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Circular coloring of graphs

Circular coloring of graphs

Given a real number r , a circular r -coloring of a graph G is a
mapping f : V (G ) ! C

r such that for any edge uv 2 E (G ),

d(mod r)(f (u), f (v)) � 1.

The circular chromatic number of G is defined as

�c(G ) = inf{r : G admits a circular r -coloring}.
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Circular coloring of graphs

Circular coloring of graphs

A 3-chromatic graph is not 2-colorable, but if its circular
chromatic number is near 2, then it is somehow “just barely”
not 2-colorable.

By Grotzsch’s theorem, every triangle-free planar graph is
3-colorable. In generalizing this to circular chromatic number,
we may ask what threshold on girth is needed to force the
circular chromatic number to be at most 2 + 1

t .

Jaeger-Zhang conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth 4k + 1 admits a circular
(2 + 1

k )-coloring.
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Homomorphism of signed graphs

Homomorphism of signed graphs

A signed graph is a graph G = (V ,E ) together with an
assignment {+,�} on its edges, denoted by (G ,�).

A switching at vertex v is to switch the signs of all the edges
incident to this vertex.

The sign of a closed walk is the product of signs of all the
edges of this walk.

A homomorphism of signed graph (G ,�) to a signed graph
(H,⇡) is a mapping ' from V (G ) and E (G ) correspondingly
to V (H) and E (H) such that the adjacency, the incidence and
the signs of the closed walks are preserved.

If there exists one, we write (G ,�) ! (H,⇡).
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Homomorphism of signed graphs

Homomorphism of signed graphs

An edge-sign preserving homomorphism of a signed graph
(G ,�) to (H,⇡) is a mapping f : V (G ) ! V (H) such that for
every positive (respectively, negative) edge uv of (G ,�),
f (u)f (v) is a positive (respectively, negative) edge of (H,⇡).

If there exists one, we write (G ,�)
s.p.�! (H,⇡).

Proposition

Given two signed graphs (G ,�) and (H,⇡),

(G ,�) ! (H,⇡) , 9�0 ⌘ �, (G ,�0)
s.p.�! (H,⇡).
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Homomorphism of signed graphs

Double Switching Graphs

Given a signed graph (G ,�) on the vertex set V = {x1, . . . , xn},
the Double Switching Graph of (G ,�), denoted DSG(G ,�), is a
signed graph built as follows:

We have two disjoint copies of V , V+ = {x+
1
, x+

2
, . . . , x+n }

and V
� = {x�

1
, x�

2
, . . . , x�n } in DSG(G ,�).

Each set of vertices V+,V� then induces a copy of (G ,�).

Furthermore, a vertex x
�
i connects to vertices in V

+ as it is
obtained from a switching on xi .
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Homomorphism of signed graphs

Double Switching Graphs
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Figure: Signed graphs (C4, e) and DSG(C4, e)

Theorem [R.C. Brewster and T. Graves 2009]

Given signed graphs (G ,�) and (H,⇡),

(G ,�) ! (H,⇡) , (G ,�)
s.p.�! DSG(H,⇡).
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Circular chromatic number

Circular coloring of signed graphs

Given a signed graph (G ,�) with no positive loop and a real
number r , a circular r -coloring of (G ,�) is a mapping
f : V (G ) ! C

r such that for each positive edge uv of (G ,�),

d(mod r)(f (u), f (v)) � 1,

and for each negative edge uv of (G ,�),

d(mod r)(f (u), f (v)) � 1.

The circular chromatic number of (G ,�) is defined as

�c(G ,�) = inf{r � 1 : (G ,�) admits a circular r -coloring}.
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Circular chromatic number

Refinement of 0-free 2k-coloring of signed graphs

Definition [T. Zaslavsky 1982]

Given a signed graph (G ,�) and a positive integer k , a 0-free
2k-coloring of (G ,�) is a mapping f : V (G ) ! {±1,±2, . . . ,±k}
such that for any edge uv of (G ,�), f (u) 6= �(uv)f (v).

Proposition

Assume (G ,�) is a signed graph and k is a positive integer. Then
(G ,�) is 0-free 2k-colorable if and only if (G ,�) is circular
2k-colorable.
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Circular chromatic number

Equivalent definition

Note that for s, t 2 [0, r), d(mod r)(s, t) = min{|s � t|, r � |s � t|}.
A circular r -coloring of a signed graph (G ,�) is a mapping
f : V (G ) ! [0, r) such that for each positive edge uv ,

1  |f (u)� f (v)|  r � 1

and for each negative edge uv ,

either |f (u)� f (v)|  r

2
� 1 or |f (u)� f (v)| � r

2
+ 1.
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Circular chromatic number

Equivalent definition: (p, q)-coloring of signed graphs

For i , j , x 2 {0, 1, . . . , p � 1}, we define
d(mod p)(i , j) = min{|i � j |, p � |i � j |} and x̄ = x + p

2
(mod p).

Assume p is an even integer and q  p
2
is a positive integer.

A (p, q)-coloring of a signed graph (G ,�) is a mapping
f : V (G ) ! {0, 1, . . . , p � 1} such that for any positive edge
uv ,

d(mod p)(f (u), f (v)) � q,

and for any negative edge uv ,

d(mod p)(f (u), f (v)) � q.

The circular chromatic number of (G ,�) is

�c(G ,�) = inf{p
q
: (G ,�) has a (p, q)-coloring}.
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Circular chromatic number

Signed circular clique

Circular chromatic number of signed graphs are also defined
through graph homomorphism.

For integers p � 2q > 0 such that p is even, the signed circular
clique K

s
p;q has vertex set [p] = {0, 1, . . . , p � 1}, in which

ij is a positive edge if q  |i � j |  p � q;

ij is a negative edge if |i � j |  p
2
� q or |i � j | � p

2
+ q.
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Circular chromatic number

Signed circular clique

Lemma

Given a signed graph (G ,�) and a positive even integer p, a
positive integer q with p � 2q, (G ,�) has a (p, q)-coloring if and

only if (G ,�)
s.p.�! K

s
p;q.

Hence the circular chromatic number of (G ,�) is

�c(G ,�) = inf{p
q
: p is even and (G ,�)

s.p.�! K
s
p;q }.

Lemma

If (G ,�)
s.p.�! (H,⇡), then �c(G ,�)  �c(H,⇡).

Lemma

Given even positive integers p, p0, if p
q  p0

q0 , then K
s
p;q

s.p.�! K
s
p0;q0 .
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Circular chromatic number

Signed circular clique

Let K̂ s
p;q be the signed subgraph of K s

p;q induced by vertices

{0, 1, . . . , p
2
� 1}. Notice that K s

p;q = DSG(K̂ s
p;q).

The circular chromatic number of (G ,�) is also

�c(G ,�) = inf{p
q
: p is even and (G ,�) ! K̂

s
p;q }.

Figure: K s
8;3

Figure: K̂ s
8;3
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Circular chromatic number

Circular chromatic number of cycles

For a non-zero integer `, we denote by C` the cycle of length |`|
whose sign agrees with the sign of `.

Proposition

�c(C2k) = �c(C�(2k+1)) = 2; �c(C2k+1) =
2k+1

k ;

�c(C�2k) =
4k

2k�1
.

Observe that the signed graph K̂
s
4k;2k�1

is obtained from C�2k by
adding a negative loop at each vertex.
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Circular chromatic number

C2k+1-coloring and C�2k-coloring

Proposition

Given a graph G , G ! C2k+1 if and only if �c(G )  2k+1

k ;

Given a signed bipartite graph (G ,�),

(G ,�) ! C�2k if and only if �c(G ,�)  4k

2k � 1
.
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Signed indicators

Signed indicator

Let G be a graph and let ⌦ be a signed graph.

A signed indicator I is a triple I = (�, u, v) such that � is a
signed graph and u, v are two distinct vertices of �.

Replacing e of G with a copy of I is the following operation:
Take the disjoint union of ⌦ and I, delete the edge e from ⌦,
identify x with u and identify y with v .

Given a signed indicator I, we denote by G (I) the signed
graph obtained from G by replacing each edge with a copy of
I.
Given two signed indicators I+ and I�, we denote by
⌦(I+, I�) the signed graph obtained from ⌦ by replacing
each positive edge with a copy of I+ and replacing each
negative edge with a copy of I�.
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Signed indicators

Signed indicator

Assume I = (�, u, v) is a signed indicator and r � 2 is a real
number.

For a, b 2 [0, r), we say the color pair (a, b) is feasible for I
(with respect to r) if there is a circular r -coloring � of � such
that �(u) = a and �(v) = b.
Define

Z (I, r) = {b 2 [0,
r

2
] : (0, b) is feasible for I with respect to r}.

Lemma

Assume that I = (�, u, v) is a signed indicator, r � 2 is a real
number and Z (I, r) = [t, r

2
� t] for some 0 < t < r

4
. Then for any

graph G ,

�c(G ) =
�c(G (I))

2t
.
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Signed indicators

Examples

If � is a positive 2-path connecting u and v , and I = (�, u, v),
then for any ✏, 0 < ✏ < 1, and r = 4� 2✏,

Z (I, r) = [0, 2� 2✏] = [0,
r

2
� ✏].

If �0 is a negative 2-path connecting u and v , and
I 0 = (�0, u, v), then for any ✏, 0 < ✏ < 1, and r = 4� 2✏,

Z (I 0, r) = [✏,
r

2
].

If �00 consists of a negative 2-path and a positive 2-path
connecting u and v , and I 00 = (�00, u, v), then for any ✏,
0 < ✏ < 1, and r = 4� 2✏,

Z (I 00, r) = [✏,
r

2
� ✏].
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Signed indicators

Indicator construction S(G )

Given a graph G , a signed graph S(G ) is built as follows.

Figure: S(K3) Figure: S(C5)

Corollary

For any graph G ,

�c(S(G )) = 4� 4

�c(G ) + 1
.
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Signed indicators

Signed indicator

Lemma

Assume that I+ and I� are indicators, r � 2 is a real number and

Z (I+, r) = [t,
r

2
],Z (I�, r) = [0,

r

2
� t]

for some 0 < t < r
2
. Then for any signed graph ⌦,

�c(⌦) =
�c(⌦(I+, I�))

t
.
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Tight cycle argument

Tight cycle argument

Assume (G ,�) is a signed graph and � : V (G ) ! [0, r) is a
circular r -coloring of (G ,�). The partial orientation D = D�(G ,�)
of G with respect to a circular r -coloring � is defined as follows:
(u, v) is an arc of D if and only if one of the following holds:

uv is a positive edge and (�(v)� �(u))(mod r) = 1.

uv is a negative edge and (�(v)� �(u))(mod r) = 1.

Arcs in D�(G ,�) are called tight arcs of (G ,�) with respect to �.
A directed cycle in D�(G ,�) is called a tight cycle with respect to
�.

24 / 51



Introduction Circular coloring of signed graphs Results on some classes of signed graphs Discussion

Tight cycle argument

Tight cycle argument

Lemma

Let (G ,�) be a signed graph and let � be a circular r -coloring of
(G ,�). If D�(G ,�) is acyclic, then there exists an r0 � r such that
(G ,�) admits an r0-circular coloring.

Notice that assume D�(G ,�) is acyclic and among all such �,
D�(G ,�) has minimum number of arcs, then D�(G ,�) has no arc.

Lemma

Given a signed graph (G ,�), �c(G ,�) = r if and only if (G ,�) is
circular r -colorable and every circular r -coloring � of (G ,�) has a
tight cycle.
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Tight cycle argument

Tight cycle argument

Proposition

Any signed graph (G ,�), which is not a forest, has a cycle with s

positive edges and t negative edges such that

�c(G ,�) =
2(s + t)

2a+ t

for some non-negative integer a.

Corollary

Given a signed graph (G ,�) on n vertices, �c(G ,�) = p
q for some

p  2n and q.
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Classes of signed graphs

Given a class C of signed graphs,

�c(C) = sup{�c(G ,�) | (G ,�) 2 C}.

SBP the class of signed bipartite planar simple graphs,

SDd the class of signed d-degenerate simple graphs,

SP the class of signed planar simple graphs.
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Signed bipartite planar graphs

Signed bipartite planar graphs

Proposition

�c(SBP) = 4.

Let �1 be a positive 2-path connecting u1 and v1. For i � 2,
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Signed bipartite planar graphs

Signed bipartite planar graphs

u1 v1

u2

v2

u3 v3

u4

v4

Figure: �4

u1 v1

u2

v2

u3 v3

u4

v4

u5 v5

Figure: �5

Lemma

�c(�n) =
4n

n + 1
.
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Signed bipartite planar graphs

Results on signed bipartite planar graphs with girth
condition

�c(SBP6)  3. (Corollary of a result that every signed
bipartite planar graph of negative girth 6 admits a
homomorphism to (K3,3,M) [R. Naserasr and Z. Wang
2021+])

�c(SBP8)  8

3
. (Corollary of a result that C�4-critical signed

graph has density |E (G )| � 3|V (G)|�2

4
[R. Naserasr, L-A.

Pham and Z. Wang 2020+])
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Signed d-degenerate graphs

Signed d -degenerate graphs

Proposition

For any positive integer d , �c(SDd) = 2bd
2
c+ 2.

Sketch of the proof:

First we show that every (G ,�) 2 SDd admits a circular
(2bd

2
c+ 2)-coloring.

For the tightness,

For odd integer d , we consider the signed complete graphs
(Kd+1,+).

For d = 2, we consider the signed graph �n built before.

For even integer d � 4, we construct a signed d-degenerate
graph (G ,�) such that �c(G ,�) = d + 2.
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Signed d-degenerate graphs

Signed d -degenerate graphs

Proof for even d � 4

Define a signed graph ⌦d as follows.

Let ' be a circular r -coloring of ⌦d where r < d + 2.
Without loss of generality, '(x1), . . . ,'(xd) are cyclically
ordered on C

r and assume that d(mod r)('(x1),'(x2)) is
maximized. We prove that there is no place for y

1,1+ d
2

.
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Signed planar graphs

Signed planar graphs

Proposition

4 +
2

3
 �c(SP)  6.

a

b

c

x y

z

Figure: Mini-gadget (T ,⇡)

w

x1

x2

x3 x4

x5

z t

u

v

Figure: A signed Wenger Graph W
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Signed planar graphs

Signed planar graphs

`�;u,v : the minimum length of an interval which contains
�(u) [ �(v).

Lemma

Let r = 14

3
� ✏ with 0 < ✏  2

3
. For any circular r -coloring � of W̃ ,

`�;u,v � 4

9
.

Let � be obtained from W̃ by adding a negative edge uv . Let
I = (�, u, v).

Theorem

Let ⌦ = K4(I). Then ⌦ is a signed planar simple graph with
�c(⌦) =

14

3
.

35 / 51



Introduction Circular coloring of signed graphs Results on some classes of signed graphs Discussion

Signed planar graphs

Sketch of the proof of the theorem

First we show that ⌦ admits a circular 14

3
-coloring. We find a

circular 14

3
-coloring � of � such that �(u) = �(v) = 0 and

then extend it to each of inner triangles.

Let � be a circular r -coloring of ⌦ for r < 14

3
. For any

1  i < j  4, 4

9
 d(mod r)(�(vi ),�(vj))  r

2
� 1.

Assume that �(x1),�(x2),�(x3),�(x4) are on C
r in this cyclic

order.
`([�(v1),�(v4)]) = `([�(v1),�(v2)]) + `([�(v2),�(v3)]) +
`([�(v3),�(v4)]) � 3⇥ 4

9
= 4

3
> r

2
� 1,

`([�(v4),�(v1)]) � r � (`([�(v1),�(v3)]) + `([�(v2),�(v4)])) �
2 > r

2
� 1.

Contradiction.
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Signed planar graphs

Results on signed planar graphs with girth condition

�c(SP4) = 4. (By the 3-degeneracy of triangle-free planar
graph)

�c(SP7)  3. (Corollary of a result that every signed graph
of mad < 14

5
admits a homomorphism to (K6,M) [R.

Naserasr, R. Škrekovski, Z. Wang and R. Xu 2020+])
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Signed planar graphs

Signed circular chromatic number

For a simple graph G , the signed circular chromatic number �s
c(G )

of G is defined as

�s
c(G ) = max{�c(G ,�) : � is a signature of G}.

Proposition

For every graph G , �s
c(G )  2�c(G ).
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Signed planar graphs

Signed chromatic number of k-chromatic graph

Theorem

For any integers k , g � 2 and any ✏ > 0, there is a graph G of
girth at least g satisfying that �(G ) = k and �s

c(G ) > 2k � ✏.

We will prove that for any integer p, there is a graph G for which
the followings hold:

G is of girth at least g and has chromatic number at most k .

There is a signature � such that (G ,�) is not
(2kp, (p + 1))-colorable.
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Signed planar graphs

Augmented tree

A complete k-ary tree is a rooted tree in which each non-leaf
vertex has k children and all the leaves are of the same level.

A q-augmented k-ary tree is obtained from a complete k-ary
tree by adding, for each leaf v , q edges connecting v to q of
its ancestors. These q edges are called the augmenting edges
from v .

For positive integers k , q, g , a (k , q, g)-graph is a
q-augmented k-ary tree which is bipartite and has girth at
least g .

Lemma [Alon, N., Kostochka, A., Reiniger, B., West, D., and Zhu,
X 2016]

For any positive integers k , q, g � 2, there exists a (k , q, g)-graph.
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Signed planar graphs

Augmented tree

A standard labeling of a complete k-ary tree T ;

A f -path Pf of T with respect to a given k-coloring f .
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Signed planar graphs

Construction of k-chromatic graph G

H: (2kp, k , 2kg)-graph with underline tree T .

�: a standard 2kp-labeling of the edges of T .

`(v): the level of v , i.e., the distance from v to the root
vertex in T . Let ✓(v) = `(v)(mod k).

For each leaf v of T , let uv ,1, uv ,2, . . . , uv ,k be the vertices on Pv

that are connected to v by augmenting edges. Let u0v ,i 2 Pv be the
closest descendant of uv ,i with ✓(u0v ,i ) = i and let ev ,i be the edge
connecting u

0
v ,i to its child on Pv .

Let sv ,i = �(ev ,i ) and let

Av ,i = {sv ,i , sv ,i + 1, . . . , sv ,i + p},
Bv ,i = {a+ kp : a 2 Av ,i},
Cv ,i = Av ,i [ Bv ,i .
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Signed planar graphs

Construction of the signature � on G

Note that Bv ,i is a kp-shift of Av ,i . Two possibilities:

Av ,i \ Av ,j 6= ; (then Bv ,i \ Bv ,j 6= ;)

d(mod 2kp)(�(ev ,i ),�(ev ,j))  p.

Av ,i \ Bv ,j 6= ; (then Bv ,i \ Av ,j 6= ;)

d(mod 2kp)(�(ev ,i ),�(ev ,j))  p.

Let L be the set of leaves of T . For each v 2 L, we define one
edge ev on V (T ) as follows:

If d(mod 2kp)(�(ev ,i ),�(ev ,j))  p, then let ev be a positive
edge connecting u

0
v ,i and u

0
v ,j .

If d(mod 2kp)(�(ev ,i ),�(ev ,j))  p, then let ev be a negative
edge connecting u

0
v ,i and u

0
v ,j .
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Signed planar graphs

Proof for “(G , �) is not circular
2kp

p + 1
-colorable”

Let (G ,�) be the signed graph with vertex set V (T ) and with edge
set {ev : v 2 L}, where the signs of the edges are defined as above.

Assume f is a (2kp, p + 1)-coloring of (G ,�).

As f is also a 2kp-coloring of the vertices of T , there is a
unique f -path Pv . Assume that ev = u

0
v ,iu

0
v ,j . By definition,

f (u0v ,i ) = �(ev ,i ) and f (u0v ,j) = �(ev ,j).

If ev is a positive edge, then d(mod 2kp)(�(ev ,i ),�(ev ,j))  p.

If ev is a negative edge, then d(mod 2kp)(�(ev ,i ),�(ev ,j))  p.
Contradiction.
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Mapping signed graphs to signed cycles

Let C o+
` be signed cycle of length ` where the number of positive

edges is odd. Then �c(C
o+
` ) =

2`

`� 1
.

Theorem

Given a positive integer ` and a signed graph (G ,�) satisfying

gij(G ,�) � gij(C
o+
` ) for ij 2 Z2

2
, we have �c(G ,�)  2`

`� 1
if and

only if (G ,�) ! C
o+
` .
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Circular chromatic number of signed planar graphs

Question

Given a positive integer `, what is the smallest value f (`) (with
f (1) = 1) such that for every signed planar graph (G ,�)
satisfying gij(G ,�) � gij(C

o+
` ) and gij(G ,�) � f (`) for all ij 2 Z2

2
,

we have �c(G ,�)  2`

`� 1
.
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Jaeger-Zhang conjecture

When ` = 2k + 1,

Jaeger-Zhang conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth f (2k + 1) = 4k + 1 admits a
circular 2k+1

k -coloring, i.e., C2k+1-coloring.

f (3) = 5 [Grötzsch’s theorem];

f (5)  11 [Z. Dvǒrák and L. Postle 2017][D. W. Cranston and
J. Li 2020];

4k + 1  f (2k + 1)  6k + 1 [C. Q. Zhang 2002; L. M.
Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013];
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Bipartite analogue of Jaeger-Zhang conjecture

When ` = 2k ,

Bipartite analogue of Jaeger-Zhang conjecture

Every signed bipartite planar graph of negative-girth f (2k) admits
a circular 4k

2k�1
-coloring, i.e., C�2k -coloring.

f (4) = 8 [R. Naserasr, L. A. Pham and Z. Wang 2020+];
(f (2k) > 4k � 2 when k = 2.)

f (2k)  8k � 2 [C. Charpentier, R. Naserasr and E. Sopena
2020].
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Odd-Hadwiger Conjecture

Theorem [P.A. Catlin 1979]

If (G ,�) has no (K4,�)-minor, then �c(G ,+)  3.

The Odd-Hadwiger conjecture was proposed independently by B.
Gerard and P. Seymour.

Odd-Hadwiger conjecture

If a signed graph (G ,�) has no (Kk+1,�)-minor, then
�c(G ,+)  k .

Question

Assuming (G ,�) has no (Kk+1,�)-minor, what is the best upper
bound on �c(G ,��)?

50 / 51



Introduction Circular coloring of signed graphs Results on some classes of signed graphs Discussion

The end. Thank you!
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