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Abstract

Subtyping rules can be fairly complex for union types, due to inter-
actions with other types, such as function types. Furthermore, these
interactions turn out to depend on the calculus considered: for in-
stance, a call-by-value calculus and a call-by-name calculus will
have different possible subtyping rules. In order to abstract our-
selves away from this dependence, we consider a fairly large class
of calculi. We define types in a semantic fashion, as sets of terms.
Then, a type can be a subtype of another type if its denotation is in-
cluded in the denotation of the other type. We first consider a simple
type system with union, function, pair and constant types. Using in-
ference rules, we specify a subtyping relation which is both sound
and complete with respect to the class of calculi. We then extend
this result to a richer type system with ML-style polymorphism and
type constructors. We expect this framework to allow the study of
subtyping relations that only hold for some calculi by restricting the
class considered, and to allow the study of subtyping relations for
richer type systems by enriching the class.

1 Introduction

The design of a subtyping relation for a language with a rich type
system is hard. The subtyping relation should satisfy conflicting
requirements. On the one hand, one would like the relation to have
strong theoretical foundations, rather than being defined in an ad
hoc, purely algorithmic, fashion. It is therefore tempting to base
it on the semantics of the language. But, on the other hand, one
should be careful not to tie it too tightly to a particular language.
Especially, one should avoid accidental special cases which happen
to hold only in the language considered. Indeed, the relation should
be robust in order to accommodate future language extensions. It
should also be simple enough so that the users can understand it,
and should possess good algorithmic properties: checking whether
two types are in a subtyping relation should be reasonably simple
and efficient.

We should emphasize the fact that the possible subtyping relations
depend on the language considered by providing some examples.
Let us first provide some rough intuition about types. We take the
view that well-typed terms may diverge but will evaluate without
error. A term of type ⊥ is a term that always diverges. A term of
type > evaluates without error. A term of type τ′→ τ behaves like
a term of type τ once applied to a term of type τ′. A term of type
τ∪ τ′ behaves as a term of type either τ or τ′. We write τ <: τ′
to mean that τ is a subtype of τ′ and τ = τ′ to mean that τ and τ′
are equivalent, that is, subtype of one another. We can now present
some typing relations that only hold under some conditions on the
calculus.

• In a call-by-value language, we can have > <: ⊥→⊥. In-
deed, suppose we take a term e of type >. When we apply it
to a term e′ of type ⊥ (that is a term whose evaluation does
not terminate), we get a term ee′ whose evaluation does not
terminate. So, the term e has type ⊥→⊥.

• In a call-by-name language, we can have > <: >→> (as in
Pierce’s thesis [14, p. 20]). Indeed, as argued by Dami [2],
in a call-by-name language, it makes sense to consider > as
the set of all terms. Then, types need to be interpreted in a
slightly unusual way. A well-typed terms does not necessarily
evaluate without error. Rather, only terms whose type τ is not
equivalent to > have these properties. Then, if we apply a
term of type > to another term of type >, we get a term of type
>, which corresponds to the subtyping assertion ><: >→>.

• In a call-by-value language, we can have the distributivity law
(τ1 ∪τ2)×τ = (τ1 ×τ)∪ (τ2 ×τ). This law does not hold in a
call-by-name language with non-determinism. Indeed, a term
of type (τ1∪τ2)×τ may well be a pair whose first component
evaluates sometimes to a value of type τ1 and sometimes to a
value of type τ2. Still, it holds in a call-by-need language with
non-determinism, as an expression is then evaluated at most
once.

• In a deterministic calculus, union of function types τ→τ′ obey
very special subtyping rules when τ is finite (as observed by
Damm [3]). The reason is that these types are isomorphic to
tuple types.

On the other hand, some rules seem very robust:

• The arrow is covariant on the left and contravariant on the
right: if τ1 <: τ′1 and τ′2 <: τ2, then τ2 → τ1 <: τ′2 → τ′1;

• Union types are least upper bounds: if τ <: τ1 or τ <: τ2, then
τ <: τ1 ∪ τ2; if τ1 <: τ and τ2 <: τ, then τ1 ∪ τ2 <: τ.

The aim of this paper is to develop a framework in which we can
substantiate the above claims, and thus understand which subtyping
assertions τ <: τ′ hold “by accident” (depending on some specific
properties of a language), and which are more universal (valid for a
large class of calculi).

Rather than choosing a particular calculus, we specify a broad class
of calculi in a fairly abstract way. For each calculus, we interpret
a type τ as a set of terms JτK. Given a subtyping relation <:, de-
fined for instance by inference rules, we can state that a subtyping
assertion τ <: τ′ is valid when JτK ⊆ Jτ′K. Then, a subtyping rela-
tion is sound when any derivable subtyping assertion is valid in all
calculi. It is complete when every universally valid assertion can be
derived. We present a relation which is both sound and complete for
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the class of calculi considered. Though this is not addressed in this
paper, it would then be possible to study relations which are only
sound under some assumptions by restricting the class of calculi.

The paper is organized as follows. The class of calculi is defined in
Sect. 3. A particular instance is given in Sect. 4. We present a sim-
ple type system, with union types, constant types, pair types, and
function types, define a subtyping relation and prove the soundness
and completeness of the relation (Sect. 5). We refine the type sys-
tem with ML-style parametric polymorphism and type constructors
(Sect. 6). We conclude by presenting related work (Sect. 7) and
directions for future work (Sect. 8).

2 Order Theory

Preorder A preorder ¹ is a binary relation over a set X which is
reflexive and transitive. A preordered set is a pair (X ,¹) of a set X
and a preorder ¹ over the set X .

Closure A closure operator over a preordered set (X ,¹) is a func-
tion which associates to each element x of X an element x of X such
that:

• x ¹ x (extensive);

• x = x (idempotent);

• if x ¹ x′, then x ¹ x′ (monotone).

An element x is closed when x = x. The greatest lower bound of a
family of closed elements is closed.

Galois Connection Let (X ,¹) and (Y,v) be two preordered sets.
A Galois connection is a pair of two functions f : X → Y and g :
Y → X such that for all x ∈ X and y ∈ Y , x ¹ g(y) iff f (x) v y. A
Galois connection ( f ,g) induces a closure operator g ◦ f over the
preordered set (X ,¹).

Downward Closed Set A subset A of a preordered set (X ,¹) is
downward closed when, for every x in A and y in X , if y ¹ x, then y
is in A.

Directed Set A subset A of a preordered set (X ,¹) is directed
when it is non-empty and when each pair of elements of this subset
has an upper bound in this subset.

Prime Element An element x of a preordered set (X ,¹) is prime
when x ¹ y ∨ z implies x ¹ y or x ¹ z whenever the least upper
bound y∨ z of y and z exists.

3 A Class of Abstract Calculi

3.1 Informal Presentation and Definitions

We would like to study subtyping for a class of calculi with func-
tions, pairs and constants. The first step is to associate to each type
τ its semantics JτK, that is, the set of terms of type τ. We type
terms rather than values, because the notion of terms is more fun-
damental: the notion of value depends on the language considered.
Besides, it is not always possible to reduce the behavior of a term to
the behavior of a set of values, especially in call-by-name calculi.
This is actually possible in the calculus of Sect. 4, but only because
we made some specific choices about types.

As it turns out, it is convenient to only consider sets of terms that

satisfies a given closure property: the closure E of a set of terms E

is the set of terms that cannot be distinguished from the terms in E.
Notice that the choice of a closure operator is not neutral. It dictates
what can be observed about terms.

Types categorize terms according to their behavior. We should be
able to use them to avoid some unsafe behavior, typically runtime
errors. So, we distinguish a set S of safe terms. Dually, we define a
set N of neutral terms (typically, terms that loop) as the intersection
of all non-empty closed terms. We call semantic type a closed set
of terms included in S and including N. The set of semantic types
is a complete lattice. We therefore have the diagram below (where
the set T is the set of all terms):

T

S






































Semantic types

N

/0

We require the semantics JτK of a syntactic type τ to be a semantic
type. For the sake of flexibility, we don’t assume S 6= T nor N 6= /0.
In particular, we can take S = T if we want to interpret the type > as
the set of all terms. The disadvantage is then that, in order to get a
soundness result, one must characterize the types that only contain
safe terms.

It seems really important in practice to distinguish a set of safe
terms S from the set of all terms T, and a set of neutral terms N

from the least closed set /0. Indeed, in Sect. 4, we will have S 6= T

and N = /0, but in [17], we had S 6= T and N 6= /0, and in [13], we had
S = T and N 6= /0. Finally, in the case of reducibility candidates [8],
one has both S 6= T and N 6= /0.

Note that if we take N = /0, then all continuous functions are strict.
Indeed, if f is continuous, then f −1( /0) is closed and therefore con-
tains /0. Thus, if we want constant functions to be continuous, which
seems reasonable, we need to have N 6= /0.

Let us now sketch how we define the semantics of types. The idea
is that we want to be able to build more complex typed terms by
assembling smaller typed terms according to simple (typing) rules.
For instance:

APP

e : τ′→ τ e′ : τ′

ee′ : τ

FST

e : τ× τ′

fste : τ

SND

e : τ× τ′

snde : τ′

The rules above suggest the following inclusions.

Jτ′→ τK ⊆ {e ∈ S |∀e′ ∈ Jτ′K.ee′ ∈ JτK}
Jτ× τ′K ⊆ {e ∈ S |fste ∈ JτK∧snde ∈ Jτ′K}

These inclusions ensure the soundness of the typing rules. In order
to reason about types, it is important to have a more precise char-
acterization of their semantics. It seems therefore natural to replace
these inclusions by an equality.

Jτ′→ τK = {e ∈ S |∀e′ ∈ Jτ′K.ee′ ∈ JτK}
Jτ× τ′K = {e ∈ S |fste ∈ JτK∧snde ∈ Jτ′K}
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This is not an unimportant choice. In particular, we should not
expect an equality if we want a parametric property to hold: non-
parametric functions should be rejected. (Actually, parametricity fit
in our framework by interpreting T as a set of pairs of terms rather
than a set of terms.) Also, this assumes that the functions have an
extensional behavior. Therefore, we do not handle calculi with side
effects.

Now the sets Jτ′ → τK and Jτ× τ′K must be semantic types. The
definitions above clearly ensure that these sets are included in S.
They must also be closed and must contain N. We cannot force
this by making the sets larger, as this would violate the soundness
conditions. Instead, we make more assumptions on the calculi. We
say that a function is continuous when the inverse image of a closed
set is closed, that a function is strict when the inverse image of N

is included in N. We can prove inductively that the sets Jτ′ → τK
and Jτ× τ′K are closed if S is closed and the functions fst, snd,
and e 7→ ee′ (for all terms e′ in S) are continuous. Similarly, we can
prove that these sets contain N if N ⊆ S and the same functions are
strict. This appears more clearly if the equations above are rewritten
in a more algebraic form.

Jτ′→ τK = S∩
\

e′∈Jτ′K
{e |ee′ ∈ JτK}

Jτ× τ′K = S∩fst−1(JτK)∩snd−1(Jτ′K)

It is really natural for all these functions to be strict. The continuity
properties may seem harder to achieve. We will see in Sect. 4.2, that
it is actually straightforward to define a closure operator ensuring
these properties.

The calculi also have constants, denoted κ. These constants are as-
sumed to be safe. We define a singleton type κ for each constant κ.
Its semantics is the least closed set of term containing the constant
κ:

JκK = {κ} .

3.2 Formal Specification

The class of calculi we consider are the calculi to which we can
associate:

• a set of terms T;

• a closure operator E 7→ E on terms;

• a closed subset S ⊆ T of safe terms;

• three operators:

app : T → T → T

e 7→ e′ 7→ ee′

fst : T → T

e 7→ fste
snd : T → T

e 7→ snde

such that e 7→ ee′ (where e′ ∈ S), fst and snd are continuous
and strict;

• a set of constants κ ∈ S.

3.3 Semantic Operations

We define one operation on set of terms for each type construc-
tion we have in mind: bottom type, union of two types, function

types, pair types and constant types. Note that the semantic union
∪ of two sets of terms is not simply their union. Indeed, there may
be some terms that are in neither of the sets but cannot be distin-
guished from the terms in the union of both sets. These operations
are used to define the semantics of types in a straightforward fash-
ion in Sect. 5.1.

⊥ = N

E ∪ E′ = E∪E′

E′ → E = {e ∈ S |∀e′ ∈ E′.ee′ ∈ E}
E × E′ = {e ∈ S |fste ∈ E∧snde ∈ E′}

κ = {κ}

It is clear that all these operations map semantic types to semantic
types.

4 A Concrete Calculus

We present a particular instance of the class of calculi considered.
This calculus is used in Sect. 5 to prove the completeness of a sub-
typing relation. It actually turns out to be universal, in the sense
that a subtyping relation is complete if and only if it is complete for
this particular calculus.

4.1 The Calculus

The calculus we consider is a call-by-name calculus with pairs and
constants. Its main remarkable characteristics are a notion of errors,
a strict let binder and two non-deterministic choice operators. The
syntax of the calculus is given by the following grammar:

e ::= x variable
λx.e abstraction
ee application
(e,e) pair
fste first projection
snde second projection
κ constant
if e = κ then e else e conditional
et e erratic choice
e∨ e error-avoiding choice
let x = e in e strict let
error error

The set of constants κ is supposed to be infinite. A bigstep seman-
tics is given in Fig. 1. The values are a subgrammar of terms:

v ::= λx.e abstraction
(e,e) pair
κ constant
error error

In the reduction rules, we write v 6= v′ where v′ describes a specific
shape of values (for instance, v′ is (e1,e2)) to mean that v is not of
the same shape as v′.

The semantics is rather standard and unsurprising. We simply say
a few words about the two non-deterministic choice operators. The
first one et e′ is the standard erratic operator: et e′ ⇓ v if and only
if either e ⇓ v or e ⇓ v. The second one e∨ e′ is a bit like an angelic
choice operator, but instead of attempting to avoid non-termination,
it attempts to avoid errors. Another way of understanding this op-
erator is to consider it as a symmetric variant of a catch operator:
it evaluates one of the terms e or e′ and, if this fails, falls back to
evaluating the other term. The unusual notations emphasize the fact
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VAR-ERROR
x ⇓ error

ABS
λx.e ⇓ λx.e

APP

e ⇓ λx.e1 e1[e
′/x] ⇓ v

ee′ ⇓ v

APP-ERROR
e ⇓ v v 6= λx.e1

ee′ ⇓ error

PAIR

(e1,e2) ⇓ (e1,e2)

FST
e ⇓ (e1,e2) e1 ⇓ v

fste ⇓ v

FST-ERROR
e ⇓ v v 6= (e1,e2)

fste ⇓ error

SND
e ⇓ (e1,e2) e2 ⇓ v

snde ⇓ v

SND-ERROR
e ⇓ v v 6= (e1,e2)

snde ⇓ error

CONSTANT
κ ⇓ κ

IF-EQUAL

e ⇓ κ e′ ⇓ v

if e = κ then e′ else e′′ ⇓ v

IF-NOT-EQUAL

e ⇓ κ′ κ 6= κ′ e′′ ⇓ v

if e = κ then e′ else e′′ ⇓ v

IF-ERROR

e ⇓ v v 6= κ′

if e = κ then e′ else e′′ ⇓ error

PARA-LEFT
e ⇓ v

et e′ ⇓ v

PARA-RIGHT

e′ ⇓ v

et e′ ⇓ v

CATCH-LEFT
e ⇓ v v 6= error

e∨ e′ ⇓ v

CATCH-RIGHT

e′ ⇓ v v 6= error

e∨ e′ ⇓ v

CATCH-ERROR

e ⇓ error e′ ⇓ error

e∨ e′ ⇓ error

LET

e ⇓ v v 6= error e′[v/x] ⇓ v′

let x = e in e′ ⇓ v′

LET-ERROR
e ⇓ error

let x = e in e′ ⇓ error

ERROR
error ⇓ error

Figure 1. Semantics

that both operations correspond to a least upper bound, as we will
see in Sect. 4.4.3.

We define the following diverging term (there is no value v such
that diverge ⇓ v):

diverge = (λx.xx)(λx.xx) .

4.2 Orthogonality

Remember that we need to specify not only a calculus but also a
closure operator on sets of terms. We first present a generic way
of building a closure operator. The choice of a particular closure
operator is made in the next section 4.3.

A convenient way to define a closure operator on sets of terms is
by orthogonality between terms and contexts. At this point, it does
not matter what the set of contexts is. We just assume given an
orthogonality relation e ⊥ c between contexts c and terms e. Its
intended meaning is that the term e behaves properly in the context
c. We define the orthogonal of a set of terms E as the set of contexts
in which all terms in E behave properly:

E
⊥ = {c |∀e ∈ E.e ⊥ c} .

Conversely, we define the orthogonal of a set of contexts C as the
set of terms that behave properly in all the contexts in C:

C
⊥ = {e |∀c ∈ C.e ⊥ c} .

These two functions defines a Galois connection between sets of
terms and sets of contexts. The important point here is that the com-
position of these two functions, which associates to a set of terms
E its biorthogonal E = E⊥⊥, is a closure operator. (Dually, we can
define a closure operator which associates to a set of contexts its
biorthogonal C = C⊥⊥.)

Furthermore, we can rely on the following lemma to guide us in the
choice of a set of contexts. Let f be a function from terms to terms,
and g be a function from contexts to contexts. We say that g is an
adjoint of f iff

f (e) ⊥ c ⇔ e ⊥ g(c) .

LEMMA 1. If a function f has an adjoint g, then it is continuous.

PROOF. Let f be a function with an adjoint g. We first prove that
the following diagram commutes (T is the set of all terms, Σ is the
set of all contexts).

P(Σ)
⊥

g

P(T)

f−1

P(Σ)
⊥

P(T)

(In other words, f−1(C⊥) = (g(C))⊥.)

Indeed, the following propositions are equivalent:

e ∈ f−1(C⊥) f (e) ∈ C⊥

∀c ∈ C. f (e) ⊥ c ∀c ∈ C. e ⊥ g(c)
∀c ∈ g(C). e ⊥ c e ∈ (g(C))⊥

We finish the proof by taking C = E⊥:

f−1(E) = f−1(E⊥⊥) = (g(E⊥))⊥

Therefore, the inverse image of a closed set is closed.

4.3 The Closure Operator

Using the tools just developed, we can now specify the closure op-
erator. Contexts are given by the following grammar:

c ::= Id identity
c◦F frame concatenation
c∨ c join

F ::= e
fst

snd

if = κ then e else e

A context c can be viewed as a stack, with a weird “stack join”
operation, and F can be viewed as a stack frame. Every context
c and term e may be combined to generate a term denoted ce and
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defined as follows:

Id e = e
(c◦F)e = c(F[e])
(c∨ c′)e = let x = e in ((cx)∨ (c′ x))

where x is fresh .

A term e is safe when it does not reduce to the error:

S = {e |¬(e ⇓ error)} .

The orthogonality relation is defined by:

e ⊥ c iff ce ∈ S .

As indicated in the previous section 4.2, this induces a closure op-
erator on sets of terms.

The choice of this operator is crucial: it controls what can be ob-
served by typed terms. We should therefore explain how the con-
texts are chosen. The identity context Id ensures that S is closed.
The frame concatenation operation c ◦F ensures that each frame
is continuous (by Lemma 1). The join operation c ∨ c′ allows
for disjunctive tests. For instance, the context (Id ◦ fst )∨ (Id ◦
diverge) will behave properly against terms which reduce to ei-

ther a pair or a function, but will fail with other terms. This ensures
that the closed union E ∪ E′ of two semantic types E and E′ is not
“too large” (see Sect. 4.4.2 for a more precise characterization of
this property).

An important consequence of this definition of closed sets is that it
gives a syntactic proof technique to show an inclusion between two
closed sets of terms. Indeed, the following assertions are equiva-
lent:

• E ⊆ E′;

• for all contexts c, if e′ ⊥ c for all terms e′ ∈ E′, then e ⊥ c for
all terms e ∈ E;

• for all contexts c, if ce ⇓ error for some term e ∈ E, then
there exists a term e′ ∈ E′ such that ce′ ⇓ error.

4.4 Properties of the Calculus

We study some notable properties of the calculus. The complete-
ness proof will make use of most of these properties.

4.4.1 Contextual Preorder.

A preorder between terms and a preorder between contexts can be
derived from the closure relation. Note that some information is
lost in doing so: the closure operator cannot be recovered from the
preorder. These preorders are useful to state some of the properties
of the calculus.

The contextual preorder on terms is defined by: e ≤ e′ if and only
if one of the three equivalent propositions holds:

• {e} ⊆ {e′};

• {e′}⊥ ⊆ {e}⊥;

• e ∈ E whenever e′ ∈ E.

Likewise, a preorder on contexts is defined by: c ≤ c′ if and only if
one of the three equivalent propositions holds:

• {c}⊥ ⊆ {c′}⊥;

• {c′} ⊆ {c};

• c′ ∈ C whenever c ∈ C.

Note that we chose to define both preorders so that the ordering
between two elements (either two terms or two contexts) derives
from the inclusion ordering between the two naturally associated
sets of terms. As a consequence, the definition of the ordering be-
tween contexts looks the opposite of the definition of the ordering
between terms.

4.4.2 Terms and Values

An important property of the calculus is that the behavior of a term
(as specified by the closure operator) is characterized by the behav-
ior of the values it reduces to.

LEMMA 2 (TERMS AND VALUES). A term e is included in a
closed set of terms E if and only if any value v it reduces to is in-
cluded in E.

We will often use the following immediate corollary.

COROLLARY 3 (TRIVIAL APPROXIMATION). Let e and e′ be two
terms such that e ⇓ v whenever e′ ⇓ v. Then, e′ ≤ e.

The contexts has been carefully chosen for the lemma 2 to hold. For
instance, it does not hold if the syntax of frames is extended with a
family of frames e . Indeed, consider the term:

f = λx.if κ = x then
if κ = x then diverge else error

else

diverge .

We have f κ′ ∈ S for all constant κ′, but f (κtκ′) 6∈ S if the con-
stants κ and κ′ are distinct. So, if Id◦( f ) is a context, then we have
κ′ ∈ {Id ◦ ( f )}⊥ for all constant κ′, but not κtκ′ ∈ {Id ◦ ( f )}⊥

(when the constants κ and κ′ are distinct).

Intuitively, the result holds if the evaluation of a term ce first in-
volves the evaluation of the term e. We formalize this property by
introducing a notion of linearity: we say that a function f from
terms to terms is linear when for any term e and value v, f e ⇓ v if
and only if there exists a value v′ such that e ⇓ v′ and f v′ ⇓ v. Note
that linearity implies strictness. We then have the expected result.

LEMMA 4 (CONTEXT LINEARITY). Contexts are linear.

A key ingredient to prove this result is a term replacement lemma.

LEMMA 5 (TERM REPLACEMENT). If e ⇓ v whenever
e′ ⇓ v, then for all contexts c, ce ⇓ v whenever ce′ ⇓ v.

We can now perform the different proofs.

PROOF SKETCH OF LEMMA 5 (TERM REPLACEMENT). The
proof is by induction on contexts.

PROOF SKETCH OF LEMMA 4 (CONTEXT LINEARITY). By
Lemma 5 (Term Replacement), if e ⇓ v′ and cv′ ⇓ v, then ce ⇓ v.

The converse implication is proved by induction on contexts. We
consider each possible context:

• Context Id. Clear

• Context c◦F . We assume (c◦F)e ⇓ v, that is, c(F[e]) ⇓ v. By
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error

e1 t e2

e1 e2

diverge

Id

c1 ∨ c2

c1 c2

Figure 2. Ordering of Terms and Contexts

induction hypothesis, there exists a value v′′ such that F [e] ⇓
v′′ and cv′′ ⇓ v. By case on a derivation of F[e] ⇓ v′′, we
prove that there exists v′ such that e ⇓ v′ and F[e′] ⇓ v′′. Then,
by Lemma 5 (Term Replacement), c(F[v′]) ⇓ v, that is, (c ◦
F)v′ ⇓ v as wanted.

• Context c∨ c′. We assume (c∨ c′)e ⇓ v. By case on a deriva-
tion of this relation, we can see that there exists v′ such that
e ⇓ v′ and (c∨ c′)v′ ⇓ v, as wanted.

PROOF OF LEMMA 2 (TERMS AND VALUES). It is sufficient to
prove that for any context c∈E⊥, ce∈ S if and only if any value v it
reduces to satisfies cv ∈ S. This can be rephrased into: ce ⇓ error

if and only if there exists a value v such that e ⇓ v and cv ⇓ error,
which is a direct consequence of Lemma 4 (Context Linearity).

4.4.3 Ordering of Terms and Contexts

We present the relative ordering of some interesting terms and con-
texts. This ordering is illustrated by Fig. 2.

LEMMA 6 (LEAST UPPER BOUNDS). For all terms e, e′ and for
all contexts c, c′, we have:

• {et e′} = {e} ∪ {e′};

• {c∨ c′}⊥ = {c}⊥ ∪ {c′}⊥

As a consequence, the term et e′ is a least upper bound of the two
terms e and e′, and the context c∨ c′ is a least upper bound of the
two contexts c and c′.

PROOF. By Lemma 3 (Trivial Approximation), we have e ≤ et e′

and e′ ≤ et e′, that is, et e′ is an upper bound of e and e′. This
statement is equivalent to the inclusion {et e′} ⊇ {e} ∪ {e′}.

Let us now prove that {et e′} ⊇ {e} ∪ {e′}. Notice that {e} ∪

{e′} = ({e}⊥ ∩ {e′}⊥)⊥. Therefore, it is sufficient to prove that
{e}⊥ ∩{e′}⊥ ⊆ {et e′}⊥, that is, for all contexts c, if ce ∈ S and
ce′ ∈ S, then c(et e′) ∈ S. The proof is by contradiction. Suppose
c(et e′) 6∈ S, that is, c(et e′) ⇓ error. By Lemma 4 (Context
Linearity), there exists a value v such that ete′ ⇓ v and cv ⇓ error.
By inspection of the possible derivations of et e′ ⇓ v, we see that
either e ⇓ v or e′ ⇓ v. Then, by Lemma 4 again, either ce ⇓ error

or ce′ ⇓ error, that is, either ce 6∈ S or ce′ 6∈ S, as wanted.

Finally, let us prove that et e′ is a least upper bound. Let e′′ be an
upper bound of e and e′. Clearly, {e′′} ⊇ {e} ∪ {e′}. Therefore,
{e′′} ⊇ {et e′}, that is, e′′ ≥ et e′.

We now prove that c ≤ c∨ c′, that is, {c}⊥ ⊆ {c∨ c′}⊥. Let e be

a term in {c}⊥. We have ce ∈ S. Hence, by Lemma 2 (Terms and
Values), for all value v such that e ⇓ v, cv ∈ S. Thus, for all value
v such that e ⇓ v, (c∨ c′)v ∈ S. Indeed, if (c∨ c′)v ⇓ error, then
both cv ⇓ error and c′ v ⇓ error. Finally, by Lemma 2 again,
(c∨ c′)e ∈ S, that is, e ∈ {c∨ c′}⊥ as wanted. The proof that c′ ≤
c∨ c′ is similar. Thus, c∨ c′ is an upper bound of c and c′.

The two assertions c ≤ c∨ c′ and c′ ≤ c∨ c′ are equivalent to the
inclusion {c}⊥ ∪ {c′}⊥ ⊆ {c∨ c′}⊥.

We now prove that {c∨c′}⊥ ⊆{c}⊥ ∪ {c′}⊥. By Lemma 2 (Terms
and Values), is is sufficient to prove that for all values v, if v ∈ {c∨
c′}⊥ then v ∈ {c}⊥ ∪ {c′}⊥. We actually prove the contraposition.
Suppose v 6∈ {c}⊥∪{c′}⊥ ⊆ {c}⊥ ∪ {c′}⊥. Then, cv ⇓ error and
c′ v ⇓ error. Hence, (c∨ c′)v ⇓ error, that is, v 6∈ {c∨ c′}⊥.

Finally, let us prove that c∨ c′ is a least upper bound. Let c′′ be an
upper bound of c and c′. Clearly, {c′′}⊥ ⊇ {c}⊥ ∪ {c′}⊥. There-
fore, {c′′}⊥ ⊇ {c∨ c′}⊥, that is, c′′ ≥ c∨ c′.

LEMMA 7 (DIVERGENCE). The term diverge is a least term. In
particular, diverge ∈ ⊥ .

PROOF. We first prove that diverge ∈ ⊥ . There is no value v
such that diverge⇓ v. Therefore, by Lemma 2 (Terms and Values),
diverge ∈ /0 ⊆ ⊥ .

We then prove that diverge is a least term. For all term e, we have
{diverge} = { /0} ⊆ {e}, so diverge≤ e.

The next two lemmas are not used in the completeness proof. We
find them interesting nonetheless. They both rely on the following
remark.

REMARK 8 (ERROR PROPAGATION). If e⇓ error, then ce⇓ error.

PROOF SKETCH. By induction on contexts.

LEMMA 9 (ERROR). The term error is a largest term.

PROOF. Let e be a term. By the remark above, for all contexts c,
cerror ⇓ error. Hence, {error}⊥ = /0 ⊆ {e}⊥. That is, e ≤
error.

LEMMA 10 (IDENTITY CONTEXT). The context Id is a largest
context.

PROOF. Let c be a context. We prove that {c}⊥ ⊆ {Id}⊥. Suppose
that e 6∈ {Id}⊥. We have Id e ⇓ error, that is, e ⇓ error. By
remark 8, ce ⇓ error, that is, e 6∈ {c}⊥.

4.4.4 Sets of Values

We write V(E) for the set of values contained in a set of terms E:

V(E) = {v |v ∈ E} .

A direct consequence of Lemma 2 (Terms and Values) is that a
closed set of terms is characterized by its values:

E = V(E) .

It seems therefore natural to study some of the properties of the
sets of values V(E).
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LEMMA 11 (LEAST SEMANTIC TYPE). The least semantic type
⊥ = N does not contain any value. As a consequence, it is the
least closed set of terms: ⊥ = /0.

PROOF. By definition, ⊥ ⊆ {diverge}. Besides, the context Id ◦
(if = κ then error else error) is included in {diverge}⊥,
but is not orthogonal to any value. Therefore, ⊥ does not contain
any value.

Then, ⊥ = V(⊥ ) = /0.

LEMMA 12 (UNION AND VALUES). The values of the closed union
of two closed sets is the union of the values of each closed sets:
V(E ∪ E′) = V(E)∪V(E′)

PROOF. Clearly, V(E ∪ E′)⊇V(E∪E′) = V(E)∪V(E′). We show
the converse inclusion. Let v ∈ V(E ∪ E′). Suppose v 6∈ V(E)∪

V(E′). Then, there exists two contexts c ∈ E
⊥

and c′ ∈ E′⊥ such
that cv ⇓ error and c′ v ⇓ error. Therefore, (c∨ c′)v ⇓ error.
But, by Lemma 6 (Least Upper Bounds), E ∪ E′ ⊆{c}⊥ ∪ {c′}⊥ =

{c∨ c′}⊥, that is, c∨ c′ ∈ (E ∪ E′)⊥. This contradicts the assump-
tion v ∈ V(E ∪ E′).

LEMMA 13 (PRIME WHEN DIRECTED). If the set of values V(E)

is directed then the set of terms E is prime, that is, if E ⊆ E1 ∪ E2,
then either E ⊆ E1 or E ⊆ E2.

This lemma is a direct consequence of the next lemma.

LEMMA 14. Let A be a directed set. Let B and C be two downward
closed sets. If A ⊆ B∪C, then either A ⊆ B or A ⊆C.

PROOF. The proof is by contraposition. We assume A 6⊆ B and A 6⊆
C. Then, there exists two elements y and z in A such that y 6∈ B and
z 6∈C. As A is directed, there exists x ∈ A such that y ¹ x and z ¹ x.
As both B and C are downward closed, x 6∈ B and x 6∈C (otherwise,
either y ∈ B or z ∈C). Therefore, A 6⊆ B∪C as wanted.

4.4.5 Instance of the Class of Calculi

We have the expected result:

LEMMA 15. The calculus is in instance of the class of calculi
specified in Sect. 3.2.

PROOF. The functions e 7→ ee′ (where e′ ∈ S), fst and snd are
continuous by definition of the closure operator by orthogonality.
They are also strict. Indeed, by Lemma 11 (Least Semantic Type),
⊥ = /0, and therefore all continuous functions are strict. Finally,
we clearly have κ ∈ S for all constants κ.

4.4.6 Orthogonality Functions-Arguments

Just like we defined an orthogonality relation between terms and
contexts in Sect. 4.2, we can define a family of orthogonality rela-
tions between functions and arguments.

In the remainder of this section, we assume given a semantic type
E0. We define an orthogonality relation between the elements of
T (all terms), considered as function arguments, and the elements
of S (safe terms), considered as functions: an argument e′ ∈ T is
orthogonal to a function e ∈ S when ee′ ∈ E0. From this relation,

we define the orthogonal of a set E of arguments by

E
fun = {e ∈ S |∀e′ ∈ E.ee′ ∈ E0} = E → E0

and the orthogonal of a set E ⊆ S of functions by

E
arg = {e′ |∀e ∈ E.ee′ ∈ E0} .

We have the following diagram.

P(T)

fun

P(S)
arg

The function E 7→ Efunarg is a closure on set of arguments.

LEMMA 16 (FUNCTION ORTHOGONALITY). The closure induced
by function orthogonality is strictly finer than the closure induced
by context orthogonality: for all set of terms E, we have:

E
funarg ⊆ E ,

but we can find a set of terms E such that:

E 6⊆ E
funarg .

As a consequence,

E
funarg

= Efunarg = E

and
{

E
fun

= E → E0
E = (E → E0)

arg .

The key idea to prove the first inclusion is to show that for each con-
text c there is a function 〈c〉 that behaves “similarly”. This function
is defined as follows.

〈c〉 = λx.let y = cx in diverge

It satisfies the following property.

LEMMA 17 (CONTEXT AS FUNCTION). For any set of terms E

and any context c, we have c ∈ E⊥ if and only if 〈c〉 ∈ E → E0.

PROOF. Suppose c 6∈ E⊥. There exists e ∈ E such that ce ⇓ error.
It is easy to check that, then, 〈c〉e ⇓ error. Therefore, 〈c〉 6∈ E →
E0.

Conversely, suppose that c ∈ E⊥. Let e ∈ E. We have ¬(ce ⇓
error). Then, 〈c〉e reduces to the same values as diverge. There-
fore, by Lemmas 2 (Terms and Values), 〈c〉e ∈ /0 ⊆ E0. Hence,
〈c〉 ∈ E → E0.

PROOF OF LEMMA 16 (FUNCTION ORTHOGONALITY).
We prove that Efunarg ⊆ E. It is sufficient to prove that, for any term
e ∈ Efunarg and for any context c ∈ E⊥, we have e ⊥ c. So, let e and
c be such a term and a context. By lemma 17 (Context as Function),
〈c〉 ∈ E → E0 = Efun. Therefore, the function 〈c〉 is orthogonal to
the argument e ∈ Efunarg. In other words, 〈c〉 ∈ {e}fun = {e}→ E0.
By lemma 17 again, c ∈ {e}⊥, that is, e ⊥ c as wanted.

We prove that there exists a set of terms E such that E 6⊆ Efunarg.
We take E = {κ,κ′} where κ and κ′ are two distinct constants. By
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Lemma 2 (Terms and Values), κtκ′ ∈ E. Now, consider the fol-
lowing term:

f = λx.if κ = x then
if κ = x then diverge else error

else

diverge.

By Lemma 2 (Terms and Values), we have f κ′′ ∈E0 for all constant
κ′′ (the application diverges). Hence, f ∈ Efun. But f (κt κ′) ⇓

error. Therefore, κtκ′ 6∈ Efunarg.

We prove E
funarg

= Efunarg = E. We have E ⊆ Efunarg and E ⊆

E
funarg

by extensivity and monotony of the closure operators. The
converse inclusions can be derived from the inclusion Efunarg ⊆ E

by idempotence of the closure operators.

Finally, we have E
fun

=E→E0 by definition. Hence, E =E
funarg

=
(E → E0)

arg.

5 A Simple Type System

We present a simple type system and prove its soundness and com-
pleteness. These properties have been mechanically checked using
the Coq proof assistant [1].

5.1 Types

The syntax of types is given by the following grammar.

τ ::= χ constructed type
⊥ bottom type
τ∪ τ union type

χ ::= τ→ τ function type
τ× τ pair type
κ constant type

The semantics JτK of a type τ is defined inductively on the syntax
of types in a straightforward manner:

Jτ→ τ′K = JτK → Jτ′K
Jτ× τ′K = JτK × Jτ′K
JκK = κ
J⊥K = ⊥
Jτ∪ τ′K = JτK ∪ Jτ′K

Clearly, the semantics JτK of a syntactic type τ is a semantic type.

5.2 Subtyping Relation

The subtyping relation <: is defined inductively. The subtyping
rules are given in Fig. 3 . Note that the rules are almost syntax-
directed: the conclusion of the rules are syntactically disjoint, ex-
cept in the case of the rules UNION-RIGHT-1 and UNION-RIGHT-
2.

5.3 Soundness of the Subtyping Relation

The soundness of the subtyping relation is straightforward.

THEOREM 18 (SOUNDNESS). If τ <: τ′, then JτK ⊆ Jτ′K.

PROOF. By induction on a derivation of τ <: τ′.

FUNCTION

τ1 <: τ′1 τ′2 <: τ2

τ2 → τ1 <: τ′2 → τ′1

PAIR

τ1 <: τ′1 τ2 <: τ′2
τ1 × τ2 <: τ′1 × τ′2

CONSTANT
κ <: κ

BOTTOM
⊥ <: τ

UNION-LEFT

τ <: τ′′ τ′ <: τ′′

τ∪ τ′ <: τ′′

UNION-RIGHT-1
χ <: τ

χ <: τ∪ τ′

UNION-RIGHT-2
χ <: τ′

χ <: τ∪ τ′

Figure 3. Subtyping Rules (Simple Types)

• Rule FUNCTION: by covariance and contravariance of the op-
eration → .

• Rule PAIR: by covariance of the operation × .

• Rule CONSTANT: immediate.

• Rule BOTTOM: the semantic type ⊥ is the least semantic
type.

• Rule UNION-LEFT: by induction hypothesis,

JτK∪ Jτ′K ⊆ Jτ′′K ;

hence, as Jτ′′K is closed,

JτK ∪ Jτ′K = JτK∪ Jτ′K ⊆ Jτ′′K .

• Rule UNION-RIGHT-1: JτK ⊆ JτK ∪ Jτ′K.

• Rule UNION-RIGHT-2: Jτ′K ⊆ JτK ∪ Jτ′K.

5.4 Properties of Constructed Types

Before proving the completeness of the subtyping relation <:, we
first state some interesting properties of the semantics of constructed
types.

LEMMA 19 (HOMOGENEITY). The set of values V(JχK) of a con-
structed type χ is homogeneous: V(Jτ′→τK) only contain functions,
V(Jτ× τ′K) only contain pairs, V(JκK) only contain the constant κ.

PROOF. We consider a value v in JχK and prove that it has the ex-
pected shape. We consider each kind of constructed type in turn.

• Case χ = τ′→ τ. We have vdiverge ∈ JτK ⊆ S. Therefore,
the relation vdiverge ⇓ error does not hold. By rule APP-
ERROR, we can see that this implies that v is a functional
value.

• Case χ = τ× τ′. We have fstv ∈ JτK ⊆ S. Therefore, the
relation fstv ⇓ error does not hold. By rule FST-ERROR,
we can see that this implies that v is a pair.

• Case χ = κ. We have v ∈ JκK = {κ}. Consider the context
c = Id◦ (if = κ then diverge else error). Clearly, cκ ∈

S. Hence, c ∈ {κ}⊥, so cv ∈ S. By rules IF-NOT-EQUAL
and IF-ERROR, we can see that this implies that v = κ.
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LEMMA 20 (DIRECTED SET). The set of values V(JχK) of a con-
structed type χ is directed.

PROOF. We first prove that V(JχK) is not empty by case on χ.

• Case χ = τ′ → τ. The value λx.diverge is safe and for all
terms e, (λx.diverge)e diverges. Hence,

λx.diverge ∈ V(Jτ′→ τK) .

• Case χ = τ× τ′. The value (diverge,diverge) is safe and
both the terms

fst(diverge,diverge)

and

snd(diverge,diverge)

diverge. Therefore, the value (diverge,diverge) is included
in V(Jτ× τ′K).

• Case χ = κ. By definition, JκK = κ = {κ}. Hence, κ ∈
V(JκK).

We then prove that if two values v1 and v2 are included in V(JχK),
then they have an upper bound in this set.

• Case χ = τ′→τ. By Lemma 19 (Homogeneity), the values are
of the shape λx.e1 and λx.e2. Let us show that λx.(e1 t e2) is
an upper bound of these values in V(Jτ′→ τK).

We first show that this term is included in the set. First, it is
safe. Then, let e be a term in Jτ′K. It is clear that, if (λx.(e1 t
e2))e ⇓ v, then either (λx.e1)e ⇓ v or (λx.e2)e ⇓ v. Therefore,
by Lemma 2 (Terms and Values), as (λx.e1)e and (λx.e2)e
are in JτK, (λx.(e1 t e2))e is also in JτK, as wanted.

We now show that the term is an upper bound. We prove that
λx.e1 ≤ λx.(e1 t e2). The proof of the other relation λx.e2 ≤
λx.(e1 te2) is similar. It is sufficient to prove that for all con-
texts c, if c(λx.e1) ⇓ error, then c(λx.(e1 t e2)) ⇓ error.
The proof is by induction on the context c.

– Case c = Id. This is clear as neither term reduces to
error.

– Case c = c′◦ e. We have c′ ((λx.e1)e)⇓ error. Hence,
by Lemma 5 (Term Replacement), we have c′ ((λx.(e1t
e2))e) ⇓ error as wanted.

– Case c = c′ ◦F where F is not of the form e. Both
terms reduce to error.

– Case c = c1 ∨ c2. We remark that for any value v, (c1 ∨
c2)v ⇓ error if and only if either c1 v ⇓ error or c2 v ⇓
error. Therefore, the assumption c(λx.e1) ⇓ error

implies that either c1 (λx.e1) ⇓ error or c2 (λx.e1) ⇓
error. In both cases, we can conclude by induction
hypothesis and another use of the remark.

• Case χ = τ× τ′.

By Lemma 19 (Homogeneity), the values are of the shape
(e1,e′1) and (e2,e′2). Let us show that ((e1 t e2),(e′1 t e′2))
is an upper bound of these values in V(Jτ× τ′K).

We first show that this term is included in the set. First, it

is safe. Then, it is clear that, if fst((e1 t e2),(e′1 t e′2)) ⇓ v,
then either fst(e1,e′1) ⇓ v or fst(e2,e′2) ⇓ v. Therefore, by
Lemma 2 (Terms and Values), as the terms fst(e1,e′1) and
fst(e2,e′2) are in JτK, the term fst((e1 t e2),(e′1 t e′2)) is
also in JτK, as wanted. Similarly, the term snd((e1te2),(e′1t
e′2)) is in Jτ′K.

We now show that the term is an upper bound. We prove
that (e1,e′1) ≤ ((e1 t e2),(e′1 t e′2)). The proof of the other
relation (e2,e′2) ≤ ((e1 t e2),(e′1 t e′2)) is similar. It is suffi-
cient to prove that for all contexts c, if c(e1,e′1) ⇓ error, then
c((e1 t e2),(e′1 t e′2)) ⇓ error. The proof is by induction on
the context c.

– Case c = Id. This is clear as neither term reduces to
error.

– Case c = c′ ◦fst . We have c′ (fst(e1,e′1)) ⇓ error.
Hence, by Lemma 5 (Term Replacement), we have

c′ (fst((e1 t e2),(e
′
1 t e′2))) ⇓ error

as wanted.

– Case c = c′ ◦snd . This case is similar to the previous
one.

– Case c = c′◦F where F is not of one of the forms above.
Both terms reduce to error.

– Case c = c1 ∨ c2. We remark that for any value v, (c1 ∨
c2)v ⇓ error if and only if either c1 v ⇓ error or c2 v ⇓
error. Therefore, the assumption c(e1,e′1) ⇓ error

implies that either c1 (e1,e′1) ⇓ error or c2 (e1,e′1) ⇓
error. In both cases, we can conclude by induction
hypothesis and another use of the remark.

• Case χ = κ. The set V(JκK) is a singleton {κ}. Any pair
of values κ and κ from this set has an obvious upper bound
κ.

These two lemmas are illustrated by Fig. 4, respectively for func-
tion types, pair types and constant types. In this figure, values are
underlined. The value just above diverge is included in all con-
structed types of the corresponding kind. Given two values, one of
their upper bound is given.

5.5 Completeness of the Subtyping Relation

We now have all the elements to prove the completeness of the sub-
typing relation.

THEOREM 21 (COMPLETENESS). If JτK⊆ Jτ′K for all calculi, then
τ <: τ′.

At several times in the proof of completeness, we need to prove
an inclusion Jτ1K ⊆ Jτ′1K assuming that an inclusion between the
semantics of two types built from τ1 and τ′1 (for instance, Jτ1 ×
τ2K ⊆ Jτ′1 × τ′2K) holds. The proof is similar in each case. Let us
call typed transformation a pair of a function F from types to types
and a function f from terms to terms such that, for all type τ and all
term e, e ∈ JτK if and only if f (e) ∈ JF(τ)K. Then, it is easy to see
that, if (F, f ) is a typed transformation and JF(τ)K ⊆ JF(τ′)K, then
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λx.(e1 t e2)

(λx.e1)t (λx.e2)

λx.e1 λx.e2

λx.diverge

diverge

((e1 t e2),(e1 t e2))

(e1,e′1)t (e2,e′2)

(e1,e′1) (e2,e′2)

(diverge,diverge)

diverge

κ

diverge

Figure 4. Ordering of Terms in a Constructed Type

JτK ⊆ Jτ′K, as illustrated by the diagram below:

JτK F
JF(τ)K ⊆ JF(τ′)K Jτ′KF

∈ ⇐⇒ ∈ =⇒ ∈ ⇐⇒ ∈

e f (e) f (e) e

We thus define three families of typed transformations.

LEMMA 22 (TYPED TRANSFORMATIONS). The following fami-
lies of pairs of functions are typed transformations (for the calculus
of Sect. 4).

{

F1(τ′) : τ 7→ τ× τ′
f1 : e 7→ (e,diverge)

{

F2(τ′) : τ 7→ τ′× τ
f2 : e 7→ (diverge,e)

{

F3(τ′) : τ 7→ τ′→ τ
f3 : e 7→ λx.e

PROOF. We only prove the result for the first and the last families.
The case of the second family is similar.

• We first notice that, by Lemma 3 (Trivial Approximation), e ∈
E if and only if fst(e,e′) ∈ E. Likewise, e′ ∈ E if and only if
snd(e,e′) ∈ E.

Then, let τ be a type and e be a term in JτK. By Lemma 7
(Divergence), we have diverge ∈ Jτ′K for all types τ′. Be-
sides, it is clear that (e,diverge) is safe. Hence, f1(e) =
(e,diverge) ∈ Jτ× τ′K = JF1(τ′)(τ)K.

Conversely, if f1(e) ∈ JF1(τ′)(τ)K, then (e,diverge) ∈ Jτ×
τ′K, and therefore e ∈ JτK.

• Let τ and τ′ be two types and e be a term. By Lemma 3
(Trivial Approximation), for all terms e′, e ∈ JτK if and only if
(λx.e)e′ ∈ JτK. Besides, the term λx.e is safe.

Thus, if e ∈ JτK, then for all e′ ∈ Jτ′K, (λx.e)e′ ∈ JτK, and
therefore λx.e ∈ Jτ′→ τK = JF(τ′)(τ)K.

Conversely, if λx.e ∈ Jτ′ → τK = JF(τ′)(τ)K, then we have
(λx.e)diverge ∈ JτK, and therefore e ∈ JτK.

PROOF OF THEOREM 21 (COMPLETENESS). We interpret the se-
mantics of types in the calculus defined in Sect. 4.

In order to handle the contravariance of the function type, we si-
multaneously prove by induction on τ and τ′ that if JτK ⊆ Jτ′K then
τ <: τ′, and if Jτ′K ⊆ JτK then τ′ <: τ.

For each pair of type τ and τ′, we prove that if JτK ⊆ Jτ′K, then
there exists a subtyping rule whose conclusion is τ <: τ′ and whose
premises are a consequence of the induction hypothesis.

• Case J⊥K ⊆ JτK. By rule BOTTOM, we have ⊥ <: τ.

• Case Jτ∪τ′K⊆ Jτ′′K. This implies JτK⊆ Jτ′′K and Jτ′K⊆ Jτ′′K.
Hence, by induction hypothesis, τ <: τ′′ and τ′ <: τ′′. Finally,
by rule UNION-LEFT, τ∪ τ′ <: τ′′.

• Case JχK ⊆ J⊥K. By lemma 11 (Least Semantic Type), the set
J⊥K does not contain any value. By Lemma 20 (Directed Set),
JχK contains at least one value(the set V(JχK) is directed).
Thus, this case is not possible.

• Case JχK ⊆ Jτ∪ τ′K. This is a direct corollary of Lemmas 20
(Directed Set) and 13 (Prime when Directed).

• Case JχK⊆ Jχ′K where χ and χ′ are distinct constructed types.
By Lemmas 20 (Directed Set) and 19 (Homogeneity), con-
structed types all contain at least a value(the set V(JχK) is
directed), and their values are homogeneous. Hence, JχK con-
tains a value which is not in Jχ′K. This case is not possible.

• Case Jτ2 → τ1K ⊆ Jτ4 → τ3K. We prove that Jτ1K ⊆ Jτ3K and
Jτ4K ⊆ Jτ2K. This allow us to conclude by induction hypothe-
sis and rule FUNCTION.

The inclusion Jτ1K⊆ Jτ3K is a direct consequence of Lemma 22
(Typed Transformations).

Let us prove that Jτ4K ⊆ Jτ2K. It is sufficient to show that
Jτ2K

⊥ ⊆ Jτ4K
⊥. Let c in Jτ2K

⊥. By Lemma 17 (Context
as Function), 〈c〉 ∈ Jτ2K → Jτ1K = Jτ2 → τ1K ⊆ Jτ4 → τ3K =

Jτ4K→ Jτ3K. Hence, by this lemma again, c∈ Jτ4K
⊥as wanted.

• Case Jτ1 × τ2K ⊆ Jτ3 × τ4K. By Lemma 22 (Typed Transfor-
mations), Jτ1K ⊆ Jτ3K and Jτ2K ⊆ Jτ4K. We conclude by in-
duction hypothesisand rule PAIR.

The proof of the completeness theorem actually leaded us to use an
orthogonality relation to define types. Indeed, for completeness to
hold, we must have that, if τ1 → τ <: τ2 → τ, then τ2 <: τ1. This
means that, if a term e has type τ2 but not type τ1, then there must
exist a function e′ of type τ1→τ but not τ2→τ. Given that the term
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e has type τ2, a natural way to prove that the function e′ does not
have type τ2 → τ is to show that the term e′ e does not have type τ.
So, now, for any term e of type τ2 but not τ1, we must be able to
find a function of type τ1 → τ such that the term e′ e does not have
type τ. This must hold for any type τ2, so the assumption that the
term e has type τ2 does not really put any constraint on the term e
and it is natural to drop it. So, finally, we would like that if a term e
does not have type τ1, then there is a function e′ of type τ1→τ such
that e′ e does not have type τ. In other words, if e 6∈ Jτ1K, then there
exists a function e′ ∈ Jτ1K

fun such that e and e′ are not orthogonal.
That is, if a term is orthogonal to all functions in Jτ1K

fun, then it
should have type Jτ1K: the set Jτ1K must be closed.

A noteworthy point in this discussion is that if τ is not a subtype of
τ′, then it is unsafe to apply a function accepting terms of type τ′ to
a term of type τ.

LEMMA 23. For the calculus of Sect. 4, if τ is not a subtype of τ′,
then there exists a term e in JτK and a function e′ in Jτ′→⊥K such
that e′ e ⇓ error.

PROOF. By completeness, JτK 6⊆ Jτ′K. Therefore, there exists a
term e ∈ JτK such that e 6∈ Jτ′K. By Lemma 16 (Function Orthogo-
nality), e 6∈ Jτ′→⊥Kfun. Therefore, there exists e′ ∈ Jτ′→⊥K such
that e′ e ⇓ error.

5.6 Typing Rules

We sketch how typing rules can be defined. This cannot be done in
a generic way, as the handling of the environment depends on some
additional assumptions on the calculus.

Some rules are a direct consequence of the definition of types.

e : τ′→ τ e′ : τ′

ee′ : τ
e : τ× τ′

fste : τ
e : τ× τ′

snde : τ′

κ : κ
e : τ

e : τ∪ τ′

The soundness of the subtyping relation yield the following typing
rule.

e : τ′ τ′ <: τ
e : τ

Given a notion of substitution on terms, environments can be inter-
preted as follows. A judgment x : τ′ ` e : τ holds if and only if for all
terms e′ in Jτ′K we have e[e′/x]∈ JτK. This immediately generalizes
to environments with more than one binding. Then, if, for instance,

(ee′)[e′′/x] = (e[e′′/x]) (e′[e′′/x]) ,

we have:

x : τ′′ ` e : τ′→ τ x : τ′′ ` e′ : τ′

x : τ′′ ` ee′ : τ

Similar properties of the substitution are needed to generalize the
other rules with environments. For the abstraction, we need that
λx.e∈ Jτ′→τK if, for all terms e′ in Jτ′K, the term e[e′/x] is included
in JτK. Then,

x : τ′ ` e : τ
λx.e : τ′→ τ

Some rules do not always hold. For instance, the two following
rules hold in the calculus of Sect. 4 due to the lemma 2 (Terms and
Values).

e : τ e′ : τ
et e′ : τ

e : τ e′ : τ
e∨ e′ : τ

They would not hold if we had made a different choice of clo-
sure operator (see the remark about the choice of the contexts in
Sect. 4.4.2).

Another problematic rule is the elimination rule for union. For the
calculus of Sect. 4, the following rule holds:

e : τ∪ τ′ x : τ ` cx : τ′′ x : τ′ ` cx : τ′′

ce : τ′′

It can be generalized slightly by replacing the context c by any con-
tinuous function from term to term. But the rule below does not
hold for arbitrary terms e′.

e : τ∪ τ′ x : τ ` e′ x : τ′′ x : τ′ ` e′ x : τ′′

e′ e : τ′′

Indeed, if we take the function f of Sect. 4.4.2, we have x : κ ` f x :
⊥ and x : κ′ ` f x : ⊥, but not f (κt κ′) : ⊥. We need to make a
choice between this last rule and the rules for the choice operators:
for this rule to hold, the term κtκ′ should not have type κ∪κ′. The
interpretation of terms was chosen so that the second set of typing
rules hold, but the other choice arises naturally when considering a
larger set of contexts.

6 A Richer Type System

We extend the previous type system with ML-style parametric type
constructors and head polymorphism. The reason for restricting
ourselves to head polymorphism is that, then, we don’t need to con-
sider the subtyping problem between polymorphic types, but only
between types with free type variables. Additionally, type construc-
tors and type variables can be handled in a uniform way. Formally,
we distinguish types τ and type schemes σ. Types do not contain
any quantification. Types schemes are given by the grammar below.

σ ::= τ type
∀α.σ polymorphic quantification

Polymorphism is handled using two typing rules involving type
schemes, one for instantiation and one for generalization. Subtyp-
ing only involves types.

GEN
Γ;α ` e : σ
Γ ` e : ∀α.σ

INST
Γ ` e : ∀α.σ

Γ ` e : σ[τ/α]

SUB

Γ ` e : τ′ τ′ <: τ
Γ ` e : τ

Then we consider that a subtyping assertion τ <: τ′ is valid if and
only if it is valid for all possible interpretations of the type variables
and the constructors occurring in τ and τ′.

6.1 Types

The syntax of types is given by the following grammar.

τ ::= ⊥ bottom type
τ∪ τ union type
χ constructed type

χ ::= c type constructor
χτ type application
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We use kinds to ensure that type constructors are applied to the
right number of arguments. Kinds also indicate the variance of the
parameters of the type constructors. To each type constructor c we
associate a kind K(c) called the signature of c. Kinds are defined
by the following grammar.

k ::= ∗
ε→ k

ε ::= ⊕ covariant argument
ª contravariant argument

In the following, we only consider well-kinded types, that is types τ
which satisfy the assertion τ : ∗ defined inductively below.

KIND-CONSTR
c : K(c)

KIND-APP
χ : ε→ k τ : ∗

χτ : k

KIND-BOTTOM
⊥ : ∗

KIND-UNION

τ : ∗ τ′ : ∗

τ∪ τ′ : ∗

We extend the signature function K to (well-kinded) constructed
types χ by K(χ) = k when χ : k.

Note that there is not specific construction for function and pair
types. Instead, they can be encoded by distinguishing two type
constructors → and × of signature respectively ª→⊕→∗
and ⊕→⊕→∗. Likewise a constant type κ can be encoded as a
constructor κ of signature ∗.

6.2 Semantics of Types

The semantics JτKρ of a type τ is parameterized over an environ-
ment ρ which provides the semantics of the type constructors oc-
curing in τ. The interpretation ρ(c) of a type constructor c depends
on its kind K(c): if K(c) = ∗, then ρ(c) should be a set of terms; if
K(c) = ε→ k, then ρ(c) should be a function. We therefore define
the semantics JkK of kinds and will demand that ρ(c)∈ JK(c)K. The
semantics of a kind is an ordered set defined inductively as follows:

J∗K = (P(T),⊆)
J⊕→ kK = (P(T),⊆) →M JkK
Jª→ kK = (P(T),⊇) →M JkK

where A→M B is the set of monotone functions from A to B ordered
canonically by:

f ¹ g iff ∀x ∈ A. f (x) ¹ g(x) .

An environment ρ is a function from type constructors to ordered
sets that satisfies the two following properties:

• ρ(c) ∈ JK(c)K;

• ρ(c) maps semantic types to semantic types.

The semantics of types is defined inductively on the syntax of types.

J⊥Kρ = ⊥
Jτ∪ τ′Kρ = JτKρ ∪ Jτ′Kρ
JcKρ = ρ(c)
JχτKρ = JχKρ(JτKρ)

Clearly, the semantics JτKρ of a type τ is well-defined and is a se-
mantic type.

BOTTOM
⊥ <: τ

UNION-LEFT

τ <: τ′′ τ′ <: τ′′

τ∪ τ′ <: τ′′

UNION-RIGHT-1
χ <: τ

χ <: τ∪ τ′

UNION-RIGHT-2
χ <: τ′

χ <: τ∪ τ′
CONSTRUCTOR
c <: c

COVARIANCE
χ : ⊕→ k
χ′ : ⊕→ k

χ <: χ′ τ <: τ′

χτ <: χ′ τ′

CONTRAVARIANCE
χ : ª→ k
χ′ : ª→ k

χ <: χ′ τ′ <: τ
χτ <: χ′ τ′

Figure 5. Subtyping Rules (Rich Types)

6.3 Subtyping Relation

The subtyping relation <: is defined using the inference rules of
Fig. 5.

6.4 Soundness of the Subtyping Relation

THEOREM 24 (SOUNDNESS). If τ <: τ′ then, for any environ-
ment ρ, the inclusion JτKρ ⊆ Jτ′Kρ holds.

PROOF. By induction on a derivation of τ <: τ′. We simultaneously
prove that if χ <: χ′, then JχKρ,Jχ′Kρ ∈ JK(χ)K and JχKρ ¹ Jχ′Kρ.

• Rule BOTTOM: the semantic type ⊥ is the least semantic
type.

• Rule UNION-LEFT: by induction hypothesis,

JτKρ ∪ Jτ′Kρ ⊆ Jτ′′Kρ ;

hence, as Jτ′′Kρ is closed,

JτKρ ∪ Jτ′Kρ = JτKρ ∪ Jτ′Kρ ⊆ Jτ′′Kρ .

• Rule UNION-RIGHT-1: JτKρ ⊆ JτKρ ∪ Jτ′Kρ.

• Rule UNION-RIGHT-2: Jτ′Kρ ⊆ JτKρ ∪ Jτ′Kρ.

• Rule CONSTRUCTOR: immediate.

• Rule COVARIANCE: By induction hypothesis, we have JχKρ,Jχ′Kρ ∈
JK(χ)K = J⊕→ kK, JχKρ ¹ Jχ′Kρ, and JτKρ ⊆ Jτ′Kρ. There-
fore, JχτKρ,Jχ′ τ′Kρ ∈ JkK = JK(χτ)K, and JχτKρ ¹ Jχ′ τ′Kρ as
wanted.

• Rule CONTRAVARIANCE: By induction hypothesis, we have
JχKρ,Jχ′Kρ ∈ JK(χ)K = Jª→ kK, JχKρ ¹ Jχ′Kρ, and Jτ′Kρ ⊆
JτKρ. Therefore, JχτKρ,Jχ′ τ′Kρ ∈ JkK = JK(χτ)K, and JχτKρ ¹
Jχ′ τ′Kρ as wanted.

6.5 Completeness of the Subtyping Relation

The converse of the soundess theorem would be that, if for all cal-
culi and for all environments ρ we have JτKρ ⊆ Jτ′Kρ, then τ <: τ′.
We actually prove a stronger result. We distinguish some type con-
structors for function, pair and constant type constructions, and we
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restrict ourselves to environments ρ that map these constructors to
the expected semantics:

ρ( → )(E)(E′) = E → E′

ρ( × )(E)(E′) = E × E′

ρ(κ) = κ

This way, we can consider the refined type system as an extension
of the simple type system of the previous section. We prove the
completeness of the subtyping relation for this extension.

The completeness of the subtyping relation is proved by translating
types into the simpler type system of Sect. 5. Ideally, we would like
to define a translation 〈 〉 with two properties:

• it should be faithful, that is, there exists an environment ρ0
such that for all type τ we have JτKρ0 = J〈τ〉K;

• it should lift one subtyping relation into the other: if 〈τ〉 <:
〈τ′〉, then τ <: τ′.

Indeed, if we can find such a translation, it is clear that the subtyp-
ing relation is complete: if JτKρ0 ⊆ Jτ′Kρ0 , then J〈τ〉K ⊆ J〈τ′〉K by
faithfulness, 〈τ〉 <: 〈τ′〉 by completeness of the simple type system,
and finally τ <: τ′ by lifting. Actually, we need to define two faith-
ful translations that satisfy a natural generalization of the second
properties.

The two translations 〈τ〉1 and 〈τ〉1 are defined inductively below, to-
gether with two translations of constructed types (χ)1 and 〈χ〉2. The
constructors for function, pair and constant types are translated into
the corresponding constructions in the simple type system. For the
remaining constructors, we assume an injective mapping φ which
associates to each constructor c a constant κ. The definition of
the translations differ for these constructors, which allows to dis-
tinguish pair types and function types from other type constructors.

〈⊥〉i = ⊥
〈τ∪ τ′〉i = 〈τ〉i ∪〈τ′〉i
〈τ→ τ′〉i = 〈τ〉i →〈τ′〉i
〈τ× τ′〉i = 〈τ〉i ×〈τ′〉i
〈κ〉i = κ
〈χ〉1 = ⊥× (χ)1
〈χ〉2 = ⊥→ (χ)2
(c)i = φ(c)
(χτ)i = 〈τ〉i × (χ)i when χ : ⊕→ k
(χτ)i = 〈τ〉i → (χ)i when χ : ª→ k

The two corresponding environment ρ1 and ρ2 are defined by:

ρi( → )(E)(E′) = E → E′

ρi( × )(E)(E′) = E × E′

ρi(κ) = κ
ρi(c) = wi

K(c)( κ ) where κ = φ(c)

where the family of wrapper functions wi
k is defined by:

w1
∗(E) = ⊥ × E

w2
∗(E) = ⊥ → E

wi
⊕→k(E)(E′) = wi

k(E
′ × E)

wi
ª→k(E)(E′) = wi

k(E
′ → E)

LEMMA 25. The environments ρ1 and ρ2 are well-formed and
provide the right semantics for function, pair and constant con-
structions.

PROOF. We only prove that ρi(c) ∈ JK(c)K. The remaining con-
ditions are clearly satisfied. We simultaneously show by induction

on k that, for all set of terms E, we have wi
k(E) ∈ JkK and that, if

E ⊆ E′, then wi
k(E) ¹ wi

k(E).

• Case k = ∗. First, w1
∗(E) = (⊥ ×E)∈P(T) = J∗K and w2

∗(E) =
(⊥ → E)∈P(T) = J∗K. Second, w1

∗(E) = (⊥ × E)⊆ (⊥ ×
E′) = w1

∗(E
′) and w2

∗(E) = (⊥ → E) ⊆ (⊥ → E′) = w1
∗(E

′).

• Case k = ⊕→ k′. First, we have wi
⊕→k′(E)(E′) = wi

k′(E
′ ×

E)∈ Jk′K by induction hypothesis. Hence, wi
⊕→k′(E)∈P(T)→

Jk′K. Besides, if E′ ⊆ E′′, then we have wi
⊕→k′(E)(E′) =

wi
k′(E

′ × E) ¹ wi
k′(E

′′ × E) = wi
⊕→k′(E)(E′′) by induction

hypothesis. Therefore, wi
⊕→k′(E) is monotone. So, wi

⊕→k′(E)∈

JkK.

Second, by induction hypothesis, if E ⊆ E′, then we have
wi
⊕→k′(E)(E′′) = wi

k′(E
′′ ×E)¹wi

k′(E
′′ ×E′) = wi

⊕→k′(E
′)(E′′).

Hence, wi
⊕→k′(E) ¹ wi

⊕→k′(E
′).

• Case k = ª→ k′. First, we have wi
ª→k′(E)(E′) = wi

k′(E
′ →

E)∈ Jk′K by induction hypothesis. Hence, wi
ª→k′(E)∈P(T)→

Jk′K. Besides, if E′ ⊇ E′′, then we have wi
ª→k′(E)(E′) =

wi
k′(E

′ → E) ¹ wi
k′(E

′′ → E) = wi
ª→k′(E)(E′′) by induction

hypothesis. Therefore, wi
ª→k′(E) is monotone. So, wi

ª→k′(E)∈

JkK.

Second, by induction hypothesis, if E ⊆ E′, then we have
wi
ª→k′(E)(E′′) = wi

k′(E
′′ →E)¹wi

k′(E
′′ →E′)= wi

ª→k′(E
′)(E′′).

Hence, wi
ª→k′(E) ¹ wi

ª→k′(E
′).

LEMMA 26 (FAITHFUL TRANSLATION).

JτKρi = J〈τ〉iK

PROOF SKETCH. The proof is by induction on τ. We simultane-
ously prove JχKρi = wi

K(χ)(J(χ)iK). We only consider contructed
types. Other cases are immediate.

• JcKρi = ρi(c) = wi
K(c)( κ ) = wi

K(c)(J(c)iK) where κ = φ(c).

• JχτKρi = JχKρi(JτKρi) = wi
K(χ)(J(χ)iK)(J〈τ〉iK) =

wi
K(χτ)(J(χτ)iK).

• JχKρi = wi
∗(J(χ)iK) = J〈χ〉iK when K(χ) = ∗.

THEOREM 27 (COMPLETENESS). If, for any calculus and for any
environment ρ such that ρ( → ) = → , ρ( × ) = × , and ρ(κ) =
κ for all constants κ, the inclusion JτKρ ⊆ Jτ′Kρ holds, then τ <: τ′.

PROOF. We interpret the semantics of types in the calculus defined
in Sect. 4.

By lemma 26 (Faithful Translation), if JτKρi ⊆ Jτ′Kρi , then J〈τ〉iK ⊆
J〈τ′〉iK, so, by Theorem 21 (Completeness), 〈τ〉i <: 〈τ′〉i. Therefore,
it is sufficient to prove that, if 〈τ〉i <: 〈τ′〉i, then τ <: τ′. The proof
is by induction on τ and τ′. We simultaneously prove that if (χ)i <:
(χ′)i, than K(χ) = K(χ′) and χ <: χ′.

• Case 〈⊥〉i <: 〈τ〉i. By rule BOTTOM, ⊥ <: τ.

• Case 〈τ∪τ′〉i <: 〈τ′′〉i. We have 〈τ〉i∪〈τ′〉i <: 〈τ′′〉i. This must
be derived from the rule UNION-LEFT of the first subtyp-
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ing relation. Hence, we have 〈τ〉i <: 〈τ′′〉i and 〈τ′〉i <: 〈τ′′〉i.
By induction hypothesis, τ <: τ′′ and τ′ <: τ′′. Finally, by
rule UNION-LEFT, τ∪ τ′ <: τ′′.

• Case 〈χ〉i <: 〈⊥〉i. This case is not possible: this cannot be
derived from any rule.

• Case 〈χ〉i <: 〈τ ∪ τ′〉i. We have 〈χ〉i <: 〈τ〉i ∪ 〈τ′〉i where
〈χ〉i is a constructed type. Hence, this must be derived ei-
ther from the rule UNION-RIGHT-1 or from the rule UNION-
RIGHT-2 of the first subtyping relation. Hence, we have either
〈χ〉i <: 〈τ〉i or 〈χ〉i <: 〈τ′〉i. By induction hypothesis, we have
either χ <: τ or χ <: τ′. Finally, by rule UNION-RIGHT-1 or
rule UNION-RIGHT-2, χ <: τ∪ τ′.

• Case 〈χ〉i <: 〈χ′〉i where either one of χ and χ′ is a distin-
guished constructed type (function, pair or constant type) but
not the other, or are disctinct distinguished constructed type.
There exist i such that 〈χ〉i <: 〈χ′〉i cannot be derived. So, this
case is not possible.

• Case 〈τ2→τ1〉i <: 〈τ4→τ3〉i. We have 〈τ2〉i→〈τ1〉i <: 〈τ4〉i→
〈τ3〉i. This must be derived from the rule FUNCTION. Hence,
we have 〈τ1〉i <: 〈τ3〉i and 〈τ4〉i <: 〈τ2〉i. By induction hy-
pothesis, τ1 <: τ3 and τ4 <: τ2. Finally, by rules CONSTRUC-
TOR, CONTRAVARIANCE and COVARIANCE, τ2→τ1 <: τ4→
τ3.

• Case 〈τ1×τ2〉i <: 〈τ3×τ4〉i. We have 〈τ1〉i×〈τ2〉i <: 〈τ3〉i×
〈τ4〉i. This must be derived from the rule PAIR. Hence, we
have 〈τ1〉i <: 〈τ3〉i and 〈τ2〉i <: 〈τ4〉i. By induction hypothe-
sis, τ1 <: τ3 and τ2 <: τ4. Finally, by rules CONSTRUCTOR
and COVARIANCE, τ1 × τ2 <: τ3 × τ4.

• Case 〈κ〉i <: 〈κ〉i. By rule CONSTRUCTOR, κ <: κ.

• Case 〈χ〉i <: 〈χ′〉i where neither χ nor χ′ is a distinguished
constructed type. We have ⊥× (χ)1 <: ⊥× (χ′)1 and ⊥→
(χ)1 <: ⊥→ (χ′)1. Hence, by rule PAIR and FUNCTION,
(χ)i <: (tabs′)i. Therefore, by induction hypothesis, χ <: χ′.

• Case (χ)i <: (χ′)i where one of χ or χ′ is a type constructor
and the other a type application. One of (χ)i and (χ′)i is a
constant type while the other is a pair type or a function type.
This cannot be derived from any rule. So, this case is not
possible.

• Case (c)i <: (c′)i. We have φ(c) <: φ(c′). Only rule CON-
STANT may apply. Then, φ(c) = φ(c′). By injectivity of φ,
c = c′. Finally, K(c) = K(c′) and, by rule CONSTRUCTOR,
c <: c′.

• Case (χτ)i <: (χ′ τ′)i.

If the first parameters of χ and χ′ have different variance, then
the translation of one of these constructed types is a function
type while the translation of the other is a pair. This cannot be
derived from any rule. So, the variance must be the same.

Then, either rule PAIR or rule FUNCTION apply depending
on the variance. So, (χ)i <: (χ′)i and either 〈τ〉i <: 〈τ′〉i or
〈τ′〉i <: 〈τ〉i depending on the variance. By induction hypoth-
esis, K(χ) = K(χ′), χ <: χ′, and either τ <: τ′ or τ′ <: τ. Fi-
nally, K(χτ) = K(χ′ τ′) and, by one of the rule COVARIANCE
or CONTRAVARIANCE, χτ <: χ′ τ′.

7 Related Work

This work is a continuation of our work with Melliès on semantic
types [13, 17]. These two papers focus on defining types, especially
recursive types, as set of terms, while we study here the subtyping
relation induced by these definitions.

Defining the semantics of types as closed sets of terms is very nat-
ural. For instance, in domain theory, types can be interpreted as
ideals [12], that is, sets that are downward closed and closed un-
der directed limits. Reducibility candidates [8] are also closed sets
of terms. Girard [9] reformulates the candidates as sets of terms
closed by biorthogonality in his proof of cut elimination for lin-
ear logic. Meanwhile, Krivine [4, 11] has developed a comprehen-
sive framework based on orthogonality, in order to analyze types as
specification of terms. In semantics, Pitts [15] uses relations closed
by biorthogonality to study parametric polymorphism in an opera-
tional setting.

Damm [3] studies subtyping for a deterministic calculus with recur-
sive types with union and intersection. He takes a domain theoretic
approach based on the ideal model [12]. A subtyping algorithm is
specified by encoding types into tree automata and defining the sub-
typing relation as the inclusion of the recognized languages. The
soundness and completeness of this algorithm with respect to the
semantics of types is proven.

Frisch, Castagna and Benzaken [7] use an approach similar to ours
to design a subtyping relation for a typed calculus with union and
intersection types. They want to define the subtyping relation of
this calculus in a semantic way, as the inclusion of the denotation
of types. But their calculus is typed, so its semantics depends on
the subtyping relation. In order to get rid of this circularity, they
consider a class of calculi (called models). While we try to describe
as large a class as possible, the authors design a class such that the
subtyping relation has good properties (for instance, distributivity
of union and intersection).

8 Future Work

8.1 Strict Pairs and Recursive Types

The type system presented here is not as rich as the type systems
of XDuce [10] and CDuce [7] for two reasons. First, for the sake
of simplicity, we have not considered recursive types. Second, we
deal with a very large class of calculi, in which some subtyping
assertions such as (τ1 ∪ τ2)× τ <: (τ1 × τ)∪ (τ2 × τ) do not hold
(as hinted in the introduction). We would need to reduce the class
of calculi to get a coarser subtyping relation.

In previous work [13, 17], we have developped some tools to deal
with recursive types. Severe restrictions must be made on the class
of calculi considered in order to be able to define the semantics of
types. Still, we believe the class is still large enough to get interest-
ing results.

Intuitively, the subtyping assertion above hold when pairs are strict
(that is, when their two components are evaluated once when the
pair is build). But this requirement is hard to state in an abstract
way. We believe a natural restriction would be instead to require
product and closure to commute, that is, E × E′ = E × E′. It is
easy to check that the subtyping assertion above holds under this
assumption.
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8.2 Intersection Types

Intersection types are harder to handle than union types. The natural
semantics for intersection types is set intersection:

E ∩ E
′ = E∩E

′ .

Then, it is clear that the dual of the subtyping rules for union types
are sound. But there are other sound subtyping rules. For instance,
we have (τ1 ×τ3)∩ (τ2 ×τ4) <: (τ1 ∩τ2)× (τ3 ∩τ4). Furthermore,
in order to check a subtyping assertion involving intersection types,
it seems one need to introduce union types: to check (τ1 → τ2)∩
(τ3 →τ4) <: τ5 →τ6, one may have to check whether τ5 <: τ1 ∪τ3.
But union does not interact well with intersection. In particular, the
distributivity law (τ1 ∪ τ2)∩ τ = (τ1 ∩ τ)∪ (τ2 ∩ τ2) does not hold
in general.

8.3 Side Effects

Our framework does not handle calculi with side effects. Referring
to Pitts and Stark [16], it seems we need to introduce a notion of
value, where a value is an expression with an extensional behavior.
Then, for instance, a value has type τ′→ τ if whenever it is applies
to an expression of type τ′ the resulting expression has type τ. This
definition is extended to expression by closure: an expression has
type τ′→ τ if it is in the closure of the set of values of type τ′→ τ.

It is interesting to notice that in presence of side effects, the typ-
ing rule for union elimination need to restricted in a similar way
to ours, as shown by Dunfield and Pfenning [6]. Intuitively, in
both cases, this restriction comes from the fact that the result of
several evaluations of a same expression may differ, either due to
non-determinism or side effects.

We conjecture that our subtyping rules remain sound in presence
of side effects. On the other hand, some subtyping rules, such as
(τ→τ1)∩ (τ→τ2) <: τ→ (τ1 ∩τ2), become unsound, as shown by
Davies and Pfenning [5].
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