Results on some classes of signed graphs

Discussion 00000

Circular chromatic number of signed graphs

Zhouningxin Wang

Université de Paris

wangzhou4@irif.fr

(Joint work with Reza Naserasr, Xuding Zhu)

CanaDAM 2021

May 28, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 2 Results on some classes of signed graphs
 - Signed *k*-chromatic graph
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

3 Discussion

Homomorphism of signed graphs

- A homomorphism of signed graph (G, σ) to a signed graph (H, π) is a mapping φ : V(G) → V(H) such that the adjacency and the signs of the closed walks are preserved. If there exists one, we write (G, σ) → (H, π).
- A homomorphism of (G, σ) to (H, π) is edge-sign preserving if it, furthermore, preserves the signs of edges. If there exists one, we write $(G, \sigma) \xrightarrow{s.p.} (H, \pi)$.

•
$$(G, \sigma) \to (H, \pi) \Leftrightarrow \exists \sigma' \equiv \sigma, (G, \sigma') \xrightarrow{s.p.} (H, \pi).$$

Results on some classes of signed graphs 000000000000

Discussion 00000

Examples: homomorphism of signed graphs

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 日 の Q () 4/25

Discussion 00000

Circular coloring of signed graphs

Given a signed graph (G, σ) (with no positive loop) and a real number r, a circular r-coloring of (G, σ) is a mapping $f: V(G) \to C^r$ such that for each positive edge uv of (G, σ) ,

$$u \circ d_{C'}(f(u), f(v)) \geq 1,$$

and for each negative edge uv of (G, σ) ,

$$u \circ o v \quad d_{C'}(f(u), \overline{f(v)}) \geq 1.$$

The circular chromatic number of (G, σ) is defined as

 $\chi_{c}(G,\sigma) = \inf\{r \geq 1 : (G,\sigma) \text{ admits a circular } r\text{-coloring}\}.$

Results on some classes of signed graphs 000000000000

Discussion 00000

Signed circular clique

For integers $p \ge 2q > 0$ such that p is even, the signed circular clique $\mathcal{K}_{p;q}^{s}$ has vertex set $[p] = \{0, 1, \dots, p-1\}$, in which • ij is a positive edge if $q \le |i-j| \le p-q$; • ij is a negative edge if $|i-j| \le \frac{p}{2} - q$ or $|i-j| \ge \frac{p}{2} + q$. Let $\hat{\mathcal{K}}_{p;q}^{s}$ be the signed subgraph of $\mathcal{K}_{p;q}^{s}$ induced by vertices $\{0, 1, \dots, \frac{p}{2} - 1\}$.

Figure: K^s_{8;3}

Signed circular clique

The circular chromatic number of (G, σ) is

$$\chi_{c}(G,\sigma) = \inf\{\frac{p}{q} : p \text{ is even and } (G,\sigma) \xrightarrow{s.p.} K_{p;q}^{s}\}$$
$$= \inf\{\frac{p}{q} : p \text{ is even and } (G,\sigma) \to \hat{K}_{p;q}^{s} \}$$

For a non-zero integer ℓ , we denote by C_{ℓ} the cycle of length $|\ell|$ whose sign agrees with the sign of ℓ . We have

$$\chi_c(\mathcal{C}_{-2k}) = rac{4k}{2k-1} ext{ and } \chi_c(\mathcal{C}_{2k+1}) = rac{2k+1}{k}.$$

- 2 Results on some classes of signed graphs
 - Signed *k*-chromatic graph
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

3 Discussion

Given a class \mathcal{C} of signed graphs,

$$\chi_{c}(\mathcal{C}) = \sup\{\chi_{c}(G,\sigma) \mid (G,\sigma) \in \mathcal{C}\}.$$

- the class of signed k-chromatic graphs, denoted \mathcal{SK}_k
- \bullet the class of signed bipartite planar graphs, denoted $\mathcal{SBP},$
- the class of signed *d*-degenerate simple graphs, denoted \mathcal{SD}_d ,
- \bullet the class of signed planar simple graphs, denoted $\mathcal{SP}.$

Signed *k*-chromatic graph

Signed *k*-chromatic graph

Proposition [R. Naserasr, W. and X. Zhu 2021]

For any positive integer $k \ge 2$, $\chi_c(\mathcal{SK}_k) = 2k$.

Theorem [R. Naserasr, W. and X. Zhu 2021]

For any integers $k, g \ge 2$ and any $\epsilon > 0$, there is a graph G of girth at least g and a signature σ satisfying that

$$\chi(G) = k$$
 and $\chi_c(G, \sigma) > 2k - \epsilon$.

We will prove that for any integer p, there is a signed graph (G, σ) for which the followings hold:

- G is of girth at least g and is k-colorable.
- (G, σ) is not circular $\frac{2kp}{p+1}$ -colorable.

イロト 不得 トイヨト イヨト

Results on some classes of signed graphs

Discussion 00000

Signed *k*-chromatic graph

Tool: q-augmented k-ary tree of girth at least g

For any positive integers $k, q, g \ge 2$, there exists a (k, q, g)-graph.

Signed *k*-chromatic graph

Idea of the construction

- *H*: (2*kp*, *k*, 2*kg*)-graph.
- ϕ : a standard 2*kp*-labeling of the edges of *T*.
- ℓ(v): the level of v, i.e., the distance from v to the root vertex in T. Let θ(v) = ℓ(v)(mod k).

For each leaf v of T,

- let u_{v,1}, u_{v,2}, ..., u_{v,k} be the vertices on P_v that are connected to v by augmenting edges.
- let $u'_{v,i} \in P_v$ be the closest descendant of $u_{v,i}$ with $\theta(u'_{v,i}) = i$.
- let $e_{v,i}$ be the edge connecting $u'_{v,i}$ to its child on P_v .
- let $A_{v,i} = \{\phi(e_{v,i}), \phi(e_{v,i}) + 1, \dots, \phi(e_{v,i}) + p\},\ B_{v,i} = \{a + kp : a \in A_{v,i}\} \text{ and } C_{v,i} = A_{v,i} \cup B_{v,i}.$

Signed k-chromatic graph

Construction of the signed graph (G, σ)

Note that $B_{v,i}$ is a *kp*-shift of $A_{v,i}$. Two possibilities:

- $A_{\nu,i} \cap A_{\nu,j} \neq \emptyset$, $d_{(\text{mod } 2kp)}(\phi(e_{\nu,i}), \phi(e_{\nu,j})) \leq p$.
- $A_{v,i} \cap B_{v,j} \neq \emptyset$, $d_{(\text{mod } 2kp)}(\phi(e_{v,i}), \overline{\phi(e_{v,j})}) \leq p$.

Results on some classes of signed graphs

Discussion 00000

Signed bipartite planar graphs

Signed bipartite planar graphs

Proposition [R. Naserasr, W. and X. Zhu 2021] $\chi_c(SBP) = 4.$

Let Γ_1 be a positive 2-path connecting u_1 and v_1 . For $i \geq 2$,

Results on signed bipartite planar graphs of girth ≥ 6

- χ_c(SBP₆) ≤ 3. [R. Naserasr and W. 2021+] It's a corollary of the result that every signed bipartite planar graph of negative girth 6 admits a homomorphism to (K_{3,3}, M).
- $\chi_c(SBP_8) \leq \frac{8}{3}$. [R. Naserasr, L-A. Pham and W. 2020+] It's a corollary of the result that C_{-4} -critical signed graph has density $|E(G)| \geq \frac{3|V(G)|-2}{4}$.

Signed d-degenerate graphs

Signed d-degenerate graphs

Proposition [R. Naserasr, W. and X. Zhu 2021]

For any positive integer *d*,
$$\chi_c(SD_d) = 2\lfloor \frac{d}{2} \rfloor + 2$$
.

Sketch of the proof:

• First we show that every $(G, \sigma) \in SD_d$ admits a circular $(2\lfloor \frac{d}{2} \rfloor + 2)$ -coloring.

For the tightness,

- For odd integer d, we have $\chi_c(K_{d+1}, +) = d + 1$.
- For d = 2, we consider the signed graph Γ_n built before.
- For even integer d ≥ 4, we construct a signed d-degenerate graph Ω_d such that χ_c(Ω_d) = d + 2.

Results on some classes of signed graphs

Discussion 00000

Signed d-degenerate graphs

Signed *d*-degenerate graphs

Proof for even $d \ge 4$

(K1 +

• Define a signed graph Ω_d as follows.

For every pair of x; and x;

Let φ be a circular r-coloring of Ω_d where r < d + 2. Without loss of generality, φ(x₁),..., φ(x_d) are cyclically ordered on C^r and assume that d_(mod r)(φ(x₁), φ(x₂)) is maximized. We prove that there is no place for y_{1,1+^d/2}.

Results on some classes of signed graphs

Discussion 00000

Signed planar graphs

Signed planar graphs

Proposition [R. Naserasr, W. and X. Zhu 2021]

$$4+\frac{2}{3}\leq\chi_c(\mathcal{SP})\leq 6.$$

Figure: Mini-gadget (T, π) Figure: A signed Wenger Graph \tilde{W}

Results on some classes of signed graphs

Discussion 00000

Signed planar graphs

Signed planar graphs

Lemma [R. Naserasr, W. and X. Zhu 2021]

Let $r = \frac{14}{3} - \epsilon$ with $0 < \epsilon \leq \frac{2}{3}$. For any circular *r*-coloring ϕ of \tilde{W} , $d_{(\text{mod }r)}(\phi(u), \phi(v)) \geq \frac{4}{9}$.

Let Γ be obtained from \tilde{W} by adding a negative edge uv. Let $\mathcal{I} = (\Gamma, u, v)$.

Theorem [R. Naserasr, W. and X. Zhu 2021]

Let $\Omega = K_4(\mathcal{I})$. Then Ω is a signed planar simple graph with $\chi_c(\Omega) = \frac{14}{3}$.

Results on signed planar graphs of large girth

- $\chi_c(\mathcal{SP}_4) = 4$. (By the 3-degeneracy of triangle-free planar graph)
- $\chi_c(\mathcal{SP}_7) \leq$ 3. [R. Naserasr, R. Škrekovski, W. and R. Xu 2020+]

It's a corollary of the result that every signed graph of $mad < \frac{14}{5}$ admits a homomorphism to (K_6, M) .

- 2 Results on some classes of signed graphs
 - Signed *k*-chromatic graph
 - Signed bipartite planar graphs
 - Signed d-degenerate graphs
 - Signed planar graphs

3 Discussion

Circular chromatic number of signed planar graphs

Let C_{ℓ}^{o+} be signed cycle of length ℓ where the number of positive edges is odd. Then $\chi_c(C_{\ell}^{o+}) = \frac{2\ell}{\ell-1}$.

Theorem [R. Naserasr, W. and X. Zhu 2021]

Given a positive integer ℓ and a signed graph (G, σ) satisfying $g_{ij}(G, \sigma) \ge g_{ij}(C_{\ell}^{o+})$,

$$\chi_c(G,\sigma) \leq rac{2\ell}{\ell-1} \Leftrightarrow (G,\sigma) o C_\ell^{o+}.$$

Question

Given a positive integer ℓ , what is the smallest value $f(\ell)$ (with $f(\infty) = \infty$) such that for every signed planar graph (G, σ) satisfying $g_{ij}(G, \sigma) \ge g_{ij}(C_{\ell}^{o+})$ and $g_{ij}(G, \sigma) \ge f(\ell)$ for all $ij \in \mathbb{Z}_2^2$, we have $\chi_c(G, \sigma) \le \frac{2\ell}{\ell-1}$.

Jaeger-Zhang conjecture

When $\ell = 2k + 1$,

Jaeger-Zhang conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth f(2k + 1) = 4k + 1 admits a circular $\frac{2k+1}{k}$ -coloring, i.e., C_{2k+1} -coloring.

- f(3) = 5 [Grötzsch's theorem];
- *f*(5) ≤ 11 [Z. Dvořák and L. Postle 2017][D. W. Cranston and J. Li 2020];
- 4k + 1 ≤ f(2k + 1) ≤ 6k + 1 [C. Q. Zhang 2002; L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013];

Discussion 00000

Bipartite analogue of Jaeger-Zhang conjecture

When $\ell = 2k$,

Bipartite analogue of Jaeger-Zhang conjecture [R. Naserasr, E. Rollová and É. Sopena 2015]

Every signed bipartite planar graph of negative-girth f(2k) admits a circular $\frac{4k}{2k-1}$ -coloring, i.e., C_{-2k} -coloring.

- f(4) = 8 [R. Naserasr, L. A. Pham and W. 2020+];
- $f(2k) \le 8k 2$ [C. Charpentier, R. Naserasr and E. Sopena 2020].

The end. Thank you!