৩৫.ে 1/36

イロト イヨト イヨト イヨト 三日

# Density of $C_{-4}$ -critical signed graphs

#### Zhouningxin Wang

IRIF, Université de Paris

(A joint work with Reza Naserasr, Lan-Anh Pham)

2nd Feb. 2021

- Start from Four-Color Theorem
- Homomorphism of signed graphs
- $(H, \pi)$ -critical signed graphs
- Jaeger-Zhang conjecture and its bipartite analog

#### 2 Density of C<sub>4</sub>-critical signed graphs

- C<sub>-4</sub>-critical signed graphs
- Application to the planarity

### 3 Conclusion

Density of C\_4-critical signed graphs

Conclusion 00000

Start from Four-Color Theorem

### Coloring the map with 4 colors





Start from Four-Color Theorem



- A homomorphism of a graph G to another graph H is a mapping from V(G) to V(H) such that the adjacency is preserved.
- If G admits a homomorphism to H, we also say G is H-colorable.



Four-Color Theorem restated Every planar graph admits a  $K_4$ -coloring. Start from Four-Color Theorem

# (2k + 1)-coloring problem vs $C_{2k+1}$ -coloring problem

Given a graph G, we define  $T_k(G)$  to be the graph obtained from G by replacing each edge uv with a path of length k.

Indicator Construction Lemma [P. Hell, J. Nešetřil 1990]

A graph G is (2k + 1)-colorable if and only if  $T_{2k-1}(G)$  is  $C_{2k+1}$ -colorable.

- The C<sub>2k+1</sub>-coloring problem captures the (2k + 1)-coloring problem.
- The C<sub>2k+1</sub>-coloring problem is NP-complete. (H.A. Maurer, J.H. Sudborough, E. Welzl 1981)

Can we make use of even cycles to capture 2k-coloring problem?

Density of C<sub>4</sub>-critical signed graphs

Conclusion

# Signed graphs

- A signed graph is a graph G = (V, E) together with an assignment  $\{+, -\}$  on its edges, denoted by  $(G, \sigma)$ .
- A switching at vertex v is to switch the signs of all the edges incident to this vertex.
- We say (G, σ') is switching equivalent to (G, σ) if it is obtained from (G, σ) by switching at some vertices (allowing repetition).
- The sign of a closed walk is the product of signs of all the edges of this walk.

#### Theorem [T. Zaslavsky 1982]

Signed graphs  $(G, \sigma)$  and  $(G, \sigma')$  are switching equivalent if and only if they have a same set of negative cycles.

Conclusion

# Homomorphism of signed graphs

- A homomorphism of a signed graph (G, σ) to (H, π) is a mapping φ from V(G) and E(G) to V(H) and E(H) (respectively) such that the adjacency, the incidence and the signs of closed walks are preserved.
- An edge-sign preserving homomorphism of a signed graph  $(G, \sigma)$  to  $(H, \pi)$  is a mapping  $\varphi$  from V(G) and E(G) to V(H) and E(H) (respectively) such that for  $uv \in E(G)$ ,  $\varphi(u)\varphi(v) \in E(H)$  and  $\sigma(uv) = \pi(\varphi(u)\varphi(v))$ .
- $(G,\sigma) \to (H,\pi) \Leftrightarrow \exists \sigma' \equiv \sigma, (G,\sigma') \xrightarrow{s.p.} (H,\pi).$



Conclusion

### No-homomorphism Lemma

There are four possible types of closed walks in signed graphs:

- type 00 is a closed walk which is positive and of even length,
- type 01 is a closed walk which is positive and of odd length,
- type 10 is a closed walk which is negative and of even length,
- type 11 is a closed walk which is negative and of odd length.

The length of a shortest nontrivial closed walk in  $(G, \sigma)$  of type ij,  $(ij \in \mathbb{Z}_2^2)$ , is denoted by  $g_{ij}(G, \sigma)$ .

#### No-homomorphism Lemma

If  $(G, \sigma) \to (H, \pi)$ , then  $g_{ij}(G, \sigma) \ge g_{ij}(H, \pi)$  for  $ij \in \mathbb{Z}_2^2$ .

Density of C\_4-critical signed graphs

Conclusion 00000

# k-coloring problem vs $C_{-k}$ -coloring problem

Given a signed graph  $(G, \sigma)$ , we define  $\mathcal{T}_k(G, \sigma)$  to be a signed graph obtained from  $(G, \sigma)$  by replacing each edge uv with a signed path of length k with sign  $-\sigma(uv)$ .

#### Lemma

A graph G is k-colorable if and only if  $T_{k-2}(G, +)$  is  $C_{-k}$ -colorable.

In particular, 2k-coloring problem of graphs is captured by  $C_{-2k}$ -coloring problem of signed (bipartite) graphs.

#### Special case when k = 4

A graph G is 4-colorable if and only if  $T_2(G, +)$  is  $C_{-4}$ -colorable.

Homomorphism of signed graphs

Density of C\_4-critical signed graphs

Conclusion

# Proof of $G \to K_4 \Leftrightarrow T_2(G, +) \to C_{-4}$



Figure:  $G \rightarrow K_4 \Rightarrow T_2(G, +) \rightarrow C_{-4}$ 

- $\Rightarrow$ : It suffices to show that  $T_2(K_4) \rightarrow C_{-4}$ .
- $\Leftarrow$ : Let  $\varphi$  :  $T_2(G, +) \rightarrow C_{-4}$ . This mapping preserves the bipartition.

Homomorphism of signed graphs

## Edge-sign preserving homomorphism to $C_{-4}$

Lemma [C. Charpentier, R. Naserasr, and E. Sopena 2020]

A signed bipartite graph  $(G, \sigma)$  admits an edge-sign preserving homomorphism to  $C_{-4}$  if and only if  $(P_3, \pi)$  does not admit an edge-sign preserving homomorphism to  $(G, \sigma)$  where  $(P_3, \pi)$  is the signed path of length 3 given below.



Figure:  $C_{-4}$  and its edge-sign preserving dual

Homomorphism of signed graphs

# NP-completeness of $C_4$ -coloring problem

- In order to map a signed bipartite graph (G, σ) to C<sub>-4</sub>, it is necessary and sufficient to find an equivalent signature σ' of σ where no positive edge is incident with a negative edge at each of its end.
- Deciding whether there exists an edge-sign preserving homomorphism to  $C_{-4}$  is in polynomial time but finding such an equivalent signature is hard.
- The C<sub>4</sub>-coloring problem is NP-complete. (R. C. Brewster, F. Foucaud, P. Hell and R. Naserasr 2017)

# k-critical and H-critical

- A graph is *k*-critical if it is *k*-chromatic but any proper graph of it is (k 1)-colorable.
- A graph is *H*-critical if it is not *H*-colorable but any proper graph of it is *H*-colorable. (P. A. Catlin 1988)
- k-critical  $\Leftrightarrow K_{k-1}$ -critical

The popular question of H-critical graphs on n vertices is to bound below the number of edges as a function of n.

- Any  $C_3$ -critical (4-critical) graph on *n* vertices has at least  $\frac{5n-2}{3}$  edges; (A. Kostochka and M. Yancey 2014)
- Any C<sub>5</sub>-critical graph on n vertices has at least <sup>5n-2</sup>/<sub>4</sub> edges;
   (Z. Dvorak and L. Postle 2017)
- Any C<sub>7</sub>-critical graph on n vertices has at least <sup>17n-2</sup>/<sub>15</sub> edges.
   (L. Postle and E. Smith-Roberge 2019)

Density of C<sub>4</sub>-critical signed graphs

Conclusion

# $(H,\pi)$ -critical signed graph

A signed graph  $(G, \sigma)$  is  $(H, \pi)$ -critical if the followings hold:

- $g_{ij}(G,\sigma) \geq g_{ij}(H,\pi);$
- $(G, \sigma) \not\rightarrow (H, \pi);$
- $(G', \sigma) \rightarrow (H, \pi)$  for any proper subgraph  $(G', \sigma) \subset (G, \sigma)$ .

We observe that:

- A graph G is k-critical if the signed graph (G, +) is  $(K_{k-1}, +)$ -critical.
- By No-homomorphism Lemma, our first condition eliminates trivial cases.

# $C_{-4}$ -critical signed graph

We say a signed graph  $(G, \sigma)$  is  $C_4$ -critical if the followings hold:

- $(G, \sigma)$  is bipartite and its negative-girth is at least 4;
- $(G, \sigma) \not\rightarrow C_{-4};$
- $(G', \sigma) \rightarrow C_{4}$  for any proper subgraph  $(G', \sigma) \subset (G, \sigma)$ .



Jaeger-Zhang conjecture and its bipartite analog

# Jaeger-Zhang Conjecture

#### Jaeger-Zhang Conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth at least 4k + 1 admits a homomorphism to  $C_{2k+1}$ .

- k = 1: Grötzsch's theorem;
- k = 2: true for odd-girth 11 (Z. Dvořák and L. Postle 2017);
- *k* ≥ 3:
  - true for odd-girth 8k 3 (X. Zhu 2001);
  - true for odd-girth <sup>20k-2</sup>/<sub>3</sub> (O.V. Borodin, S.-J. Kim, A.V. Kostochka and D.B. West 2002);
  - true for odd-girth 6k + 1 (L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013).

Conclusion

Jaeger-Zhang conjecture and its bipartite analog

Signed bipartite analog of Jaeger-Zhang Conjecture

# Signed bipartite analog of Jaeger-Zhang Conjecture [R. Naserasr, E. Rollová, É. Sopena 2015]

Every signed bipartite planar graph of negative-girth at least 4k - 2 admits a homomorphism to  $C_{-2k}$ .

- For mapping to  $C_{-4}$ , 8 is the best negative-girth condition;
- For any k ≥ 3, true for negative-girth 8k 2 (C. Charpentier, R. Naserasr, and E. Sopena 2020).

- Start from Four-Color Theorem
- Homomorphism of signed graphs
- $(H, \pi)$ -critical signed graphs
- Jaeger-Zhang conjecture and its bipartite analog

### 2 Density of $C_{-4}$ -critical signed graphs

- C<sub>-4</sub>-critical signed graphs
- Application to the planarity

# 3 Conclusion

C\_4-critical signed graphs

# Density of $C_4$ -critical signed graphs

#### Theorem

If  $\hat{G}$  is a  $C_{-4}$ -critical signed graph which is not isomorphic to  $\hat{W}$ , then

$$|E(\hat{G})| \geq \frac{4|V(\hat{G})|}{3}.$$

This theorem is tight due to a construction on a series of  $C_{-4}$ -critical signed graphs with edge-density  $\frac{4}{3}$ .

#### Corollary

Every signed bipartite planar graph with negative-girth at least 8 admits a homomorphism to  $C_{-4}$ .

Density of C\_4-critical signed graphs

Conclusion 00000

C\_4-critical signed graphs

### Technique of the proof

Assume to the contrary that a minimum counterexample  $\hat{G} = (G, \sigma)$  exists.

- The minimum counterexample  $\hat{G}$  is 2-connected.
- There must exist a 2-vertex in  $\hat{G}$ .
- There is no 3-thread in  $\hat{G}$ .

We denote  $P_2(\hat{H})$  to be a graph obtained from  $\hat{H}$  by adding a vertex v and joining it with two vertices in  $\hat{H}$  (with any signature).

Density of C\_4-critical signed graphs

Conclusion 00000

# Technique of the proof

• The potential of a signed graph is defined to be

$$p(\hat{G}) = 4|V(\hat{G})| - 3|E(\hat{G})|.$$

We will estimate the potentials of some subgraphs of  $\hat{G}$  and find some forbidden configuration in  $\hat{G}$ .

- The minimum counterexample  $\hat{G}$  is a  $C_{-4}$ -critical signed graph which is not isomorphic to  $\hat{W}$ , it satisfies  $p(\hat{G}) \ge 1$ , and that for any signed graph  $\hat{H}$ ,  $\hat{H} \ne \hat{W}$ , with  $|V(\hat{H})| < |V(\hat{G})|$  satisfying  $p(\hat{H}) \ge 1$ ,  $\hat{H}$  admits a homomorphism to  $C_{-4}$ .
- We will find more forbidden configurations and apply discharging technique.

C\_4-critical signed graphs



#### Lemma (Potential of subgraphs)

Let  $\hat{G} = (G, \sigma)$  be a minimum counterexample and let  $\hat{H}$  be a subgraph of  $\hat{G}$ . Then

•  $p(\hat{H}) \geq 1$  if  $\hat{G} = \hat{H}$ ;

2 
$$p(\hat{H}) \geq 3$$
 if  $\hat{G} = P_2(\hat{H})$ 

3 
$$p(\hat{H}) \ge 4$$
 otherwise.

Density of C\_4-critical signed graphs

Conclusion

# Sketch of the proof

- Suppose to the contrary that  $\hat{G}$  contains a proper subgraph  $\hat{H}$  which does not satisfy  $\hat{G} = P_2(\hat{H})$ , and satisfies  $p(\hat{H}) \leq 3$ . We take the maximum such  $\hat{H}$ .
- Notice that Ĥ is a proper induced subgraph of size at least 5.
   Let φ be a mapping of Ĥ to C<sub>-4</sub>.
- Define  $\hat{G}_1$  to be a signed (multi)graph obtained from  $\hat{G}$  by first identifying vertices of  $\hat{H}$  which are mapped to a same vertex of  $C_{-4}$  under  $\varphi$ . We conclude that  $\hat{G}_1 \not\rightarrow C_{-4}$ .
- Two possibilities: Either  $\hat{G}_1$  contains a  $C_{-2}$ , or  $\hat{G}_1$  contains a  $C_{-4}$ -critical subgraph  $\hat{G}_2$ .

C\_4-critical signed graphs

### Sketch of the proof

- Case 1:  $\hat{G}_1$  contains a  $C_{-2}$ . Then by computing  $p(\hat{H} + P_{-2})$  and using the maximality of  $\hat{H}$ , we can obtain the contradiction.
- Case 2:  $\hat{G}_1$  contains a  $C_4$ -critical subgraph  $\hat{G}_2$ . First of all by the minimum counterexample, we have  $p(\hat{G}_2) \leq 1$ . Then we define signed graph  $\hat{G}_3$  by combing  $\hat{G}_2$  and  $\hat{H}$  with some modifications. By the relation of  $\hat{H} \subsetneq \hat{G}_3 \subset \hat{G}$ , it leads to a contradiction with  $p(\hat{H}) \leq 3$ .

Density of C\_4-critical signed graphs

Conclusion

C\_4-critical signed graphs

# Forbidden configurations

#### Lemma

Two 4-cycles in the minimum counterexample  $\hat{G}$  cannot share one edge or two edges.

#### Lemma

Let  $vv_1u$  be a 2-thread in the minimum counterexample  $\hat{G}$ . Suppose that v is a 3-vertex and let  $v_2, v_3$  be the other two neighbors of v. Then the path  $v_2vv_3$  must be contained in a negative 4-cycle in  $\hat{G}$ .

#### Lemma

A vertex of degree 3 in the minimum counterexample  $\hat{G}$  does not have two neighbors of degree 2.

C\_4-critical signed graphs

# Constructions of $C_{-4}$ -critical signed graphs of density $\frac{4}{3}$

Given a graph G, let  $\tilde{G}$  be a signed graph obtained by replacing each edge of G by  $C_{-2}$ .

#### Lemma

A graph G is (k + 1)-critical if and only if  $T_{2k-2}(\tilde{G})$  is  $C_{-2k}$ -critical.

As odd cycles are the only 3-critical graphs,  $T_2(\tilde{C}_{2k+1})$ , for each  $k \ge 1$ , is a  $C_{-4}$ -critical signed graph whose density is  $\frac{4}{3} = \frac{8k+4}{6k+3}$ .



イロト 不得 トイヨト イヨト

Density of C\_4-critical signed graphs

Conclusion

 $C_4$ -critical signed graphs

### Constructions of sparse $C_{-4}$ -critical signed graphs

We have a  $C_4$ -critical signed graph on n vertices for each  $n \ge 9$ . Let  $\hat{G}_1$  and  $\hat{G}_2$  be two  $C_4$ -critical signed graphs.

Assuming that there is a 2-vertex u in G<sub>1</sub> with u<sub>1</sub>, u<sub>2</sub> being its neighbors and a 2-vertex v in G<sub>2</sub> with v<sub>1</sub>, v<sub>2</sub> being its neighbors, we build a signed graph F(G<sub>1</sub>, G<sub>2</sub>) from disjoint union of G<sub>1</sub> and G<sub>2</sub> by deleting u and v, and adding a positive edge u<sub>1</sub>v<sub>1</sub> and a negative edge u<sub>2</sub>v<sub>2</sub>.



C\_4-critical signed graphs

Conclusion 00000

## Constructions of sparse $C_4$ -critical signed graphs

#### Analog of Hajo's construction

Assuming that there is a positive edge x<sub>1</sub>y<sub>1</sub> in Ĝ<sub>1</sub> and a negative edge x<sub>2</sub>y<sub>2</sub> in Ĝ<sub>2</sub>, we build a signed graph H(Ĝ<sub>1</sub>, Ĝ<sub>2</sub>) from disjoint union of Ĝ<sub>1</sub> and Ĝ<sub>2</sub> by deleting x<sub>1</sub>y<sub>1</sub>, x<sub>2</sub>y<sub>2</sub> and identifying x<sub>1</sub> with x<sub>2</sub> and y<sub>1</sub> with y<sub>2</sub>.







Figure: **Г** 

Figure: **F** 

Figure:  $\mathcal{H}(\Gamma, \Gamma)$ 

Conclusion

Application to the planarity

### Mapping signed bipartite planar graphs to $C_{-4}$

A signed graph  $(G, \sigma)$  is 2*k*-colorable if there exists a mapping c:  $V(G) \rightarrow \{\pm 1, \ldots, \pm k\}$  such that for each edge *uv* of *G*,  $c(x) \neq \sigma(uv)c(y)$ .



### Figure: $\tilde{K}_3^+$

Conjecture [E. Máčajová, A. Raspaud, M. Škoviera 2016] Every signed planar simple graph is 4-colorable. Application to the planarity

Conclusion 00000

# Mapping signed bipartite planar graphs to $C_{-4}$

Theorem [F. Kardoš, J. Narboni 2020]

There exists a signed planar simple graph which is not 4-colorable.

#### Lemma

A signed graph  $(G, \sigma)$  is 2*k*-colorable if and only if  $T_{2k-2}(G, \sigma)$  is  $C_{-2k}$ -colorable.

When k = 2,  $(G, \sigma)$  is 4-colorable if and only if  $T_2(G, \sigma)$  is  $C_{-4}$ -colorable. Therefore, there exists a signed graph  $T_2(G, \sigma)$  which does not admit a homomorphism to  $C_{-4}$ .

#### Theorem

There exists a bipartite planar graph G of girth 6 with a signature  $\sigma$  such that  $(G, \sigma) \not\rightarrow C_{-4}$ .

< 100 P

# Mapping signed bipartite planar graphs to $C_{-4}$

- By Folding Lemma, starting from a signed bipartite planar graph whose shortest negative cycles are of length at least 8, we get a homomorphic image Ĝ with a planar embedding where all faces are (negative) 8-cycles.
- Applying Euler's Formula on this graph, we have  $|E(G)| \leq \frac{3(|V(G)|-2)}{4}$ .

#### Theorem

Every signed bipartite planar graph with negative-girth at least 8 admits a homomorphism to  $C_{-4}$ . Moreover, the girth condition is the best possible.

- Start from Four-Color Theorem
- Homomorphism of signed graphs
- $(H, \pi)$ -critical signed graphs
- Jaeger-Zhang conjecture and its bipartite analog

### 2 Density of C<sub>4</sub>-critical signed graphs

- C<sub>-4</sub>-critical signed graphs
- Application to the planarity



### Relation with circular coloring of signed graphs

 In a joint work with Xuding Zhu, we have defined circular chromatic number of signed graphs. We prove that for any signed bipartite graph (G, σ),

$$X_{c}(G,\sigma) \leq rac{8}{3} \Leftrightarrow (G,\sigma) 
ightarrow C_{-4}.$$

• So our work can be restated as: Any  $\frac{8}{3}$ -critical signed bipartite graph has at least  $\frac{4n}{3}$  edges except for  $\hat{W}$ .



• We look for some strong sufficient conditions for signed bipartite planar graphs mapping to C<sub>-4</sub>.

#### Conjecture

Let G be a bipartite planar graph of girth at least 6. Let  $\sigma$  be a signature on G such that in  $(G, \sigma)$  all 6-cycles are of a same sign. Then  $(G, \sigma) \to C_{-4}$ .

• It contains Four-Color Theorem by *T*<sub>2</sub> construction on a planar simple graph.

### Discussion

• We determined that the best girth condition for mapping signed bipartite planar graphs to  $C_{-4}$  is 8 rather than 6.

#### Question

What is the girth condition for signed bipartite planar graphs mapping to  $C_{-2k}$ ?

# The end. Thank you!

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < () 36 / 36