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Homomorphism of signed graphs

Signed graphs

A signed graph is a graph G = (V ,E ) together with an
assignment σ : E (G )→ {+,−}, denoted by (G , σ).

A switching at vertex v is to switch the signs of all the edges
incident to this vertex.

We say (G , σ′) is switching equivalent to (G , σ) if it is
obtained from (G , σ) by switching at some vertices (allowing
repetition).

The sign of a closed walk is the product of signs of all the
edges of this walk.

Theorem [T. Zaslavsky 1982]

Signed graphs (G , σ) and (G , σ′) are switching equivalent if and
only if they have a same set of negative cycles.
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Homomorphism of signed graphs

Homomorphism of signed graphs

A homomorphism of signed graph (G , σ) to a signed graph
(H, π) is a mapping ϕ from V (G ) and E (G ) to V (H) and
E (H) (respectively) such that the adjacency, the incidence
and the signs of closed walks are preserved.

If there exists a homomorphism of (G , σ) to (H, π), we write
(G , σ)→ (H, π).
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Homomorphism of signed graphs

Edge-sign preserving homomorphism

An edge-sign preserving homomorphism of signed graph
(G , σ) to (H, π) is a mapping ϕ from V (G ) and E (G ) to
V (H) and E (H) (respectively) such that for uv ∈ E (G ),
ϕ(u)ϕ(v) ∈ E (H) and σ(uv) = π(ϕ(u)ϕ(v)).

If there exists an edge-sign preserving homomorphism of
(G , σ) to (H, π), we write (G , σ)

s.p.−→ (H, π).

Proposition

Given signed graphs (G , σ) and (H, π),

(G , σ)→ (H, π)⇔ ∃σ′ ≡ σ, (G , σ′) s.p.−→ (H, π).
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Homomorphism of signed graphs

Girth conditions

Considering the parity of the length of a closed walk and the sign
of it, there are four possible types of closed walks:

type 00 is a closed walk which is positive and of even length,

type 01 is a closed walk which is positive and of odd length,

type 10 is a closed walk which is negative and of even length,

type 11 is a closed walk which is negative and of odd length.

The length of a shortest nontrivial closed walk in (G , σ) of type ij ,
(ij ∈ Z2

2), is denoted by gij(G , σ).

No-homomorphism Lemma [R. Naserasr, E. Rollová and E. Sopena
2015]

If (G , σ)→ (H, π), then gij(G , σ) ≥ gij(H, π) for ij ∈ Z2
2.
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Homomorphism of signed graphs

Necessary and Sufficient conditions

As No-homomorphism Lemma gives us a necessary condition for
mapping (G , σ) to (H, π), is it also sufficient?

For example, let H be a triangle and G be a Mycielski graph
Mk for k > 3. The graph G is triangle-free but it has
chromatic number k > 3.

What kind of conditions can make it also sufficient? One
possible constraint: maximum average degree.
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Homomorphism of signed graphs

Maximum average degree

Given a graph G , the maximum average degree, denoted mad(G ),
is the largest average degree taken over all the subgraphs of G .

Theorem [C. Charpentier, R. Naserasr and E. Sopena 2020]

Given a signed graph (H, π), there exists an ε > 0 such that every
signed graph (G , σ), satisfying gij(G , σ) ≥ gij(H, π) and
mad(G ) < 2 + ε, admits a homomorphism to (H, π).

A main question then is to find the best value of ε for a given
signed graph (H, π).

For (K4, e), the best value of ε was proved to be 4
7 .

For (K6,M), we prove that the best value of ε is 4
5 .

For (K2k ,M), k ≥ 4, we prove that the best value of ε is 1.
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Homomorphism of signed graphs

Double Switching Graphs

Given a signed graph (G , σ) on the vertex set V = {x1, . . . , xn},
the Double Switching Graph of (G , σ), denoted DSG(G , σ), is a
signed graph built as follows:

We have two disjoint copies of V , V+ = {x+
1 , x

+
2 , . . . , x

+
n }

and V− = {x−1 , x
−
2 , . . . , x

−
n } in DSG(G , σ).

Each set of vertices V+,V− then induces a copy of (G , σ).

Furthermore, a vertex x−i connects to vertices in V+ as it is
obtained from a switching on xi . More precisely, if xixj is a
positive (negative) edge in (G , σ), then x+

i x+
j , x

−
i x−j are

positive (negative) edges in DSG(G , σ), and x+
i x−j , x

−
i x+

j are
negative (positive) edges in DSG(G , σ).
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Homomorphism of signed graphs

Double Switching Graphs
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Figure: Signed graphs (C4, e) and DSG(C4, e)

Theorem [R.C. Brewster and T. Graves 2009]

Given signed graphs (G , σ) and (H, π),

(G , σ)→ (H, π)⇔ (G , σ)
s.p.−→ DSG(H, π).
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Homomorphism of signed bipartite graphs

Indicator construction S(G )

Given a graph G , a signed graph S(G ) is built as follows:

Take the vertex set V (G );

For each edge uv of G , we add two more vertices xuv and yuv ,
and connect them with both of u and v (noting that uv is not
an edge of S(G ));

For each 4-cycle uxuvvyuv , we assign a negative sign to one of
the edges.

Figure: S(K3) Figure: S(C5)
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Homomorphism of signed bipartite graphs

A strengthening of Four-Color Theorem

Theorem [R. Naserasr, E. Rollová and E. Sopena 2015]

A graph G is bipartite if and only if S(G )→ (K2,2, e).

A graph G is k-colorable for k ≥ 3 if and only if
S(G )→ (Kk,k ,M).

Four-Color Theorem restated

For every planar simple graph G , S(G )→ (K4,4,M).

The following is a strengthening of the Four-Color Theorem (proof
of which is based on an edge-coloring result of B. Guenin which in
turn is based on the Four-Color Theorem).

Theorem [R. Naserasr, E. Rollová and E. Sopena 2013]

Every signed bipartite planar (simple) graph maps to (K4,4,M).
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Homomorphism of signed bipartite graphs

Mapping signed bipartite graphs to (K4,4,M)

For planar graphs, the homomorphism problem of planar
graphs to K3, which is a non-trivial core subgraph of K4, has
been greatly studied.

Grötzsch’s theorem states that planar graph of girth at least 4
maps to K3 and 3-coloring problem of planar graphs is proved
to be NP-complete.

It is natural to ask for each core subgraphs of (K4,4,M) which
families of planar graphs map to. Two notable subgraphs:

the negative 4-cycle;
(K3,3,M).

The question of mapping signed bipartite planar graphs to
(K3,3,M) captures 3-coloring problem of planar graphs.
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Homomorphism of signed bipartite graphs

Homomorphism to (Kk ,k ,M) and (K2k ,M)

Theorem

For a signed bipartite graph (G , σ),

(G , σ)→ (Kk,k ,M)⇔ (G , σ)→ (K2k ,M).

We prove:

Every signed graph (G , σ) with mad(G ) < 14
5 and satisfying

gij(G , σ) ≥ gij(K6,M) admits a homomorphism to (K6,M).

Every signed graph (G , σ) with mad(G ) < 3 and satisfying
gij(G , σ) ≥ gij(K2k ,M) admits a homomorphism to (K2k ,M)
for k ≥ 4.

14 / 31



Introduction Our work Conclusion and Discussion

1 Introduction
Homomorphism of signed graphs
Homomorphism of signed bipartite graphs

2 Our work
Mapping to (K6,M) and (K2k ,M)
Tightness

3 Conclusion and Discussion

15 / 31



Introduction Our work Conclusion and Discussion

Mapping to (K6,M) and (K2k ,M)

Mapping to (K6,M)

Theorem

Every signed graph with maximum average degree less than 14
5

admits a homomorphism to (K6,M). Moreover, the bound 14
5 is

the best possible.

Special case of Theorem 2.5 [O. V. Borodin, S.-J. Kim, A. V.
Kostochka and D. B. West 2004]

If G is a graph of girth at least 7 and maximum average degree at
most 28

11 , then (G , σ)→ (K6,M) for any signature σ.

16 / 31



Introduction Our work Conclusion and Discussion

Mapping to (K6,M) and (K2k ,M)

Mapping to (K6,M)

1 2

3 4

5 65+ 6−

1+ 2+

3+ 4+

5+ 6+

1− 2−

3− 4−

5− 6−

Figure: Signed graphs (K6,M) and DSG(K6,M)
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Mapping to (K6,M) and (K2k ,M)

Sketch of the proof

Assume to the contrary that a minimum counterexample
(G , σ) exists.

Let C be the vertex set of DSG(K6,M) and let L be a list
assignment of V (G ) where L ⊂ C . Study the properties of list
DSG(K6,M)-coloring.

By extending a partial list coloring of a subgraph to the entire
signed graph (G , σ), we list all the forbidden configurations
needed.

Discharging technique.
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Mapping to (K6,M) and (K2k ,M)

Extending partial list-coloring: signed rooted tree

A signed rooted tree (T , σ) is depicted in the figure.

For a vertex x of (T , σ), we define the set of admissible
colors, denoted La(x), to be the set of the colors c ∈ L(x)
such that with the restriction of L onto Tx there exists an
L-coloring φ of Tx where φ(x) = c.

x

v

y

Figure: (T , σ) at root v and (Tx , σ) at root x
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Mapping to (K6,M) and (K2k ,M)

Extending partial list-coloring

Figure: Extending partial list-coloring

Pre-color the vertices of G − H and modify the list of vertices
of H corresponding to the coloring of G − H.

Prove that this updated list assignment is extendable. Hence,
H is a forbidden configuration of G .
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Mapping to (K6,M) and (K2k ,M)

Some of forbidden configurations

21-vertex, 32-vertex, 44-vertex, 55-vertex;

It’s worth mentioning that we have a series of infinite
forbidden configurations with some patterns.
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Mapping to (K6,M) and (K2k ,M)

Mapping to (K8,M)

Theorem

Every signed graph with maximum average degree less than 3
admits a homomorphism to (K8,M). Moreover, the bound 3 is the
best possible.

Theorem

Every signed graph with maximum average degree less than 3
admits a homomorphism to (K2k ,M) for k ≥ 4. Moreover, the
bound 3 is the best possible.
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Tightness

Tightness

Proposition

There exists a signed graph (G , σ) with mad(G ) = 14
5 which does

not admit a homomorphism to (K6,M).

1 2

3 4

5 6

Figure: A signed graph with mad = 14
5 does not map to (K6,M)
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Tightness

Tightness

Proposition

There exists a signed bipartite planar graph (G , σ) satisfying
gij(G , σ) ≥ gij(K3,3,M) which does not admit a homomorphism to
(K3,3,M).

1 2

3 4

5 6

Figure: A signed bipartite planar graph does not map to (K3,3,M)
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Tightness

Tightness

Proposition

There exists a series of signed graphs (Gl , σ), built from a negative
l-cycle by adding a positive triangle on each edge, which do not
map to (K2k ,M) for k ≥ 4.

+

+
+

+

+

+

+ +

+
−

Figure: A tight example (Gl , σ)
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Application to planarity

Corollary

Given a planar graph G of girth 7, for every signature σ,
(G , σ)→ (K6,M).

We do not know whether 7 is the best possible girth condition.

Grötzsch’s theorem restated

Given a triangle-free planar graph G , the signed bipartite (planar)
graph S(G ) maps to (K6,M).

Note that S(G ) has negative 4-cycles but has no 6-cycle.
Moreover, if G is of girth 5, then S(G ) has no 8-cycles.
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Steinberg’s type questions for (K6,M)

Steinberg’s conjecture: Planar graphs with no cycle of length
4, 5, 6 are 3-colorable.

This conjecture is disproved recently (V. Cohen-Addad, M.
Hebdige, D. Král’, Z. Li and E. Salgado 2017).

Planar graphs with no cycle of length 4, 5, 6, 7 are 3-colorable
(O. V. Borodin, A. N. Glebov, A. Raspaud and M. R.
Salavatipour 2005).

It’s natural to ask:

Steinberg’s type questions

What is the smallest value of k , k ≥ 3, such that every signed
bipartite planar graph with no 4-cycles sharing an edge and no
cycles of length 6, 8, . . . , 2k, admits a homomorphism to (K6,M)?
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Mapping signed bipartite planar graphs to signed even
cycles

If a signed bipartite planar graph has no cycle of length
smaller than 6, then it maps to (C4, e). (R. Naserasr, L. A.
Pham and Z. Wang 2020+)

If a signed bipartite planar graph has no cycle of length
smaller than 4, then it maps to (K3,3,M).

Question

What is a sufficient girth condition for a signed bipartite planar
graph to map to C−2k?

29 / 31



Introduction Our work Conclusion and Discussion

Steinberg’s type questions for negative even cycles

If k is a prime number, then there exists an integer f (k) such
that any planar graph with no cycle of length 1, 2, . . . , 2k ,
2k + 2, . . . , f (k) admits a mapping to C2k+1. (X. Hu and J.
Li 2020+)

We can ask similar questions for mapping signed bipartite
planar graphs to negative even cycles.
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The end. Thank you!
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