イロン スピン スピン スピン 一日

クへで 1/31

Mapping sparse signed graphs to (K_{2k}, M)

Zhouningxin Wang

IRIF, Université de Paris

(A joint work with Reza Naserasr, Riste Skrekovski, Rongxing Xu)

2nd Mar. 2021

- Homomorphism of signed graphs
- Homomorphism of signed bipartite graphs

2 Our work

- Mapping to (K_6, M) and (K_{2k}, M)
- Tightness

Signed graphs

- A signed graph is a graph G = (V, E) together with an assignment σ : E(G) → {+, -}, denoted by (G, σ).
- A switching at vertex v is to switch the signs of all the edges incident to this vertex.
- We say (G, σ') is switching equivalent to (G, σ) if it is obtained from (G, σ) by switching at some vertices (allowing repetition).
- The sign of a closed walk is the product of signs of all the edges of this walk.

Theorem [T. Zaslavsky 1982]

Signed graphs (G, σ) and (G, σ') are switching equivalent if and only if they have a same set of negative cycles.

1

イロト イボト イヨト イヨト

Homomorphism of signed graphs

Our work

Conclusion and Discussion

Homomorphism of signed graphs

- A homomorphism of signed graph (G, σ) to a signed graph (H, π) is a mapping φ from V(G) and E(G) to V(H) and E(H) (respectively) such that the adjacency, the incidence and the signs of closed walks are preserved.
- If there exists a homomorphism of (G, σ) to (H, π) , we write $(G, \sigma) \rightarrow (H, \pi)$.

Conclusion and Discussion

Homomorphism of signed graphs

Edge-sign preserving homomorphism

- An edge-sign preserving homomorphism of signed graph (G, σ) to (H, π) is a mapping φ from V(G) and E(G) to V(H) and E(H) (respectively) such that for $uv \in E(G)$, $\varphi(u)\varphi(v) \in E(H)$ and $\sigma(uv) = \pi(\varphi(u)\varphi(v))$.
- If there exists an edge-sign preserving homomorphism of (G, σ) to (H, π), we write (G, σ) ^{s.p.}→ (H, π).

Proposition

Given signed graphs (G, σ) and (H, π) ,

$$(G, \sigma) \to (H, \pi) \Leftrightarrow \exists \sigma' \equiv \sigma, (G, \sigma') \xrightarrow{s.p.} (H, \pi).$$

Girth conditions

Our work

Conclusion and Discussion

Considering the parity of the length of a closed walk and the sign of it, there are four possible types of closed walks:

- type 00 is a closed walk which is positive and of even length,
- type 01 is a closed walk which is positive and of odd length,
- type 10 is a closed walk which is negative and of even length,
- type 11 is a closed walk which is negative and of odd length.

The length of a shortest nontrivial closed walk in (G, σ) of type ij, $(ij \in \mathbb{Z}_2^2)$, is denoted by $g_{ij}(G, \sigma)$.

No-homomorphism Lemma [R. Naserasr, E. Rollová and E. Sopena 2015]

If $(G, \sigma) \to (H, \pi)$, then $g_{ij}(G, \sigma) \ge g_{ij}(H, \pi)$ for $ij \in \mathbb{Z}_2^2$.

Conclusion and Discussion

Homomorphism of signed graphs

Necessary and Sufficient conditions

As No-homomorphism Lemma gives us a necessary condition for mapping (G, σ) to (H, π) , is it also sufficient?

- For example, let H be a triangle and G be a Mycielski graph M_k for k > 3. The graph G is triangle-free but it has chromatic number k > 3.
- What kind of conditions can make it also sufficient? One possible constraint: maximum average degree.

Homomorphism of signed graphs

Our work

Conclusion and Discussion

Maximum average degree

Given a graph G, the maximum average degree, denoted mad(G), is the largest average degree taken over all the subgraphs of G.

Theorem [C. Charpentier, R. Naserasr and E. Sopena 2020]

Given a signed graph (H, π) , there exists an $\epsilon > 0$ such that every signed graph (G, σ) , satisfying $g_{ij}(G, \sigma) \ge g_{ij}(H, \pi)$ and $mad(G) < 2 + \epsilon$, admits a homomorphism to (H, π) .

A main question then is to find the best value of ϵ for a given signed graph (H, π) .

- For (K_4, e) , the best value of ϵ was proved to be $\frac{4}{7}$.
- For (K_6, M) , we prove that the best value of ϵ is $\frac{4}{5}$.
- For (K_{2k}, M) , $k \ge 4$, we prove that the best value of ϵ is 1.

Conclusion and Discussion

Homomorphism of signed graphs

Double Switching Graphs

Given a signed graph (G, σ) on the vertex set $V = \{x_1, \ldots, x_n\}$, the Double Switching Graph of (G, σ) , denoted $DSG(G, \sigma)$, is a signed graph built as follows:

- We have two disjoint copies of V, $V^+ = \{x_1^+, x_2^+, ..., x_n^+\}$ and $V^- = \{x_1^-, x_2^-, ..., x_n^-\}$ in $DSG(G, \sigma)$.
- Each set of vertices V^+ , V^- then induces a copy of (G, σ) .
- Furthermore, a vertex x_i⁻ connects to vertices in V⁺ as it is obtained from a switching on x_i. More precisely, if x_ix_j is a positive (negative) edge in (G, σ), then x_i⁺x_j⁺, x_i⁻x_j⁻ are positive (negative) edges in DSG(G, σ), and x_i⁺x_j⁻, x_i⁻x_j⁺ are negative (positive) edges in DSG(G, σ).

Our work

Conclusion and Discussion

Homomorphism of signed graphs

Double Switching Graphs

Figure: Signed graphs (C_4, e) and $DSG(C_4, e)$

Theorem [R.C. Brewster and T. Graves 2009] Given signed graphs (G, σ) and (H, π) , $(G, \sigma) \rightarrow (H, \pi) \Leftrightarrow (G, \sigma) \xrightarrow{s.p.} \text{DSG}(H, \pi).$

Conclusion and Discussion

Homomorphism of signed bipartite graphs

Indicator construction S(G)

Given a graph G, a signed graph S(G) is built as follows:

- Take the vertex set V(G);
- For each edge *uv* of *G*, we add two more vertices x_{uv} and y_{uv} , and connect them with both of *u* and *v* (noting that *uv* is not an edge of *S*(*G*));
- For each 4-cycle $ux_{uv}vy_{uv}$, we assign a negative sign to one of the edges.

Figure: $S(K_3)$

Figure: $S(C_5)$

イロト 不得 トイヨト イヨト

Our work

Conclusion and Discussion

Homomorphism of signed bipartite graphs

A strengthening of Four-Color Theorem

Theorem [R. Naserasr, E. Rollová and E. Sopena 2015]

- A graph G is bipartite if and only if $S(G) \rightarrow (K_{2,2}, e)$.
- A graph G is k-colorable for $k \ge 3$ if and only if $S(G) \rightarrow (K_{k,k}, M)$.

Four-Color Theorem restated

For every planar simple graph G, $S(G) \rightarrow (K_{4,4}, M)$.

The following is a strengthening of the Four-Color Theorem (proof of which is based on an edge-coloring result of B. Guenin which in turn is based on the Four-Color Theorem).

Theorem [R. Naserasr, E. Rollová and E. Sopena 2013]

Every signed bipartite planar (simple) graph maps to $(K_{4,4}, M)$.

Homomorphism of signed bipartite graphs

Mapping signed bipartite graphs to $(K_{4,4}, M)$

- For planar graphs, the homomorphism problem of planar graphs to K_3 , which is a non-trivial core subgraph of K_4 , has been greatly studied.
- Grötzsch's theorem states that planar graph of girth at least 4 maps to K_3 and 3-coloring problem of planar graphs is proved to be NP-complete.
- It is natural to ask for each core subgraphs of $(K_{4,4}, M)$ which families of planar graphs map to. Two notable subgraphs:
 - the negative 4-cycle;
 - $(K_{3,3}, M)$.

The question of mapping signed bipartite planar graphs to $(K_{3,3}, M)$ captures 3-coloring problem of planar graphs.

Our work

Conclusion and Discussion

Homomorphism of signed bipartite graphs

Homomorphism to $(K_{k,k}, M)$ and (K_{2k}, M)

Theorem

For a signed bipartite graph (G, σ) ,

$$(G, \sigma) \rightarrow (K_{k,k}, M) \Leftrightarrow (G, \sigma) \rightarrow (K_{2k}, M).$$

We prove:

- Every signed graph (G, σ) with $mad(G) < \frac{14}{5}$ and satisfying $g_{ij}(G, \sigma) \ge g_{ij}(K_6, M)$ admits a homomorphism to (K_6, M) .
- Every signed graph (G, σ) with mad(G) < 3 and satisfying $g_{ij}(G, \sigma) \ge g_{ij}(K_{2k}, M)$ admits a homomorphism to (K_{2k}, M) for $k \ge 4$.

- Homomorphism of signed graphs
- Homomorphism of signed bipartite graphs

Our work

- Mapping to (K_6, M) and (K_{2k}, M)
- Tightness

Mapping to (K_6, M) and (K_{2k}, M)

Our work

Conclusion and Discussion

Mapping to (K_6, M)

Theorem

Every signed graph with maximum average degree less than $\frac{14}{5}$ admits a homomorphism to (K_6, M) . Moreover, the bound $\frac{14}{5}$ is the best possible.

Special case of Theorem 2.5 [O. V. Borodin, S.-J. Kim, A. V. Kostochka and D. B. West 2004]

If G is a graph of girth at least 7 and maximum average degree at most $\frac{28}{11}$, then $(G, \sigma) \rightarrow (K_6, M)$ for any signature σ .

Mapping to (K_6, M) and (K_{2k}, M)

Mapping to (K_6, M)

Our work

Conclusion and Discussion

Figure: Signed graphs (K_6, M) and $DSG(K_6, M)$

Our work

Conclusion and Discussion

Mapping to (K_6, M) and (K_{2k}, M)

Sketch of the proof

- Assume to the contrary that a minimum counterexample
 (G, σ) exists.
- Let C be the vertex set of DSG(K₆, M) and let L be a list assignment of V(G) where L ⊂ C. Study the properties of list DSG(K₆, M)-coloring.
- By extending a partial list coloring of a subgraph to the entire signed graph (G, σ), we list all the forbidden configurations needed.
- Discharging technique.

Mapping to (K_6, M) and (K_{2k}, M)

Extending partial list-coloring: signed rooted tree

- A signed rooted tree (T, σ) is depicted in the figure.
- For a vertex x of (T, σ), we define the set of admissible colors, denoted L^a(x), to be the set of the colors c ∈ L(x) such that with the restriction of L onto T_x there exists an L-coloring φ of T_x where φ(x) = c.

Figure: (T, σ) at root v and (T_x, σ) at root x

Our work

Conclusion and Discussion

Mapping to (K_6, M) and (K_{2k}, M)

Extending partial list-coloring

Figure: Extending partial list-coloring

- Pre-color the vertices of G H and modify the list of vertices of H corresponding to the coloring of G H.
- Prove that this updated list assignment is extendable. Hence, *H* is a forbidden configuration of *G*.

Our work

Conclusion and Discussion

Mapping to (K_6, M) and (K_{2k}, M)

Some of forbidden configurations

• It's worth mentioning that we have a series of infinite forbidden configurations with some patterns.

Mapping to (K_6, M) and (K_{2k}, M)

Our work

Conclusion and Discussion

Mapping to (K_8, M)

Theorem

Every signed graph with maximum average degree less than 3 admits a homomorphism to (K_8, M) . Moreover, the bound 3 is the best possible.

Theorem

Every signed graph with maximum average degree less than 3 admits a homomorphism to (K_{2k}, M) for $k \ge 4$. Moreover, the bound 3 is the best possible.

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ () 22/31

Conclusion and Discussion

Tightness

Tightness

Proposition

There exists a signed graph (G, σ) with $mad(G) = \frac{14}{5}$ which does not admit a homomorphism to (K_6, M) .

Figure: A signed graph with $mad = \frac{14}{5}$ does not map to (K_6, M)

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ (~ 23/31)

Our work

Conclusion and Discussion

Tightness

Tightness

Proposition

There exists a signed bipartite planar graph (G, σ) satisfying $g_{ij}(G, \sigma) \ge g_{ij}(K_{3,3}, M)$ which does not admit a homomorphism to $(K_{3,3}, M)$.

Figure: A signed bipartite planar graph does not map to $(K_{3,3}, M)$

Conclusion and Discussion

Tightness

Tightness

Proposition

There exists a series of signed graphs (G_l, σ) , built from a negative *l*-cycle by adding a positive triangle on each edge, which do not map to (K_{2k}, M) for $k \ge 4$.

Figure: A tight example (G_l, σ)

- Homomorphism of signed graphs
- Homomorphism of signed bipartite graphs

Our work

- Mapping to (K_6, M) and (K_{2k}, M)
- Tightness

3 Conclusion and Discussion

Conclusion and Discussion

Application to planarity

Corollary

Given a planar graph G of girth 7, for every signature σ , $(G, \sigma) \rightarrow (K_6, M)$.

• We do not know whether 7 is the best possible girth condition.

Grötzsch's theorem restated

Given a triangle-free planar graph G, the signed bipartite (planar) graph S(G) maps to (K_6, M) .

Note that S(G) has negative 4-cycles but has no 6-cycle.
 Moreover, if G is of girth 5, then S(G) has no 8-cycles.

Steinberg's type questions for (K_6, M)

- Steinberg's conjecture: Planar graphs with no cycle of length 4,5,6 are 3-colorable.
- This conjecture is disproved recently (V. Cohen-Addad, M. Hebdige, D. Král', Z. Li and E. Salgado 2017).
- Planar graphs with no cycle of length 4, 5, 6, 7 are 3-colorable (O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour 2005).

It's natural to ask:

Steinberg's type questions

What is the smallest value of k, $k \ge 3$, such that every signed bipartite planar graph with no 4-cycles sharing an edge and no cycles of length $6, 8, \ldots, 2k$, admits a homomorphism to (K_6, M) ?

Mapping signed bipartite planar graphs to signed even cycles

- If a signed bipartite planar graph has no cycle of length smaller than 6, then it maps to (C_4, e) . (R. Naserasr, L. A. Pham and Z. Wang 2020+)
- If a signed bipartite planar graph has no cycle of length smaller than 4, then it maps to $(K_{3,3}, M)$.

Question

What is a sufficient girth condition for a signed bipartite planar graph to map to C_{-2k} ?

Steinberg's type questions for negative even cycles

- If k is a prime number, then there exists an integer f(k) such that any planar graph with no cycle of length 1, 2, ..., 2k, 2k + 2, ..., f(k) admits a mapping to C_{2k+1}. (X. Hu and J. Li 2020+)
- We can ask similar questions for mapping signed bipartite planar graphs to negative even cycles.

The end. Thank you!