Circular Coloring of Signed Graphs

Zhouningxin Wang

Université de Paris
wangzhou4@irif.fr
(A joint work with Reza Naserasr, Xuding Zhu)

March 20, 2021
(1) Introduction

- Circular coloring of graphs
- Homomorphism of signed graphs
(2) Circular coloring of signed graphs
- Circular chromatic number
- Signed indicators
- Tight cycle argument

3 Results on some classes of signed graphs

- Signed bipartite planar graphs
- Signed d-degenerate graphs
- Signed planar graphs
(9) Discussion

Circular coloring of graphs

Given a real number r, a circular r-coloring of a graph G is a mapping $f: V(G) \rightarrow C^{r}$ such that for any edge $u v \in E(G)$,

$$
d_{(\bmod r)}(f(u), f(v)) \geq 1
$$

The circular chromatic number of G is defined as

$$
\chi_{c}(G)=\inf \{r: G \text { admits a circular } r \text {-coloring }\}
$$

Circular coloring of graphs

- A 3-chromatic graph is not 2-colorable, but if its circular chromatic number is near 2, then it is somehow "just barely" not 2-colorable.
- By Grotzsch's theorem, every triangle-free planar graph is 3-colorable. In generalizing this to circular chromatic number, we may ask what threshold on girth is needed to force the circular chromatic number to be at most $2+\frac{1}{t}$.

Jaeger-Zhang conjecture [C.-Q. Zhang 2002]
Every planar graph of odd-girth $4 k+1$ admits a circular
$\left(2+\frac{1}{k}\right)$-coloring.

Homomorphism of signed graphs

- A signed graph is a graph $G=(V, E)$ together with an assignment $\{+,-\}$ on its edges, denoted by (G, σ).
- A switching at vertex v is to switch the signs of all the edges incident to this vertex.
- The sign of a closed walk is the product of signs of all the edges of this walk.
- A homomorphism of signed graph (G, σ) to a signed graph (H, π) is a mapping φ from $V(G)$ and $E(G)$ correspondingly to $V(H)$ and $E(H)$ such that the adjacency, the incidence and the signs of the closed walks are preserved.
- If there exists one, we write $(G, \sigma) \rightarrow(H, \pi)$.

Homomorphism of signed graphs

- An edge-sign preserving homomorphism of a signed graph (G, σ) to (H, π) is a mapping $f: V(G) \rightarrow V(H)$ such that for every positive (respectively, negative) edge $u v$ of (G, σ), $f(u) f(v)$ is a positive (respectively, negative) edge of (H, π).
- If there exists one, we write $(G, \sigma) \xrightarrow{\text { s.p. }}(H, \pi)$.

Proposition

Given two signed graphs (G, σ) and (H, π),

$$
(G, \sigma) \rightarrow(H, \pi) \Leftrightarrow \exists \sigma^{\prime} \equiv \sigma,\left(G, \sigma^{\prime}\right) \xrightarrow{\text { s.p. }}(H, \pi) .
$$

Double Switching Graphs

Given a signed graph (G, σ) on the vertex set $V=\left\{x_{1}, \ldots, x_{n}\right\}$, the Double Switching Graph of (G, σ), denoted $\operatorname{DSG}(G, \sigma)$, is a signed graph built as follows:

- We have two disjoint copies of $V, V^{+}=\left\{x_{1}^{+}, x_{2}^{+}, \ldots, x_{n}^{+}\right\}$ and $V^{-}=\left\{x_{1}^{-}, x_{2}^{-}, \ldots, x_{n}^{-}\right\}$in $\operatorname{DSG}(G, \sigma)$.
- Each set of vertices V^{+}, V^{-}then induces a copy of (G, σ).
- Furthermore, a vertex x_{i}^{-}connects to vertices in V^{+}as it is obtained from a switching on x_{i}.

Double Switching Graphs

Figure: Signed graphs $\left(C_{4}, e\right)$ and $\operatorname{DSG}\left(C_{4}, e\right)$

Theorem [R.C. Brewster and T. Graves 2009]
Given signed graphs (G, σ) and (H, π),

$$
(G, \sigma) \rightarrow(H, \pi) \Leftrightarrow(G, \sigma) \xrightarrow{\text { s.p. }} \operatorname{DSG}(H, \pi) .
$$

(1) Introduction

- Circular coloring of graphs
- Homomorphism of signed graphs
(2) Circular coloring of signed graphs
- Circular chromatic number
- Signed indicators
- Tight cycle argument
(3) Results on some classes of signed graphs
- Signed bipartite planar graphs
- Signed d-degenerate graphs
- Signed planar graphs

4 Discussion

Circular coloring of signed graphs

Given a signed graph (G, σ) with no positive loop and a real number r, a circular r-coloring of (G, σ) is a mapping $f: V(G) \rightarrow C^{r}$ such that for each positive edge $u v$ of (G, σ),

$$
d_{(\bmod r)}(f(u), f(v)) \geq 1
$$

and for each negative edge $u v$ of (G, σ),

$$
d_{(\bmod r)}(f(u), \overline{f(v)}) \geq 1
$$

The circular chromatic number of (G, σ) is defined as

$$
\chi_{c}(G, \sigma)=\inf \{r \geq 1:(G, \sigma) \text { admits a circular } r \text {-coloring }\} .
$$

Refinement of 0 -free $2 k$-coloring of signed graphs

Definition [T. Zaslavsky 1982]

Given a signed graph (G, σ) and a positive integer k, a 0 -free $2 k$-coloring of (G, σ) is a mapping $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm k\}$ such that for any edge $u v$ of $(G, \sigma), f(u) \neq \sigma(u v) f(v)$.

Proposition

Assume (G, σ) is a signed graph and k is a positive integer. Then (G, σ) is 0 -free $2 k$-colorable if and only if (G, σ) is circular $2 k$-colorable.

Equivalent definition

Note that for $s, t \in[0, r), d_{(\bmod r)}(s, t)=\min \{|s-t|, r-|s-t|\}$.

- A circular r-coloring of a signed graph (G, σ) is a mapping $f: V(G) \rightarrow[0, r)$ such that for each positive edge $u v$,

$$
1 \leq|f(u)-f(v)| \leq r-1
$$

and for each negative edge $u v$,

$$
\text { either }|f(u)-f(v)| \leq \frac{r}{2}-1 \text { or }|f(u)-f(v)| \geq \frac{r}{2}+1
$$

Equivalent definition: (p, q)-coloring of signed graphs

For $i, j, x \in\{0,1, \ldots, p-1\}$, we define
$d_{(\bmod p)}(i, j)=\min \{|i-j|, p-|i-j|\}$ and $\bar{x}=x+\frac{p}{2}(\bmod p)$.

- Assume p is an even integer and $q \leq \frac{p}{2}$ is a positive integer. A (p, q)-coloring of a signed graph (G, σ) is a mapping $f: V(G) \rightarrow\{0,1, \ldots, p-1\}$ such that for any positive edge $u v$,

$$
d_{(\bmod p)}(f(u), f(v)) \geq q
$$

and for any negative edge $u v$,

$$
d_{(\bmod p)}(f(u), \overline{f(v)}) \geq q .
$$

The circular chromatic number of (G, σ) is

$$
\chi_{c}(G, \sigma)=\inf \left\{\frac{p}{q}:(G, \sigma) \text { has a }(p, q) \text {-coloring }\right\}
$$

Signed circular clique

Circular chromatic number of signed graphs are also defined through graph homomorphism.

For integers $p \geq 2 q>0$ such that p is even, the signed circular clique $K_{p ; q}^{s}$ has vertex set $[p]=\{0,1, \ldots, p-1\}$, in which

- $i j$ is a positive edge if $q \leq|i-j| \leq p-q$;
- ij is a negative edge if $|i-j| \leq \frac{p}{2}-q$ or $|i-j| \geq \frac{p}{2}+q$.

Signed circular clique

Lemma

Given a signed graph (G, σ) and a positive even integer p, a positive integer q with $p \geq 2 q,(G, \sigma)$ has a (p, q)-coloring if and only if $(G, \sigma) \xrightarrow{\text { s.p. }} K_{p ; q}^{s}$.

Hence the circular chromatic number of (G, σ) is

$$
\chi_{c}(G, \sigma)=\inf \left\{\frac{p}{q}: p \text { is even and }(G, \sigma) \xrightarrow{\text { s.p. }} K_{p ; q}^{s}\right\} .
$$

Lemma
If $(G, \sigma) \xrightarrow{\text { s.p. }}(H, \pi)$, then $\chi_{c}(G, \sigma) \leq \chi_{c}(H, \pi)$.

Lemma

Given even positive integers p, p^{\prime}, if $\frac{p}{q} \leq \frac{p^{\prime}}{q^{\prime}}$, then $K_{p ; q}^{s} \xrightarrow{\text { s.p. }} K_{p^{\prime} ; q^{\prime}}^{s}$.

Signed circular clique

Let $\hat{K}_{p ; q}^{s}$ be the signed subgraph of $K_{p ; q}^{s}$ induced by vertices $\left\{0,1, \ldots, \frac{p}{2}-1\right\}$. Notice that $K_{p ; q}^{s}=\operatorname{DSG}\left(\hat{K}_{p ; q}^{s}\right)$.
The circular chromatic number of (G, σ) is also

$$
\chi_{c}(G, \sigma)=\inf \left\{\frac{p}{q}: p \text { is even and }(G, \sigma) \rightarrow \hat{K}_{p ; q}^{s}\right\} .
$$

Figure: $K_{8 ; 3}^{s}$
Figure: $\hat{K}_{8 ; 3}^{s}$,

Circular chromatic number of cycles

For a non-zero integer ℓ, we denote by C_{ℓ} the cycle of length $|\ell|$ whose sign agrees with the sign of ℓ.

Proposition

$\chi_{c}\left(C_{2 k}\right)=\chi_{c}\left(C_{-(2 k+1)}\right)=2 ; \chi_{c}\left(C_{2 k+1}\right)=\frac{2 k+1}{k}$;
$\chi_{c}\left(C_{-2 k}\right)=\frac{4 k}{2 k-1}$.
Observe that the signed graph $\hat{K}_{4 k ; 2 k-1}^{s}$ is obtained from $C_{-2 k}$ by adding a negative loop at each vertex.

$C_{2 k+1}$-coloring and $C_{-2 k}$-coloring

Proposition

- Given a graph $G, G \rightarrow C_{2 k+1}$ if and only if $\chi_{c}(G) \leq \frac{2 k+1}{k}$;
- Given a signed bipartite graph (G, σ),

$$
(G, \sigma) \rightarrow C_{-2 k} \text { if and only if } \chi_{c}(G, \sigma) \leq \frac{4 k}{2 k-1}
$$

Signed indicator

Let G be a graph and let Ω be a signed graph.

- A signed indicator \mathcal{I} is a triple $\mathcal{I}=(\Gamma, u, v)$ such that Γ is a signed graph and u, v are two distinct vertices of Γ.
- Replacing e of G with a copy of I is the following operation: Take the disjoint union of Ω and \mathcal{I}, delete the edge e from Ω, identify x with u and identify y with v.
- Given a signed indicator \mathcal{I}, we denote by $G(\mathcal{I})$ the signed graph obtained from G by replacing each edge with a copy of \mathcal{I}.
- Given two signed indicators \mathcal{I}_{+}and \mathcal{I}_{-}, we denote by $\Omega\left(I_{+}, I_{-}\right)$the signed graph obtained from Ω by replacing each positive edge with a copy of \mathcal{I}_{+}and replacing each negative edge with a copy of \mathcal{I}_{-}.

Signed indicator

Assume $\mathcal{I}=(\Gamma, u, v)$ is a signed indicator and $r \geq 2$ is a real number.

- For $a, b \in[0, r)$, we say the color pair (a, b) is feasible for I (with respect to r) if there is a circular r-coloring ϕ of Γ such that $\phi(u)=a$ and $\phi(v)=b$.
- Define

$$
Z(\mathcal{I}, r)=\left\{b \in\left[0, \frac{r}{2}\right]:(0, b) \text { is feasible for } \mathcal{I} \text { with respect to } r\right\} \text {. }
$$

Lemma

Assume that $\mathcal{I}=(\Gamma, u, v)$ is a signed indicator, $r \geq 2$ is a real number and $Z(\mathcal{I}, r)=\left[t, \frac{r}{2}-t\right]$ for some $0<t<\frac{r}{4}$. Then for any graph G,

$$
\chi_{c}(G)=\frac{\chi_{c}(G(\mathcal{I}))}{2 t}
$$

Examples

- If Γ is a positive 2-path connecting u and v, and $\mathcal{I}=(\Gamma, u, v)$, then for any $\epsilon, 0<\epsilon<1$, and $r=4-2 \epsilon$,

$$
Z(\mathcal{I}, r)=[0,2-2 \epsilon]=\left[0, \frac{r}{2}-\epsilon\right] .
$$

- If Γ^{\prime} is a negative 2-path connecting u and v, and $\mathcal{I}^{\prime}=\left(\Gamma^{\prime}, u, v\right)$, then for any $\epsilon, 0<\epsilon<1$, and $r=4-2 \epsilon$,

$$
Z\left(\mathcal{I}^{\prime}, r\right)=\left[\epsilon, \frac{r}{2}\right] .
$$

- If $\Gamma^{\prime \prime}$ consists of a negative 2-path and a positive 2-path connecting u and v, and $\mathcal{I}^{\prime \prime}=\left(\Gamma^{\prime \prime}, u, v\right)$, then for any ϵ, $0<\epsilon<1$, and $r=4-2 \epsilon$,

$$
Z\left(\mathcal{I}^{\prime \prime}, r\right)=\left[\epsilon, \frac{r}{2}-\epsilon\right]
$$

Indicator construction $S(G)$

Given a graph G, a signed graph $S(G)$ is built as follows.

Figure: $S\left(K_{3}\right)$

Figure: $S\left(C_{5}\right)$

Corollary

For any graph G,

$$
\chi_{c}(S(G))=4-\frac{4}{\chi_{c}(G)+1} .
$$

Signed indicator

Lemma
Assume that \mathcal{I}_{+}and \mathcal{I}_{-}are indicators, $r \geq 2$ is a real number and

$$
Z\left(\mathcal{I}_{+}, r\right)=\left[t, \frac{r}{2}\right], Z\left(\mathcal{I}_{-}, r\right)=\left[0, \frac{r}{2}-t\right]
$$

for some $0<t<\frac{r}{2}$. Then for any signed graph Ω,

$$
\chi_{c}(\Omega)=\frac{\chi_{c}\left(\Omega\left(\mathcal{I}_{+}, \mathcal{I}_{-}\right)\right)}{t}
$$

Tight cycle argument

Assume (G, σ) is a signed graph and $\phi: V(G) \rightarrow[0, r)$ is a circular r-coloring of (G, σ). The partial orientation $D=D_{\phi}(G, \sigma)$ of G with respect to a circular r-coloring ϕ is defined as follows:
(u, v) is an arc of D if and only if one of the following holds:

- $u v$ is a positive edge and $(\phi(v)-\phi(u))(\bmod r)=1$.
- $u v$ is a negative edge and $(\overline{\phi(v)}-\phi(u))(\bmod r)=1$.

Arcs in $D_{\phi}(G, \sigma)$ are called tight arcs of (G, σ) with respect to ϕ. A directed cycle in $D_{\phi}(G, \sigma)$ is called a tight cycle with respect to ϕ.

Tight cycle argument

Lemma

Let (G, σ) be a signed graph and let ϕ be a circular r-coloring of (G, σ). If $D_{\phi}(G, \sigma)$ is acyclic, then there exists an $r_{0} \supsetneqq r$ such that (G, σ) admits an r_{0}-circular coloring.

Notice that assume $D_{\phi}(G, \sigma)$ is acyclic and among all such ϕ, $D_{\phi}(G, \sigma)$ has minimum number of arcs, then $D_{\phi}(G, \sigma)$ has no arc.

Lemma

Given a signed graph $(G, \sigma), \chi_{c}(G, \sigma)=r$ if and only if (G, σ) is circular r-colorable and every circular r-coloring ϕ of (G, σ) has a tight cycle.

Tight cycle argument

Proposition

Any signed graph (G, σ), which is not a forest, has a cycle with s positive edges and t negative edges such that

$$
\chi_{c}(G, \sigma)=\frac{2(s+t)}{2 a+t}
$$

for some non-negative integer a.

Corollary

Given a signed graph (G, σ) on n vertices, $\chi_{c}(G, \sigma)=\frac{p}{q}$ for some $p \leq 2 n$ and q.
(1) Introduction

- Circular coloring of graphs
- Homomorphism of signed graphs
(2) Circular coloring of signed graphs
- Circular chromatic number
- Signed indicators
- Tight cycle argument
(3) Results on some classes of signed graphs
- Signed bipartite planar graphs
- Signed d-degenerate graphs
- Signed planar graphs
(4) Discussion

Classes of signed graphs

Given a class \mathcal{C} of signed graphs,

$$
\chi_{c}(\mathcal{C})=\sup \left\{\chi_{c}(G, \sigma) \mid(G, \sigma) \in \mathcal{C}\right\} .
$$

- $\mathcal{S B P}$ the class of signed bipartite planar simple graphs,
- $\mathcal{S D}_{d}$ the class of signed d-degenerate simple graphs,
- $\mathcal{S P}$ the class of signed planar simple graphs.

Proposition

$$
\chi_{c}(\mathcal{S B P})=4
$$

Let Γ_{1} be a positive 2-path connecting u_{1} and v_{1}. For $i \geq 2$,

Signed bipartite planar graphs

Signed bipartite planar graphs

Figure: Γ_{4}

Figure: Γ_{5}

Lemma

$\chi_{c}\left(\Gamma_{n}\right)=\frac{4 n}{n+1}$.

Results on signed bipartite planar graphs with girth condition

- $\chi_{c}\left(\mathcal{S B P}_{6}\right) \leq 3$. (Corollary of a result that every signed bipartite planar graph of negative girth 6 admits a homomorphism to ($K_{3,3}, M$) [R. Naserasr and Z. Wang 2021+])
- $\chi_{c}\left(\mathcal{S B P}_{8}\right) \leq \frac{8}{3}$. (Corollary of a result that $C_{-4-c r i t i c a l ~ s i g n e d ~}$ graph has density $|E(G)| \geq \frac{3|V(G)|-2}{4}[R$. Naserasr, L-A. Pham and Z. Wang 2020+])

Signed d-degenerate graphs

Proposition

For any positive integer $d, \chi_{c}\left(\mathcal{S D}_{d}\right)=2\left\lfloor\frac{d}{2}\right\rfloor+2$.
Sketch of the proof:

- First we show that every $(G, \sigma) \in \mathcal{S} \mathcal{D}_{d}$ admits a circular $\left(2\left\lfloor\frac{d}{2}\right\rfloor+2\right)$-coloring.
For the tightness,
- For odd integer d, we consider the signed complete graphs $\left(K_{d+1},+\right)$.
- For $d=2$, we consider the signed graph Γ_{n} built before.
- For even integer $d \geq 4$, we construct a signed d-degenerate graph (G, σ) such that $\chi_{c}(G, \sigma)=d+2$.

Signed d-degenerate graphs

Proof for even $d \geq 4$

- Define a signed graph Ω_{d} as follows.

- Let φ be a circular r-coloring of Ω_{d} where $r<d+2$. Without loss of generality, $\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{d}\right)$ are cyclically ordered on C^{r} and assume that $d_{(\bmod r)}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right)$ is maximized. We prove that there is no place for $y_{1,1+\frac{d}{2}}$.

Signed planar graphs

Signed planar graphs

Proposition

$$
4+\frac{2}{3} \leq \chi_{c}(\mathcal{S P}) \leq 6
$$

Figure: Mini-gadget $(T, \pi) \quad$ Figure: A signed Wenger Graph W

Signed planar graphs

$\ell_{\phi ; u, v}$: the minimum length of an interval which contains
$\phi(u) \cup \phi(v)$.
Lemma
Let $r=\frac{14}{3}-\epsilon$ with $0<\epsilon \leq \frac{2}{3}$. For any circular r-coloring ϕ of \tilde{W}, $\ell_{\phi ; u, v} \geq \frac{4}{9}$.

Let Γ be obtained from \tilde{W} by adding a negative edge $u v$. Let $\mathcal{I}=(\Gamma, u, v)$.

Theorem

Let $\Omega=K_{4}(\mathcal{I})$. Then Ω is a signed planar simple graph with $\chi_{c}(\Omega)=\frac{14}{3}$.

Sketch of the proof of the theorem

- First we show that Ω admits a circular $\frac{14}{3}$-coloring. We find a circular $\frac{14}{3}$-coloring ϕ of Γ such that $\phi(u)=\phi(v)=0$ and then extend it to each of inner triangles.
- Let ϕ be a circular r-coloring of Ω for $r<\frac{14}{3}$. For any $1 \leq i<j \leq 4, \frac{4}{9} \leq d_{(\bmod r)}\left(\phi\left(v_{i}\right), \phi\left(v_{j}\right)\right) \leq \frac{r}{2}-1$.
Assume that $\phi\left(x_{1}\right), \phi\left(x_{2}\right), \phi\left(x_{3}\right), \phi\left(x_{4}\right)$ are on C^{r} in this cyclic order.
- $\ell\left(\left[\phi\left(v_{1}\right), \phi\left(v_{4}\right)\right]\right)=\ell\left(\left[\phi\left(v_{1}\right), \phi\left(v_{2}\right)\right]\right)+\ell\left(\left[\phi\left(v_{2}\right), \phi\left(v_{3}\right)\right]\right)+$ $\ell\left(\left[\phi\left(v_{3}\right), \phi\left(v_{4}\right)\right]\right) \geq 3 \times \frac{4}{9}=\frac{4}{3}>\frac{r}{2}-1$,
- $\ell\left(\left[\phi\left(v_{4}\right), \phi\left(v_{1}\right)\right]\right) \geq r-\left(\ell\left(\left[\phi\left(v_{1}\right), \phi\left(v_{3}\right)\right]\right)+\ell\left(\left[\phi\left(v_{2}\right), \phi\left(v_{4}\right)\right]\right)\right) \geq$ $2>\frac{r}{2}-1$.
Contradiction.

Results on signed planar graphs with girth condition

- $\chi_{c}\left(\mathcal{S P}_{4}\right)=4$. (By the 3-degeneracy of triangle-free planar graph)
- $\chi_{c}\left(\mathcal{S P}_{7}\right) \leq 3$. (Corollary of a result that every signed graph of mad $<\frac{14}{5}$ admits a homomorphism to $\left(K_{6}, M\right)[R$. Naserasr, R. Škrekovski, Z. Wang and R. Xu 2020+])

Signed circular chromatic number

For a simple graph G, the signed circular chromatic number $\chi_{c}^{s}(G)$ of G is defined as

$$
\chi_{c}^{s}(G)=\max \left\{\chi_{c}(G, \sigma): \sigma \text { is a signature of } G\right\} .
$$

Proposition

For every graph $G, \chi_{c}^{s}(G) \leq 2 \chi_{c}(G)$.

Signed chromatic number of k-chromatic graph

Theorem

For any integers $k, g \geq 2$ and any $\epsilon>0$, there is a graph G of girth at least g satisfying that $\chi(G)=k$ and $\chi_{c}^{s}(G)>2 k-\epsilon$.

We will prove that for any integer p, there is a graph G for which the followings hold:

- G is of girth at least g and has chromatic number at most k.
- There is a signature σ such that (G, σ) is not $(2 k p,(p+1))$-colorable.

Augmented tree

- A complete k-ary tree is a rooted tree in which each non-leaf vertex has k children and all the leaves are of the same level.
- A q-augmented k-ary tree is obtained from a complete k-ary tree by adding, for each leaf v, q edges connecting v to q of its ancestors. These q edges are called the augmenting edges from v.
- For positive integers k, q, g, a (k, q, g)-graph is a q-augmented k-ary tree which is bipartite and has girth at least g.

Lemma [Alon, N., Kostochka, A., Reiniger, B., West, D., and Zhu, X 2016]
For any positive integers $k, q, g \geq 2$, there exists a (k, q, g)-graph.

Signed planar graphs

Augmented tree

- A standard labeling of a complete k-ary tree T;
- A f-path P_{f} of T with respect to a given k-coloring f.

m level

Construction of k-chromatic graph G

- H: $(2 k p, k, 2 k g)$-graph with underline tree T.
- ϕ : a standard $2 k p$-labeling of the edges of T.
- $\ell(v)$: the level of v, i.e., the distance from v to the root vertex in T. Let $\theta(v)=\ell(v)(\bmod k)$.
For each leaf v of T, let $u_{v, 1}, u_{v, 2}, \ldots, u_{v, k}$ be the vertices on P_{v} that are connected to v by augmenting edges. Let $u_{v, i}^{\prime} \in P_{v}$ be the closest descendant of $u_{v, i}$ with $\theta\left(u_{v, i}^{\prime}\right)=i$ and let $e_{v, i}$ be the edge connecting $u_{v, i}^{\prime}$ to its child on P_{v}.
Let $s_{v, i}=\phi\left(e_{v, i}\right)$ and let
- $A_{v, i}=\left\{s_{v, i}, s_{v, i}+1, \ldots, s_{v, i}+p\right\}$,
- $B_{v, i}=\left\{a+k p: a \in A_{v, i}\right\}$,
- $C_{v, i}=A_{v, i} \cup B_{v, i}$.

Signed planar graphs

Construction of the signature σ on G

Note that $B_{v, i}$ is a $k p$-shift of $A_{v, i}$. Two possibilities:

- $A_{v, i} \cap A_{v, j} \neq \emptyset$ (then $\left.B_{v, i} \cap B_{v, j} \neq \emptyset\right)$

$$
d_{(\bmod 2 k p)}\left(\phi\left(e_{v, i}\right), \phi\left(e_{v, j}\right)\right) \leq p
$$

- $A_{v, i} \cap B_{v, j} \neq \emptyset$ (then $\left.B_{v, i} \cap A_{v, j} \neq \emptyset\right)$

$$
d_{(\bmod 2 k p)}\left(\phi\left(e_{v, i}\right), \overline{\phi\left(e_{v, j}\right)}\right) \leq p
$$

Let L be the set of leaves of T. For each $v \in L$, we define one edge e_{V} on $V(T)$ as follows:

- If $d_{(\bmod 2 k p)}\left(\phi\left(e_{v, i}\right), \phi\left(e_{v, j}\right)\right) \leq p$, then let e_{v} be a positive edge connecting $u_{v, i}^{\prime}$ and $u_{v, j}^{\prime}$.
- If $d_{(\bmod 2 k p)}\left(\phi\left(e_{v, i}\right), \overline{\phi\left(e_{v, j}\right)}\right) \leq p$, then let e_{v} be a negative edge connecting $u_{v, i}^{\prime}$ and $u_{v, j}^{\prime}$.

Signed planar graphs

Proof for " (G, σ) is not circular $\frac{2 k p}{p+1}$-colorable"

Let (G, σ) be the signed graph with vertex set $V(T)$ and with edge set $\left\{e_{v}: v \in L\right\}$, where the signs of the edges are defined as above.

- Assume f is a $(2 k p, p+1)$-coloring of (G, σ).
- As f is also a $2 k p$-coloring of the vertices of T, there is a unique f-path P_{v}. Assume that $e_{v}=u_{v, i}^{\prime} u_{v, j}^{\prime}$. By definition,

$$
f\left(u_{v, i}^{\prime}\right)=\phi\left(e_{v, i}\right) \text { and } f\left(u_{v, j}^{\prime}\right)=\phi\left(e_{v, j}\right) .
$$

- If e_{v} is a positive edge, then $d_{(\bmod 2 k p)}\left(\phi\left(e_{v, i}\right), \phi\left(e_{v, j}\right)\right) \leq p$. If e_{v} is a negative edge, then $d_{(\bmod 2 k p)}\left(\phi\left(e_{v, i}\right), \overline{\phi\left(e_{v, j}\right)}\right) \leq p$. Contradiction.
(1) Introduction
- Circular coloring of graphs
- Homomorphism of signed graphs
(2) Circular coloring of signed graphs
- Circular chromatic number
- Signed indicators
- Tight cycle argument
(3) Results on some classes of signed graphs
- Signed bipartite planar graphs
- Signed d-degenerate graphs
- Signed planar graphs

4 Discussion

Mapping signed graphs to signed cycles

Let C_{ℓ}^{o+} be signed cycle of length ℓ where the number of positive edges is odd. Then $\chi_{c}\left(C_{\ell}^{o+}\right)=\frac{2 \ell}{\ell-1}$.

Theorem

Given a positive integer ℓ and a signed graph (G, σ) satisfying $g_{i j}(G, \sigma) \geq g_{i j}\left(C_{\ell}^{o+}\right)$ for $i j \in \mathbb{Z}_{2}^{2}$, we have $\chi_{c}(G, \sigma) \leq \frac{2 \ell}{\ell-1}$ if and only if $(G, \sigma) \rightarrow C_{\ell}^{o+}$.

Circular chromatic number of signed planar graphs

Question

Given a positive integer ℓ, what is the smallest value $f(\ell)$ (with $f(\infty)=\infty)$ such that for every signed planar graph (G, σ) satisfying $g_{i j}(G, \sigma) \geq g_{i j}\left(C_{\ell}^{o+}\right)$ and $g_{i j}(G, \sigma) \geq f(\ell)$ for all $i j \in \mathbb{Z}_{2}^{2}$, we have $\chi_{c}(G, \sigma) \leq \frac{2 \ell}{\ell-1}$.

Jaeger-Zhang conjecture

When $\ell=2 k+1$,
Jaeger-Zhang conjecture [C.-Q. Zhang 2002]
Every planar graph of odd-girth $f(2 k+1)=4 k+1$ admits a circular $\frac{2 k+1}{k}$-coloring, i.e., $C_{2 k+1}$-coloring.

- $f(3)=5$ [Grötzsch's theorem];
- $f(5) \leq 11$ [Z. Dvořák and L. Postle 2017][D. W. Cranston and J. Li 2020];
- $4 k+1 \leq f(2 k+1) \leq 6 k+1$ [C. Q. Zhang 2002; L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013];

Bipartite analogue of Jaeger-Zhang conjecture

When $\ell=2 k$,
Bipartite analogue of Jaeger-Zhang conjecture
Every signed bipartite planar graph of negative-girth $f(2 k)$ admits a circular $\frac{4 k}{2 k-1}$-coloring, i.e., $C_{-2 k}$-coloring.

- $f(4)=8$ [R. Naserasr, L. A. Pham and Z. Wang 2020+]; $(f(2 k)>4 k-2$ when $k=2$.)
- $f(2 k) \leq 8 k-2$ [C. Charpentier, R. Naserasr and E. Sopena 2020].

Odd-Hadwiger Conjecture

Theorem [P.A. Catlin 1979]

If $(G,-)$ has no $\left(K_{4},-\right)$-minor, then $\chi_{c}(G,+) \leq 3$.
The Odd-Hadwiger conjecture was proposed independently by B. Gerard and P. Seymour.

Odd-Hadwiger conjecture

If a signed graph $(G,-)$ has no $\left(K_{k+1},-\right)$-minor, then $\chi_{c}(G,+) \leq k$.

Question

Assuming (G, σ) has no $\left(K_{k+1},-\right)$-minor, what is the best upper bound on $\chi_{c}(G,-\sigma)$?

The end. Thank you!

