9). We
say that the pattern π2 is below the pattern π1 when π1 ≺ π2. The
set of patterns below a given pattern π is the set of patterns reach-
able from the pattern π through the transitions. Hence, in the defini-
tion of the relation, there are three rules corresponding to the tran-
sitions. The last two rules ensure that the relation is closed under
reflexivity and transitivity. As patterns can be recursive, the reach-
ability relation is not in general an order, but only a preorder. It
satisfies the following property.

REMARK 3 (Regularity). There is only a finite number of patterns
below a given pattern: for an pattern π, the set {π′ |π ≺ π′} is
finite.
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π[µ(α)π/α] <: π′

µ(α)π <: π′

π′ <: π[µ(α)π/α]

π′ <: µ(α)π

π1 <: π π2 <: π

π1 ∪ π2 <: π

π <: π1

π <: π1 ∪ π2

π <: π2

π <: π1 ∪ π2

π <: π′

x : π <: π′

π′ <: π

π′ <: x : π

π1 <: π′
1 π′

2 <: π2

π2 → π1 <: π′
2 → π′

1

⊥ <: π () <: () α <: α <: π π <:

(π1 \ ⊥, π2 \ ⊥) <: exposec(π)

c(π1, π2) <: π

(π1 \ (π′
1 ∪ π′′

1 ), π2 \ π′
2) <: L

(π1 \ π′
1, π2 \ (π′

2 ∪ π′′
2 )) <: L

(π1 \ π′
1, π2 \ π′

2) <: [(π′′
1 , π′′

2 )] + L

π1 <: π′
1

(π1 \ π′
1, π2 \ π′

2) <: []

π2 <: π′
2

(π1 \ π′
1, π2 \ π′

2) <: []

Figure 10. Subtyping Relation π <: π

The set of binders of a pattern π is obtained by collecting the
variables x of all the binder patterns x : π′ below the pattern π.

binders(π) = {x | ∃π′.π ≺ (x : π′)}

Note that binders inside a function pattern π′ → π are ignored,
which is consistent with the semantics of patterns.

We then define a notion of linearity for patterns: a pattern π is
linear when:

• if π ≺ c(π1, π2), then binders(π1) ∩ binders(π2) = ∅;
• if π ≺ π1 ∪ π2, then binders(π1) = binders(π2);
• if π ≺ x : π1, then x 6∈ binders(π1).

REMARK 4. Linearity ensures that a variable is bound at most
once when an input value is matched again a pattern, and that the
set of bound variables is the same for all input values.

Finally, given a linear pattern π, we define its bindings bπc as
follows (we leave bπc undefined when the pattern π is not linear).
Suppose that binders(π) = {x1, . . . , xn} (where xi 6= xj for
i 6= j). Then,

bπc = x1 : τ1; . . . ; xn : τn

where
τi =

[

π≺(xi:π′)

dπ′e .

Note that bπc is not actually defined for all linear patterns, as the
type dπ′e is only defined for patterns π′ containing no wildcard .
For instance, bx : c is not defined as the type associated to the
variable x would be d e, which is undefined.

The definition above uses unions of a finite sets of types, As
noted above, this union is not uniquely defined. Besides, though
environments are a priori ordered, the order of bindings in bπc is
left unspecified. This is not an issue as it can be shown that the
definition of the judgments do not depend on the specific definition
of the union chosen nor on the ordering of the bindings.

2.7 Subtyping

The subtyping relation π <: π is defined in figure 10 using
coinductive rules [1, 5]. A recursive pattern µ(α)π is in subtyping

exposec(π1 ∪ π2) = exposec(π1) + exposec(π2)
exposec(x : π) = exposec(π)
exposec(µ(α)π) = exposec(π[µ(α)π/α])
exposec(c(π1, π2)) = [(π1, π2)]
exposec(π) = [] otherwise

Figure 11. Exposure Function exposec(π)

relation with another pattern π if its unrolling π[µ(α)π/α] is. The
three rules for union assert that the union of two patterns is a least
upper bound of these two patterns. Binders are ignored. The rule
for function patterns is the usual one: covariance on the result types
and contravariance on the input types. The empty pattern is a least
pattern. There is no specific interaction between the union pattern ⊥
or a type variable α with other patterns: the rules for the unit pattern
and the type variables simply ensure the reflexivity of subtyping.

We consider a naı̈ve, syntactic, interpretation of the wildcard
pattern: the pattern → matches all functions as, for any func-
tion, we can find two suitable types to fill in the holes. This can be
understood more formally by interpreting the wildcard pattern as a
top pattern when in covariant position and as a bottom pattern when
in contravariant position. This turns out to make sense from a se-
mantic theory point of view: the wildcard pattern can be interpreted
as an interval type, as defined by Cartwright [2]. This is also very
simple to specify in our calculus: basically, this is handled by the
two subtyping rules for the wildcard pattern. These rules may look
somewhat surprising as the pattern seems to be considered both as
a greatest pattern and as a least pattern, which would be contra-
dictory. This makes sense here because in the typing rules we are
only interested in subtyping assertions of the shape τ <: π. In the
derivation of such an assertion τ0 <: π0, the rule π <: may occur
only when the pattern is in covariant position in the pattern π0,
and the rule <: π may occur only when the pattern is in con-
travariant position. Other design choices are possible: a separate top
type could be added, or the wildcard pattern could be interpreted as
a top pattern and allowed in types. But we think it is interesting to
present this unusual alternative interpretation.

The four rules for variant patterns c(π, π) are based on a re-
formulation of the XDuce subtyping rules [8] by Hosoya [Per-
sonal communication]. These rules are very precise and handle
distributivity of variants over pattern union. For instance, the
pattern c(π1, π2 ∪ π3) can be proved equivalent to the pattern
c(π1, π2) ∪ c(π1, π3). They are based on a simultaneously defined
relation (π \ π, π \ π) <: L (where the symbol L denotes a list of
pairs of patterns) and an exposure function exposec(π) specified
in figure 11. We adopt the following notations for lists. We write []
for the empty list, [a] for a list with a single element a and L + L′

for the concatenation of two lists L and L′. The exposure function
exposec(π) extracts from a pattern π the arguments of all vari-
ant patterns with constructor c. It is defined in a recursive manner.
Using remark 2, one can show that it is indeed well-defined.

Intuitively, the goal of the four rules for variant patterns is, given
a pattern c(π1, π2) on the left hand side of a subtyping assertion,
to derive some conditions on patterns π1 and π2. The easiest way
to understand these rules is to interpret them in a set-theoretic way,
with the following correspondence in mind:

subtyping relation <: set inclusion ⊆
empty pattern ⊥ empty set ∅
symbol \ set difference \
union pattern ∪ set union ∪
empty list [] empty set ∅
list concatenation + set union ∪
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π ≈ π
π1 ≈ π2 π2 ≈ π3

π1 ≈ π3

π1 ≈ π′
1 π2 ≈ π′

2

π1 ∪ π2 ≈ π′
1 ∪ π′

2

π1 ∪ π2 ≈ π2 ∪ π1 π1 ∪ (π2 ∪ π3) ≈ (π1 ∪ π2) ∪ π3

π ∪ π ≈ π π ∪ ⊥ ≈ π

Figure 12. Equivalence between Patterns π ≈ π

The first rule rewrites the left hand side in a trivial way so that it
matches the shape required for the latter rules and extracts interest-
ing subpatterns from the right hand side pattern. The second rule
take advantage of the following set theoretic property in order to
reduce the size of the left hand side list:

A × B ⊆ (C × D) ∪ E
if and only if

(A \ C) × B ⊆ E and A × (B \ D) ⊆ E.

Finally, the last two rules rely on the fact that A × B ⊆ ∅ if and
only if any of the sets A and B is empty to eliminate the Cartesian
product.

The guardedness condition is crucial for the soundness of sub-
typing. Indeed, we have α[µ(α)α/α] = µ(α)α. Hence, without
the restriction, we could derive τ <: µ(α)α and µ(α)α <: τ ′ for
any types τ and τ ′with the two infinite derivations:

...
τ <: µ(α)α

τ <: µ(α)α

...
µ(α)α <: τ ′

µ(α)α <: τ ′

Then, by applying the subtyping rule twice, if we have Γ ` e : τ ,
we could derive Γ ` e : τ ′ for any type τ ′.

The three following lemmas are crucial to prove different prop-
erties of the calculus.

LEMMA 5 (Reflexivity). For all patterns π, one have π <: π.

LEMMA 6 (Transitivity). For all patterns π1 and π3 and for all
types τ2, if π1 <: τ2 and τ2 <: π3, then π1 <: π3.

Note that this would not hold if we allowed τ2 to be a pattern. For
instance, for any patterns π1 and π2, we have π1 <: and <: π2

but fortunately not in general π1 <: π2.

LEMMA 7 (Stability by substitution). For all patterns π1 and π2,
for all types τ and for all type variables α, if π1 <: π2 then
π1[τ/α] <: π2[τ/α].

It is convenient to define an equivalence relation π ≈ π be-
tween patterns (figure 12). With this relation, union is considered
commutative, associative and idempotent, and the empty pattern ⊥
is an identity for union. A justification to this relation if given by
the following lemma.

LEMMA 8 (Subtyping and Union). The subtyping relation is com-
patible with the equivalence relation: if τ1 <: τ2, τ1 ≈ τ ′

1 and
τ2 ≈ τ ′

2, then τ ′
1 <: τ ′

2.

As a consequence of this lemma, all definitions of finite union using
binary union and empty union are equivalent. We relied on this fact
to show that the typing judgments are well-defined.

The subtyping rules do not provide directly an algorithm. In-
deed, the set of patterns that occur in a derivation may be infi-
nite. This is the case for instance for a derivation of the assertion
τ1 <: τ2 where:

τ1 = µ(α)c(α, α)
τ2 = µ(α)c(α ∪ α, α ∪ α) .

By applying the rules for variants, one arrive higher up in the
derivation to the assertion τ1 <: (⊥ ∪ τ2) ∪ τ2, then to an assertion
with four occurrences of τ2, and so on... However, one can show
that all patterns occurring in a derivation of an assertion π1 <: π2

are unions of subpatterns of the patterns π1 and π2 up to the equiv-
alence relation ≈. Hence, thanks to lemma 8, the rules that may
occur in a derivation of an assertions π1 <: π2 can be considered
as a finite, though possibly large, set of Boolean formulas whose
variables are assertions π′

1 <: π′
2 up to the equivalence relation.

The subtyping problem then becomes a Boolean constraint solving
problem. This way of deciding coinductively defined relations is
detailed in Frisch’s PhD thesis [4].

The subtyping relation is extended to type schemes with the
following additional rule:

σ <: σ′

∀α.σ <: ∀α.σ′

2.8 Properties of the Calculus

Given an environment Γ and an expression e, we say that a type
scheme σ0 is principal when it is a least type scheme such that
Γ ` e : σ0. We call principal judgment the set of assertions
Γ ` e : σ0 where the type σ0 is principal.

REMARK 9 (Principal Types). If Γ ` e : σ or Γ ` e # π, then
there exists a least type scheme σ0 such that Γ ` e : σ0. In the
second case, this type scheme is actually a type τ0 and τ0 <: π.

A principal type can be computed by applying the typing rules in a
syntax-directed way, using the subtyping rule only when necessary
(that is, above the typing rule for application e1 e2).

The soundness proof rely on the following three lemmas con-
cerning pattern matching. We say that a pattern is ground when it
contains no free type variable. We say that a value v is well-typed
(implicitly, in the empty environment) when there exists a type τ
such that ∅ ` v : τ . The first lemma show that the semantics of
patterns corresponds tightly to their types.

LEMMA 10 (Equivalence Matching-Typing). For all well-typed
values v and ground patterns π, v / π if and only if ∅ ` v # π.

LEMMA 11 (Matching and Subtyping). For all values v, ground
types τ and ground patterns π, if v / τ and τ <: π, then v / π.

LEMMA 12 (Pattern Bindings). For all ground patterns π, expres-
sions e, types τ , well-typed values v and substitution θ, if bπc ` e :
τ and v / π ; θ, then ∅ ` θ(e) : τ

The type soundness is proved in the usual way by showing type
preservation and progress [12].

THEOREM 13 (Type Preservation). For any expressions e and e′

and any type scheme σ, if ∅ ` e : σ and e −→ e′, then ∅ ` e′ : σ.

THEOREM 14 (Progress). For any expression e and any type
scheme σ, if ∅ ` e : σ, then either the expression e is a value
or there exists and expression e′ such that e −→ e′.

3. Semantic Interpretation of Subtyping
The matching relation v / π ; θ provides a semantics for ground
patterns:

JπK = {v | v / π} .

This semantics can easily be extended to all patterns using substi-
tutions. We define a ground substitution s as a function from type
variables α to ground types. Then, the semantics of a pattern π with
respect to a ground substitution s is defined as Js(π)K.
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This induces an inclusion relation between patterns: we say that
a pattern π is semantically a subtype of another pattern π′, written
π ⊆ π′, when for any ground substitution s we have

Js(π)K ⊆ Js(π′)K .

We can compare this relation with the subtyping relation defined in
section 2.7. In fact, this makes sense only when the left hand side
pattern is a type. Indeed, remember that a pattern is not interpreted
the same way on both sides of the subtyping relation, due to the
treatment of the wildcard pattern. The semantics JπK corresponds
to the interpretation on the right hand side. It can only be used on
the left hand side when the two interpretation coincides, which is
the case for types τ . The asymmetry is not an issue as patterns
never occur on the left hand side of a subtyping assertion in the
typing rules. It turns out that both relations coincide.

THEOREM 15. For all types τ and all patterns π, we have τ <: π
if and only if τ ⊆ π.

One direction, corresponding to the soundness of the subtyping
relation τ <: π, is a direct consequence of lemmas 7 and 11. The
other direction, completeness, is more interesting.

It is clear that completeness holds for types and patterns without
function patterns nor type variables: this is the completeness of the
XDuce subtyping rules [8]. That it still holds with function patterns
should not be that surprising, as the semantics of these patterns is
defined using subtyping. In particular, due to this circularity, the
completeness result does not imply that our subtyping relation is
the finest subtyping relation possible. For instance, we believe that
the following assertion is sound:

π1 → π2 <: ⊥ → ⊥ .

Indeed, the only reduction rule for which the type of a function
really matters is function application. Thus, as a function of type
⊥ → ⊥ cannot be applied to any value, any function can have this
type. From a theoretic point of view, it is attractive to use the finest
possible subtyping relation: as the type system is monotonic with
respect to the subtyping relation, more programs could be typed
(though the pattern semantics would also be changed, as it depends
on typing). From a practical point of view, however, it seems that
this relation would not have good algorithmic properties—it seems
hard to decide—and would not allow to type more interesting
programs.

Completeness when including type variables is more inter-
esting. In order to obtain a similar result, Hosoya, Frisch and
Castagna [6] have to define a very specific semantics, where values
are labelled with variables corresponding to the type variables of
a pattern. We do not experience the same difficulties as our type
system is slightly different(They have a type construction α : τ
with the following semantics: the result of instantiating in this type
the variable α to a type τ ′ is the intersection of types τ and τ ′,
which can be expressed in their type system thanks to this very
construction.)

4. Untyped Semantics
4.1 Motivations

We now would like to consider a subset of the above typed calculus,
with two goals in mind. First, it should be possible to implement
this subset in a efficient way without too much effort, in particular
by relying on previous works on optimizing regular patterns [9].
Second, we would like type variables to be opaque. It should not
be possible to inspect by pattern matching (or through any other
construction of the calculus) any part of a value corresponding to
a type variable. Indeed, such a guarantee makes it easy to extend
in a seamless way a language with additional datatypes, such as

integers, arrays or file descriptors, without the need of any boxing
to distinguish the values of these additional types from other values.

The main challenge for an efficient implementation is that some
type operations must be performed at runtime. Indeed, type variable
substitutions have an effect on the semantics of patterns. This
makes it difficult to statically compile patterns containing type
variables. Furthermore, a type check is required at runtime in order
to match a value against a function pattern:

∅ ` v # π2 → π1

v / π2 → π1 ; []

Thanks to the principal type property (remark 9), it is sufficient to
compute the principal type τ of the value v and check whether it
is a subtype of the pattern π2 → π1. Actually, if we followed the
semantics precisely, this principal type would have to be computed
at runtime, as principal types are not preserved by reduction. For
instance, if we start from the principal judgement:

x : α ∪ () ` λ().x : () → (α ∪ ())

and substitute the value () for the variable x, we get the judgment:

Γ ` λ().() : () → (α ∪ ())

instead of the principal judgement:

` λ().() : () → () .

This would be clearly unpractical, but this minor difficulty can be
solved by requiring the full type of a function to be systematically
given (or added during an elaboration phase after type checking).
That is, the grammar of functions would become λπ.(e : τ), with
the typing rule:

Γ; bπc ` e : τ ′ τ ′ <: τ

Γ ` λπ.(e : τ) : dπe → τ

This is the approach taken in CDuce [3]. The principal type of a
function can then be directly read from its definitionand matching
against a function pattern is just a matter of performing a subtyping
check.

In order to demonstrate how runtime type operations can be
eliminated, we propose a compilation of the typed calculus into an
untyped subset, in which no type operation need to be performed.
This translation is partial: some patterns are rejected. We rapidly
sketch the translation here. The first optimization is to replace type
variables in patterns by the wildcard pattern and to remove all type
abstractions and type applications. For instance, the expression:

(Λα.λ(x : α).x) [τ ]

would be turned into:
λ(x : ).x .

This is potentially a lot more efficient as no type variable substitu-
tion is performed anymore. Furthermore, if this function is applied
to a value v during reduction, the value can be immediately ac-
cepted by the function instead of being first matched against the
type τ . In this case, the rewriting is faithful: the two functions be-
have the same way. On the other hand, the following expression has
to be rejected.

match () with α → e1 | () → e2

Indeed, the natural translation would be:

match () with → e1 | () → e2 .

(Of course, the expressions e1 and e2 should also be translated. For
simplicity, we assume that they coincide with their translations.)
But initially the first branch is never taken when α is instantiated
to ⊥, while it may be taken after translation. The second optimiza-
tion is to also replace function patterns by the wildcard pattern. For
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instance, the expression:

λ(x : τ ′ → τ).e

would be translated into the expression:

λ(x : ).e .

Again, the translation is not always faithful and a similar coun-
terexample can be found. The restrictions on patterns that make
these two optimizations possible can be phrased informally as fol-
lows: it should be possible to consider type variables and function
patterns as assertions which are checked at compile type but have
no computational effect. A more drastic restriction would be not to
allow them at all but we believe they can be useful. In particular,
it would be inconvenient to have to provide in the definition of a
polymorphic function both the type of the parameter and a pattern
to deconstruct the parameter.

We choose to also reject some patterns, not for optimization pur-
pose, but so that the calculus satisfies some parametricity proper-
ties [10]. For instance, suppose that an implementation of complex
numbers is defined by some type τ and two functions add and mul
of type τ → τ → τ . Then, one may expect the behavior of a
function such as the one below not to depend on the particular im-
plementation of complex numbers it is applied to.

Λα.λ(add : α → α → α).λ(mul : α → α → α).e

For instance, it should have the same behavior whether a Cartesian
or a polar representation is used. But this is not the case in our
calculus as patterns can inspect values of any type. For instance,
the following function behaves differently whether it is passed the
unit, a variant or another value.

Λα.λ(x : α).match x with () → e1 | c( , ) → e2 | → e3

We actually seek a stronger result that parametricity. In particular,
we want to reject the function below, even though its behavior does
not depends on its argument (it always returns the value ()).

Λα.λ(x : α).match x with c((), ()) → () | → ()

Indeed, this function “breaks abstraction”, in the sense that it tests
whether a value of an abstract type α has some structure c((), ()).
If this function is allowed, then such a test must be possible for
all values, which put some constraints on how we may extend the
calculus with additional values.

The restrictions are fairly drastic. In particular, they imply that
patterns cannot be specialized by type instantiation. But the type
system remains rich. There is no restriction on monomorphic code
and it is still possible to encode in a straightforward fashion ML
algebraic datatypes and patterns.

We will now present the translation of the calculus into the un-
typed subset and two analyses on patterns. The first one ensures
that the calculus satisfies parametricity properties. The second one
ensures that the translation is faithful. These two analyses are pre-
sented together as applying them conjointly during the translation
makes some simplifications possible.

4.2 Translation

The translation of expressions is specified in figure 13 through the
relation Γ ` e : σ Ã e. An assertion Γ ` e : σ Ã e′ states that the
expression e has type σ in the environment Γ and translates to the
expression e′. The rules are directly derived from the typing rules
of figure 7 by extending the typing judgments to include translated
expressions and adding some side-conditions. In most cases, the
translation is achieved by recursively replacing subexpressions by
their translations.

Type abstraction is restricted to values: the expression Λα.e can
only be translated when the expression e is a value. This way, type

Γ ` e1 : τ1 Ã e′
1 Γ ` e2 : τ2 Ã e′

2

Γ ` c(e1, e2) : c(τ1, τ2)Ã c(e′
1, e

′
2)

Γ ` () : ()Ã ()

x : σ ∈ Γ

Γ ` x : σ Ã x

Γ; bπc ` e : τ Ã e′ erase(dπe, π, π′)

Γ ` λπ.e : dπe → τ Ã λπ′.e′

Γ ` e1 : τ2 → τ1 Ã e′
1 Γ ` e2 : τ2 Ã e′

2

Γ ` e1 e2 : τ1 Ã e′
1 e′2

Γ; α ` v : σ Ã e

Γ ` Λα.v : ∀α.σ Ã e

Γ ` e : ∀α.σ Ã e′

Γ ` e [τ ] : σ[τ/α]Ã e′

Γ ` e2 : σ Ã e′
2 Γ; x : σ ` e1 : τ Ã e′

1

Γ ` let x = e2 in e1 : τ Ã let x = e′
2 in e′1

Γ ` e : τ Ã e′ τ <:
[

i
πi

For all i, Γ; bπic ` ei : τ ′
Ã e′

i and erase(τ , πi, π
′
i)

Γ ` match e with πi → ei : τ ′
Ã match e′ with π′

i → e′i

Γ ` e : σ′
Ã e′ σ′ <: σ

Γ ` e : σ Ã e′

Figure 13. Term Translation Γ ` e : σ Ã e

abstractions and applications can be completely eliminated without
modifying significantly the semantics: the translation of a type
abstraction remains a value. Such a restriction is widely used, in
particular in ML implementations, in order to ensure soundness in
presence of side-effects [11]. It does not impact the expressiveness
of the calculus in any significant way.

In the case of the abstraction and the pattern matching construc-
tions, a side-condition of the form erase(τ , π, π′) is added. This
side-condition relates the initial pattern π, the type τ of what is
matched against this pattern, and a translation π′ of this pattern.
The assertion erase(τ , π, π′) holds when:

• the pattern π′ is erased, that is, it contains no function pattern
π2 → π1 nor free type variable α;

• the pattern π′ is a translation of pattern π, that is, π Ã∅ π′

(defined just below);
• the pattern does not break abstraction, that is, the relation

abstract(τ , π′) defined in section 4.3 holds;
• the translation is faithful, that is, the relation faithful(τ , π, π′)

defined in section 4.4 holds.

One may have expected a simpler translation relation e Ã e
for expressions. The reason for a typeful translation is that the
input type τ of patterns is crucial for the analyses we perform on
patterns.

The pattern translation π ÃV π (where V is a set of type
variables α) is specified in figure 14. This is a rather broad relation:
translation is simply defined as replacing in the initial pattern some
unspecified subparts containing no binder by the wildcard pattern.
Indeed, in order to prove more easily the accuracy of the translation
of the whole calculus, we need a translation relation which is stable
by substitution. The set V keeps track of the recursion variables. It
is necessary to deal with patterns such as µ(α)(c(α, ()) ∪ x : ()).
It would be incorrect to translate this pattern into µ(α)( ∪ x : ())
even though the subpattern c(α, ()) does not contain explicitly any
binder.
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binders(π) = ∅
∀α, (π ≺ α) ⇒ α 6∈ V

π
V
Ã

π
V
Ã π

π1
V
Ã π′

1 π2
V
Ã π′

2

c(π1, π2)
V
Ã c(π′

1, π
′
2)

π1
V
Ã π′

1 π2
V
Ã π′

2

π1 ∪ π2
V
Ã π′

1 ∪ π′
2

π
V ∪{α}
Ã π′

µ(α)π
V
Ã µ(α)π′

π
V
Ã π′

x : π
V
Ã x : π′

Figure 14. Pattern Translation π ÃV π

In an actual implementation, one would use a different defini-
tion of pattern translation: all type variables α, provided they are
not recursion variables, and all function patterns π → π would be
replaced by the wildcard pattern; other subpatterns would be pre-
served. This defines a deterministic subset of the relation π ÃV π.
This way, each expression has at most one translation. In order
to know whether the translation e′ of an expression e exists, one
can rely on the principal type property: one starts from a principal
derivation of Γ ` e : σ and tries to extend it into a derivation of the
assertion Γ ` e : σ Ã e′. Using principal types ensures that the
analyses are as precise as possible and thus that the translation e′ is
rejected only when really necessary.

4.3 Enforcing Abstraction

We first present some examples of patterns that should be rejected.
Then, we clarify our intuition of the pattern matching process. This
leads us to a specification of the analysis that should be performed,
from which an algorithm is derived.

It is actually hard to specify when a pattern breaks abstraction.
Indeed, this depends on the pattern matching implementation. For
instance, consider the following function.

λ(x : c(α, c((), ()))).match x with c((), ()) → e1 | → e2

A naı̈ve pattern matching algorithm may first test whether the first
component of the variant, which is polymorphic, is the unit, before
testing the second component. In this case, a better strategy would
be to first test the second component or, even better, to detect at
compile time that the first branch is never taken and optimize it
away. However, there is sometimes no alternative strategy. Indeed,
consider the function:

λ(x : τ2).match x with τ1 → e1 | → e2

with the two types:

τ1 = c(c((), ()), c((), ()))
τ2 = c(α, ()) ∪ c((), α) ∪ τ1 .

There is no good order to look inside the variant: there may be
a polymorphic value on either sides. Furthermore, the first branch
cannot be optimized away as it matches input values of type τ1.
For the sake of simplicity, we consider that both functions should
be rejected.

The analysis is performed on the pattern π′ of the relation
erase(τ , π, π′). Indeed, this pattern is simpler that the initial pat-
tern π. In particular, it is erased. The input type τ is used as an
indication of which values may be matched against the pattern.

As far as the analysis is concerned, we consider function types
the same way as type variables. Thus, the following expression is
not allowed, as a function is matched against a unit pattern.

match λ().() with () → e1 | → e2

Indeed, from a practical point of view, this puts less constraints on
the implementation: there is no need to be able to distinguish func-
tions from other values at runtime. From a formalization point of

view, this allow us to use functions as witnesses in the specifica-
tion of the analysis: a pattern is rejected if it may try to match a
function value against either the unit pattern () or a variant pattern
c(π, π) (these are the two kind of subpatterns of an erased pattern
that require inspection of the value).

As a running example for the remainder of the section, we
consider the function:

Λα.λ(x : τ0).match x with π0 → e1 | → e2

where the input type τ0 and the pattern π0 are defined as follows:

τ0 = c((), α) ∪ ()
π0 = µ(β)c(β, ()) ∪ () .

Intuitively, we consider the matching process as starting from the
assertion v / π0 ; θ (where the value v is to be matched against
the pattern π0 and the substitution θ is to be determined) and
applying any possible matching rules, thus producing more and
more refined partial derivations. The process is finished when a
full derivation is reached. For instance, let us assume that the type
variable α has been instantiated to the type () → () and that the
value is v = c((), λ().()). Then, the only rule we can apply initially
is the rule for recursive patterns. We then have the following partial
derivation.

...
v / c(π0, ()) ∪ () ; θ

v / π0 ; θ

It can be refined by applying one of the two rules for union patterns.
With the second rule, the partial derivation below is reached.

...
v / () ; θ()

v / c(π0, ()) ∪ () ; θ

v / π0 ; θ

There is no way to complete this partial derivation. On the other
hand, with the other rule, we can apply one further rule and reach
the partial derivation below.

...
() / π0 ; θ2

...
λ().() / () ; θ1

v / c(π0, ()) ; θ1 + θ2

v / c(π0, ()) ∪ () ; θ1 + θ2

v / π0 ; θ1 + θ2

Considering the pattern in the rightmost branch, one may be
tempted to apply the rule for the unit pattern. One has to look at the
corresponding value, which is a function, in order to know that the
rule cannot be applied. Hence, the pattern should be rejected.

As noted near the end of section 2.4, there is a strong corre-
spondence between the subtyping rules and the transition relations.
Thus, a partial derivation can be abstracted away as a subgraph of
the graph of these relations. Corresponding to the partial derivation
above, we have the following graph. Under each pattern, we write
the value it is associated to in the partial derivation.

π0
ε

c(π0, ()) ∪ ()
ε

c(π0, ())
c

()

v v v λ().()

π0

()

We can see on the rightmost node that the pattern should be re-
jected. This information should be propagated to the root pattern π0
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λπ.e Ã c(π1, π2) λπ.e Ã ()
v Ã π′ π

ε
−→ π′

v Ã π

v1 Ã π1 π
c

−→ (π1,π2)

c(v1, v2) Ã π

v2 Ã π2 π
c

−→ (π1,π2)

c(v1, v2) Ã π

Figure 15. Disallowed Matching v Ã π

τ
ε

−→ τ ′

(τ , π) ≺ (τ ′, π)

π
ε

−→ π′

(τ , π) ≺ (τ , π′)

τ
c

−→ (τ ′,τ ′′) π
c

−→ (π′,π′′) / τ ′′

(τ , π) ≺ (τ ′, π′)

τ
c

−→ (τ ′,τ ′′) π
c

−→ (π′,π′′) / τ ′

(τ , π) ≺ (τ ′′, π′′)

(τ , π) ≺ (τ , π)
(τ , π) ≺ (τ ′, π′) (τ ′, π′) ≺ (τ ′′, π′′)

(τ , π) ≺ (τ ′′, π′′)

Figure 16. Type Propagation (τ , π) ≺ (τ , π)

through the derivations. This leads us to the definition of the disal-
lowed matching relation v Ã π (figure 15). The first two rules are
for immediately disallowed matching. As we said earlier, functions
are used as witnesses. Hence, a pattern is disallowed if a function is
compared with either a variant pattern or the unit pattern. The three
other rules propagate the information down the pattern. We thus
have the following derivation showing that the matching is disal-
lowed (side conditions are put aside for clarity).

λ().() Ã ()

v Ã c(π0, ())
c(π0, ())

c
−→ (π0,())

v Ã c(π0, ()) ∪ ()
c(π0, ()) ∪ ()

ε
−→ c(π0, ())

v Ã π0
π0 −→

ε
c(π0, ()) ∪ ()

The analysis can then be specified as follows: an erased pat-
tern π associated to an input type τ should be rejected if we have
both ∅ ` v : s(τ) and v Ã π for some ground substitution s and
some value v.

In order to derive an algorithm, we reason in a symbolic way
and represent a set of values by a type. The decomposition of a
value corresponds to transitions from this type. For instance, we
have the following transitions for the input type τ0 of our example.
We write below each type which part of the value v = c((), λ().())
it corresponds to.

τ0
ε

c((), α)
c

α

v v λ().()

()

()

The transition graphs corresponding to the input type τ0 and the
pattern π0 are traversed in parallel (for the disallowed matching
relation a value and a pattern were traversed in parallel). The type
propagation relation (τ , π) ≺ (τ , π), defined in figure 16, states
that there is a path from the first pair to the second pair. The first
rules define paths of length one. Epsilon transitions can happen

/ τ1 / τ2 τ
c

−→ (τ1,τ2)

/ τ

/ τ ′ τ
ε

−→ τ ′

/ τ

/ () / τ2 → τ1 / α

Figure 17. Type Non-Emptiness / τ

independently on the type or the pattern, as the corresponding part
of a value remain unchanged. On the other hand, other transitions
must be performed simultaneously on the type and the pattern,
as they correspond to focusing on a subpart of a value. The side
conditions / τ ′ and / τ ′′ are non-emptiness tests. They deal with
cases such as a type τ1 = c(α,⊥) together with a pattern π1 =
c((), ()). There is no value of type τ1, so the pattern π1 should be
allowed. Hence, it would be incorrect to have a path from the pair
(τ1, π1) to the pair (α, ()). And indeed, there is no such path as
the assertion /⊥ does not hold. Finally, the last two rules ensure
that the relation is closed under reflexivity (zero-length path) and
transitivity (path concatenation).

The definition of the non-emptiness relation / τ in figure 17 can
be understood as follows. For the first rule, if there is a value v1

of type τ1 and a value v2 of type τ2, then the value c(v1, v2) has
type τ . For the second rule, if we have a value of type τ ′, this
value also has type τ . The unit value () has type () and we can
always find a value of type τ2 → τ1 (for instance, a function which
accepts a value of type τ2 then loops). Finally, as long as a type
with a non-empty semantics is substituted to the type variable α (in
our running example, we took the type () → ()), there is a value
corresponding to type α.

The specification of the analysis and the type propagation rela-
tion are related as follows.

THEOREM 16. Given a type τ and an erased pattern π, the two
following propositions are equivalent:

• ∅ ` v : s(τ) and v Ã π for some ground substitution s and
some value v;

• (τ , π) ≺ (τ ′, π′) for some type τ ′ which is either a type
variable α or a function type τ ′

1 → τ1, and some pattern π′

which is either the unit pattern () or a variant pattern c(π1, π
′
1).

Given a type τ and an erased pattern π, we define abstract(τ , π)
as the negation of either of these propositions.

We can check that our example is indeed rejected. We have the
four following derivations. The first one corresponds to the epsilon
transition from the first node to the second node on the transition
subgraph of the initial type τ0.

τ0
ε

−→ c((), α)

(τ0, π0) ≺ (c((), α), π0)

Then, two epsilon transitions are performed on the subgraph corre-
sponding to the pattern π0.

π0
ε

−→ c(π0, ()) ∪ ()

(c((), α), π0) ≺ (c((), α), c(π0, ()) ∪ ())

c(π0, ()) ∪ ()
ε

−→ c(π0, ())

(c((), α), c(π0, ()) ∪ ()) ≺ (c((), α), c(π0, ()))

Finally, one step is performed simultaneously on both subgraphs.

c((), α)
c

−→ ((),α) c(π0, ())
c

−→ (π0,()) / ()

(c((), α), c(π0, ())) ≺ (α, ())

Thus, by transitivity, (τ0, π0) ≺ (α, ()), which is prohibited.
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The two following remarks show that there is indeed an algo-
rithm for deciding the relation. This is a consequence of remark 3.

REMARK 17. Any occurrence of an assertion / τ ′ in a derivation
of / τ is such that τ ≺ τ ′. As a corollary, the type non-emptiness
relation is decidable.

REMARK 18. If (τ , π) ≺ (τ ′, π′), then τ ≺ τ ′ and π ≺ π′. As a
corollary, the type propagation relation is decidable.

An important point in language design is to be able to give pre-
cise and understandable error messages. Here, we can locate pre-
cisely the error as the type propagation relation defines a common
path in the input type and the pattern to the error. Thus, for our ex-
ample, we can report that the pattern is not allowed as, when match-
ing polymorphic values of shape c(α, . . .), a subvalue of type α
may be matched against the subpattern ().

4.4 Checking for Faithfulness

Given an input type τ , an initial pattern π and a candidate transla-
tion π′ of this pattern, we want to state a condition ensuring that the
pattern π′ behaves the same way as the initial pattern, and to pro-
vide an algorithm for checking this condition. In order to deal with
the reduction rule concerning type application, the condition should
be stable by type variable substitution. The semantics of function
application and pattern matching should also be preserved. A possi-
ble condition is that, for any ground substitution s, if ∅ ` v : s(τ),
then v / s(π) ; θ if and only if v / π′

; θ. But this seems hard
to check. For instance, consider the following function.

Λα.Λβ.λ(x : α).match x with (x : α) ∪ (x : β) → e1 | → e2

It translates into the function:

λ(x : ).match x with (x : ) ∪ (x : ) → e1 | → e2 .

When the type variable α is bound to the type () and the type
variable β is bound to the type ⊥, the subpattern x : β never
matches anything while in the translated function the second part
of the union may match the input value. The substitution produced
remains unchanged, but this seems somewhat accidental. Thus, we
demand a stronger condition. Intuitively, we would like values to
be matched the same way by both patterns.

As a running example for the remainder of the section, we
consider the function:

Λα.λ(x : τ0).match x with π0 → e

where the input type τ0 and the pattern π0 are defined as follows:

τ0 = c((), α)
π0 = µ(β)c(β, α) ∪ () .

We consider the following candidate translation for this function:

λ(x : c((), )).match x with π′
0 → e′

where the pattern π′
0 is the following:

π′
0 = µ(β)c(β, ) ∪ () .

The initial function can be applied to the type () and the value v =
c((), ()). Then, the pattern π0 is instantiated to the pattern:

π1 = µ(β)c(β, ()) ∪ () .

We then have the following matching derivation.

() / () ; []

() / c(π1, ()) ∪ () ; []

() / π1 ; [] () / () ; []

v / c(π1, ()) ; []

v / c(π1, ()) ∪ () ; []

v / π1 ; []

(c(π1, π2),c(π
′
1, π

′
2))

c
−→ ((π1,π

′
1),(π2,π

′
2))

(π1 ∪ π2,π
′
1 ∪ π′

2)
ε

−→ (π1,π
′
1)

(π1 ∪ π2,π
′
1 ∪ π′

2)
ε

−→ (π2,π
′
2)

(µ(α)π,µ(α)π′)
ε

−→ (π[µ(α)π/α],π′[µ(α)π′/α])

(x : π,x : π′)
ε

−→ (π,π′)

Figure 18. Lockstep Transitions (π,π) −→c ((π,π),(π,π)) and
(π,π) −→ε (π,π)

This is the corresponding derivation for the translated pattern: the
same rules are applied, except in the case of the wildcard pattern
corresponding to subpattern ().

() / () ; []

() / c(π′
0, ) ∪ () ; []

() / π′
0 ; []

∅ ` () #

() / ; []

v / c(π′
0, ) ; []

v / c(π′
0, ) ∪ () ; []

v / π′
0 ; []

Clearly, given a derivation with the initial pattern, one can always
find a corresponding derivation with the translated pattern. On the
other hand, the converse does not necessary hold in general. Hence,
we adopt the following specification of the analysis: given an input
type τ , a input pattern π and a candidate translation π′, we consider
that the translation is faithful when for all ground substitutions s
and all values v, if ∅ ` v : s(τ), then any derivation of the assertion
v / π′

; θ can be extended in a derivation of v / s(π) ; θ (for
the same substitution θ).

A way to check this is to find all assertions v′ / ; [] in
a derivation of v / π′

; θ and verify that v′ / π′′
; []

for the pattern π′′ corresponding to the wildcard pattern in the
pattern s(π). Indeed, the subderivation of v′ / ; [] can then be
replaced by a derivation of v′ / π′′

; [].
As in the section 4.3, we derive an algorithm by reasoning in

a symbolic way and representing a set of possible values by a
type. Intuitively, for each occurrence of the wildcard pattern in the
translated pattern π′, we need to find the pattern π′′ it corresponds
to in the initial pattern π and the type τ ′ of values it may be matched
against. Then, for all values v′ such that v′ / τ ′, we should check
that v′ / π′′. In other words, according to lemma 11, we should
check that τ ′ <: π′′.

In order to find out which subpattern of the initial pattern π cor-
responds to each occurrence of a wildcard pattern in the translated
pattern π′, we define two lockstep transition relations (π,π) −→c

((π,π),(π,π)) and (π,π) −→ε (π,π) (figure 18). They are similar
to the transition relations π −→c (π,π) and π −→ε π but perform
the same operation on two patterns simultaneously. The lockstep
transition relations preserve the translation relation:

REMARK 19. If π ÃV π′ and (π,π′) −→c ((π1,π
′
1),(π2,π

′
2)),

then we have both π1 Ã
V π′

1 and π2 Ã
V π′

2; likewise, if
π1 Ã

V π′
1 and (π1,π

′
1) −→

ε (π2,π
′
2), then we have π2 Ã

V π′
2.

The transition subgraph corresponding to our example patterns π0

and π′
0 is given in figure 19. In this graph, we can read that the type

variable α corresponds to the wildcard pattern .
A type propagation relation (τ , π, π) ≺ (τ , π, π) is defined in

figure 20. It is very similar to the type propagation relation of the
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(π0, π
′
0)

ε
(c(π0, α) ∪ (), c(π′

0, ) ∪ ())
ε

ε

((), ())

(α, ) (c(π0, α), c(π′
0, ))c

Figure 19. Example of Lockstep Transition Graph

τ
ε

−→ τ ′

(τ , π1, π2) ≺ (τ ′, π1, π2)

(π1,π2)
ε

−→ (π′
1,π

′
2)

(τ , π1, π2) ≺ (τ , π′
1, π

′
2)

τ
c

−→ (τ ′,τ ′′)

(π1,π2)
c

−→ ((π′
1,π

′
2),(π

′′
1 ,π′′

2 )) τ ′′
1 π′′

2

(τ , π1, π2) ≺ (τ ′, π′
1, π

′
2)

τ
c

−→ (τ ′,τ ′′)

(π1,π2)
c

−→ ((π′
1,π

′
2),(π

′′
1 ,π′′

2 )) τ ′
1 π′

2

(τ , π1, π2) ≺ (τ ′′, π′′
1 , π′′

2 )

(τ , π1, π2) ≺ (τ , π1, π2)

(τ , π1, π2) ≺ (τ ′, π′
1, π

′
2)

(τ ′, π′
1, π

′
2) ≺ (τ ′′, π′′

1 , π′′
2 )

(τ , π1, π2) ≺ (τ ′′, π′′
1 , π′′

2 )

Figure 20. Type Propagation (τ , π, π) ≺ (τ , π, π)

τ ′
1 π τ

ε
−→ τ ′

τ 1 π

τ 1 π′ π
ε

−→ π′

τ 1 π

τ ′
1 π′ τ

c
−→ (τ ′,τ ′′)

τ ′′
1 π′′ π

c
−→ (π′,π′′)

τ 1 π
() 1 ()

/ τ

τ 1

Figure 21. Non-Disjointness τ 1 π

previous section (figure 16). Beside the use of lockstep transitions,
the only notable change is the replacement of the side-conditions
of the form / τ by side-conditions of the form τ 1 π, which states
that the type τ and the pattern π have at least one common value.
The reason for this difference is that we are now interested in full
derivations of the matching relation v / π ; θ rather than simply
partial derivations. Hence, the values considered must match both
the type and the pattern.

The relation τ 1 π is defined in figure 21. It only makes sense
when the pattern π is erased and abstract(τ , π) holds. For the first
rule, if there is a value common to type τ ′ and pattern π, then it is
included in type τ and, therefore, it is also common to type τ and
pattern π. The second rule is similar. For the third rule, if there is a
value v′ common to type τ ′ and pattern π′ and a value v′′ common
to type τ ′′ and pattern π′′, then the value c(v′, v′′) is common to
type τ and pattern π. The last two rules are straightforward.

The specification of the analysis and the type propagation rela-
tion are related as follows.

THEOREM 20. Given an input type τ , a pattern π and a candidate
translation π′ of the pattern, assuming that the pattern π′ is erased,

that the relation π Ã∅ π′ holds and that abstract(τ , π′), the two
following propositions are equivalent:

• for any ground substitution s and any value v, if ∅ ` v : s(τ),
then any derivation of the assertion v / π′

; θ can be
extended in a derivation of v / s(π) ; θ (for the same
substitution θ);

• for any type τ1 and pattern π1 such that (τ , π, π′) ≺ (τ1, π1, ),
we have τ1 <: π1.

We define the relation faithful(τ , π, π′) as either of these two
propositions.

In our example, the assertion (τ0, π0, π
′
0) ≺ (τ2, π2, ) holds if

and only if τ2 = π2 = α. As α <: α, the translation is indeed
faithful.

The two following remarks show that there is indeed an algo-
rithm for deciding the relation. This is a consequence of remark 3.

REMARK 21. Any occurrence of an assertion τ ′
1 π′ in a deriva-

tion of τ 1 π is such that τ ≺ τ ′ and π ≺ π′. As a corollary, the
non-disjointness relation is decidable.

REMARK 22. If (τ , π, π′) ≺ (τ1, π1, π
′
1), then τ ≺ τ1, π ≺ π1

and π′ ≺ π′
1. As a corollary, the type propagation relation is

decidable.

As with the previous analysis, one can provide an understand-
able error message using the type propagation relation to locate
precisely the error.

4.5 Faithfulness of the Translation

The faithfulness of the translation is expressed by the two following
simulation theorems. The reduction steps corresponding to type ap-
plication are eliminated by reduction. This explains the asymmetry
between the two theorems.

THEOREM 23. If e1 −→ e2 and ∅ ` e1 : σ Ã e′
1, then either

∅ ` e2 : σ Ã e′
1 or there exists a term e′2 such that e′1 −→ e′2 and

∅ ` e2 : σ Ã e′
2.

THEOREM 24. If e′1 −→ e′2 and ∅ ` e1 : σ Ã e′
1, then there

exists a term e2 such that e1 −→+ e2 and ∅ ` e2 : σ Ã e′
2.

5. Type Inference in Patterns
Suppose we want to extract the two components of values of
type τ0 = c(τ1, τ2). According to the typing rules, one has to
write a pattern c(x : τ1, y : τ2), repeating the types τ1 and τ2. One
should be able to write instead a pattern π0 = c(x : , y : ) and
rely on a type inference algorithm to compute the types of bound
variables. Due to lack of space, we only sketch the algorithm.

The two occurrences of the wildcard pattern need to be dis-
tinguished. Hence, we annotate them: π0 = c(x : (1), y : (2)).
The type propagation relation of figure 20 is then used. We have
(τ0, π0, π0) ≺ (τ1, (1), (1)) and (τ0, π0, π0) ≺ (τ2, (2), (2)).
(The translation of pattern π0 is itself.) The types corresponding
to each wildcard patterns are collected. In this case, there is a sin-
gle type for each pattern. Then, each wildcard is replaced with the
union of its associated types. This yields a pattern π1 containing no
wildcard subpatterns. Here, we get π1 = c(x : τ1, y : τ2). Finally,
we take bπ1c as the bindings associated to the pattern π0.

6. Related Works
The type system we present here is very close to the XDuce type
system [7, 8] but also features polymorphism and function types.
This is not immediately apparent as XDuce uses syntactic sugar
for values and types so that its values look like fragments of XML
documents.

12 2005/11/14



CDuce [3] has a very powerful type system, which is basically
an extension of XDuce type system with function types and in-
tersection types. Pattern matching on functions involves subtype
checks at runtime. We wanted to keep our type system as simple as
possible, so we did not considered intersection types.

Hosoya, Frisch and Castagna propose an extension of XDuce
type system with polymorphism [6]. Though there is no explicit
type intersection construction, their types are closed under intersec-
tion. This is an elegant feature and it makes it possible to encode
bounded quantification. But it interacts badly with polymorphism.
In particular, the straightforward semantic interpretation of subtyp-
ing used in XDuce and CDuce yields a subtyping relation which
is difficult to check. Hence, they propose a different interpretation
based on marking values with type variables. They do not propose
anything similar to our untyped semantics: their pattern matching
construction is allowed to break abstraction and type variables are
not allowed in patterns.

7. Future Work
It would be interesting to extend our calculus with bounded quan-
tification. An easy way is to provide a bound when abstracting over
a type variable and check the bound at type application. The subtyp-
ing relation can be extended so that a type variable is a subtype of
its bound. But this does not yield a complete subtyping relation: we
encounter the same difficulties as Hosoya, Frisch and Castagna [6].
Our analyses should probably also be refined to take into account
the bounds. We have not yet studied how they should be modified.
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