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Résumé

La partition des graphes est l’un des problèmes centraux de la théorie des graphes,
issu du célèbre problème des 4 couleurs. Dans cette thèse, deux problèmes majeurs
concernant la partition des graphes sont considérés : la séparation des arêtes des graphes
signés et la décomposition des sommets des graphes creux.

Dans la première partie de cette thèse, nous nous concentrons sur les problèmes de
packing de signature des graphes signés. Un graphe signé pG, σq est un graphe G équipé
d’une signature σ qui attribue à chaque arête de G un signe (` ou ´). Le concept clé qui
sépare un graphe signé d’un graphe 2-arêtes-colorées est la notion de commutation, une
commutation sur un sous-ensemble X de sommets de G consiste à multiplier les signes de
toutes les arêtes dans la coupe d’arête pX,V zXq par ´. Un graphe signé pG, σ1q est dit
équivalent au sens de commutation (ou simplement équivalent) à pG, σq s’il est obtenu
par une commutation sur une coupe d’arête. Ensuite, nous définissons le nombre de
packing de signature du graphe signé pG, σq, noté ρpG, σq, comme le nombre maximal de
signatures tel que chaque σi est équivalent à σ, et les ensembles E´σi

, arêtes négatifs de
pG, σiq, sont disjoints par paires. Nous montrons qu’il est capturé par un homomorphisme
spécifique. Et nous établissons une connexion avec plusieurs problèmes bien connus :
par exemple, le problème des quatre couleurs, la conjecture de coloration des arêtes
de Seymour. Plus précisément, nous montrons d’abord que si G est un graphe simple
biparti sans K5-mineur, alors pour toute signature σ, nous avons ρpG, σq ě 4. Ensuite,
nous continuons à utiliser le langage du nombre de packing et étendons la technique
pour vérifier que pour tout graphe planaire signé anti-équilibré pG, σq de circonférence
négative d’au moins 5, nous avons ρpG, σq ě 5. Enfin, nous étudions une généralisation
du nombre de packing. Au lieu de considérer une signature et ses signatures équivalentes,
nous séparons k signatures qui ne sont pas nécessairement équivalentes. Puisqu’il existe
un graphe planaire de nombre de packing 1, nous recherchons des conditions suffisantes
pour un graphe planaire tel que nous puissions séparer 2 ou 3 signatures.

La deuxième partie de cette thèse porte sur la décomposition des sommets des graphes
creux. Nous étudions d’abord la décomposition des sommets des graphes planaires de
circonférence au moins 5. Il est connu que tout graphe planaire de circonférence au moins
5 peut être décomposé en deux sous-graphes induits, l’un de degré maximum au plus 3,
l’autre de degré maximum au plus 5. Nous renforçons ce résultat en montrant que ces
sous-graphes induits peuvent être choisis pour être des forêts. Nous travaillons ensuite
sur les graphes creux avec une condition de degré moyen maximum. Plus précisément,
nous utilisons la méthode du potentiel pour prouver que tout graphe G de madpGq ď 16
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peut être un sommet décomposé en deux forêts de degré maximum au plus 1 et 4. Par
conséquent, tout graphe de genre au plus 1 et de circonférence d’au moins 6 admet
également une telle décomposition.

Mots clés: graphe signé, nombre de packing, graphe creux, décomposition des sommets.



Abstract

Graph partition is one of the central problem in graph theory, originated from the
famous 4-color problem. In this thesis, two major problems concerning graph partition
are considered: the edge separation of signed graphs and the vertex decomposition of
sparse graphs.

In the first part of this thesis, we focus on signature packing problems of signed
graphs. A signed graph pG, σq is a graph G equipped with a signature σ which assigns
to each edge of G a sign (either ` or ´). The key concept that separates a signed
graph from a 2-edge-colored graph is the notion of switching, a switching at a subset
X of vertices of G is to multiply the signs of all edges in the edge-cut pX,V zXq by
´. A signed graph pG, σ1q is said to be switching-equivalent (or simply equivalent) to
pG, σq if it is obtained by a switching on an edge-cut. Then we define the signature
packing number of a signed graph pG, σq, denoted ρpG, σq, to be the maximum number
of signatures σ1, σ2, ¨ ¨ ¨ , σl such that each σi is switching equivalent to σ and the sets
E´σi

, negative edges of pG, σiq, are pairwise disjoint. We show that it is captured by
specific homomorphism. Then we establish connection to several well-known problems:
e.g. the four coloring problem, Seymour’s edge coloring conjecture. More precisely, we
first show that if G is a K5-minor-free bipartite simple graph, then for any signature σ
we have ρpG, σq ě 4. Secondly, we continue using the language of packing number and
extend the technique to verify that for any antibalanced signed planar graph pG, σq of
negative girth at least 5, ρpG, σq ě 5. Thirdly, we study a generalization of the packing
number. Instead of considering one signature and its equivalent signatures, we separate
k signatures which are not necessarily switching equivalent. Since there exists planar
graph of packing number 1, we investigate sufficient conditions for a planar graph such
that we could separate 2 or 3 signatures.

The second part of this thesis is about vertex decomposition of sparse graphs. We
first study the vertex decomposition of planar graphs of girth at least 5. It is known
that every planar graph of girth at least 5 can be vertex decomposed into two induced
subgraphs, one of maximum degree at most 3, the other of maximum degree at most 5.
We strengthen this result by showing that these induced subgraphs can be chosen to be
forests. We then work on sparse graphs with maximum average degree condition. More
precisely, we use potential method to prove that every graph G of madpGq ď 16

5 can be
vertex decomposed into two forests of maximum degree at most 1 and 4. Consequently,
every graph of genus at most 1 and girth at least 6 also admits such decomposition.
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Introduction en français

Le théorème des 4-couleurs, l’une des découvertes les plus remarquables de la théorie des
graphes, a été présenté pour la première fois comme une question par Francis Guthrie
en 1852, qui a essayé de colorer une carte avec quatre couleurs de telle sorte que deux
régions adjacentes n’aient pas la même couleur. Le problème, qui était si simplement
décrit mais si difficile à prouver, a attiré l’attention de nombreux mathématiciens de
l’époque. Après diverses tentatives pendant plus de cent ans, une première preuve
complète, assistée par ordinateur, a été réalisée par Kenneth Appel et Wolfgang Haken
en 1976. Cependant, la preuve était impossible pour un humain de vérifier à la main.
Depuis la première preuve, un algorithme plus efficace avec moins de configurations a été
trouvé par Neil Robertson, Daniel P. Sanders, Paul Seymour et Robin Thomas en 1996.

Basé sur le langage des graphes plutôt que sur les cartes, le théorème des 4 couleurs
peut être énoncé comme suit : Chaque graphe planaire peut être correctement 4-coloré.
Sur la base de cette déclaration, il y a eu de nombreuses reformulations et généralisations,
dont certaines ont motivé l’étude de cette thèse. L’une des reformulations équivalentes
les plus célèbres du théorème des 4 couleurs proposé par Tait est que les arêtes de chaque
graphe cubique planaire sans pont peut être correctement 3-coloré. Plus tard, Paul
Seymour a proposé une conjecture plus générale sur la coloration des arêtes des graphes
planaires, en disant que tout graphe planaire k-régulier est k-arête colorable si pour
chaque ensemble X de nombre impair de sommets, l’arête coupée pX,V ´Xq est de
taille au moins k. Une autre reformulation du théorème des 4 couleurs concernant la
décomposition du graphe est qu’un graphe planaire est 4-colorable si et seulement si son
ensemble de sommets peut être décomposé en quatre parties, chaque partie induit un
ensemble indépendant, ce qui a encore inspiré l’étude de la décomposition des sommets
problèmes de graphes.

Dans cette thèse, nous considérons le problème de packing qui sépare l’ensemble
des arêtes d’un graphe signé, tel que les sous-ensembles d’arêtes sont des signatures
équivalentes du graphe signé, et le problème de décomposition de sommets qui partitionne
l’ensemble de sommets d’un graphe creux, de sorte que les sous-ensembles de sommets
induisent des graphes spécifiques. Ces deux problèmes capturent le théorème des 4
couleurs. Nous définissons le nombre de packing du graphe signé, et montrons qu’il est
capturé par un homomorphisme spécifique. Ensuite, nous établissons une connexion
avec plusieurs problèmes bien connus: par exemple, le problème des quatre couleurs, la
conjecture de coloration des arêtes de Seymour. Enfin, nous étudions le problème de
décomposition des sommets des graphes creux. Plus de détails sont présentés dans les
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sections suivantes.

La conjecture de coloration des arêtes de Seymour

À la fin du 19e siècle, P. G. Tait a proposé sa propre preuve du théorème des quatre
couleurs, bien que la preuve ne soit pas correcte, ses efforts ont abouti à une contribution
très importante à la théorie des graphes, puisqu’il a donné une formulation équivalente
du théorème des 4 couleurs en termes de coloration des arêtes.

Théorème 1. [47] Tout graphe cubique planaire sans pont est 3-arêtes-colorable.

Notez que ce n’est pas vrai en général pour les graphes cubiques sans pont non
planaires, comme le montre le graphe de Petersen. Observez que si un graphe r-régulier
est r-arête-colorable, alors chaque classe de couleur est une correspondance parfaite.
Par conséquent, pour tout ensemble de sommets X avec un nombre impair de sommets,
le nombre d’arêtes qui ont exactement une extrémité dans X (c’est-à-dire la taille de
l’arête coupée pX,Xcq) est au moins r. En 1975, P. Seymour a conjecturé qu’avec la
condition de planarité, l’affirmation opposée est également vraie.

Conjecture 1. [46] Tout k-graphe planaire est k-arêtes-colorable.

Ici un k-graphe est un multigraphe k-régulier tel que chaque ensemble X de nombre
impair de sommets l’arête coupée pX,V zXq est de taille au moins k. La Conjecture 1
a été vérifiée pour les cas de k ď 8. Alors que les cas k “ 0, 1, 2 sont triviaux, le cas
r “ 3 indique que tout graphe planaire cubique sans pont est 3-arêtes-colorable. Par le
résultat de Tait, ceci est équivalent au théorème des 4 couleurs. Les cas k “ 4 et k “ 5
ont été prouvés par B. Guenin [23] en se basant sur la notion de packing des T-joints.
Cependant, l’œuvre de Guenin reste inédit. Le cas suivant k “ 6 a été résolu par Dvořák,
Kawarabayashi et Král’ [18] en 2016. La preuve pour le cas k “ 7 a été donnée par
Chudnowsky, Edwards, Kawarabayashi et Seymour [14]. Le cas k “ 8 a été résolu par
Chudnowsky, Edwards et Seymour [15]. Toutes ces preuves pour les valeurs k ě 4 sont
basées sur des réductions au cas précédent, par conséquent, le théorème des 4 couleurs
est supposé. De plus, la preuve des cas k “ 6, 7, 8 s’appuie sur la preuve non publiée des
cas k “ 4, 5.

Homomorphisme au cube projectif signé
Un cube projectif de dimension d, noté PCd, est construit à partir d’un hypercube Hd en
ajoutant une nouvelle arête entre chaque paire de sommets antipodaux dans Hd. Notez
que K4 est un cube projectif de dimension 2. Par conséquent, le théorème des 4 couleurs
est équivalent à l’affirmation selon laquelle tout graphe planaire (simple) correspond
à PC2. En 2007, R. Naserasr a conjecturé ce qui suit, qui est une généralisation du
théorème des 4 couleurs.
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Conjecture 2. [34] Tout graphe planaire de circonférence impaire au moins 2d ` 1
admet un homomorphisme à PC2d.

Un cube projectif signé de dimension d, noté SPCd, est obtenu à partir de PCd en
attribuant un signe positif à toutes les arêtes de l’hypercube Hd et un signe négatif
aux arêtes entre chaque paire de sommets antipodaux dans Hd. En 2005, B. Guenin a
proposé la conjecture suivante.

Conjecture 3. [24] Tout graphe planaire bipartite signé de circonférence négatif 2d
admet un homomorphisme à SPC2d´1.

Plus tard en 2013, R. Naserasr, E. Rollová et É. Sopena a prouvé que les deux
conjectures ci-dessus sont fortement liées à la Conjecture 1 de Seymour sur la coloration
des arêtes.

Théorème 2. [34] Tout p2d ` 1q-graphe planaire est p2d ` 1q-arête-colorable si et
seulement si tout graphe planaire de circonférence impaire au moins 2d` 1 admet un
homomorphisme à PC2d.

Théorème 3. [37] Tout 2d-graphe planaire est 2d-arête-colorable si et seulement si
tout graphe biparti signé planaire de circonférence déséquilibrée au moins 2d admet un
homomorphisme à SPC2d´1.

Décomposition des sommets du graphe

Soit C1, . . . , Ck désignent k classes de graphes. Si V pGq peut être partitionné en k
sous-ensembles de sommets V1, . . . , Vk tel que le sous-graphe GrVis appartienne à Ci pour
chaque 1 ď i ď k, alors nous appelons une telle partition de sommets une pC1, . . . , Ckq-
partition. Pour simplifier, nous utilisons F, Fd,∆d et I pour dénoter respectivement
la classe des forêts, la classe des forêts de degré maximum au plus d, la classe des
graphes de degré maximum au plus d, et la classe des graphes vides. Il est évident que
I “ ∆0 “ F0 et ∆1 “ F1. Le problème des partitions de sommets des graphes sous
certaines restrictions sur les conditions de circonférence ou le sparseness a été largement
étudié.

Le théorème des 4 couleurs garantit que tout graphe planaire admet une pI, I, I, Iq-
partition. Notez qu’il existe un graphe planaire, par exemple, le graphe complet K4,
n’ayant aucune pI, I, Iq-partition. Le résultat de O. V. Borodine [2] sur la coloration
acyclique implique notamment que tout graphe planaire admet une pI, F, F q-partition.
C’est le meilleur dans le sens où, comme montré dans [7] par G. Chartrand et H. V.
Kronk, il existe des graphes planaires qui n’admettent pas une pF, F q-partition. K. S.
Poh [43], en 1990, a montré que tout graphe planaire admet une pF2, F2, F2q-partition.

A. Raspaud et W. Wang [44] ont prouvé que tout graphe planaire sans k-cycles pour
un k P t3, 4, 5, 6u fixe admet une pF, F q-partition. En 2013, M. Chen, A. Raspaud et W.
Wang [8] ont amélioré ce résultat aux graphes planaires sans triangles sécants. Soit PGg
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la famille des graphes planaires de circonférence au moins g. Il a été prouvé dans [33]
qu’il existe un graphe appartenant à PG4 n’ayant aucune p∆d1 ,∆d2q-partition pour une
paire d’entiers non négatifs quelconques d1 et d2. En 2017, F. Dross, M. Montassier, et
A. Pinlou [17] ont montré que tout graphe de PG4 a une pF, F5q-partition.

Pour un graphe dans PG5, O. V. Borodin, et A. N. Glebov [3] ont prouvé qu’il a une
pF, F0q-partition. F. Havet et J. S. Sereni [27] ont prouvé qu’il possède une p∆4,∆4q-
partition, I. Choi et A. Raspaud [12] ont prouvé qu’il possède une p∆3,∆5q-partition,
ces deux résultats ont été améliorés par I. Choi, G. Yu, et X. Zhang [13] en montrant
qu’il possède une p∆3,∆4q-partition. O. V. Borodine et A. V. Kostochka [5] ont prouvé
que tout graphe dans PG5 admet une p∆2,∆6q-partition. Et I. Choi et al. [11] a montré
qu’il possède une p∆1,∆10q-partition. De plus, dans [12], I. Choi et A. Raspaud ont
posé la question intéressante suivante.

Question 1. Tout graphe de PG5 possède-t-il une p∆d1 ,∆d2q-partition pour tout
d1 ` d2 ě 8, d2 ě d1 ě 1?

Récemment, X. Li, J. Liu, et J. Lv [31] ont montré que la Question 1 est vraie pour
le cas d1 “ 1 et d2 “ 9. Les seuls cas restants vers la Question 1 sont que d1 “ 1 et
7 ď d2 ď 8.

Pour les graphes de PG6, un résultat de R. Škrekovski dans [48] implique que tout
graphe de PG6 a une p∆3,∆3q-partition. Ceci a été amélioré par G. G. Chappell et al.
[6] en prouvant que chaque graphe dans PG6 a une pF2, F2q-partition. En considérant
des graphes creux, O. V. Borodin et A. V. Kostochka [5] ont obtenu que tout graphe G
satisfaisant madpGq ď 16

5 admet une p∆1,∆4q-partition. Il s’ensuit immédiatement que
tout graphe dans PG6 admet une p∆1,∆4q-partition. Dans la direction opposée, O. V.
Borodin et al. [4] ont construit un graphe dans PG6 qui n’a pas de pF0, Fdq-partition,
où d est un entier non-négatif.

Contributions et organisations

Packing des signatures dans les graphes signés

Dans la partie II, nous nous concentrons sur les problèmes de packing des graphes signés.
Dans le chapitre 3, nous définissons le nombre de packing de signature d’un graphe

signé pG, σq, noté ρpG, σq. Tout d’abord en lien avec des développements récents sur
la théorie des homomorphismes de graphes signés nous montrons que pour un graphe
signé pG, σq, ρpG, σq ě d ` 1 si et seulement si pG, σq admet un homomorphisme à
SPCod, où SPCod est obtenu à partir de SPCd en ajoutant une boucle positive à chaque
sommet. Dans des cas particuliers, nous avons: I. Un graphe simple G est 4-colorable si
et seulement si ρpG,´q ě 2. II. Un graphe biparti signé pG, σq correspond à SPC3 si
et seulement si ρpG, σq ě 3 notant que SPC3 est identique à pK4,4,Mq, c’est le graphe
signé sur K4,4 où l’ensemble des arêtes négatives forme un appariement parfait. Sur la
restriction aux graphes planaires, I est alors une réaffirmation du théorème des 4 couleurs
et II est sous-entendu par un travail inédit de B. Guenin. Après un développement plus
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approfondi de cette théorie du packing dans les graphes signés, nous donnons une preuve
indépendante de II qui fonctionne sur la classe plus large des graphes sans K5-mineur.
Plus précisément, nous prouvons que: Si G est un graphe simple biparti sans K5-mineur,
alors pour toute signature σ, on a ρpG, σq ě 4. L’énoncé s’avère strictement plus fort
que le théorème des quatre couleurs et est prouvé en l’assumant. De plus, nous montrons
que I ne peut pas être étendu à la classe de tous les graphes simples planaires signés.
D’autres développements, y compris les implications algorithmiques, sont envisagés.

Dans le Chapitre 4, nous continuons à utiliser le langage du nombre de packing et
nous étendons la technique pour vérifier le cas k “ 5 de la Conjecture 1. Plus précisément,
nous prouvons que pour tout graphe planaire signé anti-équilibré (c’est-à-dire équivalente
à tous les bords négatifs) pG, σq de circonférence négative au moins 5, nous avons
ρpG, σq ě 5. Comme preuve du cas k “ 4, nous donnons d’abord une reformulation
du théorème, puis nous faisons l’induction et utilisons différentes déclarations pour
différentes directions de l’induction.

Dans le Chapitre 5, nous étudions une généralisation du numéro de packing. Au lieu
de considérer une signature et ses signatures équivalentes, nous considérons k signatures
σ1, σ2, . . . , σk (pas nécessairement équivalentes) et demandons s’il existe des signatures
σ11, σ

1
2, . . . , σ

1
k, où σ1i est une commutation de σi, telle que les ensembles d’arêtes négatives

E´σ1i
sont disjoints par paires. Il est connu qu’il existe un graphe simple planaire signé dont

le nombre de packing est 1 [28]. Ainsi, pour un graphe planaire général, séparer deux
signatures n’est pas toujours possible même si σ1 “ σ2. Dans ce chapitre, nous prouvons
qu’étant donné un graphe planaire G sans 4-cycle et deux signatures quelconques σ
et π sur G, il existe des commutations σ1 et π1 de σ et π, respectivement, telles que
E´σ1 X E´π1 “ ∅. Comme corollaire de la 3-dégénérescence, nous pourrions également
séparer deux signatures sur un graphe planaire sans triangle, ou sans 5-cycle ou sans
6-cycle. De plus, nous prouvons que l’on pourrait séparer trois signatures sur des
graphes de degré moyen maximal inférieur à 3, en particulier sur des graphes planaires
de circonférence au moins égale à 6.

Décomposition des sommets des graphes creux

Dans la partie III, nous nous concentrerons sur la décomposition des sommets des graphes
creux.

Dans le chapitre 6, nous étudions la décomposition des sommets des graphes planaires
de circonférence au moins égale à 5. On sait que tout graphe planaire de circonférence
au moins 5 admet une p∆3,∆5q-partition. Dans ce chapitre, nous renforçons ce résultat
en prouvant que tout graphe planaire de circonférence au moins 5 admet une pF3, F5q-
partition.

Dans le chapitre 7, nous étudions la décomposition des sommets des graphes creux
de condition de degré moyen maximum. Plus précisément, nous utilisons la méthode
des potentiels pour montrer que tout graphe G avec madpGq ď 16

5 admet une pF1, F4q-
partition. En corollaire, tout graphe de faible genre et de circonférence au moins
égale à 6 admet une pF1, F4q-partition. Nous savons qu’il existe un graphe planaire de
circonférence 6 qui n’a pas de pF0, Fdq-partition [4], où d peut être un entier non négatif.



x

Ce fait garantit que l’indice de F1 ne peut pas être amélioré davantage. Pourtant, on ne
sait pas si la classe de F4 peut être renforcée ou non.
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Chapter 1

Introduction

The 4-color theorem, one of the most outstanding discovery in graph theory, was first
presented as a question by Francis Guthrie in 1852, who tried to color a map with four
colors such that no two adjacent regions have the same color. The problem, which
was so simply described but so difficult to prove, caught a lot of attention of many
mathematicians at the time. After various attempts during more than one hundred
years, a first complete proof, assisted by computer, was achieved by Kenneth Appel and
Wolfgang Haken in 1976. However, the proof was infeasible for a human to check by
hand. Since the first proof, a more efficient algorithm with less configurations have been
found by Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas in 1996.

Based on language of graphs rather than maps, the 4-color theorem can be stated as:
Every planar graph can be properly 4-colored. Based on this statement, there have been
many restatements and generalizations, some of which has motivated the study of this
thesis. One of the most famous equivalent restatement of the 4-color theorem proposed
by Tait is that every planar bridgeless cubic graph is 3-edge-colorable. Later Paul
Seymour proposed a more general conjecture about the edge coloring of planar graphs,
saying that every k-regular planar graph is k-edge colorable if for each set X of odd
number of vertices the edge cut pX,V ´Xq is of size at least k. Another restatement of
the 4-color theorem regarding graph decomposition is that a planar graph is 4-colorable
if and only if its vertex set can be decomposed into four parts, each part induces an
independent set, which further inspired the study of the vertex decomposition problems
of graphs.

In this thesis, we consider the packing problem which is separating the edge set
of a signed graph, such that the edge subsets are equivalent signatures of the signed
graph, and vertex decomposition problem which is partitioning the vertex set of a sparse
graph, such that the vertex subsets induce specific graphs. Both of these problems
capture the 4-color theorem. We define the packing number of signed graph, and show
that it is captured by specific homomorphism. And then we establish connection to
several well-known problems: e.g. the 4-coloring problem, and Seymour’s edge coloring
conjecture, etc. Finally, we study the vertex decomposition problem of sparse graphs.
More details are shown in the following sections.

2
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1.1 Seymour’s edge-coloring conjecture
In the late 19th century, P. G. Tait proposed his own proof of the Four Color Theorem,
although the proof was not correct, his efforts resulted in a very important contribution
to graph theory, as it gave an equivalent formulation of the 4-color theorem in terms of
edge-coloring.

Theorem 1.1. [47] Every planar bridgeless cubic graph is 3-edge-colorable.

Note that this is not true in general for non-planar cubic bridgeless graphs, as shown
by the Petersen graph. Observe that if an r-regular graph is r-edge-colorable, then every
color class is a perfect matching. Therefore, for any vertex set X with odd number of
vertices, the number of edges which has exactly one endpoint in X (i.e. the size of the
edge cut pX,Xcq) is at least r. In 1975, P. Seymour conjectured that with the condition
of planarity the opposite statement is also true.

Conjecture 1.1. [46] Every planar k-graph is k-edge-colorable.

Here a k-graph is a k-regular multigraph such that each set X of odd number of
vertices the edge cut pX,V zXq is of size at least k. Conjecture 1.1 has been verified for
the cases of k ď 8. While the cases k “ 0, 1, 2 are trivial, the case r “ 3 states that every
bridgeless cubic planar graph is 3-edge-colorable. By the result of Tait, this is equivalent
to the 4-color theorem. The case k “ 4 and k “ 5 were proved by B. Guenin [23] based
on the notion of packing T-joins. However, the work of Guenin remains unpublished.
The next case k “ 6 was solved by Dvořák, Kawarabayashi, and Král’ [18] in 2016.
The proof for the case k “ 7 was given by Chudnowsky, Edwards, Kawarabayashi, and
Seymour [14]. The case k “ 8 was solved by Chudnowsky, Edwards, and Seymour
[15]. All these proofs for the values k ě 4 are based on reductions to the previous case,
therefore, the 4-color theorem is assumed. Furthermore, the proof of cases k “ 6, 7, 8
relies on the unpublished proof of the cases k “ 4, 5.

1.2 Homomorphism to signed projective cube
A projective cube of dimension d, denoted by PCd, is built from a hypercube Hd by
adding a new edge between each pair of antipodal vertices in Hd. Note that K4 is
projective cube of dimension 2. Therefore, 4-color theorem is equivalent to stating that
every planar (simple) graph maps to PC2. In 2007, R. Naserasr conjectured the following,
which is a generalization of the 4-color theorem.

Conjecture 1.2. [34] Every planar graph of odd-girth at least 2d` 1 admits a homo-
morphism to PC2d.

A signed projective cube of dimension d, denoted by SPCd, is obtained from PCd by
assigning positive sign to all the edges of the hypercube Hd and negative sign to the
edges between each pair of antipodal vertices in Hd. In 2005, B. Guenin proposed the
following conjecture.
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Conjecture 1.3. [24] Every signed bipartite planar graph of negative-girth 2d admits a
homomorphism to SPC2d´1.

Later in 2013, R. Naserasr, E. Rollová and É. Sopena proved that both the above two
conjectures are strongly connected to Conjecture 1.1 by Seymour about edge-coloring.

Theorem 1.2. [34] Every planar p2d` 1q-graph is p2d` 1q-edge-colorable if and only
if every planar graph of odd girth at least 2d` 1 admits a homomorphism to PC2d.

Theorem 1.3. [37] Every planar 2d-graph is 2d-edge-colorable if and only if every
planar signed bipartite graph of unbalanced girth at least 2d admits a homomorphism to
SPC2d´1.

1.3 Vertex decomposition of graphs

Let C1, . . . , Ck denote k classes of graphs. If V pGq can be partitioned into k vertex
subsets V1, . . . , Vk such that the subgraph GrVis belongs to Ci for each 1 ď i ď k, then
we call such a vertex partition a pC1, . . . , Ckq-partition. For simplicity, we use F, Fd,∆d

and I to denote the class of forests, the class of forests of maximum degree at most
d, the class of graphs of maximum degree at most d, and the class of empty graphs,
respectively. It is obvious that I “ ∆0 “ F0 and ∆1 “ F1. The problem of vertex
partitions of graphs under some restrictions on girth conditions or sparseness has been
widely studied.

The 4-color theorem ensures that every planar graph admits an pI, I, I, Iq-partition.
Note that there exists planar graph, for example, the complete graph K4, having no
pI, I, Iq-partition. O. V. Borodin’s result [2] on acyclic coloring in particular implies
that every planar graph admits an pI, F, F q-partition. This is the best in the sense that,
as shown in [7] by G. Chartrand and H. V. Kronk, there are planar graphs which don’t
admit an pF, F q-partition. K. S. Poh [43], in 1990, showed that every planar graph
admits an pF2, F2, F2q-partition.

A. Raspaud and W. Wang [44] proved that every planar graph without k-cycles for
some fixed k P t3, 4, 5, 6u admits an pF, F q-partition. In 2013, M. Chen, A. Raspaud and
W. Wang [8] improved this result to planar graphs without intersecting triangles. Let
PGg denote the family of planar graphs of girth at least g. It has been proved in [33]
that there is a graph belonging to PG4 having no p∆d1 ,∆d2q-partition for pair of any
non-negative integers d1 and d2. In 2017, F. Dross, M. Montassier, and A. Pinlou [17]
showed that every graph in PG4 has an pF, F5q-partition.

For a graph in PG5, O. V. Borodin, and A. N. Glebov [3] proved it has an pF, F0q-
partition. F. Havet and J. S. Sereni [27] proved that it has a p∆4,∆4q-partition, and
I. Choi and A. Raspaud [12] proved it has a p∆3,∆5q-partition, these two results have
been improved by I. Choi, G. Yu and X. Zhang [13] by showing that it has a p∆3,∆4q-
partition. O. V. Borodin and A. V. Kostochka [5] proved that every graph in PG5 has a
p∆2,∆6q-partition. And I. Choi et al. [11] proved it has a p∆1,∆10q-partition. Moreover,
in [12], I. Choi and A. Raspaud put forward the following interesting question.
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Question 1.1. Does every graph in PG5 have a p∆d1 ,∆d2q-partition for all d1` d2 ě 8,
where d2 ě d1 ě 1?

Recently, X. Li, J. Liu and J. Lv [31] showed that Question 1.1 is true for the case
that d1 “ 1 and d2 “ 9. The only remaining cases toward Question 1.1 are that d1 “ 1
and 7 ď d2 ď 8.

For graphs in PG6, a result of R. Škrekovski in [48] implies that every graph in
PG6 has a p∆3,∆3q-partition. This was further improved by G. G. Chappell et al. [6]
by proving that every graph in PG6 has an pF2, F2q-partition. By considering sparse
graphs, O. V. Borodin and A. V. Kostochka [5] obtained that every graph G satisfying
madpGq ď 16

5 admits a p∆1,∆4q-partition. It follows immediately that every graph in
PG6 admits a p∆1,∆4q-partition. In the opposite direction, O. V. Borodin et al. [4]
constructed a graph in PG6 which has no pF0, Fdq-partition, where d is a non-negative
integer.

1.4 Contributions and organizations

1.4.1 Packing signatures in signed graphs

In Part II, we focus on packing problems of signed graphs.
In Chapter 3, we define the signature packing number of a signed graph pG, σq,

denoted by ρpG, σq. First in connection to recent developments on the theory of
homomorphisms of signed graphs we prove that for a signed graph pG, σq, ρpG, σq ě d`1
if and only if pG, σq admits a homomorphism to SPCod, where SPCod is obtained from
SPCd by adding a positive loop to every vertex. In special cases we have: I. A simple
graph G is 4-colorable if and only if ρpG,´q ě 2. II. A signed bipartite graph pG, σq
maps to SPC3 if and only if ρpG, σq ě 3 noting that SPC3 is the same as pK4,4,Mq,
that is the signed graph on K4,4 where the set of negative edges forms a perfect matching.
On restriction to planar graphs, I is then a restatement of the 4-color theorem and II is
implied by an unpublished work of B. Guenin. After further development of this theory
of packing in signed graphs, we give an independent proof of II which works on the larger
class of K5-minor-free graphs. More precisely we prove that: If G is a K5-minor-free
bipartite simple graph, then for any signature σ we have ρpG, σq ě 4. The statement
is shown to be strictly stronger than the four-color theorem and is proved assuming it.
Furthermore, we show that I cannot be extended to the class of all signed planar simple
graphs. Further development, including algorithmic implications, are considered.

In Chapter 4, we continue using the language of packing number and extend the
technique to verify the case k “ 5 of Conjecture 1.1. More precisely, we prove that for
any antibalanced (i.e. switching equivalent to all edges negative) signed planar graph
pG, σq of negative girth at least 5, we have ρpG, σq ě 5. As the proof of case k “ 4, we
first provide a reformulation of the theorem, then we do induction and use different
statements for different directions of the induction.

In Chapter 5, we study a generalization of the packing number. Instead of considering
one signature and its equivalent signatures, we consider k signatures σ1, σ2, . . . , σk (not
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necessarily switching equivalent) and ask whether there exist signatures σ11, σ12, . . . , σ1k,
where σ1i is a switching of σi, such that the sets of negative edges E´σ1i are pairwise disjoint.
It is known that there exists a signed planar simple graph whose packing number is 1 [28].
Thus for a general planar graph separating two signatures is not always possible even if
σ1 “ σ2. In this Chapter, we prove that given a planar graph G with no 4-cycle and any
two signatures σ and π on G, there are switchings σ1 and π1 of σ and π, respectively,
such that E´σ1 X E´π1 “ ∅. As a corollary of 3-degeneracy, we could also separate two
signatures on a planar graph with no triangle, or with no 5-cycle or with no 6-cycle.
Moreover, we prove that one could separate three signatures on graphs of maximum
average degree less than 3, in particular on planar graphs of girth at least 6.

1.4.2 Vertex decomposition of sparse graphs

In Part III, we will focus on the vertex decomposition of sparse graphs.
In Chapter 6, we study the vertex decomposition of planar graphs of girth at least 5.

It is known that every planar graph of girth at least 5 admits a p∆3,∆5q-partition. In
this chapter, we strengthen this result by proving that every planar graph of girth at
least 5 admits an pF3, F5q-partition.

In Chapter 7, we study the vertex decomposition of sparse graphs of maximum
average degree condition. More precisely, we use potential method to prove that every
graph G with madpGq ď 16

5 admits an pF1, F4q-partition. As a corollary, every graph
with low genus and girth at least 6 admits an pF1, F4q-partition. We know that there
exists planar graph of girth 6 which has no pF0, Fdq-partition [4], where d can be any
non-negative integer. This fact guarantees that the subscript of F1 cannot be further
improved. Still, whether the class of F4 can be strengthened or not is unknown.



Chapter 2

Preliminary

A graph is a pair G “ pV,Eq, where V is a set whose elements are called vertices, and E
is a set of paired vertices, whose elements are called edges. The vertices of an edge are
called the endpoints of the edge. An edge having two identical endpoints is called loop. If
two edges have the same endpoints, then they are multiedges. A simple graph is a graph
without loops and multiedges and a multigraph is a graph without loops. The order of a
graph is its number of vertices |V |. The size of a graph is its number of edges |E|. A
subgraph H of a graph G is a graph such that V pHq Ď V pGq and EpHq Ď EpGq, we
say H is a proper subgraph of G is either V pHq Ĺ V pGq or EpHq Ĺ EpGq. For S Ď V ,
we say that GrSs is an induced subgraph of G which is formed from the vertex set S
and all of the edges connecting pairs of S. For a vertex subset X of V pGq, the edge-cut,
denoted by pX,V zXq, is the set of edges that have one endpoint in X and have the
other endpoint in V zX.

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn
on the plane in such a way that its edges intersect only at their endpoints. A face of the
graph is a region bounded by a set of edges and vertices in the embedding. We use F pGq
to denote its face set. The degree of a vertex v is the number of edges that are incident
to v, denoted by dpvq. The degree of a face f , denoted by dpfq, is the number of edges
incident with f (a cut-edge is counted twice). The set of neighbours of a vertex, denoted
by Npvq, are all the vertices adjacent to v. A k-vertex (resp. k`-vertex and k´-vertex)
is a vertex of degree k (resp. at least k and at most k). The same notation can be
applied to faces. Given a graph G, the minimum degree and maximum degree, denoted
by δpGq and ∆pGq, respectively, are the minimum and maximum among all the dpvq’s
for v P V pGq. The average degree of a graph G is defined to be 2|E|

|V | and the maximum
average degree of G, denoted by madpGq, is defined to be madpGq “ maxt2|E|

|V | : H Ď Gu.
A walk of graph G is a sequence of vertices and edges, v1, e1, v2, . . . , ek´1, vk, such

that 1 ď i ď k, the edge ei has endpoints vi and vi`1, note that vertices and edges can
be repeated. A walk is said to be a closed walk if the starting and ending vertices are
identical. A path is a walk such that all the vertices are distinct. A cycle is a close walk
such that all the vertices are distinct except the starting and ending vertices. The length
of a walk, path or cycle is the number of its edges. A path or a cycle of length k is call

7
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a k-path or k-cycle. An odd (or even) cycle is a cycle of odd (or even) length. The girth
of a graph G is defined to be the length of a shortest cycle in G, denote by gpGq.

2.1 Signed graph and Homomorphism

Signed graphs were introduced by Harary [25] in 1954. Since then, interest in them has
continued to grow and investigations have branched out in many different directions.
One consistent theme involves considering definitions and theorems concerning ordinary
graphs and seeing how they generalize into the broader class of signed graphs. Sometimes
the generalizations can be quite significant and interesting. (Think about how significant
and beautiful is the generalization of calculus from R to C.)

A signed graph pG, σq is a graph G equipped with a signature σ which assigns to
each edge of G a sign (either ` or ´). When the signature is clear from the context or
can be omitted, we sometimes denote the signed graph by Ĝ. An edge with the sign ´
is called a negative edge and an edge with the sign ` is called a positive edge. Given a
signed graph pG, σq, the sets of positive and negative edge of pG, σq is denoted by E`σ
and E´σ , respectively. Given a labeled signature such as σi in pG, σiq and when there
is no ambiguity, we may write E´i in place of E´σi

. Given a signed graph pG, σq with
E1 “ E´σ , sometime we rather write pG,E1q instead of pG, σq. A signed multigraph on
two vertices with two parallel edges of different signs is call a digon.

With t`,´u viewed as a multiplicative group, the key concept that separates a
signed graph from a 2-edge-colored graph is the notion of switching (also referred to as
“resigning” by some researchers). A switching at a vertex v, is to multiply the sign of all
edges incident to v by a ´, noting that a loop on v is incident to it from both ends and,
therefore, a switching at v does not change sign of a loop at v. To switch at each of the
vertices of a subset X of vertices of G is to multiply the signs of all the edges in the
edge-cut pX,V zXq by ´. A signed graph pG, σ1q is said to be switching-equivalent (or
simply equivalent) to pG, σq if it is obtained from the other by a sequence of switchings
or, equivalently, by a switching on an edge-cut. It is easily observed that pG, σ1q and
pG, σ2q are switching equivalent if and only if the symmetric difference E´1 4E

´
2 is an

edge cut of G. Besides, it is straightforward to check that this is indeed an equivalence
relation among all possible signatures.

Given a signed graph pG, σq and a subgraph H of G, pH,σq is said to be a signed
graph which keeps the sign of the edges as pG, σq. Moreover, if H is a spanning subgraph
of G and we get pH,σ1q from pH,σq by switching at X Ď V pHq, then we say pG, σ1q is
obtained from pG, σq by switching at X Ď V pGq since H is a spanning subgraph of G.
One may easily observe that pH,σ1q is also a signed graph that keeps the sign of the
edges as pG, σ1q.

The Sign of a structure in pG, σq is the product of the signs of its edges, considering
multiplicity. Structures of highest importance are cycles and closed walks. Note that
the sign of either of them is invariant under a switching operation and they determine
some crucial properties of a signed graph. An unbalanced or negative cycle (balanced
or positive) in signed graph is a cycle having an odd (even) number of negative edges.
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If every cycle in a signed graph pG, σq is positive, then pG, σq is said to be balanced.
A signed graph pG, σq is said to be antibalanced if pG,´σq is balanced. A theorem of
Zaslavsky says that the set of negative cycles (equivalently the set of positive cycles)
uniquely determines the equivalent class of signatures:

Theorem 2.1. [51] Given two signatures σ and σ1 on a graph G, they are equivalent if
and only if they have the same set of negative cycles.

Closed walks are the key structures of a signed graph. Sign and parity of the length
of closed walks partition them into four categories: positive and even, positive and odd,
negative and even, negative and odd. Given a signed graph pG, σq, the length of a
shortest closed walk in each of these categories will be denoted, respectively, by g00pG, σq,
g01pG, σq, g10pG, σq, g11pG, σq the logic being that the first index represents the parity
of the number of negative edges and the second represents the parity of the total number
of edges. Furthermore, the length of a shortest negative closed walk will be denoted
by g´pG, σq (i.e., g´pG, σq “ mintg10pG, σq, g11pG, σqu). For each of these parameters,
when there is no closed walk of the type that is considered, the corresponding parameter
is set to be 8.

As long as pG, σq has at least one edge, g00pG, σq is 2 as a traversing an edge in
both direction is always a positive closed walk of length 2. It is not difficult to build
an example of signed graph pG, σq where the value of gijpG, σq for ij P Z2

2, ij ‰ 00 is
obtained by a closed walk which is not a cycle. However, at least two of these values,
if they are all bounded, will always be obtained by a proper cycle. More precisely, the
two smallest of the values tg01pG, σq, g01pG, σq, g01pG, σqu correspond to cycles because
if a shortest closed walk of type ij, ij P t01, 10, 11u, is not a cycle, it must be formed of
merging of the two closed walks of types t01, 10, 11u ´ ij. Thus the only value of gij
which is possibly not recognized by a cycle is the largest of the three values. This, in
particular, implies that a shortest negative closed walk is always a cycle. Thus g´pG, σq
may also be defined as the length of a shortest negative cycle and referred to as the
negative girth of pG, σq. We note that in these definitions a loop is considered as a cycle
of length 1 and two parallel edges form a cycle of length 2.

Given a graph G, the signed graph pG,´q (respectively, pG,`q) is the signed graph
where all edges are negative (positive). For a positive integer l, C´l is a negative cycle
of length l together with any of its equivalent signatures.We may then denote a positive
cycle of length l by C`l or simply by Cl.

Given ij P Z2
2, ij ‰ 00, the class Gij of signed graphs is defined as follows:

Gij “ tpG, σq | gi1j1pG, σq “ 8 for i1j1 P Z2
2 ´ 00, i1j1 ‰ iju.

In other words, given a signed graph pG, σq P Gij , every closed walk of pG, σq is either
a positive even closed walk or a closed walk whose parity of number of negative edges
and the length are determined by i and j, respectively. Thus, based on Theorem 2.1 we
have:

• G01 is the class of signed graphs pG, σq which can be switched to pG,`q,
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• G11 consists of signed graphs pG, σq which can be switched to pG,´q,

• G10 is the class of all signed bipartite graphs.

Each of the first two items can be regarded as a natural embedding of graphs into the
larger class of signed graphs. As ρpG,`q “ 8, the preferred embedding of graphs into
signed graphs in the study of packing signatures is pG,´q. This has extra advantage that
works better with minor theory of signed graphs. The class G10 is also of importance for
this study.

2.1.1 Coloring of signed graphs

The concept of coloring of signed graph was first introduced by Zaslavsky [50] in 1981,
which is a natural extension and generalization of vertex coloring of graphs. One of
the most natural notion is 0-free coloring. Given a signed graph pG, σq and a positive
integer k, a 0-free 2k-coloring of pG, σq is a mapping c : V pGq Ñ t˘1,˘2, . . . ,˘ku such
that for any edge e “ uv of pG, σq, cpuq ‰ σpeqcpvq.

One can easily observe that if pG, σq contains a positive loop, then it does not admit
any proper 2k-coloring for any k. Furthermore, a signed graph pG, σq admits a 0-free
2k-coloring if and only if for every switching equivalent signature σ1, pG, σ1q also admits
0-free 2k-coloring.

2.1.2 Homomorphism of signed graphs

Homomorphisms of graphs is an important topic within graph theory and its generaliza-
tion to signed graphs hints at an even richer theory.

Given signed graphs pG, σq and pH,πq, a homomorphism of pG, σq to pH,πq is a
mapping ϕ of the vertices and edges of G to the vertices and edges of H, respectively,
such that adjacencies, incidences and signs of closed walks are preserved. Essentially,
regarding Theorem 2.1, a homomorphism is expected to preserve the signs of cycles,
however, the image of a cycle could be a closed walk rather than a cycle. One should
note that replacing cycles with closed walks in Theorem 2.1 we still have the same
conclusion.

When there exists a homomorphism pG, σq to pH,πq we write pG, σq Ñ pH,πq. A
homomorphism of pG, σq to pH,πq is said to be edge-sign-preserving if, furthermore,
signs of the edges are preserved. When it is needed to distinguish the two notions,
the former might be referred to as switching homomorphism because of the following
connection:

Theorem 2.2. [39] A signed graph pG, σq admits a homomorphism to a signed graph
pH,πq if for a signature σ1 on G, equivalent to σ, the signed graph pG, σ1q admits an
edge-sign-preserving homomorphism to pH,πq.

The definition of homomorphism implies a basic no-homomorphism lemma:

Lemma 2.1. If pG, σq Ñ pH,πq, then gijpG, σq ě gijpH,πq for every ij P Z2
2.
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It follows from the definitions and Theorem 2.2 that homomorphisms of signed
graphs generalize the notion of chromatic number of graphs. More precisely, we have
the following observation.

Observation 2.1. Given a graph G, we have χpGq ď k if and only if pG,´q Ñ pKk,´q.

This restatement of k-coloring is also helpful to state the Odd-Hadwiger conjecture
of Gerards and Seymour (see for example [21]). Recall that minor of a signed graph
pG, σq is a signed graph obtained from pG, σq by the following four operations: deleting
vertices, deleting edges, contracting positive edges, and switching.

Conjecture 2.1 (Odd-Hadwiger). If pG,´q has no pKk`1,´q-minor, then pG,´q Ñ
pKk,´q.

2.2 Packing number of signed graphs

Given a signed graph pG, σq, the signature packing number, or simply the packing number
of pG, σq, denoted ρpG, σq, is the maximum number of signatures σ1, σ2, . . . , σl such that
each σi is switching equivalent to σ and the sets E´i are pairwise disjoint. If pG, σq is
equivalent to pG,`q, then by taking the all positive signature any arbitrary number
of times, the conditions are satisfied. Hence, in this case we may set ρpG,`q “ 8.
Noting that this is a characterization of signed graphs with no negative cycle. For any
other signed graph the packing number is a finite integer, which, moreover, admits the
following basic upper bound.

Lemma 2.2. Given a signed graph pG, σq, we have ρpG, σq ď g´pG, σq.

Proof. When pG, σq has no negative cycle, then, by Theorem 2.1, it is equivalent to
pG,`q and in this case both ρpG, σq and g´pG, σq are set to be 8. Otherwise, let C be
a negative cycle of length g´pG, σq and let σ1, σ2, . . . , σl be a packing of pG, σq. Then
each σi must assign a negative sign to at least one distinct edge of C, thus proving that
l cannot be more than the length of C.

The upper bound of this lemma in general can be far from equal. Indeed soon we
will see how to find examples of signed graphs whose girth is as large as one wishes,
but its packing number is 1. Furthermore, we will also observe that to decide if the
equality holds in Lemma 2.2 for a general signed graph pG, σq is an NP-complete problem.
However, the study of sufficient conditions under which the equality in Lemma 2.2 holds
captures a number of well studied theories in graph theory, with the 4-coloring problem
and the Four-Color Theorem being among the most famous ones.

Given a signed graph pG, σq, we say it packs if ρpG, σq “ g´pG, σq. Perhaps the most
important signed graph that packs is pK4,´q. In Figure 2.1 a 3-packing of pK4,´q is
presented with indication of the switching that has resulted in each of the given signed
graph. Observe that the negative edges of σ1, σ2 and σ3 correspond to the (unique)
proper 3-edge-coloring of K4. This leads to further developments discussed about packing
in this thesis.
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pK4,´q pK4, σ1q pK4, σ2q pK4, σ3q

Figure 2.1: A 3-packing of pK4,´q

On the other hand, as the smallest and perhaps simplest example of a simple
signed graph whose packing number is 1 we have pK5,´q. It can be easily checked
that ρpK5,´q “ 1 and thus ρpKk,´q “ 1 for every k ě 5. A strong conjecture, (see
Chapter 3, Subsection 3.4.2 for a precise statement) is that under certain restriction this
signed graph is also a minimal signed graph with respect to taking minor and having
packing number 1.

The next lemmas are among earliest observation in the study of packing number of
signed graphs.

Lemma 2.3. Given a graph G which is not bipartite, the packing number of the signed
graph pG,´q is an odd number.

Proof. Since G is not bipartite it has an odd cycle which is a negative cycle in pG,´q.
Thus ρpG,´q is a finite number. Let σ1, σ2, . . . , σ2l be a packing of even order, that
is to say the sets E´i are pairwise disjoint. Let E2l`1 “ EpGq ´ E´1 Y E´2 ¨ ¨ ¨ Y E´2l .
Then it is straightforward to verify that each odd cycle of G intersects E2l`1 in an odd
number of edges and each even cycle intersects it in an even number of edges. Thus, by
Theorem 2.1, the assignment σ2l`1 which assigns a negative sign to the edges in E2l`1
and positive sign to all the other edges produces a signed graph pG, σ2l`1q equivalent to
pG,´q. Therefore, the packing number of pG,´q can never be an even number.

The proof of the next lemma is quite similar to the proof of the previous lemma and
we skip it.

Lemma 2.4. The packing number of any signed bipartite graph is an even number.

The notion of packing signatures of a signed graph is developed from a discussion
between R. Naserasr and T. Zaslavsky. A parallel and somewhat similar study is then
carried on by a N. Lacasse, a Ph.D. student of Zaslavsky. His results are presented
in [30] where the notion of negating set is employed to refer to the set of negative
edges in a signed graph. In recent discussion with D. Cornaz we have learned that an
equivalent form of the notion is mentioned [20]. This formulation together with the main
contribution of [20] to this subject is mentioned in following subsections and Chapter 3.
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2.2.1 Packing negative cycle covers

We point out here that the signature packing number is the same as negative cycle cover
packing number of a signed graph. Based on this equivalence we have the following
theorem of Gan and Johnson which can be regarded as the first result on this subject.

Given a signed graph pG, σq, a set CC of the edges of G is said to be negative cycle
cover of pG, σq, or simply a cycle cover of pG, σq if it contains at least one edge from each
negative cycle of pG, σq. A collection CC1, CC2, . . . , CCi of cycle covers of pG, σq is said
to be a cycle cover packing if no pair of them have a common element. The maximum
number of cycle covers in a cycle cover packing is said to be cycle cover packing number
of pG, σq. It turns out that the cycle cover packing number of any signed graph is equal
to the signature packing number of it. This claim is immediately followed by employing a
notion of minimality and a correspondence between minimal elements of the two notions.

Given a signed graph pG, σq, a signature σ1 obtained from a switching of σ is said
to be minimal if for no other switching σ2 we have E´σ2 Ď E´σ1 . Similarly, a cycle cover
CC of pG, σq is said to be minimal if no proper subset of it is a negative cycle cover
of pG, σq. It is immediate that every equivalent signature of pG, σq contains a minimal
signature and that every cycle cover of it contains a minimal cycle cover. Thus, in each
of the definition of the packing numbers if we restrict ourselves to the minimal elements
of the corresponding set, we have the same result. That the signature packing number
and the negative cycle packing number of a signed graph pG, σq are equal then follows
from the following lemma first proved in [26] (see Theorem 7 of this reference).

Lemma 2.5. Given a signed graph pG, σq, every minimal cycle cover is a minimal
signature and vice versa: every minimal signature is a minimal cycle cover.

Restated in our language of packing signatures, one of the results of [20] is to show
that K2

3 , that is the signed graph of Figure 2.2, is a minor minimal signed graph which
does not pack. It is easily observed that ρpK2

3 q “ 1 while g´pK2
3 q “ 2. On the other

hand:

Theorem 2.3. [20] If a signed graph pG, σq has no K2
3 -minor, then it packs, i.e.,

ρpG, σq “ g´pG, σq.

Figure 2.2: ρpK2
3 q “ 1

This result would also follow from the structural result of Gerarad’s from Chapter 3
of [22], where he provide a decomposition theorem for the class of signed graphs with no
K2

3 -minor.



Part II

Packing signatures in signed
graphs
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Chapter 3

Packing signed bipartite planar
graphs

This chapter is based on the following paper:

[41] R. Naserasr and W. Yu. Packing signatures in signed graphs. Accepted for
publication in SIAM J. Discrete Math., 2023.

The question of determining the packing number, introduced in Chapter 2, in a class
of signed graphs captures or relates to some of the most prominent studies in graph
theory. For example the four-color theorem can be restated as: For every planar simple
graph G we have ρpG,´q ě 3. Motivated by Seymour’s edge coloring conjecture and its
relation with homomorphism to signed projective cubes, in this chapter, we consider the
packing number of signed bipartite graphs.

In Section 3.1, we first connect the notion of packing number to the theory of
homomorphism of signed graphs. Precisely, we show that for a signed graph pG, σq,
ρpG, σq ě d ` 1 if and only if pG, σq admits a homomorphism to SPCod, where SPCod
is obtained from SPCd by adding a positive loop to every vertex. In Section 3.2, we
consider the relation between 4-coloring and packing number. In Section 3.3, we discuss
packing number of signed planar graphs and some conjectures which are generalization
of the 4-color theorem. In Section 3.4, we prove that : If G is a K5-minor-free bipartite
simple graph, then for any signature σ we have ρpG, σq ě 4. The statement is shown to
be strictly stronger than the four-color theorem and is proved assuming it.

3.1 Signed Projective Cubes

The signed projective cube of dimension d, denoted SPCd, is a signed graph on Zd2 as
the vertex set where two vertices are adjacent by a positive edge if they are at hamming
distance 1 and by a negative edge if they are at hamming distance d. That is to say
SPCd is built from the hypercube of dimension d by taking all the edges to be positive

15
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and adding a negative edge between each pair of antipodal vertices. For the sake of
completeness we also define SPC0 to be the signed graph on one vertex with a negative
loop. The first few signed projective cubes are depicted in Figure 3.1. For equivalent
definitions of SPCd and for a proof of the following lemma we refer to [37] and [39].

Figure 3.1: SPCd for d P t0, 1, 2, 3u

Lemma 3.1. For odd values of d, SPCd P G10 and for even values of d, SPCd P G11.
Moreover g´pSPCdq “ d` 1.

Given the signed graph SPCd, one may label its positive edges by the coordinate that
is the witness of the hamming distance 1 between its two ends and label negative edges
by J . It is easily observed that this labeling is a proper edge-coloring of the underlying
graph PCd. Furthermore, in this edge-coloring each pair of colors induces an edge cut
of PCd. Thus the signed graph pPCd, πiq, where πi assigns a negative sign to the edges
labeled i for i ď d and to the edges labeled J for i “ d` 1, is switching equivalent to
SPCd. As no pair of these d` 1 signatures share a common negative edge, and together
with g´pSPCdq “ d` 1 we have:

Lemma 3.2. Given a non negative integer d, the signed graph SPCd packs. More
precisely ρpSPCdq “ g´pSPCdq “ d` 1.

Observe that in the above example of pd ` 1q-packing of SPCd, we not only find
examples of signatures without sharing a negative edge, but also partition the set of
edges of PCd into sets of negative edges of the signatures. It is shown in [37] that the
problem of decomposing edges of a signed graph into d` 1 sets, each corresponding to
the negative edges of an equivalent signature, is equivalent to a homomorphism problem
where the signed graph SPCd plays the role of universal target. More precisely, we have
the following theorem:

Theorem 3.1. [37] Given a non negative integer d, the edge set of a signed graph pG, σq
can be decomposed into d`1 sets E1, E2, . . . , Ed`1, with each Ei being the set of negative
edges of a switching equivalent signed graph pG, σiq, if and only if pG, σq Ñ SPCd.

Here using a modification on a signed projective cube we introduce a variant of this
theorem which captures packing problems of signed graphs where the edge set is not
necessarily decomposed, but rather a number of disjoint subsets are selected.

Definition 3.1. We define SPCod to be the signed graph obtained from the signed
projective cube of dimension d by adding a positive loop to each of its vertices.
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Figure 3.2: SPCod for d P t0, 1, 2, 3u

The first few examples of SPCod are given in Figure 3.2.

Theorem 3.2. Given a non negative integer d, for a signed graph pG, σq, we have
ρpG, σq ě d` 1 if and only if pG, σq Ñ SPCod.

Proof. Let pG, σq be a signed graph. First suppose pG, σq Ñ SPCod. Following the
discussion on equivalent signatures of SPCd, we denote by pSPCod, πiq the signed graph
on SPCod where for i “ 1, 2, . . . , d, the edges labeled i are the negative edges and for
i “ d` 1 the edges labeled J are the negative edges. Then for each i, i “ 1, 2, . . . , d` 1,
the set of edges of G mapped to the negative edges of pSPCod, πiq forms the set of negative
edges of a signature σi of G which is equivalent to σ. As these sets are disjoint, we have
ρpG, σq ě d` 1.

For the inverse assume that ρpG, σq ě d` 1. Thus there are at least d` 1 signatures
σ1, σ2, . . . , σd`1 such that each σi is switching equivalent to σ and the sets E´i are

pairwise disjoint. Let E1 “ EpGq´
d`1
Ť

i“1
E´i . Let G1 be the graph obtained by contracting

all edges in E1. Let σ1i be the signature on G1 induced by the signature σi on G; that is
to say the set of edges assigned a negative sign by σ1i is the set E´i .

We claim that each pair of σ1i and σ1j are switching equivalent signatures on G1. This
follows from discussion in Section 4 of [51], and can verified directly as well. Since σi and
σj are switching equivalent signatures on G, there is a cut pX,V zXq in G such that if
pG, σiq is switched on X we get pG, σjq. As an edge uv of E1 is positive in both of these
signatures, u and v should either be both in X or both in V zX. Thus by contracting
the edges in E1 the edge cut pX,V zXq would induce an edge cut pX 1, V pG1qzX 1q of G1.
Starting with the signed graph pG1, σ1iq, a switching on the edge cut pX 1, V pG1qzX 1q
would then result in pG1, σ1jq, thus proving that σ1i and σ1j are switching equivalent.

Thus the edges of G1 are decomposed into d` 1 disjoint parts as the negative edges
of the signatures σ1i, and, therefore, by Theorem 3.1, pG1, σ11q admits a homomorphism
to SPCd. This then easily extends to a homomorphism of pG, σ1q to SPCod by noting
that the edges in E1 are positive in pG, σ1q and are mapped to the positive loops.

Following the proof technique of Lemmas 2.3 and 2.4 we have the following lemma
which connects Theorem 3.1 and Theorem 3.2.
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Lemma 3.3. A signed graph pG, σq belongs to G10 Y G11 if and only if its edge set can
be partitioned into sets E1, E2, . . . , El, for some integer l, each of which is the set of
negative edges of a signature σi equivalent to σ.

Theorem 3.3. Given a signed graph pG, σq of packing number d` 1, we have pG, σq P
G10 Y G11 if and only if pG, σq Ñ SPCd.

3.2 4-coloring of graphs and Packing signed graphs

Since SPC2 is switching equivalent to pK4,´q, and considering the fact that for a non
bipartite graph G the packing number of pG,´q is always an odd number we have the
following.

Theorem 3.4. A graph G is 4-colorable if and only if ρpG,´q ě 2.

Proof. If G is bipartite, then ρpG,´q “ 8 and G is 4-colorable, in which case there is
nothing left to prove. Thus we assume G is not bipartite.

A graph G is 4-colorable if and only if it admits a homomorphism to K4. By
Theorem 2.2, that is to say: A graph G is 4-colorable if and only if the signed graph
pG,´q admits a homomorphism to pK4,´q. Since pK4,´q is switching equivalent to
SPC2, we have: a graph G is 4-colorable if and only if pG,´q maps to SPC2. As
pG,´q P G11, by Theorem 3.3 and Theorem 3.1, G is 4-colorable if and only it has
packing number at least 3. Finally, since pG,´q P G11, and by Lemma 2.3, a graph G is
4-colorable if and only if pG,´q has a packing of order 2.

Using the four-color theorem, or rather a strengthening of it on the class of K5-
minor-free graphs, and by Lemma 2.3, we have the following corollary.

Corollary 3.1. Given a K5-minor-free graph G with no loop, we have ρpG,´q ě 3.

Given a graph G, a signed bipartite graph SpGq is defined as follows: vertices of
SpGq consist of vertices of G as one part of SpGq and for each edge uv two vertices
labeled xuv, yuv on the other part of SpGq. For each edge uv of G then we build a 4-cycle
uxuvvyuv. The signature of SpGq is an assignment π0 which assigns a negative sign to
exactly one edge of each 4-cycle of the constructed bipartite graph. We note that the
choice of π0 is arbitrary and that different choices are not necessarily switching equivalent
but they result in (switching) isomorphic graphs. This construction was first introduced
in [38]. The following theorem is implied using a result of [38] and Theorem 3.3.

Theorem 3.5. Given a simple graph G, we have ρpG,´q ě 3 if and only if ρpSpGqq ě 4
(for any choice of π0).

Thus to prove that ρpSpGqq ě 4 is the same as proving that G is four-colorable.
Noting that for every planar graph G, the associated signed graph SpGq is a signed
bipartite planar graph, to claim that every signed planar simple bipartite graph has
packing number at least 4 is stronger than the four-color theorem. This is proved to be
the case and is discussed in more details in the next section.
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3.3 Packing signed planar graphs
An example of a signed planar simple graph which does not map to SPCo1 is given in
[36]. Combined with Theorem 3.2 we have the following.

Proposition 3.1. There exists a signed planar simple graph pG, σq satisfying ρpG, σq “
1.

Thus in Corollary 3.1, the assumption on the signature, i.e., that pG, σq P G11, is
essential. However, with this kind of restriction a generalization of the 4CT can be
proposed as follows.

Conjecture 3.1. Every signed planar graph in G11 Y G10 packs.

That is to say: given a signed planar graph pG, σq P G11 Y G10, the packing number
of pG, σq is equal to the negative girth of pG, σq. We note that a signed connected graph
is in G11 Y G10 if it has no positive odd closed walk, i.e. g01pG, σq “ 8.

From the discussion of Section 3.1 it follows that Conjecture 3.1 is equivalent to:

Conjecture 3.2. Given a signed planar graph in G11 Y G10, if g´pG, σq “ d` 1, then
pG, σq Ñ SPCd.

This conjecture, which is partly proposed in [34] and partly in [24], is shown [34]
and [37] to be equivalent to the following conjecture, which is a restricted version of P.
Seymour.

Conjecture 3.3. Given a k-regular planar graph, it is k-edge-colorable if for each set
X of odd number of vertices the edge cut pX,V zXq is of size at least k.

It is easily observed that the connectivity condition in this conjecture is necessary.
The conjecture is a generalization of Tait’s reformulation of the 4CT. Thus the case
k “ 3 is implied by the 4CT. The cases k “ 4, 5 were settled by B. Guenin, in 2002 using
the notion of packing T -joins but it remains unpublished. The claimed proof is based on
induction on k, thus the 4CT (the case k “ 3) is assumed. The result is extended by
several authors for k “ 6, 7, 8. Our result in this work, based on the notion of packing,
implies a proof of the case k “ 4. Our proof has some similar elements to that of Guenin.
There are advantages in our approach, a notable one being that: since faces are not
needed, our result works for any minor closed family of 4-colorable graphs. The largest
of those is the class of K5-minor-free graphs, but taking some smaller class one may get
a proof without using the 4CT. More precisely we prove that:

Theorem 3.6. Any signed bipartite simple K5-minor-free graph has a packing number
at least 4.

To prove Theorem 3.6 we establish a number of lemmas that could be of use for the
general case of Conjecture 3.1. These are collected in the next section.
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3.4 Packing and minors
The advantage of Conjecture 3.1 is that induction on the negative girth looks possible
and indeed we will prove the case of negative girth being 4 use negative girth 3 (which
is equivalent to the 4CT). This is based on the following easy lemma. We recall that for
a subset E1 of the edges of a graph G, the graph obtained from contracting all edges in
G is denoted by G{E1.

Lemma 3.4. Let pG, σ1q and pG, σ11q be two switching equivalent signed graphs with no
common negative edge. Then ρpG, σ1q ě ρpG{E1, E

1
1q ` 1, where E1 and E11 are the sets

of the negative edges of pG, σ1q and pG, σ11q, respectively.

Proof. Let σ2, σ3, . . . , σk`1 be k signatures on G{E1 such that each is equivalent to
pG{E1, E

1
1q and that no pair of them have a common negative edge. Let E2, E3, . . . , Ek`1

be the set of negative edges in pG{E1, σ2q, pG{E1, σ3q, . . . , pG{E1, σk`1q, respectively.
Then it is quite straightforward to check that pG,E1q, pG,E2q, pG,E3q, . . . , pG,Ek`1q
is a packing of pG, σ1q.

In applying this lemma one should note that if pG, σ1q is in G11, then pG{E1, E
1
1q

is in G10 and that conversely, if pG, σ1q P G10, then pG{E1, E
1
1q P G11. Thus if we are

attempting to prove that for a minor closed family C of graphs, every signed graph pG, σq,
pG, σq P G11 Y G10 and G P C, packs, then in an approach which is based on induction
on the negative girth of pG, σq, assuming the claim holds as long as g´pG, σq ď k, and
given a signed graph pG, σq in the class satisfying g´pG, σq “ k ` 1, it would be enough
to find signatures σ1 and σ11, each equivalent to σ and such that g´pG{E1, σ

1
1q ě k.

When pG, σq is in G10, finding σ11 or rather E11 is quite simple, it would be enough to
set E11 : EzE1. Thus in this case the main task in hand would be to find an appropriate
σ1. When pG, σq is in G11, then we must provide both σ1 and σ11 when applying this
technique. However, in this case finding σ1 can also be done with a condition on σ1: let
pG, σ1q be a switching of pG,´q with the property that every negative cycle of pG,´q,
that is every odd cycle of G, has at least one (therefore, at least 2) positive edges. Thus
in the minor pG{E1q of G every negative closed walk of G has an image which is a
nontrivial closed walk of G{E1. The set of all these closed walks have a θ-property:
that if we take three x ´ y walks P1, P2 and P3, then of the three closed walks P1P2,
P1P3 and P2P3 either none or exactly two of them are in the set. Then it follows from
Theorem 10 of [39] that this set of closed walks is the set of negative closed walks of
a signature on G{E1. Taking E11 as the set of negative edges of such a signature then
works.

Thus based on this discussion, Conjecture 3.1 is equivalent to the following conjecture:

Conjecture 3.4. Given a signed planar graph pG, σq P G11 Y G10, there is an equivalent
signature σ1 such that every negative cycle of pG, σq has at least g´pG, σqq ´ 1 positive
edges.

Theorem 3.7. Conjecture 3.1 and Conjecture 3.4 are equivalent.
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Proof. That Conjecture 3.1 implies Conjecture 3.4 is straightforward: if σ1, σ2, . . . , σk
is a packing of pG, σq, then any of σi’s satisfies the condition of Conjecture 3.4: every
negative cycle of pG, σiq has at least one negative edge in each of pG, σjq, j ‰ i, all of
which are positive in pG, σiq.

Suppose Conjecture 3.4 holds. Let pG, σq be a counterexample to Conjecture 3.1 of
minimum possible negative girth, say k. By the statement of Conjecture 3.4 there is a
switching equivalent signature σ1 where each negative cycle has at least k ´ 1 positive
edges. Considering the signed graph pG{E1, σ

1
1q, where σ11 is a signature equivalent to

σ but disjoint from it, the negative girth is k ´ 1. By our choice of pG, σq, which has
minimal negative girth among all counterexamples, pG{E1, σ

1
1q packs. Thus there are

signatures σ2, σ3, . . . σk where no pair of them have a common negative edge. Together
with E1, then they correspond to signatures σ1, σ2, . . . , σk proving that pG, σq packs.

Following this formulation, given a signed graph pG, σq of negative girth k, a negative
cycle whose number of positive edges is (strictly) less than k ´ 1 will be referred to as
super negative cycle. Thus Conjecture 3.4, and, therefore, Conjecture 3.1, are to say
that any planar signed graph pG, σq P G11 Y G10 can be switched so that it has no super
negative cycle.

There are a couple of important remarks to make here: first is that we did not really
use the assumption of planarity here, rather we used the fact that we are working with
a minor closed family of graphs, or even more precisely, we want the minor G{E1 to
be in our family. The second remark is that if we restrict both conjectures on subclass
of signed graphs of negative girth at most k, then these restricted versions are still
equivalent.

Following these observation, we would like to work with a minor closed family C of
graphs such that any signed graph pG, σq with G P C and pG, σq P G11YG10 packs. If we
take all signed graphs pG,´q in this family, where G is a simple graph, then the fact that
pG,´q packs implies, in particular, that G is 4-colorable. Thus, in particular, K5 is not
in C and as C is a minor closed family, we are working with a subclass of K5-minor-free
graphs. One may assume that C is indeed the class of K5-minor-free graphs, but there
is advantage in this general statement which will be pointed out in Subsection 3.4.2.

Before continuing, we state a couple of facts on K5-minor-free graphs.
The first is the following classic theorem of Wagner on characterization of K5-minor-

free graph. Here W is the graph of Figure 3.3.

Figure 3.3: Wagner graph
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Theorem 3.8. (Wagner) Every edge-maximal graph with no K5-minor can be obtained
by means of 3-sum and 2-sum, starting from planar triangulations and copies of W .

A 3-sum of two graphs G and H is to identify the vertices of one triangle of G with
the vertices of a triangle of H. Similarly, their 2-sum is to identify the vertices of an
edge from G with the vertices of an edge from H. A first and classic corollary of this
decomposition theorem is that, the four-color theorem can be extended to the class of
K5-minor-free graphs, this is a classic application of this decomposition theorem. A
second corollary is to extend the application of the Euler formula to bound the number
of edges of a triangle-free members of the class, we give a proof of this folklore fact for
the sake of completeness.

Proposition 3.2. If G is a K5-minor-free graph of girth at least 4, then |EpGq| ď
2|V pGq| ´ 4.

Proof. First we build a graph G1 from G by adding edges to make it edge-maximal
while it remains K5-minor-free. Obviously, G is a spanning subgraph of G1. Then by
Theorem 3.8, G1 is obtained from 3-sum or 2-sum of planar triangulations and copies of
W . Suppose G1 is obtained by clique-sums of G11, G12, . . . , G1n. Without loss of generality,
let G2i be the clique-sums of G11, . . . , G1i. Let Gi be the subgraph of G2i contained in G,
let Hi be the subgraph of G1i contained in G. Then G “ Gn, and it suffices to prove that
|EpGnq| ď 2|V pGnq| ´ 4.

We first claim that the inequality holds for each Hi. That is because each Hi is
either planar and triangle-free, in which case |EpG1q| ď 2|V pG1q| ´ 4 by application
of the Euler formula, or it is a spanning subgraph of W , and the inequality holds for
W itself. Thus in particular G1 “ H1 satisfies the conditions. We complete the proof
by induction on i, showing that each Gi satisfies the bound. That is because if G2i is
obtained from 3-sum of G2i´1 and G1i, then Gi is formed from Gi´1 and Hi by identifying
three vertices and at most two edges. Since they both satisfy the inequality, Gi also
satisfies it. If G2i is obtained from 2-sum of G2i´1 and G1i, then Gi is formed from Gi´1
and Hi by identifying two vertices and at most one edge, and similarly, Gi also satisfies
the inequality.

We are now ready to state and prove the following.

Theorem 3.9. Let C be a minor closed family of graphs whose members are 4-colorable.
Then for any bipartite simple graph G in C and for any signature σ we have ρpG, σq ě 4.

Proof. Assume that pG, σq is a minimal counterexample to the theorem. That is to say
that G is a simple bipartite graph in C with a signature σ such that ρpG, σq “ 2 and
that for any edge e of G, the signed bipartite graph pG´ e, σq has packing number at
least 4.

Here the signature in pG ´ e, σq is the restriction of the signature of pG, σq, thus,
with a minor abuse of notation, we use σ to denote both. Furthermore, if pG´ e, σ1q is
obtained from pG´ e, σq by switching at a subset X of vertices, then we may use pG, σ1q
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to denote the signature which is obtained from pG, σq by switching at the same vertex
set X, in this case pG´ e, σ1q will be induced signed subgraph of pG, σ1q.

With this notation and with the assumption on the minimality of pG, σq, we conclude
that for each edge e of G, there are four signatures σ1, σ2, σ3 and σ4 such that any pair
of them either have no common negative edge, or e is their only common negative edge.
We recall, by Theorem 3.7, pG, σq is also a minimal counterexample to Conjecture 3.4.
As we are considering negative girth to be 4, given a signature, a super negative cycle
is a negative cycle with only one positive edge. If for any signature equivalent to σ, in
particular for one of the signatures σi, i “ 1, 2, 3, 4, the signed graph pG, σiq has no super
negative cycle then we are done. On the other hand pG´ e, σiq has no super negative
cycle for i “ 1, 2, 3, 4 because each negative cycle has at least one negative edge in each
σi which is a positive edge in the other three signatures. Thus each pG, σiq, i “ 1, 2, 3, 4,
must have a super negative cycle which contains e.

One easily observes that replacing a signature σi, i “ 1, 2, 3, 4, with a minimal
signature contained in σi may only decrease the number of super negative cycles. Thus
we may assume each σi is a minimal signature. This in particular implies that:

not all edges incident to the same vertex are negative in a given σi. (3.1)

Let e “ uv be an edge where dpuq “ 2. Let σ1, σ2, σ3, σ4 be a 4-packing of pG´e, σq
consisting of four minimal signatures. We claim that, for each signature σi, i “ 1, 2, 3, 4,
at least one super negative cycle Ci in pG, σiq has the following property:

P1. Except possibly the two vertices of the only positive edge of Ci, every (other)
vertex of Ci has a degree at least 4 in G.

Since σi’s are assumed to be minimal, and by (3.1), in none of pG, σiq the two edges
incident to u are negative. They cannot be both positive either, as otherwise pG, σiq
has no super negative cycle and we are done. If necessary by switching at u we may
assume e “ uv is the negative edge in each of pG, σiq and that the other edge incident
to u, say uw, is positive in all of them. We now consider a super negative cycle Ci of
pG, σiq. Observe that, as this cycle must contain e, and since u is a vertex of degree 2,
it must also contain uw, and thus uw is its only positive edge. Let x be a vertex on
Ci which is of degree 2 or 3 in G and x R tu,wu. Then x is not of degree 2 because of
(3.1), thus dpxq “ 3. Let xy be the edge incident to x which is not on Ci. Observe that,
again by (3.1), xy is a positive edge of pG, σiq. Moreover, as x R tu,wu, xy is distinct
from uw. Thus no super negative cycle of pG, σiq contains the edge xy. Let σ1i be the
signature on G obtained from a switching at the vertex x. Observe the following 3 facts:
1. Ci is not a super negative cycle in pG, σ1iq, 2. Because x R tu,wu, the number of
positive edges incident to u is not decreased but it may have gone up if x “ v. 3. If C 1i
is a super negative cycle of pG, σ1q, then C 1i is also a super negative cycle of pG, σiq and
moreover, signs of each edge of C 1i are the same in both pG, σiq and pG, σ1iq. Thus if a
super negative cycle of pG, σ1iq satisfies the conditions of P1 then we are done, otherwise
we repeat the process. As we are working with a finite graph, and the number of super
negative cycles is finite, at the end either we find a super negative cycle that satisfies
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the conditions of P1, or we obtain a signature with no super negative cycle in which
case we can find a packing of four signatures and we are done.

In conclusion, we have a 4-packing σ1, σ2, σ3, σ4 of pG´ e, σq with the property that
each pG, σiq, i “ 1, 2, 3, 4, contains a super negative cycle Ci in which uw is the only
positive edge, and, except for u and w, every other vertex on Ci is of degree at least 4 in
G. Let xi be the neighbour of v on Ci distinct from u. Observe that as G is bipartite, xi
is also distinct from w. We observe, furthermore, that any pair of the signatures σi and
σj , i, j P t1, 2, 3, 4u, can only have e “ uv as the common negative edge. We conclude
that v has (at least) four neighbours each of which is of degree 4.

This argument can be repeated exchanging the roles of v and w, thus we conclude
that:

Claim 3.1. For each vertex u of degree 2, each of its neighbors v and w has four
neighbors each of degree at least 4.

Next we aim to prove a similar claim for the neighborhood of a 3-vertex. Proofs are
quite similar, but we need to take care of further details.

Let u be a vertex of degree 3 and let v, w and t be its three neighbors. Consider
e “ uv and let σ1, σ2, σ3, σ4 be a 4-packing of pG ´ e, σq consisting of four minimal
signatures. We first observe that in each of pG, σiq, i “ 1, 2, 3, 4, not all three edges
uv, uw, ut are of a same sign. That is because three of them being negative would
contradict our choice of σi’s being minimal and three of them being positive will leave
no room for a super negative cycle in pG, σiq containing uv, noting that there is also no
super negative cycle in pG´ e, σiq by our choice of σ1, σ2, σ3, σ4. If for any of σi the
signed graph pG, σiq contains two negative edges incident to u, then we will switch at u
to get a signature σ1i.

So altogether we will work with signatures σ11, σ12, σ13, σ14 such that in each signed
graph pG, σ1iq, the signature σ1i assigns one negative and two positive signs to the edges
uv, uw, ut and σ1i is either the same as σi, or is obtained from σi by switching at u.
Observe that, by the choice of σi, i “ 1, 2, 3, 4, any pair of signatures among σ1i’s have at
most one common negative edge, and if so, that edge is one of uv, uw, ut. We may further
modify σ1i’s to have them as minimal signatures. One may remind the reader again
that replacing a σ1i with potentially minimal subset would not create a new intersection
among σ1i’s and that the only affect such a replacement may have on super negative
cycles is to kill off some.

We claim again that, for each signature σ1i, i “ 1, 2, 3, 4, at least one super negative
cycle Ci in pG, σ1iq has the following property: every vertex of Ci not incident with the
positive edge of Ci has degree at least 4 in G.

To prove the claim we first note that Ci is also a super negative cycle of pG, σiq.
That is because first of all edges not incident to u that are negative in pG, σ1iq are also
negative in pG, σiq. Secondly, since the only positive edge of Ci is incident to u, each
edge of Ci which is not incident to u is negative in both pG, σ1iq and, therefore, in pG, σiq.
Thirdly, since Ci is a negative cycle of pG, σq, and as G is bipartite, in both pG, σiq and
pG, σ1iq one of the two edges incident with u is positive and the other is negative.
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We conclude two facts from this: 1. that every super negative cycle of pG, σ1iq must
contain the edge uv, and, therefore, 2. the positive edge of every super negative cycle of
pG, σ1iq is incident to u. We note that this is not necessarily true for pG, σiq.

We now consider a shortest super negative cycle Ci of pG, σ1iq and assume that it
contains a vertex x not incident to the positive edge of Ci and that dpxq ď 3. Once again
by the fact that σ1i is a minimal signature, we conclude that x must be of degree exactly
3 and that the edge xy which is the edge incident with x but not in Ci must be positive.
We claim that y ‰ u. Otherwise, since Ci must contain u as well, xy is a chord of Ci.
Then xy creates two cycles with Ci and the part that does not contain the positive edge
of Ci is a super negative cycle of pG, σ1iq but it is shorter than Ci, contradicting the
choice of Ci.

That y ‰ u implies that no super negative cycle of pG, σ1iq contains xy. Let σ2i be the
signature obtained from a switching of pG, σ1iq at x. What we have observed is that: 1.
Ci, which was a super negative cycle of pG, σ1iq, is not a super negative cycle in pG, σ2i q,
and 2. for every super negative cycle C of pG, σ2i q each edge of C has the same sign in
pG, σ2i q and pG, σ1iq. We observe that σ2i is not necessarily minimal, however, replacing
it with a minimal signature can only kill off some super negative cycles without any
change on the signs of edges of the remaining one. Thus the remaining super negative
cycles are the super negative cycles of pG, σ1iq without any change to the signs of their
edges. We continue this process, if we end up with a signature where there is no super
negative cycles, then we have found a 4-packing of pG, σq. Else we must end up with a
super negative cycle C 1i where each vertex not incident with the positive edge of C 1i is of
degree at least 4 in G. Since we have retained the sign of super negative cycles during
the process, C 1i is also super negative cycle of pG, σ1iq with the property that each vertex
not incident with the positive edge of C 1i is of degree at least 4 in G. We recall that each
super negative cycle of pG, σ1iq must contain the edge e “ uv and that its only positive
edge must be incident to u. Thus if vzi, zi ‰ u, is an edge of C 1i, then zi is of degree at
least 4 in G. As this must be true for every i, i “ 1, 2, 3, 4, we have proved the following
claim.

Claim 3.2. If v is a vertex of degree 3 in G, then its nieghbors x, y and z each has at
least four neighbors of degree at least 4.

We may now employ the discharging technique to obtain a contradiction.
Discharging procedure
The initial charge of each vertex v is defined as: ωpvq “ dpvq. As G is K5-minor-free

and bipartite (thus triangle-free), by Proposition 3.2, we have
ÿ

vPV pGq

ωpvq ď 2|V pGq| ´ 8.

However, the following discharging rule will redistribute charges such that each vertex
has a charge of at least 4, contradicting this formula.

(R1) Each vertex of degree 2 or 3 receives a charge of 1 from each of its neighbors.

Our two claims imply that for vertex v of degree 2 or 3 all neighbors are of degree
at least 5, and thus while v gets a charge of 1 from each of its neighbors, it looses no
charges, and thus has a final charge of at least 4. On the other hand a neighbor of such
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a vertex v has at least four vertices each of which is of degree at least 4, thus its charge
will never go below 4.

Corollary 3.2. Any signed bipartite K5-minor-free graph admits a homomorphism to
SPC3.

3.4.1 Algorithmic conclusion

We recall that the proof of the four-color theorem provided in [45] leads to a quadratic
time algorithm for 4-coloring of planar graphs. More precisely, that is an algorithm
A which takes as an input a simple planar graph G and gives as an output a proper
4-coloring of G, in time Op|V pGq|2q. Using the Wagner decomposition theorem, this
works on the class of K5-minor-free graphs as well. This is equivalent to giving a
3-packing of the signed graph pG,´q as we discussed before. We may then use this
algorithm to give an algorithm BP which takes as an input a signed bipartite planar
simple graph pG, σq and gives, as an output, a 4-packing of pG, σq in time Op|V pGq|3q.
This follows easily from our proof: Since G is planar, bipartite and simple, it has at most
2n´ 4 edges. We may simply assume G is 2-connected as one may combine solutions on
distinct 2-connected blocks. Our discharging proof implies that G has either a vertex
v of degree 2 where at least one of the neighbors, say x, has at most 3 neighbors of
degree at least 4, or it has a vertex u of degree 3 each of whose neighbors have at most
3 neighbors of degree 4 or more.

Having found such a vertex v or u, that can be done in a linear time, we remove
from pG, σq an edge e incident to v or u. Assume a solution σ1, σ2, σ3, σ4 is provided
for pG ´ e, σq. By the proof given in the previous section we know one of the four
signed graphs pG, σ1q, pG, σ2q, pG, σ3q, pG, σ4q has no super negative cycle. This can be
verified by checking for a loop in the graphs G{E1, G{E2, G{E3 and G{E4, noting that
contracting these edges and looking for a loop can all be done in linear time. Suppose
G{E4 has no loop. Then we apply algorithm A on the graph G{E4 to get signatures σ11,
σ12, σ13. These three signatures together with σ4 form a 4-packing of pG, σq.

To find a solution for pG´ e, σq, which we had assumed in the argument above, one
may repeat the same process. Assuming G is on n vertices, since G has at most 2n´ 8
edges, the algorithm A might be recalled at most 2n´ 8 times. As algorithm A runs in
time Opn2q, the running time of the full algorithm is Opn3q.

Mapping a signed bipartite graph pG, σq to SPC3, given a 3-packing σ1, σ2, σ3, can
be done in linear time: label negative edge in pG, σ1q by 001, those in pG, σ2q by 010,
ones in pG, σ3q by 100 and then label the remaining edges 111 noting that they form the
negative edges of an equivalent signature. Observe that sum of the labels of the edges in
each cycle is 000. Now for each connected component of pG, σq take an arbitrary vertex,
say x and map it to the vertex 000 of SPC3. Then for a vertex y in the same component
as x, take an xy path P and map y to sum of labels of edges of the path P . It can be
readily verified that this is a mapping of pG, σq to SPC3.

We note that the algorithm works the same for signed bipartite K5-minor-free graphs.
However, the planar case has the following application on the dual.
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Corollary 3.3. Given a 4-regular planar multigraph G where each set X of odd number
of vertices is connected to V zX by at least 4 edges, we have χ1pGq “ 4. Moreover, a
4-edge-coloring can be found in time Op|F pGq|3q, where |F pGq| is the number of faces of
G.

3.4.2 Concluding remarks

We introduced the notion of packing signatures in signed graph and we established
connections with a number of problems such as 4-coloring of graphs, edge-coloring of
planar graphs, etc.

We proved that given a minor closed family C of 4-colorable graphs, for any bipartite
simple graph in C and any signature σ on it, the packing number of pG, σq is at least
4. The largest family to which this result may apply is the class of K5-minor-free
graphs where 4-colorability of a general member is established by the four-color theorem.
However, if we take smaller classes where 4-coloring can be verified without the use of
the four-color theorem, then the result on the packing number will also be independent
of the four-color theorem. An interesting case to mention is the following.

Theorem 3.10. Given a signed bipartite simple graph pG, σq where G has treewidth at
most 3, we have ρpG, σq ě 4.

Corollary 3.4. Every signed bipartite simple graph of treewidth at most 3 admits a
homomorphism to SPC3.

The class of graphs of treewidth at most 3 is a minor closed family of graphs that
is a subclass of K5-minor-free graphs. More precisely, as proved in [1], it consists of
graphs which do not have any of the four graphs of Figure 3.4 as a minor. That loop-free
members of this class are 4-colorable follows from the fact that edge-maximal elements
are 3-trees. Thus Theorem 3.10 is proved without using the four-color theorem.

Figure 3.4: Forbidden minors for graphs of treewidth at most 3

On the other hand, it would be expected that a stronger version of Theorem 3.9
would hold. Such a strengthening would be based on the notion of minor of signed
graphs rather than minor of graphs. More precisely the following conjecture is stronger
than Conjecture 3.1.

Conjecture 3.5. Given a signed graph pG, σq P G11 Y G10, if pG, σq has no pK5,´q-
minor, then it packs.
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The idea of induction on the negative girth would work here as well. That is because
if σ1 and σ2 are two disjoint signatures each equivalent to pG, σq, then pG{E1, E2q is a
minor of pG, σq, and if pG, σq P G11 Y G10, then pG{E1, E2q P G11 Y G10.

However, the class of signed graphs with no pK5,´q-minor is not a sparse family
and contains signed graphs with Opn2q number of edges. Thus one cannot expect
the discharging technique we used here to work directly. However, one may look for
decomposition results where the planar case studied here would work as a base class.



Chapter 4

Packing antibalanced
triangle-free signed planar graphs

This chapter is based on the following paper:

[40] R. Naserasr and W. Yu. On the packing number of antibalanced signed simple
planar graphs of negative girth at least 5. Submitted, 2022.

As introduced in Chapter 3, the following conjecture is a reformulation of Conjec-
ture 1.1, which is an extension of the 4-color Theorem.

Conjecture 4.1. Every signed simple planar graph in G11 Y G10 packs.

In the subclass of planar graphs the conjecture can restated using the dual notion of
packing T -joins where T would be vertices of the dual that correspond to the negative
faces of the planar embedding. The statement of the conjecture based on the notion
packing T -join was first proposed by B. Guenin in early 2000’s who then gave a proof of
the next two cases. In our language that would be proving the conjecture for members
of the class whose negative girth is 4 or 5. The T -join approach is extended in three
follow up work which means that the conjecture is proved for the cases with negative
girth at most 8. We note that proof for each case of girth condition relies on the proof
for the earlier cases, thus dependent on the proof of the 4-color theorem. However, the
work of Guenin remains unpublished and mostly not available.

An independent proof for the case of girth 4 is given in Chapter 3. This proof has
extra advantage that works for any minor closed family that are 4-colorable. Thus, on
the one hand it works for the larger family of K5-minor free graphs, and, it provides a
proof with the use of the 4-color theorem for subclasses such as graphs of treewidth at
most 3.

In this chapter, we continue using the language of packing number and extend the
technique as last Chapter to verify the case of negative girth 5 of Conjecture 4.1. More
precisely, we prove that for any antibalanced signed planar graph pG, σq of negative
girth at least 5, we have ρpG, σq ě 5. In Section 4.1, we first give some notions and then
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give full picture of the proof, start with providing a reformulation of the theorem and
then we do a double induction and use different statements for different directions of the
induction. In Section 4.2, we stablish a rich enough structure around vertices of degree 2
and 3 to apply discharging technique in Section 4.3 and finally get a contradiction with
Euler’s formula.

4.1 Preliminaries

Given a signed graph pG, σq of negative girth k, a negative cycle C of it is said to be super
negative if it has at most k´2 positive edges. The key property of a super negative cycle,
relevant to this study, is in the following observation. Let σ1 be a signature equivalent to
σ but disjoint from it, one can easily find such a signature using following Theorem 4.1.

Theorem 4.1. Given signed graph pG, σq and a set σ1, . . . , σr of signatures each equiv-
alent to σ, there exists a signature σ1 which has no common negative edge with any of
pG, σiq’s if and only if the set Yri“1E

´
i induces a bipartite graph.

Let G{σ be the graph obtained from G by contracting the negative edges of σ and let
σ1 be the signature on G{σ where the negative edges of it are the images of the negative
edges of pG, σ1q. That pG{σ, σ1q is well defined because the two signatures do not share a
negative edge. Now a negative cycle C in pG{σ, σ1q is of length less than or equal to k´ 2
if and only if it is the image of a super negative cycle of pG, σq. This is the key point in
showing that the following is equivalent to Conjecture 4.1. We refer to Chapter 3 for
more details.

Conjecture 4.2. Any signed planar graph in G11 Y G10 admits an equivalent signature
σ1 where pG, σ1q has no super negative cycle.

We shall note that the property of having no super negative cycle is a homomorphism
property in the following sense: Suppose pH,πq is a signed graph where every negative
cycle has at least l positive edges. If a signed graph pG, σq maps to pH,πq, then there is a
signature σ1 equivalent to σ such that in pG, σ1q each negative cycle has at least l positive
edges. One such choice for σ1 is by taking inverse image of π under the homomorphism
of pG, σq to pH,πq.

This observation and Theorem 3.2 imply that given an integer k, a minimum
counterexample pG, σq of negative girth k to each of Conjecture 4.1 and Conjecture 4.2
must have no proper homomorphic image which satisfies all three conditions: It negative
girth k, it is planar, and it is in G11 Y G10. Then, combined with the folding lemma of
[29] which applies to cases in G11 and the folding lemma of [37] that applies to cases in
G10, we conclude that in every planar embedding of pG, σq each face must be a negative
k-cycle.

The rest of this chapter is about proving the following theorem.

Theorem 4.2. For any antibalanced signed simple planar graph pG, σq of negative girth
at least 5, we have ρpG, σq ě 5.
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The following is the full picture of the proof. We are assuming that each planar
graphs in G11 Y G10 with negative girth at most 4 packs. Let us take a planar graph
pG, σq in G11 with negative give at least 5. We want to prove that ρpG, σq ě 5. Let us
suppose we can find a switching equivalent signature σ1 such that pG, σ1q has no super
negative cycle. By Theorem 4.1, we can find a second equivalent signature σ2 such that
pG, σ1q and pG, σ2q have no negative edge in common. We then contract all the negative
edges in pG, σ1q and consider the negative edges of σ2 as a signature on this new graph.
This would be a signed planar graph in G10 whose negative cycles are of length at least 4.
Applying the case of negative girth 4, we have four disjoint signatures on the contracted
graphs. Together with σ1 we have a total of five signature with no pair of them having a
common negative edge.

So what remains is to show is that pG, σq admits an equivalent signature with no
super negative cycle. At this point the second inductive step kicks in. We assume G is a
smallest counterexample. That is to say: G is a planar graph in G11 which has no loop
and no triangle, it does not admits a packing of size five and among all such example, it
has (first) minimum number of vertices and (second) minimum number of edges. The
order on the number of vertices together with the folding lemma implies that all faces
are 5-cycles. The minimality of the number of edges means removing any edge e, the
remaining signed graph must admit a 5-packing. Viewing each of these five signatures as
a signature on G, equivalent to σ, we must have a super negative cycle. However, each
such a cycle must include e. This would be enough to stablish a rich enough structure
around vertices of degree 2 and 3 to apply discharging technique and get a contradiction
with Euler’s formula. Thus we split details of the proof to three parts: dealing with
2-vertices, 3-vertices and then discharging.

4.2 Structural properties of the vertices

4.2.1 2-vertices

Let v be a vertex of degree 2 in G and let x and y be its two neighbours, furthermore,
in the rest of this subsection e is the edge vx and e1 is the edge vy.

Let σ1, σ2, σ3, σ4, σ5 be the five signatures equivalent to σ such that, when restricted
on G´ e, they have no common negative edge. Thus e is the only potentially common
negative edge among some of these signatures. Each pG, σiq must contain a super
negative cycle. If more than one, then we choose one and name it Ci. Moreover we
denote by Pi the x´ y path in Ci that does not contain v. Furthermore, we assume σi’s
are minimal in the sense that there is no other signature on G´ e equivalent to σ such
that all its negative edges are also negative in σi. Clearly replacing each signature with
a minimal one does not affect the packing property. However, then we may have a set of
edges each of which is positive in all five of pG´ e, σiq. Let E6 be such set of edges of
G´ e. We proceed with a series of claims.

Claim 4.1. We have one of two:
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• Either σipeq ‰ σipe
1q for each i, i “ 1, 2, . . . , 5, in which case all the positive edges

of each Ci must be in E6.

• Or for exactly one of the five signatures, say σ5, we have σipeq “ σipe
1q in which

case the positive edge of each Pi in pG, σiq, i “ 1, 2, 3, 4, is a negative edge in
pG, σ5q.

Proof. First we show that we cannot have two such signatures satisfying σipeq “ σipe
1q.

Suppose to the contrary that two of them, say σ1 and σ2, assign the same sign to e and
e1. By switching at v, if necessary, in each of pG, σ1q and pG, σ2q we may assume that
σ1peq “ σ1pe

1q “ ` and σ2peq “ σ2pe
1q “ `. This implies that all the edges of P1 are

given a negative sign in pG, σ1q and, similarly, all the edges of P2 are given a negative
sign in pG, σ2q, and thus a positive sign in pG, σ1q. Recall that, since each Ci is an odd
cycle, each Pi is a path of odd length. Then the closed walk induced by P1 Y P2, in
pG, σ1q, and hence in pG, σq, is negative closed walk of even length. This contradicts the
fact that pG, σq P G11.

Hence, and without loss of generality, we assume σipeq ‰ σipe
1q for i “ 1, 2, 3, 4.

Then for each i, i “ 1, 2, 3, 4, the path Pi has a unique positive edge in pG, σiq. Let us
name this edge ei. Then we first observe that ei cannot be negative in any of pG, σjq,
j “ 1, 2, 3, 4 as otherwise, Ci would be a positive cycle in pG, σjq. If σ5peq ‰ σ5pe

1q, then
for Ci, i “ 1, 2, 3, 4, to be negative in pG, σ5q we have σ5peiq “ ` which implies the first
case of the claim. If σ5peq “ σ5pe

1q, then for Ci, i “ 1, 2, 3, 4, to be negative in pG, σ5q
we must have σ5peiq “ ´ in which case we have the second part of the claim.

Note that one may change the sign of all edges in E6 to negative in pG, σ5q. As
pG´ e, σq is in G11, the resulting signature is also equivalent to σ. Thus we may assume
that the second item of the claim is always the case at the cost of allowing σ5 not to
be minimal. Under this assumption, we may also assume that σ5peq “ σ5pe

1q “ `, as
otherwise we may switch at v in pG, σ5q. This, in particular, means that for any super
negative cycle C5, e and e1 are the only positive edges.

We should note that in choosing the super negative cycle Ci of pG, σiq one may have
more than one choice. Next we aim at showing that among the possible choices, at least
one should have a fair number of high degree vertices. Recall that in our case of negative
girth 5 a super negative cycle has either 2 or 0 negative edges. Thus if a super negative
cycle has at least one positive edges, then it has precisely two positive edges.

Claim 4.2. Assume σ1 is a minimal signature equivalent to σ such that every super
negative cycle of pG, σ1q contains xvy with one positive edge and one negative edge, and
that, moreover, the other positive edge is incident to either x or y. Then in one of the
super negative cycles of pG, σ1q every vertex which is not incident to a positive edge is of
degree at least 4 in G.

Proof. That σ1 is assumed to be a minimal signature implies, in particular, that no vertex
is incident to only negative edges. Among all the signatures for which the conditions of
Claim 4.2 hold but the conclusion does not, we take σ1 to be one where the number of
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super negative cycles of pG, σ1q is minimized. To get a contradiction we need to show
that this number must be 0.

Suppose not and let C1, C2, . . . Cr be the set of super negative cycles of pG, σ1q and
assume that C1 is a shortest one among these cycles. Since the condition does not
hold, C1 has a vertex z whose two neighbours on C1 are connected to it by negative
edges (with respect to the signature σ1) and dGpzq ď 3. Since not all edges incident to
a vertex are negative, we must have dGpzq “ 3 and that the third neighbour of z, say
z1, is adjacent to it with a positive edge. We first claim that z1 R tx, yu. Let P 11 be the
x ´ z path in C1 which does not include v and P 21 be the z ´ y path which does not
include v. Observe that only one of P 11 and P 21 have a positive edge. We continue the
proof assuming that P 21 has a positive edge, which then must be incident to y. The
other case would be symmetric. If z1 “ x, then P 11 together with xz induces a cycle with
exactly one positive edges, depending on the parity of the length, that would either be a
negative even cycle or a positive odd cycle both of which is forbidden in a member of
G11. If z1 “ y, then the cycle C 11 obtained from C1 by replacing P 21 with the zy is also a
super negative cycle of pG, σ1q whose length is less than C1, contradicting the choice of
C1.

Since z1 R tx, yu, and by our assumption that in every super negative cycle of pG, σ1q
each positive edge is either incident to x or to y, we conclude that the edge zz1 does not
belong to any super negative cycle of pG, σ1q. We now consider the signature σ2 obtained
from pG, σ1q by a switching at z. Then the each super negative cycle of pG, σ2q is also a
super negative cycle of pG, σ1q with the same signature. Thus pG, σ2q also satisfies the
conditions of the claim, but it less super negative super cycles than pG, σ1q, contradicting
the choice of σ1.

We note that each of σ1, σ2, σ3, and σ4 satisfies the conditions of the claim, and,
therefore, the conclusion hold on these four signatures. For σ5 this would depend on
the possible cases of Claim 4.1. To take a better advantage of this case, we consider a
signature σ15 where the negative edges are those of σ5 and the edges in E6. It is already
mentioned that σ15 is an equivalent signature. We have to following claim on pG, σ15q.

Claim 4.3. In pG, σ15q there exist a super negative cycle C in which all vertices, but
possibly x, v and y, have degree at least 4 in G.

Proof. Observe that in pG, σ15q the edges xv and vy are of the same sign. Thus if needed,
by a switching at v we may assume they are both positive. This implies that in every
super negative cycle of pG, σ15q all edges not incident to v are negative. Let C1, C2, . . . , Cr
be the set of super negative cycles of pG, σ15q. If each of them has a vertex of degree 2 or
3, by switching at all those vertices we will get a signature with no super negative cycle,
contradicting the minimality of the counterexample. The details that such switching does
not create new super negative cycles and that each switching kills of the corresponding
super negative cycle is similar to the previous claim.

Claim 4.4. In each of pG, σiq, i “ 1, 2, 3, 4, one of the followings holds:

• Either x or y has a negative neighbour whose degree in G is at least 4.
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• Each of x and y have a negative neighbour of degree 3.

Proof. Suppose to the contrary that one of them, say pG, σ1q does not satisfy the claim.
That means, for one of x of y, say y, all negative neighbours (possibly none) are of degree
2. Let pG, σ11q be obtained from pG, σ1q by switching at all negative neighbours of y.
Since each of these vertices are of degree 2 and each is incident to at least one negative
edge, the switching does not create a new super negative cycle. As y has no negative
neighbour in pG, σ11q, the condition of Claim 4.2 holds for pG, σ11q. Thus pG, σ11q has a
super negative cycle C where each vertex not incident to a positive edge is of degree at
least 4. Let x1 be the neighbour of x in C, x ‰ v. Since C must be of length at least 5
and both positive edges are incident to y, both edge of C incident with x1 are negative
and thus x1 has degree at least 4. Moreover, as x is not adjacent to y, and switchings
were done only at neighbours of y, the sign of the edge xx1 is negative in pG, σ1q as well.
This means x1 is a negative neighbour of x whose degree is at least 4, thus the first case
of the claim holds.

Claim 4.5. Suppose that u and v are two adjacent 2-vertices with u1 and v1 being the
other neighbour, respectively. Then both u1 and v1 have degree at least 6 and have at
least 5 4`-neighbours.

Proof. By minimality of the counterexample we have signature packing σ1, σ2, σ3, σ4, σ5
of pG´ tu, vu, σq. Each of these signatures can be extended to G such that first of all
pG, σiq is equivalent to pG, σq, secondly in each of them both uv and vv1 are positive, and
thirdly, the condition that uv and vv1 having the same sign can be fulfilled by switching,
if necessary, at v, u or both.

Since each pG, σiq has to have a super negative cycle, then uu1 must be a negative
edge in all of them and this would be the only common negative edge between any pair
of them. Each of these five signatures, however, satisfies the conditions of Claim 4.1,
thus there is a super negative cycle Ci in pG, σiq where vertices not incident to positive
edges are 4`-vertices. In Ci the neighbour ui of u1, ui ‰ u, is not incident to a positive
edge. Since u1ui is negative only in pG, σiq, the vertices ui are 5 distinct 4`-neighbours
of u1. As u is also a distinct neighbour of u1, it has total of at least six neighbours. The
claim for v1 follows by symmetry.

Claim 4.6. Suppose that u is a 2-vertex with u1 and v as neighbours and that v is
3-vertex with its two other neighbours being v1 and v2. Then, first of all, u1 has at least
four 4`-neighbours. Secondly, among v1 and v2 either one has at least four 4`-neighbours
or together they have at least five 4`-neighbours.

Proof. We consider induced signed subgraph by deleting the edge uu1 and as before
define σ1, σ2, σ3, σ4 to be four minimal signatures with no common negative edge and
let σ15 be the signature which assigns negative to the edges that are not negative in any
of pG´ uu1, σiq, i ď 4. As before, we consider σi and σ15 as signatures on G rather than
G´ uu1, thus some of them have uu1 as (the only) common negative edge.

By our choice of σ15 only the second case of Claim 4.1 can happen. Then if necessary,
in pG, σ15q we switch at u to get a pG, σ25q where uu1 and uv are both positive, noting
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that each super negative cycle of pG, σ25q is also a super negative cycle of pG, σ15q. As
there must be at least one such cycle, and as there are already two positive edges, all
other edges must be negative. That implies that, in particular, at least one of the two
edges vv1 and vv2 is negative in pG, σ15q. We consider two cases depending on if only
one is negative or both.

First assume the case that σ15pvv1q “ ´ and σ15pvv2q “ `. Since each edge beside
uu1 is negative in only one of the signatures, we may assume σ1ipvv1q “ ´. Then for each
j ‰ i, in pG, σiq all the positive edges of each of the super negative cycle are incident to
v, and, thus, by Claim 4.2 for j ď 4 and by Claim 4.3 in the case of j “ 5 we have a
super negative cycle in pG, σjq in which the neighbour of u1 distinct from u is of degree
at least 4. We note moreover that the positive edges of any super negative cycle in
pG, σjq are negative in σ15. This implies that vv2 cannot be a positive edge in these
cycles. Thus the second positive edge of any super negative cycle in pG, σjq, j ď 4, j ‰ i
is vv1. Again using Claim 4.2 the neighbour of v1 in each of these cycles must be at
least of degree 4. Since that is the case for the super negative cycle of pG, σ15q as well, v1
must have at least four such neighbours.

Now we consider the case that σ15pvv1q “ σ15pvv2q “ ´. In this case then for all j’s,
j “ 1, 2, . . . , 5 every super negative has two positive edges incident with v. Thus, first of
all u1 will have at least five 4`-neighbours, secondly, each of the signatures will imply a
4`-neighbour for either v1 or for v2, giving a total of at least five such neighbours for
the two of them.

4.2.2 3-vertices

Similar to the last subsection, let σ1, σ2, σ3, σ4, σ
1
5 be the five signatures equivalent to σ

such that, when restricted on G´ e, for a fixed edge e, each edge in G´ e is negative in
exactly one of these five signatures, and σi’s are minimal for i “ 1, 2, 3, 4. Thus e is the
only potentially common negative edge among some of these signatures. As pG, σiq is
a counterexample to Conjecture 4.2, each pG, σiq contains at least one super negative
cycle, one of which is named Ci.

Claim 4.7. Every 4-cycle of G contains a vertex of degree at least 4.

Proof. Suppose not, let C “ v1v2v3v4v1 be a 4-cycle that all its vertices have degree at
most 3. By the folding lemma, every face of G is of length 5. Thus C is not a facial
cycle, hence it is a separating cycle. Moreover, since G is 2-connected, at least two
of v1, v2, v3, v4 have neighbours inside of C, and similarly at least two of them have
neighbours outside. But since each vi is a 3´-vertex, it follows that they are all 3-vertices
and that precisely two of them have neighbours inside and two of them have neighbours
outside. By symmetry, we consider two case: (1) v1, v2 have neighbours inside C, (2)
v1, v3 have neighbours inside C. In case (1), the path v1v4v3v2 is part of a facial cycle
inside C. As every facial cycle is a 5-cycle, there is a common neighbour of v1 and v2.
But that would make triangle with v1v2. In case (2), considering the faces inside C
formed by v1v2v3 and v1v4v3, we conclude that the neighbours x, y of v1 and v3 inside
C are themself adjacent and that the edge xy is part of both mentioned faces. That
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implies that x and y are adjacent 2-vertices. But we have already seen that for adjacent
2-vertices x, y their other neighbours must be of degree at least 6.

Claim 4.8. If C is a shortest super negative cycle, then C contains no chord.

Proof. Observe that a chord on a negative cycle creates one positive cycle and one
negative cycle. Let C be a shortest super negative cycle with a chord e. Let C 1 be the
negative cycle created by C and e. We claim that C 1 is a shorter super negative cycle,
contradicting the choice of C. That C 1 is negative is by our choice. That it is shorter is
by the fact that there are no parallel edges and e is a chord of C. It remains to show
that C 1 is super negative, i.e. it has at most two positive edges. Since C has at most
two positive edges in C Y teu there are at most three positive edges. But as pG, σq is
switching equivalent to pG,´q, every negative cycle (which is an odd cycle of G) has an
even number of positive edges, thus C 1 has at most two positive edges.

Claim 4.9. Let v be a vertex of degree 3 in G and Npvq “ tv1, v2, v3u, such that both v2
and v3 have degree 3. Let σ1 be a signature equivalent to σ such that every super negative
cycle of pG, σ1q contains vv1, noting that such a signature exists by the minimality of
pG, σq. If pG, σ1q has the extra property that every super negative cycle has two positive
edges each of which is incident to at least one of v, v2 or v3, then there exists a super
negative cycle Cσ1 such that every vertex not incident to a positive edge is of degree at
least 4 in G.

Proof. Among all the signatures for which the conditions of Claim 4.9 hold but the
conclusion does not, we take σ1 to be one where the number of super negative cycles
of pG, σ1q is minimum. To get a contradiction we would like to show that this number
must be 0. Let Npviq “ tv, xi, yiu for i “ 2, 3.

Let C1, C2, . . . , Cr be the set of super negative cycles of pG, σ1q and assume that C1
is a shortest one among these cycles. Since the conclusion of the claim on pG, σ1q does
not hold, C1 has a vertex z whose two neighbours on C1 are connected to it by negative
edges (with respect to the signature σ1) and dGpzq ď 3. If all edges incident to z are
negative, then we consider pG, σ2q obtained from pG, σq by switching at z. We observe
that super negative cycles of pG, σ2q are exactly those super negative cycles of pG, σ1q
which do not contain z. Thus pG, σ2q also satisfies the conditions of the claim, but it
has less super negative super cycles than pG, σ1q, contradicting the choice of σ1.

Since both edges of C1 incident to z are negative we must have dGpzq “ 3 and that
the third neighbour of z, say z1, is adjacent to it with a positive edge. We claim zz1

belongs to some super negative cycle of pG, σ1q. Suppose not. Let π be the signature
obtained from pG, σ1q by switching at z. Then, first of all, there is still no super negative
cycle in pG, πq containing zz1, because for cycles containing this edge number of positive
edges is the same in pG, σ1q and pG, πq. Secondly, any super negative cycle of pG, σ1q
containing z has two more positive edges in pG, πq. Since we assume every super negative
cycle of pG, σ1q has two positive edges, those containing z, in particular C1, are not super
negative in pG, πq. This contradicts with the number of super negative cycles of pG, σ1q
being minimum. Thus zz1 is in a super negative cycle, say Ci, 2 ď i ď r.
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Next we claim that z R tv, v1u. We assume to contrary and first consider the case
that z “ v. Recall that vv1 is an edge of C1. Between v2 and v3, by symmetry, assume
vv3 P C1. As edges of C1 incident to z are negative we have σ1pvv1q “ σ1pvv3q “ ´ and
since not all edges incident to z are negative we have σ1pvv2q “ `. Since C1 must have
two positive edges, and they must be incident to v or v2 or v3, the vertex v2 should
be on C1 and moreover should be incident to a positive edge of C1. Noting that vv2 is
not an edge of C1, x2v2y2 should be a part of C1. This implies that vv2 is a chord of
C1, contradicting Claim 4.8. Next we consider the case that z “ v1. Recall that zz1
is a positive edge of a super negative cycle Ci of pG, σ1q for some 2 ď i ď r. By the
assumption, every positive edge of Ci is incident to one of v, v2 or v3. That means v1 is
adjacent to one of v, v2, v3 with a positive edge. If vv1 is a positive edge we have a digon
otherwise we have a triangle. But either case contradicts the assumption on pG, σq.

Since zz1 must be a positive edge of super negative cycle Ci and since all such edges
are incident to one of v, v2, v3 we must have z P tv2, v3, x2, y2, x3, y3u. By symmetries
we consider only two possibilities of z “ v2 or z “ x2. First let z “ v2. If z1 “ v,
then C1 contains the edge zz1 as a chord and we have contradiction with Claim 4.8. If
z1 P tx2, y2u, say z1 “ y2, then σ1pvv2q “ σ1pv2x2q “ ´, since vv1 is also an edge of C1,
vv3 is not. As all positive edges are incident to v, v2 or v3 and since there are two such
edges in C1, v3 is a vertex of C1, but then again vv3 is a chord contradicting Claim 4.8.

Finally assume z “ x2 and let Npx2q “ tv2, x
1
2, x

2
2u. If z1 “ x12 or z1 “ x22, since zz1

belongs to a super negative cycle, positive edges of super negative cycles are incident to
v, v2 or v3 and as G contains no triangle, z1 “ v3, in which case vv2x2v3v is a 4-cycle
which contains four 3-vertices, contradicting Claim 4.7. Therefore, we must have z1 “ v2,
then σ1px2x

1
2q “ σ1px2x

2
2q “ ´ and x12x2x

2
2 is a part of C1. If vv2 P C1, then zz1 is again

a chord of C1, which contradicts Claim 4.8. So vv2 R C1, by symmetry we may write
C1 as v1vv3x3P1x

1
2x2x

2
2P2v1. If σ1pvv2q “ ´, then again vv2x2 creates two cycles from

C1 one of which is negative. And this negative cycle has at most two positive edges,
therefore is a super negative cycle and thus contains the edge vv1. By Claim 4.7, path
v1vv3x3P1x

1
2x2 must have length at least 3, as otherwise together with v2 we will have a

4-cycle all whose vertices are of degree 3. Replacing this path with vv2x2 we find a shorter
super negative cycle, contradicting the minimality of C1. Next let σ1pvv2q “ `. By the
assumption on C1, the fact that every cycle has even number of positive edges, and the
fact that the edges of the path x2x

2
2P2v1 are all negative, we must have σ1pvv1q “ ´, as

otherwise the cycle v1vv2x2x
2
2P2v1 has three positive edges. Since positive edges of C1

must be incident to v, v2 or v3, we have σ1pvv3q “ σ1pv3x3q “ `. Furthermore x22P2v1
has an even number of edges since otherwise v1vv2x2x

2
2P2v1 is a shorter super negative

cycle. Recall that zz1 is also in the super negative cycle Ci. We consider the following
two cases.

1. If vv2 P Ci, then by our assumption vv3 R Ci, thus we may write Ci as v1vv2x2P3v1,
but then the cycle obtained from two paths from x2 to v1 of C1 and Ci forms a
super negative cycle which does not contain vv1 and contains no positive edge, a
contradiction.
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2. Otherwise vv2 R Ci, let Ci “ v1vv3y3P3x
1
2x2v2y2P4v1. But then the cycle vv3y3P3x

1
2

x2v2v contains exactly three positive edges, which never happens in pG, σ1q.

Claim 4.10. Let v be a vertex of degree 3 in G and Npvq “ tv1, v2, v3u, such that both
v2 and v3 have degree 3. Then v1 has at least two neighbours of degree at least 4.

Proof. Let G1 “ G´ vv1 and σ1, σ2, σ3, σ4, σ
1
5 be the five signatures equivalent to σ such

that, when restricted on G1, they have no common negative edge. Thus vv1 is the only
potentially common negative edge among some of these signatures. Each pG, σiq must
contain a super negative cycle using the edge vv1. If more than one, then we choose one
and name it Ci. Let Npviq “ tv, xi, yiu for i “ 2, 3.

We first claim that among all these five signatures, there are at least two, in which,
after switching at v, v2 and v3 (if necessary), we have the following: first of all in each
of the four paths v1vvixi and v1vviyi, i “ 2, 3, there are at least two positive edges,
secondly, we do not create any new super negative cycle. First suppose vv2 and vv3
belong to the same signature, say E´1 . Then in each of the other signatures, namely
σ2, σ3, σ4 and σ15, vv2 and vv3 are both positive. If vv1 is also positive on at least two of
σ2, σ3, σ4, σ

1
5, then we are done. Assume in pG, σ2q, vv1 is negative and both vv2 and

vv3 are positive. Let σ12 be obtained by switching at v. We first observe that every super
negative cycle of pG, σ12q is also a super negative cycle of pG, σ2q because for i “ 2, 3,
if one of vixi or viyi is negative in σ12, then we switch at vi. Let σ22 be the resulting
signature. We observe that first of all no new super negative cycle is created, secondly
in pG, σ22q each of v1vvixi and v1vviyi has at least two positive edges. Next w.l.o.g. let
vv2 P E

´
1 and vv3 P E

´
2 . Then in pG, σiq, i “ 1, 2, we could first switch at v (if necessary)

to make vv1 positive, since exactly one of vv2 and vv3 is positive, this switching will not
create new super negative cycle. And then similarly we could either switch at v2 or v3 if
necessary.

Therefore, we could find σ11 and σ12 obtained from σ1 and σ2 by switching at v, v2
and v3, such that all the super negative cycles use the edge vv1 and their two positive
edges are either incident to v, v2 or v3. Thus by Claim 4.9, their exists a super negative
cycle C 11 of pG, σ11q (similarly in pG, σ12q) such that every vertex not incident to a positive
edge is of degree at least 4 in G. Let v11 be another neighbour of v1 in C 11, since v1 is
not adjacent to v2 or v3, v1v

1
1 P σ1. Then we claim that dpv11q ě 4. If not, v11 is incident

to a positive edge of C 11, which means v11 P tx2, y2, x3, y3u. Let v11 “ x2, since each
super negative cycle has length at least 5 and C 11 uses the edge vv1, we have vv2 R C

1
1

and x2v3 R C
1
1 if it exists. Therefore both v2x2 and v2y2 belong to C 11 and v2x2 is

positive. Since vv3 P C
1
1, by our claim above C 11 contains at least three positive edges, a

contradiction. Therefore dpv11q ě 4. Together with the same conclusion in pG, σ12q, we
have that v1 has at least two neighbours of degree at least 4.

Claim 4.11. Let u and v be two adjacent vertices of degree 3 in G. Assume σ1 is a
signature equivalent to σ, such that every super negative cycle of pG, σ1q contains uv and
contains two positive edges which are incident to either u or v. Then there exists a super
negative cycle such that every vertex not incident to a positive edge is of degree at least
4 in G.
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Proof. As in the proof of Claim 4.9 among all the signatures for which the conditions of
Claim 4.11 hold but the conclusion does not, we take σ1 to be one where the number of
super negative cycles of pG, σ1q is minimum, and, moreover, we take σ1 to be a minimal
signature. Let Npuq “ tu1, u2u and Npvq “ tv1, v2u.

Let C1, C2, . . . , Cr be the super negative cycles of pG, σ1q, and assume w.l.o.g. that
|C1| ď |Cj |, 2 ď j ď r. If the conclusion does not hold, then C1 has a vertex z whose
two neighbours on C1 are connected to it by negative edges and dGpzq ď 3. Minimality
of σ1 implies that dGpzq “ 3 and that the third neighbour of z, say z1, is adjacent to it
with a positive edge. Furthermore, zz1 is in a super negative cycle, say Ci, 2 ď i ď r, as
otherwise by switching at z we have less super negative cycles.

As each of u and v is incident to a positive edge of C1, z R tu, vu. Considering the
super negative cycle Ci, zz1 is a positive edge, thus by our assumption one of the end
point is u or v. As z R tu, vu, we have z1 P tu, vu and hence z P tu1, u2, v1, v2u. W.l.o.g.
let z “ u1 and z1 “ u. But then uu1 is a chord of C1 and we have a contradiction with
Claim 4.8.

Claim 4.12. Let v1, v2, v3 and v4 be four vertices of degree 3, and σ1 be a signature
equivalent to σ such that the following holds.

1. vi is adjacent to vi`1, i “ 1, 2, 3.
2. σ1pv1v2q “ ´, σ1pv2v3q “ σ1pv3v4q “ `.
3. Each of v2 and v3 is incident to exactly two positive edges.
4. Either v1 is incident to two positive edges or v4 is incident to three positive edges.
5. Every super negative cycle of pG, σ1q contains the positive edge v2v3.
6. The other positive edge of any other super negative cycle must be incident to one

of the vi (i P t1, 2, 3, 4u).
Then there exists a super negative cycle of pG, σ1q such that every vertex not incident

to a positive edge is of degree at least 4 in G.

v1 v2 v3 v4

y1

x1

y4

x4

x2 x3

Figure 4.1: Four vertices of degree 3 in Claim 4.12

Proof. Again among all the signatures for which the conditions of Claim 4.12 hold but
the conclusion does not, we take σ1 to be one where the number of super negative cycles
of pG, σ1q is minimum. Let the other two neighbours of vi be xi, yi for i “ 1, 4, and the
third neighbour of vj be xj for j “ 2, 3, as shown in Figure 4.1. Suppose to the contrary
that C1, C2, . . . , Cr are the set of super negative cycles of pG, σ1q and assume that C1 is
a shortest one among these cycles. Thus C1 has a vertex z whose two neighbours on
C1 are connected to it by negative edges and dGpzq ď 3. It follows that dGpzq “ 3 and
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that the third neighbour of z, say z1, is a positive neighbour, moreover, zz1 is in a super
negative cycle, say Cl, 2 ď l ď r.

Since in pG, σ1q every super negative cycle contains v2v3 as a positive edge, z R tv2, v3u.
And since each positive edge of any super negative cycle is incident to some vi, we have
z P tv1, v4, x1, x2, x3, x4, y1, y4u. By symmetries we consider following possibilities.

1. z “ v1. Since σ1pv1v2q “ ´, v1v2 P C1 and at least one of v1x1, v1y1 is negative.
By assumption v4 is incident to three positive edges, and thus v4 R C1. This
contradicts with the fact that positive edges of every super negative are incident
to vi.

2. z “ v4. Since σ1pv3v4q “ `, and edges in C1 incident to z are both negative, we
have that v4x4, v4y4 P C1 and σ1pv4x4q “ σ1pv4y4q “ ´, and hence z1 “ v3. By the
original assumption of the claim, σ1pv1x1q “ σ1pv1y1q “ `. Recall that every super
negative cycle of pG, σ1q must contain v2v3. But any cycle that contains both v2v3
and v3v4 must contain at least one more positive edge. This is contradiction with
the fact that zz1 is in a super negative cycle.

3. z “ x2. Since σ1pv2x2q “ ` and v2x2 R C1 we must have v1v2 P C1. But then v2x2
is a chord of C1 which contradicts the Claim 4.8.

4. z “ x3. Since the super negative cycle Cl contains the positive edges zz1 and v2v3,
it contains no other positive edges, in particular v2x2 R Cl. Thus v1 P Cl. So
each of v1 and x3 is incident with at least two negative edges, and they are not
connected by a negative edge, since otherwise v1v2v3x3 induces a negative 4-cycle.
Recall that if a vertex of degree 3 is incident with at least two negative edges,
then a switching at it may eliminate some super negative cycle, but will never
create a new one. Thus if we switch at both v1 and x3, then the remaining set of
super negative cycles all must still contain the edge v2v3. But then in the new
signature all edges incident to v2 and v3 are positive, which implies that every
cycle containing v2v3 has at least three positive edges and there can be no super
negative cycle.

5. z “ x4. First suppose v4x4 P C1, then σ1pv4x4q “ ´ and by the assumption
σ1pv1x1q “ σ1pv1y1q “ `. Therefore v3v4 R C1, since otherwise there will be three
positive edges in C1. However in this case v3v4 is a chord of C1, this contradicts
the Claim 4.8. Now suppose v4x4 R C1, then z1 “ v4 and σ1pv4x4q “ `. We now
consider the super negative cycle Cl containing v4x4 (“ zz1). As it must contain
the positive edge v2v3 as well, it can have no other positive edge. In particular,
v3v4 is not in Cl. This implies that first of all v4y4 P Cl and, secondly, that v4y4 is a
negative edge in pG, σ1q. But then, by the assumption of σ1pv1x1q “ σ1pv1y1q “ `,
the cycle Cl contains three positive edges, contradiction with Cl being a super
negative cycle because it must contain at least one of v1x1, v1y1 and v2x2, all of
whom are positive.
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6. z “ x1. If v1x1 “ v1z is in C1, then it must be a negative edge of C1. Thus v1 is
incident to at most one positive edge. The assumption of the claim implies that all
edges incident to v4 are positive. That implies v4 R C1 as otherwise C1 will have
at least three positive edges. As each positive edge of C1 should be incident to
one of v1, v2, v3, the second positive edge of C1 can only be either v1y1 or v2x2, in
either case it follows that v1v2 is a chord of C1, a contradiction with Claim 4.8.
So we may assume v1x1 R C1. This implies that z1 “ v1 and that σ1pv1x1q “ `.
As C1 has no chord, v1 R C1. This implies v2x2 P C1 and since σ1pv2x2q “ `, it
is the only other positive edge of C1. Thus v3v4 R C1 and hence, v3x3 P C1. We
now claim that x1x2 P C1, that is because otherwise in the union of C1 and the
path x1v1v2 we will find a shorter super negative cycle. Moreover, we observe
that σ1px1x2q “ ´. We now consider the cycle C 11 obtained from C1 by replacing
x1x2v2 with x1v1v2. This cycle is also a super negative cycle of pG, σ1q and is of
the same length as C1. Thus there must be a vertex z1 of C 11 which is of degree
three in G, and both edges of C 11 incident to z1 are negative. Repeating the same
argument as in cases 1-5, we conclude that z1 P tx1, y1u. The case z1 “ y1 is not
possible as otherwise C 11 contains a chord, and the case z1 “ x1 is not possible
because σ1pv1x1q “ `.

Claim 4.13. Let v1, v2, v3, v4 be vertices of degree 3 in G such that vi is adjacent to
vi`1, i “ 1, 2, 3, where other neighbours of vi’s are labelled as in Figure 4.1. Then either
each of x2 and x3 has at least three neighbours of degree at least 4, or one of x2 and x3
has at least four neighbours of degree at least 4.

Proof. Let G1 “ G ´ v2v3 and let σ1, σ2, σ3, σ4, σ5 be the five signatures equivalent to
σ such that, when restricted on G1, they have no common negative edge. So v2v3 can
be the only common negative edge among some of these signatures. Each pG, σiq must
contain a super negative cycle using the edge v2v3, one of which is named Ci.

In each signature σi, i “ 1, . . . , 5, if v2x2 and v1v2 have the same sign, then by
switching at v2 and v3 (if necessary), we can either be sure that all the super negative
cycles have exactly two positive edges and that each of them is incident to either v2 or
v3. Then by Claim 4.11, there exists a super negative cycle C1 such that every vertex
not incident to a positive edge is of degree at least 4 in G. It is easy to observe that in
at least three of the signatures σ1, σ2, σ3, σ4, σ5, say σ1, σ2, and σ3, the edges v2x2 and
v1v2 have the same sign. Since we only switch at v2 and v3, in each of the signatures
σ1, σ2, and σ3, either v1 or x2 has a negative neighbour of degree at least 4 in each of
pG, σ1q, pG, σ2q, and pG, σ3q. If in each of pG, σ4q and pG, σ5q either the pair v1v2 and
v2x2 have the same sign or the pair v3v4 and v3x3 have the same sign, then in total v1
and x2, as well as v4 and x3 have five neighbours that are of degree at least 4 in G. As
either v1 or v4 can have at most two such neighbours, x2 and x3 must have at least 3 of
them. We note that the conclusion holds.

Hence we suppose σ4pv1v2q “ ´σ4pv2x2q and σ4pv3v4q “ ´σ4pv3x3q. Since we can
switch at either v2 or v3 (if necessary), we assume v2v3 is positive. If σ4pv2x2q “ σ4pv3x3q,
then we first make v1v2 and v3v4 to be negative by switching at v2 and v3 (if necessary).
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If at least one of v1x1 and v1y1 (resp. v4x4 and v4y4) is negative, then after switching
at v1 (resp. v4), we will not create any new super negative cycle. Otherwise, both
v1x1 and v1y1 (resp. v4x4 and v4y4) are positive. In either case, each cycle containing
v2v3 has at least three positive edges, which is a contradiction. Therefore, we may
suppose σ4pv2x2q “ ´σ4pv3x3q, and w.l.o.g. assume σ4pv2x2q “ `. By switching at v1,
if necessary, we can make sure that v1 is incident to at least two positive edges, let the
obtained signature be σ14. Then the positive edges of each super negative cycle in pG, σ14q
must be incident to either v1 or v2. Since σ14pv3v4q “ `, every super negative cycle of
pG, σ14q contains the edge v3x3. By Claim 4.12, there exists a super negative cycle such
that every vertex not incident to a positive edge is of degree at least 4. Therefore, either
x3 has a negative neighbour (in pG, σ4q) of degree at least 4, or x3 is adjacent to one of
x1 and y1. If we switch at v2 and v3, by symmetry, we have that either x2 has a negative
neighbour (in pG, σ4q) of degree at least 4, or x2 is adjacent to one of x4 and y4. Now it
suffices to consider two cases based on σ5.

Case 1: Either σ5pv1v2q “ σ5pv2x2q or σ5pv3v4q “ σ5pv3x3q. Applying the same
argument as conclude that for each pG, σiq, i “ 1, 2, 3, either v1 or x2 has a negative
neighbour of degree at least 4. Similarly either v4 or x3 have a negative neighbour of
degree at least 4. Since dpx1q “ dpx4q “ 3, both x2 and x3 have at least two neighbours
of degree at least 4. Suppose the conclusion of the claim does not hold, assume x2 has
at most two neighbours of degree at least 4, w.l.o.g. assume x2 is adjacent to x4. Since
x3 can have at most three neighbours of degree at least 4, x3 is adjacent to either x1 or
y1, which implies x2 has at least three neighbours of degree at least 4, a contradiction.

Case 2: σ5pv1v2q “ ´σ5pv2x2q and σ5pv3v4q “ ´σ5pv3x3q. Applying the same
argument as for σ4, either x2 has a negative neighbour (in pG, σ5q) of degree at least 4,
or x2 is adjacent to one of x4 and y4. Similarly either x3 has a negative neighbour (in
pG, σ5q) of degree at least 4, or x3 is adjacent to one of x1 and y1. Again we suppose
the conclusion does not hold, and assume x2 has at most two neighbours of degree at
least 4. W.l.o.g. let x2 be adjacent to x4 and σ4px2x4q “ ´. Since x3 can have at
most three neighbours of degree at least 4, w.l.o.g. we assume x3 is adjacent to x1 and
σ4px1x3q “ ´. Therefore, both x2 and x3 have at least two neighbours of degree at
least 4. Hence, it must be the case that x2 is adjacent to y4 and σ5px2y4q “ ´, which
implies that x3 has three neighbours of degree at least 4. But then x3 must be adjacent
to y1 and σ5px3y1q “ ´, which implies x2 has three neighbours of degree at least 4, a
contradiction.

4.3 Discharging procedure
In the following, we will use the discharging technique to get a contradiction. The initial
charge ω on V pGqYF pGq is defined as follows: ωpxq “ dpxq´4 for every x P V pGqYF pGq.
By the relation

ř

vPV pGq dpvq “
ř

fPF pGq dpfq “ 2|EpGq| and Euler’s formula, the initial
total charge of the vertices and faces satisfies the following:

ÿ

xPV pGqYF pGq

ωpxq “
ÿ

xPV pGqYF pGq

pdpxq ´ 4q “ ´4|V pGq| ` 4|EpGq| ´ 4|F pGq| “ ´8.
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Since any discharging procedure preserves the total charge of G, after applying
appropriate discharging rules to change the initial charge ω to the final charge ω˚ such
that ω˚pxq ě 0 for every x P V pGq Y F pGq, we can have the contradiction below:

0 ď
ÿ

xPV pGqYF pGq

ω˚pxq “
ÿ

xPV pGqYF pGq

ωpxq “ ´8,

and thus completes the proof.

For brevity, we call a 4`-vertex big, and a 3´-vertex small. For a vertex v, by nkpvq we
denote the number of k-neighbours of v and by nbpvq the number of big neighbours of v.
Given a face f , nkpfq is the number of k-vertices incident to f . For x, y P V pGq YF pGq,
let τpxÑ yq denote the charge transferring from x to y. For a 5-face f “ rv1v2 . . . v5v1s,
if it is incident to exactly two small vertices, say dpv1q “ dpv3q “ 2, nbpv2q “ 3 and v2 is
not adjacent to any 3-vertex, then we call f and v2 special. We will do discharging in
three stages. Below are our needed discharging rules for first stage:

(R1) Let dpvq ě 5. If nbpvq ě 4, then v sends 1 to each adjacent small vertex. Otherwise
if n3pvq ` nbpvq ě 4, then v sends 1 to each 2-neighbour, and dpvq´4´n2pvq

n3pvq
to each

3-neighbour.
(R2) Let dpfq “ 5. If n3´pfq “ 1, then f sends 1 to the incident small vertex.

After the first round of discharging, each 3-vertices which is adjacent to a 5`-vertex
v with nbpvq ě 4 or incident to a face f with n3´pfq “ 1, has a non-negative charge.
If a 2-vertex is incident or adjacent to at least two of the following, then it would end
up with a non-negative charge: face with only one small vertex or 5`-vertex with four
3`-neighbours. We call these small vertices rich. In the following rules, if not specified,
the small vertices that we consider are those who remain negative, and refer to them
as poor vertices. We use 5i-face to denote 5-face incident to i poor vertices. A 3-vertex
is called 3k,l-vertex, if it is adjacent to k vertices each of which has at least three big
neighbours, at least two either rich or poor 3-neighbours, and is incident to l 52-faces.

(R3) For the 5`-vertex v such that nbpvq ď 3 and n3pvq`nbpvq ď 3, each of them sends
dpvq´4
n2pvq

to each 2-neighbour.
(R4) Suppose f is a non-special 5-face. Then

(R4.1) If f is a 51-face, f sends 1 to incident small vertex;
(R4.2) If f is a 52-face, then f sends 1

2 to each small vertex incident to f .
(R4.3) If f is a 53-face then
(R4.3.1) If n2pfq “ 2 and n3pfq “ 1, then f sends 1

2 to each incident 2-vertex.
(R4.3.2) If n2pfq “ 1 and n3pfq “ 2, then f sends 1

2 to the incident 2-vertex. First
suppose f is incident to a 3k,l-vertex. If k ` l ě 2, then f sends 1

2 to the other 3-vertex;
If k “ 1 and l “ 0, then f sends 1

6 to 31,0-vertex and 1
3 to the other 3-vertex; If k “ 0

and l “ 1, and moreover it is incident to a 53-face which contains no 2-vertex, then f
sends 1

6 to this 30,1-vertex, and 1
3 to the other 3-vertex. Otherwise, f sends 1

4 to each
incident 3-vertex.
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(R4.4) If f is a 53-face such that n3pfq “ 3 or a 54`-face, then f does not give charge
to any incident 3k,l-vertex such that k ` l ě 2, but sends 1

6 to each incident 31,0-vertex,
then distribute its remaining charge equally among the other incident 3-vertices.

Given a special face F with a special vertex v, a charge pot at pF, vq is the set of
consecutively adjacent special faces whose special vertex is v, as shown in Figure 4.2.
The total charge of the pot is the number of faces it contains as shown in (R5). After
carrying out (R1)-(R4), we apply (R5) as follows.

Figure 4.2: Charge pot

(R5) Special face contributes 1 to its charge pot, each 2-vertex in exactly one charge pot
take needed charge such that its final charge is non-negative from its charge pot, and
each 2-vertex in two different charge pots takes charge which together with the charge
get from the special vertex is exactly one from each of its charge pot with respect to the
special vertex.

First, we observe that the following facts are true.

Fact 4.1. Let dpvq “ 2 and Npvq “ tv1, v2u, then nbpv1q ` nbpv2q `
n3pv1q`n3pv2q

2 ě 6.

Fact 4.2. A non-special 5-face sends charge at least 1
2 to its incident 2-vertex.

In what follows, we are going to show that ω˚pxq ě 0 for all x P V pGq Y F pGq and
the charge pot is also non-negative.

Let v P V pGq. First suppose dpvq ě 5. If nbpvq ě 4, then ω˚pvq ě dpvq ´ 4 ´
pdpvq´ 4q “ 0 by (R1). Or if n3pvq`nbpvq ě 4, then ω˚pvq ě dpvq´ 4´n2pvq´n3pvqˆ
dpvq´4´n2pvq

n3pvq
“ 0 by (R1). Otherwise, by (R3), ω˚pvq ě dpvq´4´n2pvqˆ

dpvq´4
n2pvq

“ 0. Since
4-vertex v does not participate in the discharging procedure, ω˚pvq “ ωpvq “ dpvq´4 “ 0.

Assume dpvq “ 3. If v is rich, then it has non-negative charge. Suppose v is not rich.
If v is incident to at least one 51-face, then ω˚pvq ě 3´ 4` 1 “ 0 by (R4.1). Otherwise
let Npvq “ tv1, v2, v3u, denote by fi the face that is incident to v such that vvi and vvi`1
are its two boundary edges (indices modulo 3).

If v is adjacent to 2-vertex, say dpv1q “ 2, then by Claim 4.6, v2 or v3 has at least 4
big neighbours or in total they have at least 5 big neighbours. Since v is poor, w.l.o.g.,
assume nbpv2q “ 3 and nbpv3q “ 2. And the other neighbour of v1, say v11 has at least 4
big neighbours. Since n3pv2q ` nbpv2q ě 4, f1 is incident to at most two poor vertices,
thus τpf1 Ñ vq ě 1

2 by (R4.2). If dpv3q “ 3, then f3 is a 52-face, and τpf1 Ñ vq ě 1
2

by (R4.2). Thus ω˚pvq ě ´1 ` 2 ˆ 1
2 “ 0. Suppose dpv3q ě 4. Let v12 and v13 be the

other two vertices of f2. By Claim 4.5 and Claim 4.6, either both of them have degree
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at least 3 or one of them has degree 2 and the other has degree at least 4. Therefore,
either τpv2 Ñ vq “ 1

2 by (R1) or f2 is a 52-face and τpf2 Ñ vq “ 1
2 , both imply that

ω˚pvq ě ´1` 2ˆ 1
2 “ 0.

Suppose now v is not adjacent to any 2-vertices. If v is also not adjacent to any
3-vertex, then by the fact that v is poor, Claim 4.5 and Claim 4.6, for i “ 1, 2, 3, fi is
either adjacent to three 3-vertices or it is a 52-face, therefore τpfi Ñ vq ě 1

3 by (R4.2)
and (R4.4).

If v is adjacent to exactly one 3-vertex, say v1, then again f2 is either incident to
three 3-vertices or f2 is a 52-face, therefore τpf2 Ñ vq ě 1

3 by (R4.2) and (R4.4). Let
f1 “ vv1x1y1v2 and f3 “ vv1x2y2v3. Since fi, i “ 1, 2, 3, cannot contain two 2-vertices,
each of them sends at least 1

6 to v by (R4.3.2) and (R4.4). First if v is a 3k,l-vertex,
such that k ` l ě 2, then ω˚pvq ě ´1 ` 2 ˆ 1

2 “ 0 by (R1) and (R4.2). For cases
that k ` l ď 1, if k “ 1, then we have ω˚pvq ě ´1 ` 1

2 `
1
3 ` 2 ˆ 1

6 “
1
6 by (R1).

If l “ 1, we consider following cases. If v is incident to a 53-face which contains no
2-vertex, then ω˚pvq ě ´1` 1

2 `
1
3 `

1
6 “ 0 by (R4.2) and (R4.3.2). Therefore we could

always assume that τpf1 Ñ vq ě 1
4 and τpf3 Ñ vq ě 1

4 by (R4), which implies that
ω˚pvq ě ´1` 1

2 ` 2ˆ 1
4 “ 0 by (R4.2). Thus k “ l “ 0, we suppose f1, f3 are 53`-faces

and f2 is a 53-face that contains no 2-vertex. By (R4), we still have that τpf1 Ñ vq ě 1
4

and τpf3 Ñ vq ě 1
4 .

1. First suppose both f1 and f3 do not contain any 2-vertex, if they are both 53-faces,
then both of them send a charge of 1

3 to v by (R4.4) and thus ω˚pvq ě ´1`3ˆ 1
3 “ 0.

So let f1 be a 54-face, then by Claim 4.13, nbpx2q “ 3. Then when dpy2q “ 3,
τpf3 Ñ vq ě 2

3 by (R4.4), and when dpy2q ě 4, τpf3 Ñ vq “ 1
2 by (R4.2). Thus

ω˚pvq ě ´1` 1
3 `

1
2 `

1
4 “

1
12 .

2. Either dpx1q “ 2 or dpx2q “ 2, by symmetry, we assume dpx1q “ 2. Then by
Claim 4.6, x2 has at least three big neighbours and y1 has at least four big
neighbours. If dpy2q “ 3, then by (R4.4), τpf3 Ñ vq ě 2

3 , and thus ω˚pvq ě
´1 ` 1

3 `
2
3 `

1
3 “

1
3 by (R4.3.2). Assume now that dpy2q “ 2. If n3px2q ě 2 or

nbpx2q ě 4, then by (R4.3.2) and (R4.2), each of f1 and f3 will send v at least 1
3 ,

thus ω˚pvq ě ´1 ` 3 ˆ 1
3 “ 0. So suppose n3px2q “ 1 and nbpx2q “ 3. Then by

Claim 4.4, nbpv3q ě 2 and f3 is a 52-face, which contradicts with our assumption
that f3 is a 53`-face.

3. Either dpy1q “ 2 or dpy2q “ 2, by symmetry, we assume dpy1q “ 2. Then dpx1q ě 4.
And we know that dpx2q ě 3. By Claim 4.4 and the fact that f1 is a 53`-face,
nbpx1q “ 3 or nbpv2q “ 3. First suppose nbpv2q “ 3, then by (R1), τpv2 Ñ vq ě 1

2
and thus ω˚pvq ě ´1 ` 1

2 ` 2 ˆ 1
4 `

1
3 “

1
3 . Suppose now that nbpx1q “ 3, then

nbpv2q “ 1 since otherwise y1 is rich. By Claim 4.4, n3px1q ě 2. By (R4.3.2),
τpf1 Ñ vq ě 1

3 . If f3 is also a 53-face, then we have τpf3 Ñ vq ě 1
3 . Otherwise f3

is a 54-face such that all the small vertices have degree 3, then by Claim 4.13, the
third neighbour of x2 has at least three big neighbours. The third face of v1 is
either a 52-face or a 53-face with no 2-vertex, therefore, either v1 is a 31,1-vertex or
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both v1 and x2 are 31,0-vertices, by (R4.4), we always have τpf3 Ñ vq ě 1
3 . And

ω˚pvq ě ´1` 3ˆ 1
3 “ 0.

Suppose v is adjacent to two 3-vertices, say v2 and v3. Let the other two vertices
of fi be xi and yi in the clockwise order, i “ 1, 2, 3. By Claim 4.10, nbpv1q ě 2. Again,
since fi, i “ 1, 2, 3, cannot contain two 2-vertices, each of them sends at least 1

6 to v
by (R4.3.2) and (R4.4). Similarly if v is a 3k,l-vertex, such that k ` l ě 2 or k “ 1,
then ω˚pvq ě 0. Suppose k “ 0 and l “ 1, if v is incident to a 53-face which contains
no 2-vertex, then ω˚pvq ě ´1` 1

2 `
1
3 `

1
6 “ 0 by (R4.2) and (R4.3.2). By (R4.3.2), fi

sends charge at least 1
4 to v, except f2 is a 55-face.

If one of x2 and y2 has degree 2, then by Claim 4.6, f2 is a 52-face. Then ω˚pvq ě
´1 ` 1

2 ` 2 ˆ 1
4 “ 0 by (R4.2). If one of x2 and y2 has degree 3, say dpx2q “ 3, then

by Claim 4.13, either one of v1 or y1 has at least four big neighbours, or both of them
have at least three big neighbours. Therefore either f1 is a 52-face, or nbpv1q ě 3 and
n3pv1q ě 2, both imply that ω˚pvq ě ´1 ` 1

2 ` 2 ˆ 1
4 “ 0. Therefore, we may assume

both x2 and y2 have degree at least four, and τpf2 Ñ vq ě 1
3 by (R4.4).

If either y1 or x3 has degree at most 3, by symmetry say dpy1q ď 3, then by Claim 4.6
and Claim 4.13, either f2 is a 52-face which implies ω˚pvq ě ´1` 1

2`2ˆ 1
4 “ 0 by (R4.2),

or both v1 and x2 has at least three big neighbours. If n3pv1q ě 2, then τpv1 Ñ vq ě 1
2

by (R1) and thus ω˚pvq ą 0. So we suppose n3pv1q “ 1 and nbpv1q “ 3. Then dpx1q ě 4
and τpf1 Ñ vq ě 1

3 . If dpx3q ď 3, then similarly either f2 is 52-face or τpf3 Ñ vq ě 1
3 ,

we have ω˚pvq ě 0. Therefore, we assume dpx3q ě 4. If dpy3q ě 4, then f3 is a 52-face
which gives v enough charge. Otherwise dpy3q “ 2 since n3pv1q “ 1, then by Claim 4.4,
either f3 is again a 52-face or f3 is a 53-face and v3 is incident to a 52-face and a 53-face
which contains no 2-vertex, in both cases τpf3 Ñ vq ě 1

3 by (R4.2) and (R4.3.2). So we
always have ω˚pvq ě ´1` 3ˆ 1

3 “ 0.
In the following we may assume both y1 and x3 have degree at least 4. If both x1

and y3 have degree at least 3, then each fi sends at least 1
3 to v by (R4.2) or (R4.4),

and ω˚pvq ě ´1` 3ˆ 1
3 “ 0. Assume dpx1q “ 2, if f1 is a 52-face, then τpf1 Ñ vq ě 1

2
and ω˚pvq ě ´1 ` 1

2 `
1
3 `

1
4 “

1
12 . Suppose f1 is a 53-face. If v2 is incident to a

52-face, since v2 is incident to another 53-face which contains no 2-vertex, by (R4.3.2),
τpf1 Ñ vq ě 1

3 . Otherwise we may assume the face f 1 “ v2x2x
1
2y
1
1y1 that v2 incident is

a 53-face, both x12 and y11 must have degree at most 3. We first derive that dpy11q “ 3,
since otherwise by Claim 4.5 and Claim 4.6, y1 has at least four big neighbours. By
Claim 4.4 and the fact that both x1 and v are poor, nbpy1q “ 3 and thus τpf1 Ñ vq ě 1

3
by (R4.3.2). By symmetry, either dpy3q “ 2 or dpy3q ě 3, τpf3 Ñ vq ě 1

3 . Thus we have
ω˚pvq ě ´1` 3ˆ 1

3 “ 0.
Finally suppose v is adjacent to three 3-vertices. Then by Claim 4.10, for i “ 1, 2, 3,

each fi is a 53-face that contains no 2-vertex, thus sends at least 1
3 to v by (R4.4), and

ω˚pvq ě ´1` 3ˆ 1
3 .

Assume now dpvq “ 2 and let Npvq “ tv1, v2u. If v is rich, or it is incident or adjacent
to at least two of the following, then it would end up with a non-negative charge by (R1)
and (R4.1): 5`-vertex which has at least four 3`-neighbours, and face with only one
3´-vertex, and 51-face.
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Otherwise first suppose that v is adjacent to a 2-vertex v1. Then by Claim 4.5, v2 has
at least five big neighbours and both incident faces are 52-faces and not special. So we
have ω˚pvq ě 2´ 4` 1` 2ˆ 1

2 “ 0 by (R1) and (R4.2). Suppose now v is adjacent to a
3-vertex v1. By Claim 4.6, v2 has at least four big neighbours and both incident faces are
53´-faces and not special, thus by (R1), (R4.2) and (R4.3), ω˚pvq ě 2´4`1`2ˆ 1

2 “ 0.
Suppose dpv1q “ dpv2q “ 4. Then by the Fact 4.1, all the neighbours of v1 and v2

except v are big vertices. Thus the incident faces of v only contains one small vertex
and v is rich.

Suppose dpv1q ě 5 and dpv2q “ 4. If v1 has at least four big neighbours, then by
definition the incident faces of v are not special since otherwise v2 is a special vertex,
thus ω˚pvq ě 2 ´ 4 ` 1 ` 2 ˆ 1

2 “ 0 by (R1) and Fact 4.2. Otherwise since dpv2q “ 4,
by Fact 4.1, nbpv1q “ 3. If nbpv2q ď 2 or n3pv1q ě 1, then nbpv1q ` n3pv1q ě 4, which
implies that τpv1 Ñ vq “ 1 by (R1) and the incident faces of v are not special, so
ω˚pvq ě 2´ 4` 1` 2ˆ 1

2 “ 0. Suppose now nbpv2q “ 3 and n3pv1q “ 0. If the incident
faces of v are not special, then both of them contains only one small vertex which implies
that v is rich. Otherwise by (R5) v would get enough charge such that ω˚pvq ě 0.

Suppose both v1 and v2 have degree at least 5. If one of the incident faces of v is
special, then, by (R5), ω˚pvq ě 0. Otherwise, if at least one of v1 and v2 has at least four
3`-neighbours, then ω˚pvq ě 2´ 4` 1` 2ˆ 1

2 “ 0 by (R1) and Fact 4.2. Suppose now
both v1 and v2 have at most three 3`-neighbours. Then by Fact 4.1, nbpv1q “ nbpv2q “ 3,
thus for i “ 1, 2 τpvi Ñ vq ě 1

2 by (R3). Since the incident faces are not special, each of
them sends a charge of at least 1

2 to v. Therefore ω˚pvq ě 2´ 4` 4ˆ 1
2 “ 0.

Let f P F pGq and dpfq “ 5. If f is special, then by (R5) ω˚pfq ě 5´4´1 “ 0. Thus
we may assume f is not special. If f is incident to at most one small vertex, then by (R2)
ω˚pfq ě 5´ 4´ 1 “ 0. If f is a 51-face, then ω˚pfq ě 5´ 4´ 1 “ 0 by (R3). If f is a
52-face. Then ω˚pfq ě 5´ 4´ 2ˆ 1

2 “ 0 by (R4.2). Suppose f is a 53-face. If n2pfq “ 2
and n3pfq “ 1, then by (R4.3.1) ω˚pfq ě 5´ 4´ 2ˆ 1

2 “ 0. If n2pfq “ 1 and n3pfq “ 2,
then by (R4.3.2), either ω˚pfq ě 5´ 4´ 1

2 ` 2ˆ 1
4 “ 0 or ω˚pfq ě 5´ 4´ 1

2 `
1
3 `

1
6 “ 0.

Finally suppose f is a 54`-face, it has non-negative charge by (R4.4).
It remains to show that every charge pot has non-negative charge. Observe that in a

special face, every 4`-vertex except the special vertex has at least 3 big neighbours by
Fact 4.1. Let P be a charge pot with special vertex v which is obtained by k consecutive
special faces f1, f2, . . . , fk. Let v1, v2, . . . , vk`1 be the consecutive 2-vertices on the
special faces. Then by (R5) ωpP q “ k and there are k ` 1 2-vertices which will take
charge from P . By (R3), v in total sends charge at least pk ` 1q ˆ k`1`3´4

k`1 “ k to these
2-vertices. Let Npv1q “ tv, v

1
1u, f0 and f1 be the incident faces of v1. If dpv11q “ 4, then

f0 contains only one small vertex and thus τpf0 Ñ vq “ 1 by (R2). Suppose v11 ě 5, then
τpv11 Ñ v1q ě

1
2 by (R3). If f0 is not special with respect to v11, then τpf0 Ñ vq ě 1

2 by
(R4.2). Otherwise by (R5) v1 gets charge 1 from v11 and the charge pot respect to v11.
By symmetry vk`1 gets charge at least 1 which is not from v or the charge pot respect
to v. Thus ω˚pP q ě k ´ p2pk ` 1q ´ k ´ 2q “ 0. This completes our proof.
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4.4 Concluding remarks
In this Chapter, using the result of Chapter 3 which itself is based on the 4-color theorem,
we showed for every triangle free planar simple graph G, the signed graph pG, σq has a
packing number at least 5. Unlike the result of Chapter 3, the discharging technique
used here is based on a planar embedding of G and thus cannot be applied to the
class of K5-minor-free graphs directly. However, an extension from planar graphs to
K5-minor-free graphs is already shown in [35].

It is unclear if this result can be proved independent of 4-color theorem. It is also
not clear how important is the choice of the all negative signature. More precisely we
would like to ask:

Question 4.1. What is the best possible lower bound on the packing number of planar
signed graph of girth at least g?



Chapter 5

Separating signatures in signed
planar graphs

This chapter is based on the following paper:

[42] R. Naserasr and W. Yu. Separating signatures in planar signed graphs. Accepted
for publication in Discrete Appl. Math., 2023.

In this chapter, as a generalization of the packing number, instead of considering one
signature and its equivalent signatures, we consider the following: given k signatures
σ1, σ2, . . . , σk on a given graph G we say they are separable if there are signatures
σ11, σ

1
2, . . . , σ

1
k, where σ1i is a switching of σi, such that the sets E´σ1i are pairwise disjoint.

In particular, if we choose these k signatures to be σ, then being separable implies
ρpG, σq ě k. Given a graph G, if any set of k signatures on G are separable, then we
say G has k-separation property.

The problem of packing number at least 2 is strongly connected to a notion of proper
coloring of signed graphs first introduced by Zaslavsky in [50]. Recall that it is a coloring
c of vertices of pG, σq where colors are nonzero integers such that cpxq ‰ σpxyqcpyq. In
a further study of this concept, Máčajová, Raspaud and Škoviera [32] conjectured that
colors t˘1,˘2u are enough for proper coloring of any signed planar simple graph. This
conjecture was recently disproved by Kardoš and Narboni [28].

Connecting this two notions, it is shown in [39], a signed graph pG, σq has packing
number 2 if and only if pG,´σq admits a t˘1,˘2u-coloring, where pG,´σq is obtained
from pG, σq by turning the positive (resp. negative) edges to be negative (resp. positive).
This implies that there exists a signed planar simple graph whose packing number is 1,
see Chapter 3 for more details. In this chapter, we investigate sufficient conditions for a
planar graph to have 2- or 3-separation property. We prove the followings.

Theorem 5.1. Given integer i, i P t3, 4, 5, 6u, any planar graph without a cycle of
length i has 2-separation property.

Theorem 5.2. Every planar graph of girth at least 6 has 3-separation property.

49
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The last theorem is a corollary of a more general result on graphs of maximum
average degree less than 3. In Section 5.1, we prove Theorem 5.1. Proof of Theorem 5.2
is provided in Section 5.2. In the last section, Section 5.3, we have concluding remarks
where we mention connection to homomorphisms.

5.1 Separating 2 signatures in subclasses of signed planar
graphs

In the rest of this section G will be a minimum counterexample to Theorem 5.1. We will
see soon that this minimum counterexample has to be 2-connected and be of minimum
degree at least 4. Thus in developing the terminology that is followed we consider G to
be 2-connected and of minimum degree at least 4.

The counterexample G will be regarded as a plane graph that is a graph together
with a planar embedding. As we consider 2-connected graphs every face is bounded by
a cycle of G. We say that two faces (or cycles) are adjacent or intersecting if they share
a common edge or a common vertex, respectively. Suppose that v is a k-vertex, and let
v1, . . . , vk be the neighbours of v in the clockwise order. For i “ 1, . . . , k, fipvq denotes
the face incident with the vertex v with vvi, vvi`1 (where the summation in the indices
are taken modulo k) as boundary edges. As G is a plane graph of minimum degree at
least 4, this is well defined.

For a P F pGq, we write a “ ru1u2 ¨ ¨ ¨uls if u1, u2, . . . , ul are the incident vertices of
a in a cyclic order. As G is 2-connected and minimum degree at least four, each edge
e “ ujuj`1 of a face a determines a face adjacent to a at e. This face will be denoted by
fjpaq, where j “ 1, . . . , l and the summation in the indices are taken modulo l.

For two signatures σ and π on G, and for an edge uv P EpGq, let sσπpuvq “
tσpuvqπpuvqu Ď t`,´u ˆ t`,´u. Observe that to separate σ and π is to find sig-
natures σ1, switching equivalent to σ, and π1, switching equivalent to π, such that
sσ1π1puvq ‰ ´´ for every edge uv. For a vertex u define Sσπpuq as multiset Sσπpuq “
rsσπpeq | e is incident with us. Thus the order of Sσπpuq is the degree of u. Let
S˚ “ t``,`´,´`u. We say a vertex v is saturated by σ and π if S˚ Ď Sσπpvq.

A path in G all whose vertices are of degree 4 in G is called a light path. Two
paths are said to be vertex disjoint if their internal vertices are distinct. We say an
m-face a “ rv1v2 ¨ ¨ ¨ vms is a light face if dpviq “ 4 for all i “ 1, . . . ,m. A 5-face with
four vertices of degree 4 and one vertex of degree 5 is called a weak 5-face. A weak
5-face is said to be super weak 5-face if it is adjacent to at least four triangles. For
x P V pGq Y F pGq, let n3pxq denote the number of triangles incident or adjacent to x
and nwpxq be the number of incident or adjacent weak faces.

It is well-known that every planar graph is 5-degenerate and that every triangle-free
planar graph is 3-degenerate. It is shown in [49] that every planar graph without a 5-cycle
is 3-degenerate. Similarly it is shown in [19] that every planar graph without 6-cycles
is 3-degenerate. In the following, we will see that in a minimum counterexample to
Theorem 5.1, the minimum degree is at least 4, which cannot be the case for 3-degenerate
graphs. This would imply the claim of the theorem for each of the conditions of being
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triangle-free, having no 5-cycle or having no 6-cycle. What remains to prove is that if G
is a planar graph with no 4-cycle, then any two signatures on it can be separated.

5.1.1 Structural properties of a minimum counterexample

Recall that G is a minimum counterexample to Theorem 5.1. That is to say either G
has no triangle, or no 4-cycle, or no 5-cycle or no 6-cycle and there are signatures σ and
π on G such that no matter how we switch them there is an edge which is assigned a
negative sign by each of the two signatures.

The first observation is that G is connected, as otherwise separating signatures on
each connected component, which would be possible by minimality, would be also a
separation of the two signatures on the whole graph. Almost the same argument implies
the following stronger claim.

Lemma 5.1. The minimum counterexample G is 2-vertex-connected.

Proof. Suppose to the contrary that v is a cut vertex of G. Let G “ G1YG2 such that v
is the unique common vertex of G1 and G2, and there does not exist any edges between
V pG1q ´ v and V pG2q ´ v. Given two signatures σ and π on G, we consider subgraphs
pG1, σq, pG1, πq, pG2, σq, and pG2, πq. By the assumption of the minimality of G, there
are switchings σ1 and π1 on G1 (resp. σ2 and π2 on G2) of σ and π, respectively, such
that they have no common negative edge.

In particular, in G1 (resp. G2), in order to get the switchings σ1 and π1 (resp. σ2
and π2) of σ and π, we could choose to switch at a subset V1 (resp. V2) of V pG1q (resp.
V pG2q) which does not contain v. Thus in G, if we switch at subset V1 Y V2 which does
not contain v as well, we find switchings σ1 and π1 of σ and π, such that σ1 and π1 have
no common negative edge. This shows that a minimal counterexample cannot have a
vertex cut of one vertex.

Lemma 5.2. Given an edge uv P EpGq let G1 “ G ´ uv and assume σ1 and π1 are
switchings of σ and π, respectively, such that pG1, σ1q and pG1, π1q are separated. Then
both u and v are saturated by σ1 and π1 in G1.

Proof. Towards a contradiction and without loss of generality, assume S˚ Ł Sσ1π1puq.
Since σ1 and π1 have no common negative edge as signatures on G ´ uv, and G is
counterexample, considering the extension of these signatures to G we have sσ1π1puvq “
´´. Assume αβ R Sσ1π1puq, αβ P S˚. If α “ `, switch σ1 at u; if β “ `, switch π1 at
u. After this operation, we have signatures σ2 and π2 both on G which agree with σ1
and π1 (respectively) on every edge that is not incident to u. Thus, by the choice of σ1
and π1, no edge which is not incident to u is negative in both. But, furthermore, based
on our switchings t´´u R Spuq and thus σ2 and π2 are switchings of σ and π that are
separated, a contradiction.

Corollary 5.1. The minimum degree of G is at least 4.

Thus as mentioned above, the case when G has no triangle or no 5-cycle or no 6-cycle
is settled because any such a planar graph must be 3-degenerate.
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Lemma 5.3. Let P be a light path of G, e P P . Assume σe and πe are switchings of σ
and π, respectively, such that pG, σeq and pG, πeq have only e as their common negative
edge. Then given an edge e1 of P , by switching σe on a set X of vertices of P and
switching πe on a set Y of the vertices of P , for some choices of X and Y , we have
signatures σe1 and πe1 where e1 is the only common negative edge of pG, σe1q and pG, πe1q.

Proof. Suppose P “ v1v2 ¨ ¨ ¨ vk and e “ tvivi`1u, where i P t1, 2, . . . k ´ 1u. By our
assumption sσeπepvivi`1q “ t´´u. By Lemma 5.2, Sσeπepviq “ Sσeπepvi`1q “ S˚. With
the same idea as in the proof of Lemma 5.2, and assuming i ě 2, we may apply switchings
at the vertex vi so that vi´1vi is the only common negative edge of the resulting two
signatures. Similarly, assuming i ď k ´ 2 we may apply switchings at the vertex vi`1
so that vi`1vi`2 is the only common negative edge of the resulting two signatures.
Continuing this process, and noting that each time switchings are only done on one of
vj ’s, j “ 2, . . . k ´ 1, we have the desired claim.

Lemma 5.4. There is no pair of vertices connected by three vertex disjoint light paths.

Proof. Assume to the contrary that P1, P2, P3 are three vertex disjoint light uv-paths
and label them as follows: P1 “ ux1 ¨ ¨ ¨xiv, P2 “ uy1 ¨ ¨ ¨ yjv, and P3 “ uz1 ¨ ¨ ¨ zkv, where
i, j, k ě 0, noting that k “ 0 means P3 “ uv and that, since G is a simple graph, only
one of these values can be 0. Thus, without loss of generality, we may assume i ě j ě 1
and k ě 0. Since G has no 4-cycle, we also conclude that i ě 2. Moreover, we may
choose P1, P2, P3 to be shortest subject to being internally vertex disjoint. This implies,
in particular, that for any pair of non-consecutive vertices on a path Pi (i “ 1, 2, 3),
they are not adjacent in G. Recalling that all vertices of a light path are of degree 4 in
G, let t, w be the neighbours of u, v which are not on any of P1, P2, or P3, respectively.
Let G1 “ G´ ux1. By the minimality of G, assume σ1 and π1 are switchings of σ and
π, respectively, such that pG1, σ1q and pG1, π1q are separated. Thus when σ1 and π1 are
viewed as signatures on G we have sσ1π1pux1q “ t´´u and both u and x1 are saturated.
Noting that k is allowed to be 0, we consider two cases depending on this.

First consider the case k ě 1, as depicted in Figure 5.1. We may apply Lemma 5.3 to
switch only at the internal vertices of P1 to obtain signatures σ2 and π2 such that xiv is
the only edge with sσ2π2pxivq “ ´´. Therefore, considering signatures σ2 and π2, and
by Lemma 5.2, the vertex v must be saturated. Recall that in the process of getting σ2
and π2 from σ1 and π1 we are considering only switchings at the internal vertices of P1.
Furthermore, since Pi’s chosen to be shortest, no internal vertex of Pi is adjacent to v.
That means, in particular, that the signs of the three edges yjv, zkv, wv each incident
to v remain untouched when switching σ1 to σ2 and π1 to π2. We conclude that

tsσ1π1pyjvq, sσ1π1pzkvq, sσ1π1pwvqu “ t``,`´,´`u. (5.1)

Next, restarting from signatures σ1 and π1 and applying Lemma 5.3 to the path
x1uy1 ¨ ¨ ¨ yjv (that is the path obtained from P2 by adding the edge x1u at the start),
and as before, we conclude that

tsσ1π1pxivq, sσ1π1pzkvq, sσ1π1pwvqu “ t``,`´,´`u. (5.2)
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In this argument that k ě 1 helps us to confirm that the signs of the three edges
incident to v other than yjv remain the same.

Equations 5.1 and 5.2 imply that sσ1π1pxivq “ sσ1π1pyjvq.
Similarly, considering paths P1 and x1uz1 ¨ ¨ ¨ zkv we conclude that sσ1π1pxivq “

sσ1π1pzkvq. However, this leads to contradiction with either of the identities 5.1 and 5.2.
This concludes the statement for the case that k ě 1.

Now assume k “ 0, that is to say uv is an edge of G, this case is depicted in Figure 5.1.
First suppose that, except for the edge uv, no vertex of P1 is connected to a vertex
of P2. Our first claim in this case is that sσ1π1puy1q “ sσ1π1py1y2q “ ¨ ¨ ¨ “ sσ1π1pyjvq.
That is because by applying Lemma 5.3 and Lemma 5.2 to the path x1uy1y2 ¨ ¨ ¨ yjv we
get that Sσ1π1pylq ´ sσ1π1pylyl´1q “ S˚ and by applying the same lemma to the path
ux1x2 ¨ ¨ ¨xivyjyj´1 . . . y1 we get that Sσ1π1pylq ´ sσ1π1pylyl`1q “ S˚.

Next we claim that sσ1π1pxivq “ sσ1π1puvq. That is for similar reasons as the previous
claim and by considering the two paths P1 and x1uv. Furthermore, applying Lemma 5.2
to signature σ2 and π2 which have only xiv as common negative edge, and are obtained
from switching of σ1 and π1 (respectively) on internal vertices of P1, we conclude that:

tsσ1π1puvq, sσ1π1pyjvq, sσ1π1pwvqu “ t``,`´,´`u. (5.3)

Recall that u is saturated by σ1 and π1 where ux1 is negative in both signatures.
This means

tsσ1π1putq, sσ1π1puy1q, sσ1π1puvqu “ t``,`´,´`u. (5.4)

Comparing identities 5.3 and 5.4 we have: sσ1π1putq “ sσ1π1pvwq.
Observe that when applying Lemma 5.3 to get uy1 as the only common negative edge,

we apply switchings at u in one or both of the signatures. Assuming the new signatures
are σ2 and π2 one observes that sσ2π2pux1q “ sσ1π1puy1q and thus sσ2π2puvq “ sσ1π1putq.
Therefore, sσ2π2puvq “ sσ1π1pvwq.

If we now apply Lemma 5.3 to σ2 and π2 on the path P2 so to have yjv as the only
common negative edge, as we will not change signs of the other three edges incident
with v we will end up with a vertex v which is not saturated, contradicting Lemma 5.2.

u v w

P1

P3

P2

x1 xi

¨ ¨ ¨

z1 zk¨ ¨ ¨

y1 yj

¨ ¨ ¨

u v w

P1

P2

x1 xi

¨ ¨ ¨

y1 yj

¨ ¨ ¨

u v w

xp

yq

P1

P2

x1 xi

¨ ¨ ¨

y1 yj

¨ ¨ ¨

Figure 5.1: 3 disjoint light paths between u and v
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For the final case, suppose beside uv, there exists another edge connecting a vertex
of P1 to a vertex of P2. Let xpyq be such an edge. Since i ě 2, and by exchanging the
roles of u and v, if needed, we may assume that p ď i ´ 1. In this case, as before we
apply Lemma 5.3 to the following three paths: P1, x1uv, and ux1 ¨ ¨ ¨xpyq ¨ ¨ ¨ yjv. From
the first we conclude that tsσ1π1puvq, sσ1π1pyjvq, sσ1π1pwvqu “ t``,`´,´`u. From the
second we conclude that tsσ1π1pxivq, sσ1π1pyjvq, sσ1π1pwvqu “ t``,`´,´`u. And the
last one implies tsσ1π1puvq, sσ1π1pxivq, sσ1π1pwvqu “ t``,`´,´`u. Comparing the first
two we conclude that sσ1π1puvq “ sσ1π1pxivq, then first with second sσ1π1puvq “ sσ1π1pyjvq
which contradicts, say, the third identity.

Corollary 5.2. There are no adjacent light faces in G.

We may now apply discharging technique to conclude our claim.

5.1.2 Discharging for planar graphs without 4-cycles

In this section, we apply discharging technique to complete the proof of Theorem 5.1 for
the case of C4-free planar graphs.

We define a weight function ω on the vertices and faces of G by letting ωpvq “ dpvq´4
for each v P V pGq and ωpfq “ dpfq ´ 4 for f P F pGq. It follows from Euler’s formula
and the relation

ř

vPV pGq dpvq “
ř

fPF pGq dpfq “ 2|EpGq| that the total sum of weights
of the vertices and faces satisfies the following

ÿ

vPV pGq

pdpvq ´ 4q `
ÿ

fPF pGq

pdpfq ´ 4q “ ´8.

Next we design appropriate discharging rules and redistribute weights accordingly.
Once the discharging is finished, a new weight function ω˚ is produced. The total
sum of weights is kept fixed when the discharging is in process. Nevertheless, after the
discharging is complete, we will show that ω˚pxq ě 0 for all x P V pGq Y F pGq. This
contradiction implies that no such counterexample exists.

Let v be vertex of degree 4 whose neighbours in clockwise orientation are v1, v2,
v3, and v4. Let f1, f2, f3, and f4 be the face containing v1vv2, v2vv3, v3vv4, and v4vv1
respectively. If dpv3q “ dpv4q “ 4, dpv1q “ dpv2q ě 5, dpf2q “ dpf4q “ 3, dpf3q “ 5, and
dpf1q ě 5, then we say f3 is a receiver of f1.

For x, y P V pGqYF pGq, let τpxÑ yq denote the amount of weights transferred from
x to y.

Our first discharging rule is as follows:

R1 : Each 5`-face sends 1
3 to each adjacent 3-face and 2

15 to each of its receiver.

Let v be a 5-vertex with f1, f2, . . . , f5 being the faces incident to v. Assume f1 and f3
are triangles and, furthermore, that f4 is a super weak 5-face. Then it is easily observed
that f5 is not a super weak 5-face.

The next two discharging rules are as follows:
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R2: If dpvq “ 5, n3pvq “ 1, say dpf1q “ 3, then let τpv Ñ f2q “ τpv Ñ f5q “
1
3 .

R3: If dpvq “ 5 and n3pvq “ 2, say dpf1q “ dpf3q “ 3, then τpv Ñ f2q “
2
3 . Fur-

thermore, if there exists one super weak 5-face f 1, f 1 ‰ f2, then τpv Ñ f 1q “ 1
3 ,

otherwise τpv Ñ f4q “ τpv Ñ f5q “
1
6 .

The remaining two rules are about 6`-vertices.

R4: If dpvq ě 6 and f is a face incident to v and adjacent to one triangle also incident
to v, then τpv Ñ fq “ 1

3 .

R5: If dpvq ě 6 and f is a face incident to v and adjacent to two triangles each incident
to v, then τpv Ñ fq “ 2

3 .

In the following, we will show that ω˚pxq ě 0 for all x P V pGq Y F pGq.
First we consider vertices, let v P V pGq. By Corollary 5.1, dpvq ě 4. Note that no

4-vertex participates in discharging argument, so ω˚pvq “ ωpvq “ dpvq ´ 4 “ 0 for any
4-vertex v. Next we consider 5-vertices. Let v be any such a vertex, then ωpvq “ 1. By
the fact that G contains no 4-cycle we have 0 ď n3pvq ď 2. If n3pvq “ 0, then the charge
of v is not changed, i.e., ω˚pvq “ ωpvq “ 1. If n3pvq “ 1, the charge of v is changed
(only) by the R2, and in this case ω˚pvq “ ωpvq ´ 2ˆ 1

3 “
1
3 . If n3pvq “ 2, then R3 is

the only rule that changes the charge of v and under this rule at most a charge of 1 is
given from v to its incident face. Thus ω˚pvq ě 0.

It remains to consider 6`-vertices. Let v be such a vertex. dpvq ě 6. For i “ 1, 2,
let mipvq denote the number of incident faces adjacent to i triangles each incident to
v. Observe that, by definition, m1pvq ` 2m2pvq ď 2n3pvq ď dpvq (the latter inequality
because of being C4-free). In applying R3 the vertex v loses a charge of m1pvq`2m2pvq

3 .
Thus ω˚pvq “ dpvq ´ 4´ m1pvq`2m2pvq

3 . Therefore, ω˚pvq ě dpvq ´ 4´ dpvq
3 . As dpvq ě 6

we have ω˚pvq ě 0.

Now we consider faces, let f P F pGq. First assume dpfq “ 3, in other words f is a
triangle. Recall that original charge ωpfq “ ´1. Since G has no C4, each of the faces
adjacent to f is of size at least 5. Then by rule R1, each of them sends a charge of 1

3 to
f and thus ω˚pfq “ 3´ 4` 3ˆ 1

3 “ 0.
Next we consider 5-faces, let f “ rv1 ¨ ¨ ¨ v5s be such a face. For the original charge of

f we have ωpfq “ 5´ 4 “ 1. If f is adjacent to at most two triangles, then f gives a
charge of 1

3 to each of the triangles it is adjacent to and it has at most one receiver, so
can only lose a charge of 2ˆ 1

3 `
2
15 “

4
5 , thus the final charge is at least 1

5 .
Suppose f is adjacent to precisely 3 triangles. If f has no receiver, then it only loses

charge by R1 and by this rule loses exactly a charge of 3ˆ 1
3 “ 1, hence ω˚pfq “ 0. If

f has exactly one receiver, let v2 be the common vertex of f and its receiver. Then,
by the definition of a receiver, v1, v3 each has degree at least 5. We now consider the
position of the third triangle adjacent to f . If it is one of f3 or f5, say f3, then by R3
or R5, depending on if dpv3q “ 5 or dpv3q ě 6, the vertex v3 gives a charge of 2

3 to f ,
concluding that ω˚pfq ě 8

15 . Otherwise f4 is the third triangle adjacent to f . In such a
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case the two faces f3 and f5 are 5`-faces. We claim that neither is a super weak 5-face.
By contradiction, suppose f3 is a super weak 5-face. Then, it must be adjacent to at
least four triangles. As f is not a triangle, all the other faces adjacent to f3 are triangles.
This implies that vertices v3 and v4 are each of degree at least 5, but this contradicts the
second condition of being a super negative 5-face which is to have four vertices of degree
4. If f3 (or f5) is a 6`-face, then, by R4, it gives a charge of 1

3 to f , raising ω˚pfq to at
least 1

5 . If they are both 5-faces, then, by R3, each of v1 and v3 gives a charge of 1
6 to f .

The final charge of f in this is at least 1` 1
6 ´ 3ˆ 1

3 ´
2
15 “

1
30 .

Suppose f is adjacent to 4 triangles and by symmetry assume f1, f2, f3, and f4 are
the triangles. The receiver face implies that there are at most two receivers for f , and
moreover if there is at least one, then one of v2, v3 or v4 has to be of degree at least 5.
If one of v2, v3 or v4 is of degree at least 5, either by R3 or by R5 it will give a charge
of 2

3 to f and thus the final charge of f would be at least 1` 2
3 ´ 4ˆ 1

3 ´ 2ˆ 2
15 “

1
15 .

Let now assume the vertices v2, v3, and v4 are all of degree 4. In such case, if v5 and
v1 each has degree at least 5 or one of them has degree at least 6, then f5 cannot be a
weak face and either by applying R3 to both v1 and v5 or applying R4 to the one which
is a 6`-vertex, a total charge of at least 1

3 is given to f and thus the final charge of
f is non-negative. If one of v1 and v5 is degree 4 and the other, say v5 is of degree 5,
then f is a super weak 5-face and thus by R3 the vertex v5 will give a charge of 1

3 to f ,
resulting a final charge of f to be positive. If all vertices v1, . . . , v5 are of degree 4, i.e.,
f is a light face, then since there is no adjacent light faces (Corollary 5.2) for each of
the triangles f1, . . . , f4 the vertex of fi which is not on f is a 5`-vertex. Then f is a
receiver for the face adjacent to f1 and f2 and for the face adjacent to f2 and f3 and
also for the face adjacent to f3 and f4. It, therefore, receives a charge of 2

15 from each of
these 3 for a final charge of ω˚pfq ě 1` 3ˆ 2

15 ´ 4ˆ 1
3 “

1
15 .

Finally we consider the case where all faces adjacent to f are triangles. Recall that
f has at most two receivers. So it loses at most 5 ˆ 1

3 ` 2 ˆ 2
15 . If two of vi’s are 5`

vertices, then either by R3 or by R5 they each gives a charge of 2
3 to f and the final

charge of f is positive. If only one of vi’s, say v1, is a 5`-vertex, then f has no receiver
and only loses a charge of 5ˆ 1

3 but gains 2
3 from v1 and again the final charge would be

non-negative. If none of vi’s is a 5`-vertex, i.e., f is a light face, by Corollary 5.2, for
each of the triangles f1, . . . , f5 the vertex of fi which is not on f is a 5`-vertex. Thus f
is a receiver of five faces determined by consecutive triangles around it. Hence by R1, it
receives 5ˆ 2

15 from each of these five faces, to have a final charge of 0. This conclude
all the cases for a 5-face.

Next assume that f “ rv1 ¨ ¨ ¨ v6s is a 6-face. Then ωpfq “ 2. If f is adjacent to at
most 5 triangles, then it has at most two receivers, and hence it loses at most 5ˆ 1

3`2ˆ 2
15

(all in R1) hence ω˚pfq ě 1
15 . If all the six faces adjacent to f are triangles, we consider

two possibilities depending on the degrees of v1, . . . , v6. If at least one of them is a
5`-vertex, then either by R3 or by R5 it gives a charge of 2

3 to f . As f can have at most
three receivers, the final charge of f remains non-negative. If all vertices on f are of
degree 4, then f has no receiver and the final charge of f is 0.

Finally we consider 7`-faces. Recall that faces only lose charge by R1. There are at
most dpfq triangles adjacent to f , and it can have at most r

dpfq
2 s receivers. Thus for the
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final charge of f we have ω˚pfq “ dpfq ´ 4´ 1
3dpfq ´

1
2 ˆ

2
15dpfq “

3
5dpfq ´ 4 ě 1

5 . This
completes the proof.

5.2 Separating 3 signatures in signed planar graphs of
girth 6

In this section we provide a maximum average degree condition which is sufficient for any
three signatures on a graph to be separated. Theorem 5.2 will be immediate consequence
then.

Theorem 5.3. Every simple graph of maximum average degree less than 3 has a 3-
separation property.

Proof. Let G be a minimum counterexample. That, in particular means there are three
signatures σ1, σ2, and σ3 on G that are not separable but for any edge e, the restrictions
of the three signatures on G´ e are separable. After proving a few claims, and using
discharging technique then we will show that G itself must have average degree at least
3 contradicting our hypothesis on the maximum average degree of G.

For three signatures σ1, σ2 and σ3 on G, and for an edge uv P EpGq, let sσ1σ2σ3puvq “
tσ1puvqσ2puvqσ3puvqu Ď t`,´u ˆ t`,´u ˆ t`,´u. For a vertex u define a multiset
Sσ1σ2σ3puq “ rsσ1σ2σ3peq|e P Eus, where Eu is the set of edges incident to u. We
may use spuvq and Spuq when the signatures are clear from the context. Let S˚ “
t` ``,´``,`´`,``´u.

The first observation, which is easy to derive, is that G is 2-connected. Thus in
particular the minimum degree is at least 2. To achieve our goal then we have three
claims about the neighbourhood of vertices of degree 2.

Claim 1. Both neighbours of a 2-vertex v in G have degree at least 4.

Proof of the claim. Let Npvq “ tv1, v2u and assume to the contrary, that dpv2q ď 3.
Let G1 “ G ´ vv2. By the minimality of G, assume σ11, σ12, and σ13 are switchings
of σ1, σ2, and σ3, respectively, such that pG1, σ11q, pG1, σ12q, and pG1, σ13q are separated.
Since dG1pvq “ 1, and by a switching at v in any signature that needs, we may assume
sσ11σ12σ13pvv1q “ t` ` `u. When σ11, σ12, and σ13 are viewed as signatures on G, vv2 is
the only edge not satisfying the condition which means at least two of the signatures
must assign negative to vv2. If one of them, say σ13 assigns positive to vv2, then by
switching v at the signature σ12 (or σ11) we have separation. Thus we may assume
sσ11σ12σ13pvv2q “ t´ ´´u.

At this point, it suffices to find one or two signatures, σ1i and σ1j , such that if σ1i
or both σ1i and σ1j are switched at v2, then vv2 is still the only edge not satisfying our
condition. If we manage to find σ1i, or σ1i and σ1j , then we may also switch signature
σ1l, l R ti, ju, at v. After these switchings, vv1 will be negative at one signature only,
and vv2 with be either positive in all or negative in just one signature, and thus we
have three separated signatures. To choose σ1i and possibly σ1j among σ11, σ12, and σ13 we
consider the two edges, e1 and e2 incident to v2 but different from vv2. If they are both
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negative in a signature, we choose that one to be σ1i and no need for a second. If each of
the edges is assigned only positive sign by each of the signatures, then σ1i can be any of
the three signatures and again no need for a second choice. Otherwise, we note that at
most two of the signatures can assign different signs to e1 and e2. If only one, then we
choose that signature to be σ1i and if two we take them both to be σ1i and σ1j . ˛

Claim 2. A 4-vertex v can have at most two 2-neighbours.

Proof of the claim. Let Npvq “ tv1, v2, v3, v4u. Toward a contradiction assume that
dpviq “ 2 for i “ 1, 2, 3. For each i, i “ 1, 2, 3, let the other neighbour of vi be v1i. Let
G1 “ G´ vv1. By the minimality of G, we have signatures σ11, σ12, and σ13 as switchings
of σ1, σ2, and σ3, respectively, such that pG1, σ11q, pG1, σ12q, and pG1, σ13q are separated.
In what follows, we consider signatures σ11, σ12, and σ13 on G. Again since dG1pv1q “ 1,
without loss of generality, we may assume spv1v

1
1q “ t```u. The same argument as in

the previous case then implies that spvv1q “ t´ ´´u.
If SpvqXS˚ ď 2, then we continue the same argument as in the previous case, where

v is a neighbour of the 2-vertex v1 and to our purpose it is of degree |Spvq X S˚| ` 1. So
we assume Spvq X S˚ “ 3. We observe that by switching at v2, in the signatures that
are needed, we may exchange spvv2q and spv2v

1
2q. If after such switchings the previous

condition holds, we are done. If not, either spvv2q “ spv2v
1
2q in which case by switchings

at v2 we may conclude that spvv2q “ spvv3q and then we are done as before, or spv2v
1
2q

is distinct from each of spvv2q, spvv3q, and spvv4q. Repeating the same argument we
conclude that spv3v

1
3q “ spv2v

1
2q. We may now do enough switchings at v2 and v3 so

that spvv2q “ spvv3q. Then the process can be completed as before. ˛

Claim 3. A 5-vertex v can have at most four 2-neighbours.

Proof of the claim. Let Npvq “ tv1, . . . , v5u. Assume to the contrary that dpviq “ 2
for i “ 1, . . . , 5. We name the other neighbour of vi as v1i. Let G1 “ G ´ vv1. By the
minimality of G, assume σ11, σ12, and σ13 are switchings of σ1, σ2, and σ3, respectively,
such that pG1, σ11q, pG1, σ12q, and pG1, σ13q are separated. As in the previous two cases, we
may assume spv1v

1
1q “ t` ` `u and spvv1q “ t´ ´ ´u. Furthermore, by switching at

vi’s, if necessary, we can assume that none of spvviq, i “ 2, . . . , 5, is t` ` `u. Thus for
some i and j, 2 ď i ă j ď 5, we have spvviq “ spvvjq. At this point we note that in the
proof of Claim 2 we never applied a switching at v4. Thus we may now continue the
same proof as in the Claim 2 by treating vi and vj as v4 and not switching at these two
vertices. ˛

Finally to complete the proof we show that the three forbidden configurations of
Claims 1, 2, and 3 imply an average degree of at least 3.

We first define ω on the vertices of G by letting ωpvq “ dpvq for each v P V pGq. The
single discharging rule is as follows.

R1 : Each 4`-vertex sends 1
2 to each 2-neighbour.

Let ω˚pvq be the charge of v after applying the rule. Let v P V pGq. As observed
before, dpvq ě 2. If dpvq “ 2, then by Claim 1, v is adjacent to two vertices of degree



Chapter 5. Separating signatures in signed planar graphs 59

at least 4. Thus, ω˚pvq “ 2` 2ˆ 1
2 “ 3 by (R1). The discharging rule does not change

ωpvq if dpvq “ 3. If dpvq “ 4, then by Claim 2, v has at most two 2-neighbours, thus
ω˚pvq ě 4´ 2ˆ 1

2 “ 3. When dpvq “ 5, by Claim 3, v has at most four 2-neighbours,
thus ω˚pvq ě 5´ 4ˆ 1

2 “ 3. Finally if dpvq ě 6, then ω˚pvq ě dpvq´ dpvq
2 “

dpvq
2 ě 3.

5.3 Conclusion
We have known that problem of packing signatures in signed graphs relates to some
of the most prominent problems in graph theory such as the four-color theorem and
edge-coloring problems as shown in Chapter 3. The question of separating a given set of
k signatures captures the k-packing of signature problem because one can simply take
k identical signatures. The question then can be translated back to a homomorphism
problem as follows.

A multi-signed graph, denoted pG, σ1, σ2, . . . , σlq, is a graph G together with l
signatures. A multi-signed graph pG, σ1, σ2, . . . , σlq is said to admit a homomorphism to
a multi-signed graph pH,π1, π2, . . . , πlq if there is a mapping f of vertices and edges of G
to vertices and edges of H, respectively, which is a homomorphism of pG, σiq to pH,πiq
for every i, i “ 1, 2, . . . , l. That is to say incidences and adjacencies are preserved, and
the sign of any closed walk in pG, σiq is the same as the sign of its image in pH,πiq.

`

´

Figure 5.2: pL1, σq

``

´` `´

Figure 5.3: pL2, σ1, σ2q

```

´``

`´`

``´

Figure 5.4: pL3, σ1, σ2, σ3q

Given an integer l, let Ll be the multi-signed graph on a single vertex with l ` 1
loops e0, e1, . . . el where e0 is assigned a positive sign by each of the signatures and ei
is assigned a negative sign by σi and positive sign by all other signatures. The cases
l “ 1, 2, 3 are presented in Figures 5.2, 5.3, and 5.4. It is then immediate to restate the
separating problem we have studied here as a homomorphism problem.

Theorem 5.4. A multi-signed graph pG, σ1, σ2, . . . , σlq admits a separation if and only
it admits a homomorphism to Ll.
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Chapter 6

An pF3, F5q-partition of planar
graphs of girth at least 5

This chapter is based on the following paper:

[9] M. Chen, A. Raspaud, W. Wang, and W. Yu. An pF3, F5q-partition of planar graphs
with girth at least 5. Discrete Math., 346(2):Paper No. 113216, 17, 2023.

Let C1, . . . , Ck denote k classes of graphs. Recall that a graph G admits a pC1, . . . , Ckq-
partition, if V pGq can be partitioned into k vertex subsets V1, . . . , Vk such that the
subgraph GrVis belongs to Ci for each 1 ď i ď k. We use F, Fd,∆d and I to denote the
class of forests, the class of forests with maximum degree at most d, the class of graphs
with maximum degree at most d, and the class of empty graphs, respectively. Obviously,
I “ ∆0 “ F0 and ∆1 “ F1. The famous 4-color theorem guarantees that every planar
graph admits an pI, I, I, Iq-partition.

In this chapter, we study vertex partitions of graphs under restriction on girth
condition. Recall that PGg denote the family of planar graphs of girth at least g. It has
been proved in [33] that there is a graph belonging to PG4 having no p∆d1 ,∆d2q-partition
for any non-negative integers d1 and d2. Therefore, we are aiming to find a refinement
of forest partitions of PG5. More specifically, we prove the following.

Theorem 6.1. Every graph in PG5 admits an pF3, F5q-partition.

This is an improvement of a result in [12] stating that every graph in PG5 admits
a p∆3,∆5q-partition. Our proof is based on the discharging technique. Assume that
G is a minimum counterexample to Theorem 6.1. In Section 6.1, we first give some
basic notations. In Section 6.2, we study the structural properties of the minimum
counterexample. Finally in Section 6.3, the discharging technique is employed to prove
that G does not exist, which finishes the proof.
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6.1 Preliminaries

Arguing by contradiction, we assume that G “ pV,Eq is a counterexample to Theorem 6.1
minimizing |V pGq|. Embedding G into the plane, we get a plane graph G “ pV,E, F q
with the face set F . It is obvious that G is connected with gpGq ě 5. If G contains
a 1-vertex, say v, then let u be the unique neighbour of v. Take an pF3, F5q-partition
of G ´ v. One may easily reach an pF3, F5q-partition of G by adding v to Fi, where
i P t3, 5u and u R Fi. Thus, in what follows, assume that G is a connected graph of
minimum degree at least 2.

For f P F pGq, we use bpfq to denote the boundary walk of f and write f “
ru1u2 . . . uns if u1, u2, . . . , un are the vertices of bpfq appearing in a boundary walk of
f . For x P V pGq Y F pGq, we use nipxq to denote the number of i-vertices adjacent
or incident to x. Let uv P EpGq. If dpvq “ k, then we call v a k-neighbour of u. We
may similarly define a k`-neighbour or a k´-neighbour of u. Let i P t3, 5u. Given a
(partial) pF3, F5q-partition of G1 Ĺ G, a vertex v is said to be an Fi-vertex if v P Fi. An
Fi-neighbour of v is an Fi-vertex adjacent to v. Furthermore, we call v Fi-saturated if
v is an Fi-vertex with exactly i Fi-neighbours. By definition, it is easy to see that an
Fi-saturated vertex has at least i neighbours.

Let f be a 5-face of G. We call f good, weak, and bad if n2pfq “ 0, n2pfq “ 1 and
n2pfq “ 2, respectively, as shown in Figure 6.1. Let v be a 3-vertex in G. We call v
heavy if n5`pvq ě 2, and light otherwise, as shown in Figure 6.2. For our convenience,
we use n3hpuq and n3lpuq to denote the number of heavy 3-vertices and light 3-vertices
adjacent to u, respectively.

good

2

weak
2 2

bad

Figure 6.1: good, weak and bad 5-faces

5` 5`

heavy

4´ 4´

light

Figure 6.2: heavy and light 3-vertices

For all figures in this part, a vertex is represented by a solid node when all of its
incident edges are drawn; otherwise it is represented by a hollow node.
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6.2 Structural analysis of minimum counterexample

6.2.1 Elementary structural lemmas

Lemma 6.1. [12] Every 2-vertex is adjacent to a 5`-vertex and a 7`-vertex.

Lemma 6.2. [12] No 3-vertex can be incident to any bad 5-face.

Lemma 6.3. Let v be a 2-vertex adjacent to v1 and v2 such that dpv1q ď 6. Then v1 is
F3-saturated and v2 is F5-saturated in G´ v.

Proof. By Lemma 6.1, dpv2q ě 7. Clearly, G ´ v admits an pF3, F5q-partition due to
the minimality of G. If v1, v2 P Fi for some fixed i P t3, 5u, then it is easy to get an
pF3, F5q-partition of G by putting v to Fj such that j P t3, 5uztiu. Otherwise, we deduce
that v1 and v2 belong to different forest partitions. If v1 P F5, then v2 P F3, and thus we
can directly add v to F5, and further move v1 to F3 if v1 is F5-saturated in G´ v. So
now assume that v1 P F3 and v2 P F5. If one fails to put v to F3 or F5, then we obtain
immediately that v1 is F3-saturated and v2 is F5-saturated in G´ v.

Lemma 6.4. Let v be a 2-vertex adjacent to v1 and v2 such that dpv1q “ 5 and dpv2q “ 7.
Let NGpv1q “ tv, x1, . . . , x4u and NGpv2q “ tv, y1, . . . , y6u. Then the following holds:
(1) If n4`pv1q “ 1, say dpx1q ě 4, then x1 P F5;
(2) If n4`pv2q “ 1, say dpy1q ě 4, then y1 P F3.

Proof. By the minimality of G, G´ v has an pF3, F5q-partition. By Lemma 6.3, v1 is
F3-saturated and v2 is F5-saturated in G´ v.

(1) Suppose otherwise that x1 P F3. Then exactly one vertex of x2, . . . , x4 belongs
to F5. Since x2, x3, x4 have degree at most 3, we can change v1 to F5 and then add v to
F3 to obtain an pF3, F5q-partition of G, a contradiction.

(2) Suppose otherwise that y1 P F5. Similarly, exactly one vertex of y2, . . . , y6 belongs
to F3. Again since y2, . . . , y6 have degree at most 3, we can change v2 to F3 and then
add v to F5 to reach an pF3, F5q-partition of G, a contradiction.

Lemma 6.5. Every 3-vertex v has at least one 5`-neighbour.

Proof. Suppose to the contrary that all v1s neighbours, denoted by v1, v2 and v3, are of
degree at most 4. Then, by the minimality of G, G´ v admits an pF3, F5q-partition. If
v1, v2, v3 P Fi for some fixed i P t3, 5u, then we could add v to Fj , where j P t3, 5uztiu.
Otherwise, we assume that there exists some i P t3, 5u, so that exactly one vertex of the
set tv1, v2, v3u belongs to Fi. W.l.o.g., assume that v1 P Fi. Then, we put v to Fi. Since
dpv1q ď 4, if the resultant partition of G is not an pF3, F5q-partition, then i “ 3 and
v1 is F3-saturated in G´ v. It suffices to further change v1 to F5, and thus obtain an
pF3, F5q-partition of G, a contradiction.

Lemma 6.6. Let v be a 5-vertex with n2pvq ` n3lpvq ě 1. Then n7`pvq ě 1.
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Proof. Let v be adjacent to v1, v2, . . . , v5 such that v1 is either a 2-vertex or a light 3-
vertex. Suppose to the contrary that dpviq ď 6 for each i P t2, 3, 4, 5u. By the minimality
of G, G´ v1 admits an pF3, F5q-partition.

Case 1: Assume that v1 is a 2-vertex.

Denote by v11 the other neighbour of v1. By Lemma 6.3, v is F3-saturated in G´ v1
and v11 P F5. W.l.o.g., assume that v2, v3, v4 P F3 and v5 P F5. Then, we change v to F5,
put v1 to F3, and further change v5 to F3 if it is F5-saturated in G´ v. One may check
that the obtained partition is our desired partition, a contradiction.

Case 2: Assume that v1 is a light 3-vertex.

Let v11 and v21 denote the other two neighbours of v1 different from v. By definition,
dpv11q ď 4 and dpv21q ď 4. In what follows, let S “ tv, v11, v21u and ti, ju “ t3, 5u. If all
vertices of S belong to the same forest partition, say Fi, then we may put v1 to Fj . Now
assume that exactly one vertex of S is in Fi and the remaining two vertices of S are in
Fj .

• If v P Fi and v11, v21 P Fj , then we add v1 to Fi. If the obtained partition is not an
pF3, F5q-partition, then we assert that i “ 3, j “ 5, and v is F3-saturated in G´v1.
W.l.o.g., suppose that vk P F3 for all k “ 2, 3, 4 and v5 P F5. At this moment,
we can change v to F5, and then change v5 to F3 if it is F5-saturated in G´ v1,
ensuring that the obtained partition of G is an pF3, F5q-partition, a contradiction.

• Now, by symmetry, assume that v11 P Fi and v, v21 P Fj . Firstly, add v1 to Fi. If
the resultant partition is not our wanted, then i “ 3 and v11 is F3-saturated in
G´ v1. It follows that dpv11q “ 4. Then we may further change v11 to F5 to get an
pF3, F5q-partition of G, a contradiction.

In the following, we say a vertex v is an ij-vertex if i ď dpvq ď j.

Lemma 6.7. Let v be a 69-vertex. If n4`pvq “ 0, then n3hpvq ě 2.

Proof. Let NGpvq “ tv1, v2, . . . , vku with 6 ď k ď 9. By assumption, dpviq ď 3 for all
i P t1, 2, . . . , ku. If dpviq “ 2, then we use v1i to denote the other neighbour of vi. If
dpviq “ 3, then let v1i, v2i denote the other two neighbours (distinct to v) of vi. Suppose
to the contrary that n3hpvq ď 1. W.l.o.g., assume that vi is either a 2-vertex or a light
3-vertex for each i P t2, 3, . . . , ku.

Clearly, G ´ tv, v2, . . . , vku has an pF3, F5q-partition due to the minimality of G.
Firstly, let 2 ď i ď k, d, d1 P t3, 5u and d ‰ d1. If dpviq “ 2, then we add vi to Fd when
v1i P Fd1 . If dpviq “ 3 and v1i, v2i P Fd, then add vi to Fd1 . Next, we have to count the
number of vertices among v1, . . . , vk being in F5.

If there are at most five F5-vertices in NGpvq, then we add v to F5, and then add
all remaining 3-vertices to F3. Notice that it may occur some conflicts if vj P F3 for
2 ď j ď k and v1j or v2j is F3-saturated. In this case, we may further change v1j or
v2j to F5 and thus obtain an pF3, F5q-partition of G, a contradiction. Otherwise, we
deduce that at least six F5-vertices are in NGpvq. This implies that there are at most
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three F3-vertices in NGpvq due to k ď 9. Hence, it suffices to add v to F3 and add all
remaining 3-vertices to F5, leading to a contradiction.

6.2.2 Structure of 5-faces

For convenience, we use SFipvq to denote the set of Fi-neighbours of v, where i P t3, 5u.

Lemma 6.8. Suppose that f “ rv1 . . . v5s is a weak 5-face such that dpv1q “ 2, dpv2q “ 5,
dpv3q “ dpv4q “ 3 and v3 is light. Then v4 is a heavy 3-vertex.

Proof. Suppose to the contrary that v4 is light and let v13 and v14 be the third neighbour
of v3 and v4, respectively. By Lemma 6.1, dpv5q ě 7, and thus we have that dpv13q ď 4
and dpv14q ď 4. Let G1 “ G ´ tv3u. By the minimality of G, G1 admits an pF3, F5q-
partition. If |SF5pv3q| “ 0 or |SF3pv3q| “ 0, then we add v3 to F5 and F3, respectively.
If |SF5pv3q| “ 1, then add v3 to F5 easily since all its neighbours are of degree at most
5. Next, consider the remaining case that |SF5pv3q| “ 2. There are three possibilities
below:

• If v2, v
1
3 P F5 and v4 P F3, then add v3 to F3 easily without causing any conflicts.

• If v2, v4 P F5 and v13 P F3, then add v3 to F3 and further change v13 to F5 if it is
F3-saturated in G1.

• Now assume that v13, v4 P F5 and v2 P F3. Then one of v14 and v5 belongs to F5
since otherwise add v3 to F5 easily. Similarly, one of v14 and v5 belongs to F3 since
otherwise first change v4 to F3 and then go back to previous case. If v14 P F3 and
v5 P F5, then change v4 to F3 and further change v14 to F5 if it is F3-saturated in
G1, and then go back to the former case. Or else, assume v14 P F5 and v5 P F3. In
this case, it remains us to change v1 to F5, add v3 to F3, and finally change v2 to
F5 if it is F3-saturated in G1. One can easily check that the obtained partition of
G is an pF3, F5q-partition, a contradiction.

Lemma 6.9. Suppose that f “ rv1 . . . v5s is a bad 5-face such that dpv1q “ 2, dpv2q “ 7,
dpv5q “ 5 and n5`pv5q “ 1. Then n4`pv2q ě 2.

Proof. Let NGpv2q “ tv1, v3, u1, . . . , u5u and NGpv5q “ tv1, v4, w1, w2, w3u. Suppose
otherwise that v2 has at most one 4`-neighbour. Let G1 “ G´ tv1u. Then G1 admits
an pF3, F5q-partition due to the minimality of G. By Lemma 6.3, v2 P F5 and v2 has
exactly five F5-neighbours, and v5 P F3 and v5 has exactly three F3-neighbours. Since f
is bad, exactly one of v3 and v4 is of degree 2.

First suppose that dpv4q “ 2. By Lemma 6.1, dpv3q ě 7. It follows that all vertices
of u1, . . . , u5 are 3´-vertices by assumption. W.l.o.g., let w1 be the 5`-neighbour of v5.
By Lemma 6.4 (2), we know that v3 P F3. If w1 P F3, then we could change v5 to F5 and
add v1 to F3 since w2, w3, v4 have degree at most 4. So w1 P F5, implying that w2, w3, v4
are in F3 and all u1, . . . , u5 are in F5. We only need to change v4 to F5 and then add v1
to F3.
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Now suppose that dpv3q “ 2. Then dpv4q ě 5 by Lemma 6.1, which implies that all
w1, w2, w3 are 4´-vertices. By assumption, we may let u1 be the 4`-neighbour of v2
if it exists. If v4 P F3, then exactly one of w1, w2, w3 is in F5, say w1. One may first
add v1 to F3, and then change v5 to F5. Next, assume that v4 P F5. Recall that v2 has
exactly five F5-neighbours. If v3 P F3, then all u1, . . . , u5 are in F5, and so we only need
to change v2 to F3 and then add v1 to F5. If v3 P F5, then it suffices to change v3 to F3
and then go back to the previous case.

Lemma 6.10. Suppose that f “ rv1 . . . v5s is a bad 5-face such that dpv1q “ 2, dpv2q “ 8
and dpv5q “ 5. If dpv4q “ 2 and n4`pv2q “ 1, then n3pv2q ě 1.

Proof. Let NGpv2q “ tv1, v3, u1, . . . , u6u. Let G1 “ G ´ tv1u. By the minimality of G,
G1 admits an pF3, F5q-partition. Again, by Lemma 6.3, we know that v2 is F5-saturated
and v5 is F3-saturated.

Suppose to the contrary that dpuiq “ 2 for all i P t1, . . . , 6u. By Lemma 6.1, dpv3q ě 7.
If v4 P F5, then wi P F3 for each i P t1, 2, 3u. We can add v1 to F3 and then change
v5 to F5, a contradiction. Next assume v4 P F3. If v3 P F3, then change v4 to F5
and then reduce to the above case. Otherwise, assume that v3 P F5. Since v2 has
exactly five F5-neighbours, we may let u1 and u2 be in F3. Let NGpu1q “ tv2, u

1
1u and

NGpu2q “ tv2, u
1
2u. At this moment, one may first change v2 to F3, and then add v1 to

F5. If the resultant partition is not our desired partition, we may deduce that both u11
and u12 are in F3. In this case, it suffices to continue to change both u1 and u2 to F5, a
contradiction.

6.2.3 Structure of adjacent 5-faces

Lemma 6.11. Suppose f “ rv1 . . . v5s and g “ rv1v5 . . . v8s are adjacent weak 5-faces
such that dpv2q “ dpv8q “ 2, dpv4q “ dpv5q “ dpv6q “ 3 and dpv1q “ 6. Then at least
one of v4 and v6 is a heavy 3-vertex.

Proof. Since gpGq ě 5, we have that |V pfq X V pgq| “ 2. That is, tv2, v3, v4u X
tv6, v7, v8u “ H, as shown in Figure 6.3. Let v14 and v16 denote the third neighbour of
v4 and v6 not on the boundary of f and g, respectively. By Lemma 6.1, we know that
both v3 and v7 are 7`-vertices. Suppose to the contrary that neither v4 nor v6 is a
heavy 3-vertex. It follows that v14 and v16 are both 4´-vertices. Due to dpv1q “ 6, let
w1, w2, w3 denote the other neighbours of v1 different from v2, v5 and v8. G´ tv5u has
an pF3, F5q-partition by the minimality of G.
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Figure 6.3: The configuration of Lemma 6.11.

If |SF5pv5q| “ 0 or |SF3pv5q| “ 0, then we add v5 to F5 and F3 directly, respectively.
If |SF5pv5q| “ 1, then we put v5 to F5. If the obtained partition of G is not our desired
partition, then it should be the case that v1 P F5, v4, v6 P F3, and v1 is F5-saturated in
G´tv5u. In this case, we only need to change v1 to F3 and thus get an pF3, F5q-partition
of G. Now consider the last case that |SF5pv5q| “ 2. If exactly one of v4 and v6 belongs
to F5, say v4 P F5, then it is easy to add v5 to F3. So next, assume that v4, v6 P F5 and
v1 P F3. There are four subcases below.

• v3, v
1
4 P F3. We can add v5 to F5 directly.

• v3, v
1
4 P F5. We first change v4 to F3 and then add v5 to F5.

• v3 P F5 and v14 P F3. We first change v4 to F3, add v5 to F5, and then change v14
to F5 if it is F3-saturated in G´ tv5u.

• v3 P F3 and v14 P F5. By symmetry, suppose that v7 P F3 and v16 P F5. In this
case, one may change v2 and v8 both to F5. If at most two of w1, w2, w3 are in F3,
then we further add v5 to F3. Or else, we can change v1 to F5 and then add v5 to
F3.

Lemma 6.12. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ 2 and dpv1q “ 5. If one of the following conditions holds, then dpv2q ě 8.
(1) dpu1q “ dpu4q “ 2 and n4`pv2q “ 2;
(2) dpu2q “ dpu3q “ 2 and n4`pv1q “ 2.

Proof. By Lemma 6.1, dpv2q ě 7. In each of following cases, suppose to the contrary
that dpv2q “ 7. Let NGpv1q “ tv, u1, u4, w1, w2u and NGpv2q “ tv, u2, u3, x1, . . . , x4u.
Let G1 “ G ´ tvu. Clearly, by the minimality of G, G1 has an pF3, F5q-partition.
By Lemma 6.3, we know that v1 P F3 and v2 P F5. Moreover, v1 has exactly three
F3-neighbours and v2 has exactly five F5-neighbours.

(1) Suppose that dpu1q “ dpu4q “ 2 and n4`pv2q “ 2. Then dpu2q ě 7 and dpu3q ě 7
by Lemma 6.1. Since v2 has exactly two 4`-neighbours, we know that all x1, . . . , x4
are 3´-vertices. Observe that at least one of u2 and u3 belongs to F5 because v2 is an
F5-saturated vertex. If both u2 and u3 are in F5, then exactly one of x1, . . . , x4 is in
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F3, say x1 P F3. In this case, we can change v2 to F3 and then add v to F5. Now by
symmetry, suppose that u2 P F3 and u3 P F5. This guarantees that x1, . . . , x4 are all in
F5. If u1 P F3, then change u1 to F5 and then add v to F3. Or else, assume that u1 P F5.
Then all w1, w2, u4 belong to F3, and therefore one can first change v1 to F5 and then
add v to F3. One may always obtain a contradiction.

(2) Suppose that dpu2q “ dpu3q “ 2 and n4`pv1q “ 2. By Lemma 6.1, both u1 and
u4 are 5`-vertices. Since v1 has exactly two 4`-neighbours, we know that w1 and w2
are both 3´-vertices. If some wi P F5 with i P t1, 2u, then change v1 to F5 and then add
v to F3. So next, by symmetry, assume that u1 P F5. If u2 P F3, then change v2 to F3
and add v to F5. Otherwise, we change u2 to F3 and add v to F5. In both cases, one
can always obtain an pF3, F5q-partition of G, a contradiction.

Lemma 6.13. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu1q “ dpu4q “ 2, dpv1q “ 5 and n4`pv2q “ 2.
(1) If dpv2q “ 8, then n3pv2q ě 2;
(2) If dpv2q “ 9, then n3pv2q ě 1.

Proof. Let NGpv2q “ tv, u2, u3, x1, . . . , xku with k ě 5. Since dpu1q “ dpu4q “ 2, both
u2 and u3 have degree at least 7 by Lemma 6.1, and thus all vertices x1, . . . , xk are
3´-vertices. Let G1 “ G´ tvu. Then G1 admits an pF3, F5q-partition by the minimality
of G. Again, by Lemma 6.3, v1 is F3-saturated and v2 is F5-saturated. If ui P F5 for
some i P t1, 4u, then we can change v1 to F5 and then add v to F3. Now suppose both
u1 and u4 are in F3. Similarly, if ui P F3 for some i P t2, 3u, say u2, then we can change
u1 to F5 and then add v to F3. In what follows, suppose u2 P F5 and u3 P F5. It means
that exactly three of x1, . . . , xk belong to F5.

(1) Suppose otherwise that n3pv2q ď 1. Namely at least four vertices among x1, . . . , x5
are of degree exactly 2. If one cannot change v2 to F3 without any conflicts, then there
exists some xi with i P t1, . . . , 5u such that dpxiq “ 2 and xi P F3, say x1. Let
NGpx1q “ tv2, x

1
1u. Notice that x11 P F3. Then we continue to change x1 to F5, and then

add v to F5. It is easy to check that the obtained partition is an pF3, F5q-partition of G.
(2) Suppose otherwise that n3pv2q “ 0. It follows that x1, . . . , x6 are all 2-vertices.

For each i P t1, . . . , 6u, let x1i denote the other neighbour of xi distinct to v2. By a
similar discussion as above, we see that exactly three vertices of x1, . . . , x6 belong to F3,
say x1, x2 and x3. If we are not able to change v2 to F3, then there exist at least two of
x11, x

1
2 and x13 being in F3, say x11 and x12. Thus, it remains us to continue to change x1

and x2 to F3, and finally add v to F5, a contradiction.

Lemma 6.14. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu2q “ dpu3q “ 2, dpv1q “ 5 and n4`pv1q “ 2. Then the following
holds.
(1) dpuiq ě 8 for some i P t1, 4u;
(2) If dpu1q “ 8 and dpu4q ď 7, then n4`pu1q ě 2.

Proof. Let w1 and w2 denote the other two neighbours of v1 different from u1, u4 and v.
By Lemma 6.1, we have that dpu1q ě 5, dpu4q ě 5 and dpv2q ě 7. Since n4`pv1q “ 2,
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both w1 and w2 are 3´-vertices. In the following, let G1 “ G ´ tvu. Then by the
minimality of G, G1 admits an pF3, F5q-partition. By Lemma 6.3, v1 is F3-saturated and
v2 is F5-saturated. If either w1 or w2 belongs to F5, then we change v1 to F5 directly,
and further add v to F3. Next, assume that w1, w2 P F3, implying that exactly one of u1
and u4 is in F5.

(1) Suppose to the contrary that both u1 and u4 are 7´-vertices. By symmetry, let
u1 P F5. Then u4 P F3. If u2 P F5, then change u2 to F3, and add v to F5. Or else,
assume that u2 P F3. If there are still some conflicts to change v1 to F5, then u1 has
already five F5-neighbours distinct to v1. It follows that dpu1q “ 7. In this case, one can
first change u1 to F3, v1 to F5, and finally add v to F3, a contradiction.

(2) Since dpv1q “ 5, we may suppose to the contrary that all neighbours of u1 not on
f , say x1, . . . , x6, are of degree at most 3.

Consider the first case that u1 P F5. Then u4 P F3. If u2 P F5, then we change u2 to
F3, and add v to F5. Otherwise, u2 P F3. If we failed to change v1 to F5, then u1 must
be an F5-saturated vertex in G1. Namely, exactly five vertices among x1, . . . , x6 are in
F5 and the remaining one is in F3 since dpu1q “ 8. At this moment, we can change u1
to F3, v1 to F5 and finally add v to F3.

Now consider the case that u4 P F5. Then u1 P F3. If u3 P F5, then we change u3
to F3 and add v to F5 immediately. Otherwise, assume u3 P F3. Since dpu4q ď 7, it is
easy to establish an pF3, F5q-partition of G by changing v1 to F5, adding v to F3, and
changing u4 to F3 if it is F5-saturated in G1.

In each case, one may verify that the obtained partition is an pF3, F5q-partition of
G, a contradiction.

Lemma 6.15. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu2q “ dpu4q “ 2, dpv1q “ 5 and dpv2q “ 7. Then for each i P t1, 2u,
we have that n4`pviq ě 2.

Proof. By Lemma 6.1, dpu1q ě 5 and dpu3q ě 7. Let G1 “ G ´ tvu. Then by the
minimality of G, G1 admits an pF3, F5q-partition. Let w1, w2 and x1, . . . , x4 denote the
other neighbours of v1 and v2, respectively. By Lemma 6.3, v1 is F3-saturated and v2 is
F5-saturated in G1.

First suppose to the contrary that v1 has exactly one 4`-neighbour. That is, u1 is
such a vertex. It follows that dpwiq ď 3 for i P t1, 2u. By Lemma 6.4 (1), we see that
u1 P F5. If u2 P F5, then we can change u2 to F3 and then add v to F5 successfully.
Otherwise, assume that u2 P F3. It means that all remaining neighbours of v2 that are
x1, . . . , x4 and u3, belong to F5. We only need to further change v2 to F3 and then add
v to F5, a contradiction.

Now suppose to the contrary that v2 has exactly one 4`-neighbour. Namely, u3 is
such a vertex. Then dpxiq ď 3 for all i P t1, . . . , 4u. By Lemma 6.4 (2), u3 P F3. If
u4 P F3, then we can change u4 to F5 and further add v to F3. Otherwise, assume that
u4 P F5. It suffices to change v1 to F5 and then add v to F3 successfully.

Next, for simplicity, in Lemmas 6.16-6.19, we will use fe to denote the face that is
adjacent to f by the common edge e.
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Lemma 6.16. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu2q “ dpu4q “ 2, dpv1q “ 5, dpv2q “ 7, n4`pv1q “ 2 and n4`pv2q “ 2.
Let fu2v2 “ ru1u2v2x1ys be a bad 5-face. Then we have:
(1) If dpyq “ 2, then for each t P tu1, x1u, we have dptq ě 6; moreover, n4`ptq ě 2 if
dptq “ 6.
(2) Suppose dpx1q “ 2.

(2.1) If dpu1q “ 5, then n4`pu1q ě 3;
(2.2) If dpyq “ 5 and the face adjacent to fu2v2 by common edges yx1 and x1v2 is

bad, then n4`pyq ě 3.

Proof. LetNGpv1q “ tv, u1, u4, w1, w2u andNGpv2q “ tv, u2, u3, x1, . . . , x4u. By Lemma 6.1,
dpu1q ě 5 and dpu3q ě 7. Since n4`pv1q “ 2, w.l.o.g., assume that dpw1q ě 4. Let
G1 “ G´ tvu. By the minimality of G, G1 admits an pF3, F5q-partition. By Lemma 6.3,
v1 is F3-saturated and v2 is F5-saturated. If u4 P F5, then change v1 to F5 and add v to
F3. So u4 P F3. If u3 P F3, then change u4 to F5 and go back to the previous case. It
follows that u3 P F5. If u2 P F3, then it is easy to change v2 to F3 and then add v to F5.
Therefore, u2 P F5. Here, one may further deduce that u1 P F3 since otherwise we can
change u2 to F3 and reduce to the former case.

(1) Suppose dpyq “ 2. By Lemma 6.1, dpx1q ě 5. This means that all remaining
vertices x2, x3, x4 are 3´-vertices due to n4`pv2q “ 2. If x1 P F5, then we can easily
change v2 to F3 and then add v to F5 successfully. So next assume x1 P F3. This implies
that u2, x2, x3, x4 all belong to F5. If y P F3, then change y to F5, u2 to F3, and finally
add v to F5. In what follows, assume that y P F5.

We first shall prove that dptq ě 6 for each t P tu1, x1u. If dpu1q “ 5, let y1, y2 denote
its other two neighbours. Then both y1, y2 are in F3 since otherwise we can change u2 to
F3 and then add v to F5 successfully. This fact enables us to change u1 to F5 and then
add v to F3, a contradiction. So dpu1q ě 6. Similarly, if dpx1q “ 5, let z1, z2, z3 denote
its other three neighbours, then we can change v2 to F3 and add v to F5. If the resultant
partition is not our desired partition, it should be the case that x1 is F3-saturated in G1.
That is, all z1, z2, z3 belong to F3. Thus, we have to further change x1 to F5 to reach an
pF3, F5q-partition of G, a contradiction. Hence, dpx1q ě 6.

Next we shall prove that for each t P tu1, x1u, n4`ptq ě 2 if dptq “ 6. First
suppose to the contrary that dpu1q “ 6 and n4`pu1q “ 1. It means that each vertex in
NGpu1qztv1, u2, yu is a 3´-vertex. Since |NGpu1qztv1, u2, yu| “ 3, we first observe that
u1 must be F3-saturated, since otherwise we can change u2 to F3 and then add v to F5,
a contradiction. This implies that exactly one vertex in NGpu1qztv1, u2, yu belongs to F5.
Therefore, we can change u1 to F5, u2 to F3, and then add v to F3, a contradiction. Now
suppose to the contrary that dpx1q “ 6 and n4`px1q “ 1. Then |NGpx1qztv2, yu| “ 4 and
all vertices in NGpx1qztv2, yu have degree at most 3. We deduce that x1 is F3-saturated,
since otherwise we can change v2 to F3 and then add v to F5, a contradiction. This
also implies that exactly one vertex of NGpx1qztv2, yu belongs to F5. Hence, it is easy
to change x1 to F5, v2 to F3 and then add v to F5. One can verify that the obtained
partition is our desired partition, a contradiction.
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(2) Suppose that dpx1q “ 2. By Lemma 6.1, dpyq ě 5. It is obvious that x1 P F5,
since otherwise we can change v2 to F3 and then add v to F5, a contradiction. If y P F5,
then we can change x1 to F3 and then add v to F5 easily. Next, we can assume that
y P F3.

• Assume dpu1q “ 5. Suppose otherwise that u1 has at most two 4`-neighbours.
That is, dpy1q ď 3 and dpy2q ď 3, where y1, y2 P NGpu1qztv1, u2, yu. If we can
change u2 to F3, then it is easy to obtain an pF3, F5q-partition by further adding v
to F5. Otherwise,it must be the case that u1 is F3-saturated. Namely, exactly one
of y1, y2 belongs to F3, and thus exactly one of y1, y2 belongs to F5. Therefore, we
can change u1 to F5, and then add v to F3, a contradiction. Hence, n4`pu1q ě 3.

• Assume dpyq “ 5. Suppose to the contrary that n4`pyq ď 2. Let y1, y2, y3 denote
the other three neighbours of y distinct to u1 and x1. Let f 1 “ ryx1v2x2y1s be a
bad 5-face. Observe that y is F3-saturated since otherwise we can change x1 to F3
and then add v to F5 successfully. It guarantees us that exactly two of y1, y2, y3
belong to F3 and the remaining one belongs to F5. Since f 1 is bad, we see that
either x2 or y1 is a 2-vertex.

– If dpx2q “ 2, then dpy1q ě 5 by Lemma 6.1. Then dpyiq ď 3 for both i “ 2, 3.
One may deduce that x2 P F5; if not, we can change v2 to F3 and then add
v to F5, a contradiction. This would imply that y1 P F3, since otherwise we
can change x2 to F3 and then add v to F5, a contradiction. Therefore, we
can change y to F5, x1 to F3 and then add v to F5.

– If dpy1q “ 2, then dpx2q ě 7 by Lemma 6.1. We deduce that x2 P F3, since
otherwise we can change v2 to F3 and then add v to F5, a contradiction. If
y1 P F5, then change y to F5, x1 to F3, and finally add v to F5. Otherwise,
we may first change y1 to F5 and then go back to the former case.

Lemma 6.17. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu2q “ dpu4q “ 2, dpv1q “ 5 and dpv2q “ 8. Then we have:
(1) If n4`pv1q “ 1, then n4`pv2q ě 2.
(2) Suppose n4`pv1q “ 2 and n4`pv2q “ 1. Then

(2.1) n3pv2q ě 2;
(2.2) Let fu2v2 “ ru1u2v2x1ys be a bad 5-face.
(2.2.1) If dpu1q “ 5, then n4`pu1q ě 3;
(2.2.2) If dpyq “ 5 and the face adjacent to fu2v2 by common edges yx1 and x1v2

is bad, then n4`pyq ě 3.

Proof. Let NGpv1q “ tv, u1, u4, w1, w2u and NGpv2q “ tv, u2, u3, x1, . . . , x5u. Then
dpu1q ě 5 and dpu3q ě 7 by Lemma 6.1. By the minimality of G, G ´ tvu admits
an pF3, F5q-partition. By Lemma 6.3, v1 is F3-saturated and v2 is F5-saturated. If
u4 P F5, then change v1 to F5 and add v to F3. So u4 P F3. If u3 P F3, then change u4
to F5 and then add v to F3. Next, assume that u3 P F5. If u2 P F3, then we change v2
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to F3, change u2 to F5 if u1 P F3, and then add v to F5. Thus, u2 P F5. Moreover, one
may further deduce that u1 P F3.

(1) Suppose to the contrary that n4`pv2q ď 1. That is, all x1, . . . , x5 are 3´-vertices.
Since n4`pv1q “ 1, we know that dpwiq ď 3 for both i P t1, 2u. Thus, we can first change
v1 to F5, and then add v to F3 successfully, a contradiction.

(2) Since n4`pv1q “ 2 and n4`pv2q “ 1, let dpw1q ě 4 and dpxiq ď 3 for all
i P t1, . . . , 5u. By a similar way, it is not difficult to obtain that u2 P F5 and u1 P F3.

(2.1) Suppose otherwise that n3pv2q ď 1. W.l.o.g., assume that dpxiq “ 2 for all
i P t1, 2, 3, 4u. If v2 cannot be successfully changed to F3, it must be the case that two
vertices among x1, . . . , x5 are in F3, let x1, xi P F3, where i P t2, 3, 4, 5u, so that the
unique neighbour of x1, denoted by x11, belongs to F3. In this case, we only need to
further change x1 to F5, v2 to F3, and finally add v to F5, a contradiction.

(2.2) Since dpx1q ď 3, by Lemma 6.1, we affirm that dpx1q “ 2 and dpyq ě 5.
Similarly, we deduce that x1 P F5 and y P F3.

(2.2.1) Suppose otherwise that n4`pu1q “ 2. Then the remaining two neighbours of
u1 not on f , say y1, y2, are of degree at most 3. Notice that exactly one of y1, y2 belongs
to F5 by Lemma 6.3. Thus, we can change u1 to F5 and then add v to F3.

(2.2.2) Suppose to the contrary that n4`pyq ď 2. Let f 1 “ ryx1v2x2zs be the bad
5-face adjacent to fu2v2 . By Lemma 6.1, dpx2q “ 2 and dpzq ě 5. So the other two
neighbours of y different from x1, u1, z, denoted by t1, t2, are 3´-vertices. Similarly,
x2 P F5 and z P F3. Moreover, y is F3-saturated by Lemma 6.3. This ensures us that
one of t1, t2 belongs to F5. So we can obtain an pF3, F5q-partition of G by changing y to
F5, x1 to F3 and finally adding v to F5, a contradiction.

Lemma 6.18. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu2q “ dpu4q “ 2, dpv1q “ 5 and dpv2q “ 9. If n4`pviq “ 1 for both
i P t1, 2u, then n3pv2q ě 2.

Proof. LetNGpv1q “ tv, u1, u4, w1, w2u andNGpv2q “ tv, u2, u3, x1, . . . , x6u. By Lemma 6.1,
dpu1q ě 5 and dpu3q ě 7. Since n4`pv1q “ n4`pv2q “ 1, we see that dpwiq ď 3 for
i P t1, 2u and dpxjq ď 3 for j P t1, . . . , 6u. Let G1 “ G ´ tvu. Then G1 admits an
pF3, F5q-partition. Again, by Lemma 6.3, we assert that v1 is F3-saturated and v2 is
F5-saturated. Similarly, by an analogous discussion as above lemma, we derive that
u4 P F3 and u3 P F5.

Suppose to the contrary that n3pv2q ď 1. W.l.o.g., assume that x1, . . . , x5 are 2-
vertices and x6 is a 3´-vertex. Then u1 P F5 since otherwise we can change v1 to F5
and then add v to F3. If u2 P F5, then we can change it to F3 and then add v to F5. So
u2 P F3. Because v2 is an F5-saturated vertex, there exist exactly four vertices among
x1, . . . , x6 belonging to F5, and therefore the remaining two vertices of x1, . . . , x6 are in
F3. W.l.o.g., assume that x1, xi P F3 such that i P t2, . . . , 6u. One can change v2 to F3.
If the resultant partition is not our wanted, then the unique neighbour of x1 different
from v2 must be in F3, and hence we only need to change x1 to F5 and then add v to
F5 successfully .
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Lemma 6.19. Suppose f “ rvv1u1u2v2s and g “ rv1vv2u3u4s are adjacent bad 5-faces
such that dpvq “ dpu2q “ dpu4q “ 2, dpv1q “ 6 and n4`pviq “ 1 for each i P t1, 2u. Then
(1) dpv2q ě 8;
(2) If dpv2q “ 8, dpu1q “ 5 and n4`pu1q “ 2, then fu2v2 cannot be a bad 5-face.

Proof. Let NGpv1q “ tv, u1, u4, w1, w2, w3u and NGpv2q “ tv, u2, u3, x1, . . . , xku. Let
G1 “ G ´ tvu. Then G1 admits an pF3, F5q-partition due to the minimality of G. By
Lemma 6.1, dpu1q ě 5 and dpu3q ě 7. Since n4`pv1q “ n4`pv2q “ 1, we see that dpwiq ď 3
for all i P t1, 2, 3u and dpxjq ď 3 for all j P t1, . . . , ku. Moreover, by Lemma 6.3, v1 is
F3-saturated and v2 is F5-saturated.

(1) By Lemma 6.1, suppose to the contrary that dpv2q “ 7. That is, k “ 4. If u3 P F5,
then exactly one of u2, x1, . . . , x4 belongs to F3, which enables us to change v2 to F3 and
then add v to F5 successfully. Now assume that u3 P F3. This means that u2, x1, . . . , x4
are all in F5. If u1 P F5, then we may change u2 to F3 and then add v to F5. Otherwise,
suppose u1 P F3. If u4 P F3, then change u4 to F5 and then add v to F3. Or else, assume
u4 P F5. It is easy to obtain an pF3, F5q-partition by changing v1 to F5 and adding v to
F3, a contradiction.

(2) Suppose to the contrary that fu2v2 “ ru1u2v2x1ys is a bad 5-face. By Lemma 6.1,
dpx1q “ 2 and dpyq ě 5. Let NGpu1q “ tv1, u2, y, y1, y2u. Then dpy1q ď 3 and dpy2q ď 3
due to the assumption that n4`pu1q “ 2. If u2 P F3, then at most one of x1, . . . , x5
belongs to F3, and thus we can change v2 to F3, u2 to F5 if u1 P F3, and finally add v
to F5. So u2 P F5. This ensures us that u1 P F3 since otherwise one may change u2 to
F3 and then go back to the former case. Moreover, u1 is F3-saturated. By a similar way,
we deduce that x1 P F5 and y P F3. This implies that exactly one of y1, y2 is in F5, and
therefore one can firstly change u1 to F5, and then add v to F3.

6.3 Discharging procedure
In what follows, we will apply a discharging procedure to derive a contradiction. An initial
charge ω on V pGq Y F pGq are defined as: ωpxq “ dpxq ´ 4 for every x P V pGq Y F pGq.
By the relation

ř

vPV pGq dpvq “ 2|EpGq| and Euler’s formula, we see that the total sum
of charge of the vertices and faces satisfies the following

ÿ

xPV pGqYF pGq

ωpxq “
ÿ

xPV pGqYF pGq

pdpxq ´ 4q “ ´8.

Note that any discharging procedure preserves the total sum of charges on G. So if
we can define appropriate discharging rules to change the initial charge ω to the final
charge ω˚ on V pGq Y F pGq such that

ř

xPV pGqYF pGq

ω˚pxq ě 0, then we have obtained a

contradiction.
For x P V pGq YF pGq, we use τpxÑ yq to denote the amount of charges transferring

from x to y. Suppose that v is a heavy 3-vertex adjacent to v1, v2, and v3 such that
dpv1q, dpv2q ě 5 and v3 is a 4´-vertex. Let fi be the face incident to v by vvi, vvi`1 as
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boundary edges, where indices are taken modulo 3. If dpf2q “ 5, then we call v a special
3-vertex of f2. We usually use n3spf2q to denote the number of special 3-vertices of f2.

Below are the needed discharging rules:
(R0) Every heavy 3-vertex v sends 1

6 to each light 3-neighbour u if one of the faces
incident to uv is a 6`-face.
(R1) Let v be a 5-vertex in G.

(R1.1) If n4`pvq ě 1, then v sends 1
n3´ pvq

to each of 2-neighbour and light
3-neighbour;

(R1.2) Otherwise, v sends 1
5 to each 3´-neighbour.

(R2) Let v be a 69-vertex.
(R2.1) If n4`pvq ě 1, then
(R2.1a) when v is a 67-vertex, v sends dpvq´4

n3´ pvq
to each 3´-neighbour;

(R2.1b) when v is an 89-vertex, v sends 1
2 to each 3-neighbour and then

distributes its excess charge of dpvq ´ 4´ 1
2n3pvq uniformly among its 2-neighbours.

(R2.2) If n4`pvq “ 0, then v sends 1
6 to each heavy 3-neighbour and then

distributes its excess charges dpvq ´ 4´ 1
6n3hpvq uniformly among its 2-neighbours and

light 3-neighbours.
(R3) Every 10`-vertex sends dpvq´4

n3´ pvq
to each 3´-neighbour.

(R4) Let f be a 5-face.
(R4.1) If f is bad, then f sends 1

2 to each incident 2-vertex;
(R4.2) If f is weak, then f sends 2

3 to each incident 2-vertex and 1
3n3pfq

to each
incident 3-vertex;

(R4.3) If f is good, then f sends 1
6 to each special 3-vertex and to each incident 3-

vertex that has at least one 7`-neighbour. It then distributes its excess charge uniformly
among other incident 3-vertices.
(R5) Every 6`-face f sends 2

3 to each incident 2-vertex and 1
3 to each incident 3-vertex.

After carrying out (R0)-(R5), we denote by γpvq the excess charge of a 2-vertex v.
Call a 2-vertex v poor if γpvq ă 0.

(R6) Let v be a 2-vertex incident to f1 and f2 with γpvq ą 0.
(R6.1) If f1 and f2 are both incident to poor 2-vertices, then v gives γpvq

2 to each fi
and then fi distributes γpvq

2 uniformly among incident poor 2-vertices, where i P t1, 2u;
(R6.2) If exactly one of f1 and f2 is incident to poor 2-vertices, say f1, then v gives

γpvq to f1 and then f1 distributes γpvq uniformly among incident poor 2-vertices.

Let f P F pGq. First, we show that ω˚pfq ě 0. Since gpGq ě 5, we see that dpfq ě 5.
If f is a 6`-face, then n3pfq ď dpfq ´ 2n2pfq by Lemma 6.1. So by (R5) we have
that ω˚pfq ě dpfq ´ 4 ´ 2

3n2pfq ´
1
3n3pfq ě dpfq ´ 4 ´ 2

3n2pfq ´
1
3pdpfq ´ 2n2pfqq “

2
3dpfq ´ 4 ě 0. Now suppose that dpfq “ 5. Then ωpfq “ 1. If f is bad, namely
n2pfq “ 2, then we obtain that ω˚pfq ě 1 ´ 1

2 ˆ 2 “ 0 by (R4.1). If f is weak, then
n2pfq “ 1, and thus ω˚pfq ě 1 ´ 2

3 ´
1

3n3pfq
ˆ n3pfq “ 0 by (R4.2). If f is good,

let n3˚pfq denote the total number of the incident special 3-vertices and the incident
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3-vertices that are adjacent to at least one 7`-vertex. Then, by (R4.3), we conclude that
ω˚pfq ě 1´ 1

6n3pfq ě 1´ 1
6 ˆ 5 ą 0.

Next, let v P V pGq. We remind that G has minimum degree at least 2. If dpvq ě 10,
then ω˚pvq ě dpvq ´ 4´ dpvq´4

n3´ pvq
ˆ n3´pvq “ 0 by (R3). Now suppose that 6 ď dpvq ď 9.

If n4`pvq ě 1, then either ω˚pvq ě dpvq´ 4´ dpvq´4
n3´ pvq

ˆn3´pvq “ 0 by (R2.1a) when v is a

67-vertex, or ω˚pvq ě dpvq ´ 4´ 1
2n3pvq ´

dpvq´4´ 1
2n3pvq

n2pvq
ˆ n2pvq “ 0 by (R2.1b) when v

is an 89-vertex. Otherwise, assume that n4`pvq “ 0. By (R2.2), it is easy to deduce that
ω˚pvq ě dpvq´4´ 1

6n3hpvq´
dpvq´4´ 1

6n3h pvq

n2pvq`n3l pvq
ˆpn2pvq`n3lpvqq “ 0. Noting that no 4-vertex

participates in discharging argument, so ω˚pvq “ ωpvq “ dpvq´4 “ 0 for each 4-vertex v.
If dpvq “ 5, then ωpvq “ 1. One may easily obtain that ω˚pvq ě 1´ 1

n3´ pvq
ˆ n3´pvq “ 0

by (R1.1) if n4`pvq ě 1 and ω˚pvq ě 1´ 5ˆ 1
5 “ 0 by (R1.2) otherwise.

What remains is to discuss the cases that dpvq “ 3 and dpvq “ 2. From the discharging
rules we have the following two facts:

Fact 6.1. Every 5`-vertex sends a charge of at least 1
6 to each heavy 3-neighbour by

(R1.2), (R2) and (R3).

Fact 6.2. Each 7`-vertex sends a charge of at least 1
2 to each light 3-neighbour by (R2),

(R3) and Lemma 6.7.

Claim 6.1. Each 3-vertex v P V pGq has a nonnegative final charge.

Proof. Clearly, ωpvq “ ´1. Let NGpvq “ tv1, v2, v3u and fi denote the face incident to
v by vvi, vvi`1 as boundary edges, where indices are taken modulo 3. By Lemma 6.2,
none of f1, f2, f3 can be a bad face. If v is heavy, w.l.o.g., assume that v1 and v2 are
5`-vertices. By Fact 6.1, τpvi Ñ vq ě 1

6 for each i P t1, 2u. Since gpGq ě 5, we see
that dpfiq ě 5 and thus τpfi Ñ vq ě 1

6 for each i P t1, 2, 3u by (R4) and (R5). So if
dpv3q ě 5, then we have that ω˚pvq ě ´1` 1

6 ˆ 6 “ 0. Otherwise, assume dpv3q ď 4. If
dpf1q ě 6, then, by (R5), dpf1 Ñ vq ě 1

3 . If dpf1q “ 5, then n3pf1q ď 3 basing on the
fact that v1 and v2 are both 5`-vertices, and thus by (R4.2) and (R4.3), we calculate that
dpf1 Ñ vq ě 1

3 . These two facts ensures us that v always gets a charge of at least 1
3 from

f1. If either f2 or f3 is a 6`-face, say f2, then τpf2 Ñ vq ě 1
3 by (R5), and, therefore,

ω˚pvq ě ´1` 1
3 `

1
3 ` 3ˆ 1

6 ´
1
6 “ 0 by (R0). Otherwise, assume that dpf2q “ dpf3q “ 5.

By definition, v is a special 3-vertex of f2 and f3, and hence ω˚pvq ě ´1` 1
3 ` 4ˆ 1

6 “ 0.
Now suppose that v is a light 3-vertex. By Lemma 6.5, we may, w.l.o.g., assume that

dpv1q ě 5 and both v2 and v3 are 4´-vertices. By Lemma 6.2, v cannot be incident to
any bad 5-faces. It follows from (R4) and (R5) that v gets a charge of at least 1

6 from
each incident face. The following discussion is split into three cases depending on the
degree of v1.

Case 1. dpv1q ě 7. Then, by Fact 6.2, we have that τpv1 Ñ vq ě 1
2 , and, therefore,

ω˚pvq ě ´1` 1
2 ` 3ˆ 1

6 “ 0.
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Case 2. dpv1q “ 6. If n4`pv1q ě 1, then τpv1 Ñ vq ě 2
5 by (R2.1a). Otherwise, we know

that n3hpv1q ě 2 by Lemma 6.7, and thus τpv1 Ñ vq ě
2´ 1

6ˆ2
4 “ 5

12 by (R2.2).
So if v is incident to at least one 6`-face, then it sends 1

3 to v by (R5), and
here each of the other two faces incident to v still sends a charge of at least
1
6 to v. It follows that ω˚pvq ě ´1 ` 2

5 `
1
3 ` 2 ˆ 1

6 “
1
15 . Now suppose that

dpf1q “ dpf2q “ dpf3q “ 5. Denote by f1 “ rvv1u1u2v2s, f2 “ rvv2u3u4v3s and
f3 “ rvv3u5u6v1s. Note that f2 is good by Lemma 6.1.

• Fist assume that at least one of f1 and f3 is good. By symmetry, let f1 be
such a good 5-face. If dpv2q “ 3, then at least one of u2, u3 is a 5`-vertex by
Lemma 6.5, implying that τpf1 Ñ vq`τpf2 Ñ vq ě mint1

3`
1
5 ,

1
4`

1
4u “

1
2

by (R4.3). At this moment, τpf3 Ñ vq ě 1
3ˆ2 “

1
6 by (R4.2) if f3 is weak,

or τpf3 Ñ vq ě 1
4 by (R4.3) if f3 is good. Thus, ω˚pvq ě ´1`2

5`
1
2`

1
6 “

1
15 .

Now suppose that dpv2q “ 4. It is easy to derive that τpf1 Ñ vq ě 1
2 ,

τpf2 Ñ vq ě 1
4 by (R4.3), and hence ω˚pvq ě ´1` 2

5 `
1
2 `

1
4 `

1
6 “

19
60 .

• Now assume that both f1 and f3 are weak. Then dpu1q “ dpu6q “ 2 and
thus u2, u5 are both 7`-vertices by Lemma 6.1. If at least one of v2 and v3 is
4-vertex, say v2, then τpf1 Ñ vq ě 1

3 by (R4.2), τpf2 Ñ vq ě 1
4 by (R4.3),

and τpf3 Ñ vq ě 1
6 by (R4.2), which implies that ω˚pvq ě ´1` 2

5`
1
3`

1
4`

1
6 “

3
20 . Otherwise, suppose that dpv2q “ dpv3q “ 3. By Lemma 6.11, we

affirm that at least one of u3, u4 is a 5`-vertex. So τpf2 Ñ vq ě
1´ 1

6ˆ2
2 “ 1

3
by (R4.3), which implies that ω˚pvq ě ´1` 2

5 `
1
3 ` 2ˆ 1

6 “
1
15 .

Case 3. dpv1q “ 5. By Lemma 6.6, v1 is adjacent to at least one 7`-vertex. So
τpv1 Ñ vq ě 1

4 by (R1.1). If v is incident to at least two 6`-faces, then
ω˚pvq ě ´1` 2ˆ 1

3 `
1
4 `

1
6 “

1
12 by (R4) and (R5). Next, assume that v is

incident to exactly one 6`-face. By symmetry, we have two cases.

• dpf1q ě 6. Then τpf1 Ñ vq ě 1
3 by (R5). Let f2 “ rvv2u3u4v3s and f3 “

rvv3u5u6v1s. Recall that f2 is good. So τpf2 Ñ vq ě 1
5 by (R4.3). If f3 is

good, then τpf3 Ñ vq ě 1
4 by (R4.3), and thus ω˚pvq ě ´1` 1

4`
1
3`

1
5`

1
4 “

1
30 . Otherwise, assume that f3 is weak. Then by Lemma 6.1, dpu6q “ 2 and
dpu5q ě 7. If dpv3q “ 4, then τpf3 Ñ vq “ 1

3 by (R4.2) and τpf2 Ñ vq ě 1
4

by (R4.3). Therefore, ω˚pvq ě ´1` 1
4 `

1
3 `

1
4 `

1
3 “

1
6 . Otherwise, assume

that dpv3q “ 3. By Lemma 6.8, v3 must be a heavy 3-vertex, meaning
that dpu4q ě 5. So τpf3 Ñ vq ě 1

6 by (R4.2), τpf2 Ñ vq ě 1
4 by (R4.3),

and thus ω˚pvq ě ´1` 1
4 `

1
3 `

1
4 `

1
6 “ 0.

• dpf2q ě 6. Again τpf2 Ñ vq ě 1
3 by (R5). Let f1 “ rvv1u1u2v2s and

f3 “ rvv3u5u6v1s. If at least one of f1 and f3 is good, say f1, then
τpf1 Ñ vq ě 1

4 by (R4.3), and τpf3 Ñ vq ě 1
6 by (R4.2), thus ω˚pvq ě

´1 ` 1
4 `

1
4 `

1
3 `

1
6 “ 0. Next, suppose that f1 and f3 are both weak.

Similarly, it is easy to deduce that dpu1q “ dpu6q “ 2 and thus u2, u5 are
both 7`-vertices by Lemma 6.1. If dpviq “ 4 for some i P t2, 3u, say v2,
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then by (R4.2), τpf1 Ñ vq ě 1
3 and τpf3 Ñ vq ě 1

6 , and thus ω˚pvq ě
´1` 1

4 `
1
3 `

1
3 `

1
6 “

1
12 . Otherwise, suppose that dpv2q “ dpv3q “ 3. By

Lemma 6.8, both v2 and v3 are heavy, and hence τpv2 Ñ vq “ τpv3 Ñ
vq “ 1

6 by (R0), implying that ω˚pvq ě ´1` 1
4 `

1
6 `

1
3 `

1
6 `

1
6 ˆ 2 “ 1

4 .

Now, assume that dpf1q “ dpf2q “ dpf3q “ 5. Let f1 “ rvv1u1u2v2s, f2 “
rvv2u3u4v3s, f3 “ rvv3u5u6v1s, and let w1, w2 denote the other two neighbours
of v1 distinct to u1, u6 and v. Since gpGq ě 5, neither w1 nor w2 can be incident
to f1, f2 or f3. Noting that n4`pv1q ě 1, we have to discuss following three
subcases.

• n4`pv1q ě 3. Then τpv1 Ñ vq ě 1
2 by (R1.1) and τpfi Ñ vq ě 1

6 for each
i P t1, 2, 3u by (R4.2) and (R4.3). Thus, ω˚pvq ě ´1` 1

2 ` 3ˆ 1
6 “ 0.

• n4`pv1q “ 2. Then τpv1 Ñ vq ě 1
3 by (R1.1). If dpuiq ě 4 for some fixed

i P t1, 6u, say dpu1q ě 4, then f1 is good due to dpu2q ‰ 2 by Lemma 6.1,
and thus τpf1 Ñ vq ě 1

3 by (R4.3), τpf2 Ñ vq ě 1
5 by (R4.3) since f2 is

good, implying that ω˚pvq ě ´1` 1
3 `

1
3 `

1
5 `

1
6 “

1
30 . Now suppose that

both u1 and u6 are 3´-vertices. Then dpwiq ě 4 for each i P t1, 2u. If both
f1 and f3 are good, then ω˚pvq ě ´1` 1

3 `
1
4 `

1
5 `

1
4 “

1
30 . Otherwise,

assume at least one of f1 and f3 is weak, say f1. Then dpu1q “ 2, meaning
that dpu2q ě 7 by Lemma 6.1.
– If dpv2q “ 4, then τpf1 Ñ vq ě 1

3 , τpf2 Ñ vq ě 1
4 , τpf3 Ñ vq ě 1

6 by
(R4.2) and (R4.3), and hence ω˚pvq ě ´1` 1

3 `
1
3 `

1
4 `

1
6 “

1
12 .

– If dpv3q “ 4, then τpf1 Ñ vq ě 1
6 , τpf2 Ñ vq ě 1

4 , τpf3 Ñ vq ě 1
3 by

(R4.2) and (R4.3), and thus ω˚pvq ě ´1` 1
3 `

1
6 `

1
4 `

1
3 “

1
12 .

– Suppose that dpv2q “ dpv3q “ 3. By Lemma 6.8, we see that v2
cannot be light. Namely, dpu3q ě 5. Since dpu5q ‰ 2, we know
that dpu6q “ 2 if f3 is weak, and thus dpu5q ě 7 by Lemma 6.1.
Again, by Lemma 6.8, v3 is heavy. That is, dpu4q ě 5, implying
that τpf2 Ñ vq “ 1

3 by (R4.3) and τpfi Ñ vq “ 1
6 by (R4.2) for

both i P t1, 2u. Thus, ω˚pvq ě ´1 ` 1
3 `

1
6 `

1
3 `

1
6 “ 0. Otherwise,

assume f3 is good. Here, f3 sends at least 1
4 to v by (R4.3) and hence

ω˚pvq ě ´1` 1
3 `

1
6 `

1
4 `

1
4 “ 0.

• n4`pv1q “ 1. Then τpv1 Ñ vq ě 1
4 by (R1.1). By symmetry, we have

three possibilities below:
– f1 and f3 are both good. Lemma 6.5 ensures that u2, v2, u3, u4, v3, u5

cannot be all 3-vertices at the same time. That is, one of them must be
a 4`-vertex. If dpu2q ě 4, then τpf1 Ñ vq` τpf2 Ñ vq` τpf3 Ñ vq ě
1
3 `

1
5 `

1
4 “

47
60 . If dpv2q “ 4, then τpf1 Ñ vq ` τpf2 Ñ vq ` τpf3 Ñ

vq ě 1
3 `

1
4 `

1
4 “ 5

6 . If dpu3q ě 4, then τpf1 Ñ vq ` τpf2 Ñ
vq ` τpf3 Ñ vq ě 1

4 `
1
4 `

1
4 “

3
4 . Thus, in every case, one deduce

that ω˚pvq ě ´1` 1
4 `

3
4 “ 0.
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– f1 is weak and f3 is good. By Lemma 6.1, dpu1q “ 2 and dpu2q ě 7.
If dpv2q “ 4, then ω˚pvq ě ´1 ` 1

4 `
1
3 `

1
4 `

1
4 “

1
12 . If dpv3q “ 4,

then ω˚pvq ě ´1 ` 1
4 `

1
6 `

1
4 `

1
3 “ 0. Otherwise, assume that

dpv2q “ dpv3q “ 3. By Lemma 6.8, we see that dpu3q ě 5. If
dpu4q ě 4, then τpf2 Ñ vq ě `τpf3 Ñ vq ě

1´ 1
6

2 ` 1
4 “

2
3 by (R4.2)

and (R4.3). Or else, we affirm that dpu5q ě 5 by Lemma 6.5, and
thus τpf2 Ñ vq ě `τpf3 Ñ vq ě

1´ 1
6

3 ` 1
3 “

11
18 by (R4.2) and (R4.3).

Consequently, ω˚pvq ě ´1` 1
4 `

1
6 `

11
18 “

1
36 .

– f1 and f3 are both weak. By Lemma 6.1, dpu1q “ dpu6q “ 2 and
dpuiq ě 7 for each i “ 2, 5. If dpv2q “ 4, then by (R4.2) and (R4.3),
ω˚pvq ě ´1 ` 1

4 `
1
3 `

1
4 `

1
6 “ 0. Otherwise, let dpv3q “ dpv4q “ 3.

Again, Lemma 6.8 guarantees us that dpu3q ě 5 and dpu4q ě 5.
By (R4.2) and (R4.3), τpf2 Ñ vq ě 1 ´ 1

6 ˆ 2 “ 2
3 , and therefore

ω˚pvq ě ´1` 1
4 `

1
6 `

2
3 `

1
6 “

1
4 .

Before stating the next claim, using (R1)-(R3) and Lemma 6.6, we would like to
present the following fact that concerns the charges given by a 5`-vertex to each of its
2-neighbours.

Fact 6.3. Let v be a k-vertex with a 2-neighbour u. We have the following:
(1) τpv Ñ uq ě 1

4 if k “ 5;
(2) τpv Ñ uq ě 2

5 if k “ 6;
(3) τpv Ñ uq ě 1

2 if k P t7, 8u;
(4) τpv Ñ uq ě 3

5 if k ě 9.

Proof. (1) By Lemma 6.6, we have that n4`pvq ě 1, and hence τpv Ñ uq ě 1
4 by (R1.1).

(2) We need to discuss two cases based on the value of n4`pvq. If n4`pvq ě 1, then
by (R2.1a), we have that τpv Ñ uq ě 6´4

5 “ 2
5 . Otherwise, assume that n4`pvq “ 0.

By Lemma 6.7, one may see that n3hpvq ě 2. Further by (R2.2), we obtain that
τpv Ñ uq ě

6´4´2ˆ 1
6

4 “ 5
12 ą

2
5 .

(3) First assume that n4`pvq ě 1. If k “ 7, then by (R2.1a), it is easy to deduce that
τpv Ñ uq ě 7´4

6 “ 1
2 . If k “ 8, then by (R2.1b), we have that τpv Ñ uq ě 8´4

7 “ 4
7 ą

1
2 .

Now assume that n4`pvq “ 0. By Lemma 6.7, n3hpvq ě 2. Thus, by applying (R2.2),
τpv Ñ uq ě

7´4´2ˆ 1
6

5 “ 8
15 ą

1
2 when k “ 7, and τpv Ñ uq ě

8´4´2ˆ 1
6

6 “ 11
18 ą

1
2 when

k “ 8.

(4) First suppose that k “ 9. If n4`pvq ě 1, then by (R2.1b), we can deduce
that τpv Ñ uq ě 9´4

8 “ 5
8 ą

3
5 . Otherwise, assume that n4`pvq “ 0. By (R2.2),

τpv Ñ uq
9´4´2ˆ 1

6
7 “ 2

3 ą
3
5 . Now suppose that k ě 10. By (R3), we may conclude that

τpv Ñ uq ě 10´4
10 “ 3

5 .

Recall that give a face f and an edge of f , fe denotes the face that is adjacent to f
by the common edge e.
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Claim 6.2. Each 2-vertex v has nonnegative final charge.

Proof. Let v1, v2 denote the neighbours of v. Clearly, ωpvq “ ´2. By Lemma 6.1,
w.l.o.g., suppose that dpv1q ě 5 and dpv2q ě 7. By Fact 6.3, we see that τpv1 Ñ vq ě 1

4
and τpv2 Ñ vq ě 1

2 . If v is not incident to any bad 5-face, then each incident face sends a
charge of at least 2

3 to v by (R4.2) and (R5), implying that ω˚pvq ě ´2` 1
4`

1
2`2ˆ 2

3 “
1
12 .

Next, suppose first that v is incident to exactly one bad 5-face. Denote by f “
rvv2v3v4v1s. Note that v gets a total charge of at least 1

2 `
1
2 `

2
3 “

5
3 from v2 and its

incident faces by (R4) and (R5). It means that in next discussion, we only need to show
that τpv1 Ñ vq ě 1

3 , that would imply ω˚pvq ě ´2` 5
3 `

1
3 “ 0. If dpv1q ě 6, then we are

done since τpv1 Ñ vq ě 2
5 ą

1
3 by Fact 6.3 (2)-(4). Now let dpv1q “ 5. By Lemma 6.6,

n4`pv1q ě 1. By (R1.1), we may further assume that n4`pv1q “ 1. Actually, observe that
the unique 4`-neighbour is a 7`-vertex by Lemma 6.6. At this moment, if dpv2q ě 9,
then τpv2 Ñ vq ě 3

5 by Fact 6.3 (4), and hence ω˚pvq ě ´2 ` 1
4 `

3
5 `

1
2 `

2
3 “

1
60 . If

dpv2q “ 7, then by Lemma 6.9, we have n4`pv2q ě 2, meaning that τpv2 Ñ vq ě 3
5

by (R2.1a) and similarly that ω˚pvq ě ´2 ` 1
4 `

3
5 `

1
2 `

2
3 “

1
60 . Now suppose that

dpv2q “ 8. If n4`pv2q ě 2, then we have that τpv2 Ñ vq ě 2
3 by (R.2.1b) and thus

ω˚pvq ě ´2` 1
4 `

2
3 `

1
2 `

2
3 “

1
12 . If n4`pv2q “ 0, then by Lemma 6.7, v2 has at least

two heavy 3-neighbours. So by (R2.2), we have that τpv2 Ñ vq ě
4´ 1

6ˆ2
6 “ 11

18 . Thus,
ω˚pvq ě ´2` 1

4 `
11
18 `

1
2 `

2
3 “

1
36 . In what follows, it suffice to discuss the case that

n4`pv2q “ 1.

• If dpv4q “ 2, then dpv3q ě 7 by Lemma 6.1. Moreover, n3pv2q ě 1 by Lemma 6.10.
So τpv2 Ñ vq ě

4´ 1
2

6 “ 7
12 by (R2.1b), implying that ω˚pvq ě ´2` 1

4`
1
2`

7
12`

2
3 “ 0.

• If dpv3q “ 2, then dpv4q ě 7 due to n7`pv1q “ 1. By (R2.1b), τpv2 Ñ vq ě 4
7 . Now

we look at fv2v3 . By (R4.1), (R4.2) and (R5), τpfv2v3 Ñ vq ě 1
2 if fv2v3 is bad or

τpfv2v3 Ñ vq ě 2
3 otherwise. It follows that ω˚pv3q ě ´2 ` 1

2 `
4
7 `

1
2 `

1
2 “

1
14 .

By (R6), v gets a charge of at least 1
14 ˆ 2 “ 1

28 from v3. Therefore, ω˚pvq ě
´2` 1

4 `
1
2 `

4
7 `

2
3 `

1
28 “

1
42 .

Now suppose that v is incident to two bad 5-faces f “ rvv1u1u2v2s and g “
rv1vv2u3u4s. By (R4.1), τpf Ñ vq “ τpg Ñ vq “ 1

2 . If both v1 and v2 have de-
gree at least 7, then by Fact 6.3 (3)-(4), we have that ω˚pvq ě ´2` 4ˆ 1

2 “ 0. Next, by
Lemma 6.1 we can assume that 5 ď dpv1q ď 6 and dpv2q ě 7. It suffices to handle three
cases by the situation of incident 2-vertices.

Case 1: dpu1q “ dpu4q “ 2.

By Lemma 6.1, u2 and u3 are 7`-vertices. By (R2.1) and (R3), τpv2 Ñ vq ě 3
5 . If

dpv1q “ 6, then τpv1 Ñ vq ě 2
5 by Fact 6.3 (2), and thus ω˚pvq ě ´2` 2

5 `
3
5 `

1
2 `

1
2 “ 0.

Next, suppose that dpv1q “ 5. Then n7`pv1q ě 1 by Lemma 6.6. Let w1, w2 denote the
other two neighbours of v1 and assume that dpw1q ě 7.

• n4`pv2q ě 3. Then τpv2 Ñ vq ě 3
4 by (R2.1) and (R3). Hence, ω˚pvq ě ´2` 1

4 `
3
4 `

1
2 `

1
2 “ 0 by (R1.1).
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• n4`pv2q “ 2. By Lemma 6.12 (1), dpv2q ě 8. If dpv2q “ 8, then by Lemma 6.13 (1),
v2 has at least two 3-neighbours. So τpv2 Ñ vq ě

4´ 1
2ˆ2

8´4 “ 3
4 by (R2.1b). If

dpv2q “ 9, then by Lemma 6.13 (2), v2 has at least one 3-neighbour, and thus
τpv2 Ñ vq ě

5´ 1
2

9´3 “
3
4 by (R2.1b). If dpv2q ě 10, then τpv2 Ñ vq “ dpv2q´4

n3´ pv2q
ě

1 ´ 2
dpv2q´2 ě

3
4 by (R3). Hence, in each case, one may always deduce that

ω˚pvq ě ´2` 1
4 `

3
4 `

1
2 `

1
2 “ 0.

Case 2: dpu2q “ dpu3q “ 2.
By Lemma 6.1, u1 and u4 are both 5`-vertices, and so τpv1 Ñ vq ě 1

3 by (R1.1)
and τpv2 Ñ vq ě 1

2 by Fact 6.3 (3)-(4). If dpv1q “ 6, then τpv1 Ñ vq ě 1
2 by (R2.1a),

meaning that ω˚pvq ě ´2` 4ˆ 1
2 “ 0. Next, suppose that dpv1q “ 5. Let w1, w2 denote

the other two neighbours of v1. If one of w1 and w2 is a 4`-vertex, then τpv1 Ñ vq ě 1
2

by (R1.1) and thus ω˚pvq ě ´2 ` 4 ˆ 1
2 “ 0. Now suppose that both w1 and w2 are

3´-vertices. By Lemma 6.14 (1), at least one of u1 and u4 is of degree at least 8. W.l.o.g.,
assume that dpu1q ě 8. Moreover, by Lemma 6.12 (2), dpv2q ě 8. If n4`pv2q ě 2, then
τpv2 Ñ vq ě 4

8´2 “
2
3 by (R2.1b). So ω˚pvq ě ´2` 1

3 `
2
3 `

1
2 `

1
2 “ 0. Next, consider

the case that n4`pv2q ď 1.

Case 2a: dpv2q “ 8. If n4`pv2q “ 0, then v2 is adjacent to at least two heavy 3-vertices
by Lemma 6.7, and thus τpv2 Ñ vq ě

4´ 1
6ˆ2

8´2 “ 11
18 by (R2.2). If n4`pv2q “ 1,

it is easy to obtain that τpv2 Ñ vq ě 4
7 by (R2.1a). So both above possibilities

guarantee us that τpv2 Ñ vq ě mint11
18 ,

4
7u “

4
7 .

Case 2a(1): If fu2v2 is not bad, then τpfu2v2 Ñ u2q ě
2
3 by (R4.2), (R4.3) and (R5),

and thus ω˚pu2q ě ´2` 1
2 `

4
7 `

1
2 `

2
3 “

5
21 . So τpu2 Ñ vq ě 5

21 by (R6.2),
implying that ω˚pvq ě ´2` 1

3 `
4
7 `

1
2 `

1
2 `

5
21 “

1
7 .

Case 2a(2): Now assume fu2v2 is bad. Namely, fu2v2 is a 5-face incident to exactly
two 2-vertices. Let fu2v2 “ ru1u2v2xys. If dpxq “ 2, then dpyq ě 5 by
Lemma 6.1 and thus n4`pu1q ě 2. So τpu1 Ñ u2q ě

5
8 by (R2.1b) and (R5),

implying that ω˚pu2q ě ´2` 5
8`

4
7`

1
2ˆ2 “ 11

56 . By (R6), τpu2 Ñ vq ě 11
112 .

Therefore, ω˚pvq ě ´2 ` 1
3 `

4
7 `

1
2 ˆ 2 ` 11

112 “
1

336 . Otherwise, assume
that dpyq “ 2. By Lemma 6.1, we assert that dpxq ě 5.
• If dpu1q ě 9, then τpu1 Ñ u2q ě

5
8 by (R2.1b) and (R3), and similarly

we obtain that ω˚pu2q ě ´2 ` 5
8 `

4
7 `

1
2 ˆ 2 “ 11

56 , and, therefore,
ω˚pvq ě ´2` 1

3 `
4
7 `

1
2 ˆ 2` 11

112 “
1

336 by (R6).
• dpu1q “ 8. If dpu4q ď 7, then n4`pu1q ě 2 by Lemma 6.14 (2) and

thus τpu1 Ñ u2q ě
5
8 . By the same calculation as above, we have that

ω˚pvq ě 1
336 . So next suppose that dpu4q ě 8. Now we look at the face

fu3v2 . By a similar discussion as that of Case 2a(1), we may suppose
that fu3v2 is bad. Let fu3v2 “ ru4u3v2zws. As n4`pv2q ď 1, we are sure
that dpzq “ 2, which implies that dpwq ě 5 by Lemma 6.1. Similarly,
τpu4 Ñ u3q ě

5
8 . So ω˚pu3q ě ´2 ` 5

8 `
4
7 `

1
2 ˆ 2 “ 11

56 . By (R6),
τpu3 Ñ vq ě 11

112 . Consequently, ω
˚pvq ě ´2` 1

3`
4
7`

1
2ˆ2` 11

112 “
1

336 .
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Case 2b: dpv2q “ 9. If n4`pv2q “ 0, then by Lemma 6.7, we have that n3hpv2q ě 2, and
so τpv2 Ñ vq ě

5´2ˆ 1
6

9´2 “ 2
3 by (R2.2) and thus ω˚pvq ě ´2` 1

3`
2
3`

1
2ˆ2 “ 0.

Now suppose that n4`pv2q “ 1. By (R2.1b), τpv2 Ñ vq ě 5
8 . One may further

assume that dpu1q ě 8 by Lemma 6.14 (1). As n4`pu1q ě 1, by (R2.1b) and
(R3), we see that τpu1 Ñ u2q ě

4
7 . If fu2v2 is not bad, then τpfu2v2 Ñ u2q ě

2
3 .

Else, τpfu2v2 Ñ u2q ě
1
2 . Thus ω

˚pu2q ě ´2` 4
7 `

5
8 `

1
2 ˆ 2 “ 11

56 . By (R6),
τpu2 Ñ vq ě 11

112 and hence ω˚pvq ě ´2` 1
3 `

5
8 `

1
2 ˆ 2` 11

112 “
19
336 .

Case 2c: dpv2q ě 10. Then τpv2 Ñ vq ě 3
5 by Fact 6.3 (4). One may deduce that

ω˚pu2q ě ´2 ` 4
7 `

3
5 `

1
2 ˆ 2 “ 6

35 , and thus τpu2 Ñ vq ě 3
35 by (R6). We

conclude that ω˚pvq ě ´2` 1
3 `

3
5 `

1
2 ˆ 2` 3

35 “
14
105 .

Case 3: dpu2q “ dpu4q “ 2.

Then dpu1q ě 5 and dpu3q ě 7 by Lemma 6.1. We have two subcases depending on
dpv1q.

Case 3a: dpv1q “ 6. Then τpv1 Ñ vq ě 2
5 by Fact 6.3 (2) and τpv2 Ñ vq ě 1

2 by
Fact 6.3 (3)-(4). If n4`pv1q ě 2 or n4`pv2q ě 2, then either τpv1 Ñ vq ě 1

2
or τpv2 Ñ vq ě 3

5 by (R2.1a), (R2.1b) and (R3). We obtain that ω˚pvq ě
´2 ` 1

2 ˆ 4 “ 0 or ω˚pvq ě ´2 ` 2
5 `

3
5 `

1
2 ˆ 2 “ 0. Next, suppose that

n4`pv1q “ n4`pv2q “ 1. By Lemma 6.19 (1), dpv2q ě 8. If dpv2q ě 9, then
τpv2 Ñ vq ě 3

5 by Fact 6.3 (4), implying that ω˚pvq ě ´2` 2
5 `

3
5 `

1
2 ˆ 2 “ 0.

In what follows, we suppose dpv2q “ 8. Then τpv2 Ñ vq ě 4
7 by (R2.1b).

• First suppose that fu2v2 is not bad. If dpu1q “ 5, then u1 has at least
one 7`-neighbour different from v1 by Lemma 6.6. This means that
τpu1 Ñ u2q ě

1
3 by (R1.1). If dpu1q ě 6, then τpu1 Ñ u2q ě

2
5 by

Fact 6.3 (2)-(4). So in each case, u1 sends at least 1
3 to u2. Thus,

ω˚pu2q ě ´2 ` 1
3 `

4
7 `

1
2 `

2
3 “

1
14 . By (R6.1), τpu2 Ñ vq ě 1

14 .
Therefore, ω˚pvq ě ´2` 2

5 `
4
7 `

1
2 ˆ 2` 1

14 “
3
70 .

• Now suppose that fu2v2 is a bad 5-face. Let fu2v2 “ ru1u2v2xys. As
n4`pv2q “ 1, we affirm that dpxq “ 2, which leads to dpyq ě 5 by
Lemma 6.1. If dpu1q ě 6, then by (R2.1) and (R3), we have that
τpu1 Ñ u2q ě

1
2 . If dpu1q “ 5, then by Lemma 6.19 (2), n4`pu1q ě 3.

So τpu1 Ñ u2q ě
1
2 by (R1.1). In both cases, we always derive that

ω˚pu2q ě ´2` 1
2 `

4
7 `

1
2 ˆ 2 “ 1

14 . By (R6), τpu2 Ñ vq ě 1
28 , implying

that ω˚pvq ě ´2` 2
5 `

4
7 `

1
2 ˆ 2` 1

28 “
1

140 .

Case 3b: dpv1q “ 5. By (R1.1), τpv1 Ñ vq ě 1
4 . By Fact 6.3 (3)-(4), τpv2 Ñ vq ě 1

2 . Let
w1, w2 denote the other two neighbours of v1. If n4`pv1q ě 3 or n4`pv2q ě 3,
then τpv1 Ñ vq ě 1

2 by (R1.1) or τpv2 Ñ vq ě 3
4 by (R2.1b) and (R3). Thus,

ω˚pvq ě ´2` 1
2 ˆ 4 “ 0 or ω˚pvq ě ´2` 1

4 `
3
4 `

1
2 ˆ 2 “ 0. Next, assume

that n4`pv1q ď 2 and n4`pv2q ď 2.
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Case 3b(1): dpv2q “ 7. Let x1, . . . , x4 denote the other four neighbours of v2 different
from u2, u3 and v. By Lemma 6.15, we assert that n4`pv1q “ n4`pv2q “ 2.
Then, τpv1 Ñ vq ě 1

3 by (R1.1) and τpv2 Ñ vq ě 3
5 by (R2.1a).

• Suppose that fu2v2 is not bad. If dpu1q “ 5, then by Lemma 6.6,
n7`pu1q ě 1 and thus n4`pu1q ě 2. By (R1.1), τpu1 Ñ u2q ě

1
3 . If

dpu1q ě 6, then τpu1 Ñ u2q ě
2
5 by Fact 6.3 (2)-(4). So u2 gets a

charge of at least 1
3 from u1. Therefore, ω˚pu2q ě ´2` 1

3`
3
5`

1
2`

2
3 “

1
10 . By (R6), ω˚pvq ě ´2` 1

3 `
3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

• Suppose that fu2v2 is a bad 5-face. Let fu2v2 “ ru1u2v2x1ys.
– dpu1q “ 5. By Lemma 6.16 (1), we are sure that dpyq ‰ 2,

which implies that dpx1q “ 2 and dpyq ě 5 by Lemma 6.1. By
Lemma 6.16 (2.1), n4`pu1q ě 3. By (R1.1), τpu1 Ñ u2q ě

1
2 .

Thus, ω˚pu2q ě ´2 ` 1
2 `

3
5 `

1
2 ˆ 2 “ 1

10 . Next, we show that
x1 is not a poor 2-vertex, which ensures us that u2 sends all of
its extra charge to v by (R6). Let f 1 denote the face adjacent
to fu2v2 by common edges yx1 and x1v2. If f 1 is not bad, then
ω˚px1q ě ´2` 1

4 `
3
5 `

1
2 `

2
3 “

1
60 . Otherwise, assume that f 1 is a

bad 5-face. If dpyq “ 5, then by Lemma 6.16 (2.2), we know that
n4`pyq ě 3 and then τpy Ñ x1q ě

1
2 by (R1.1). If dpyq ě 6, then

τpy Ñ x1q ě
2
5 by Fact 6.3 (2)-(4). So x1 always gets a charge of

at least 2
5 from y, implying that ω˚px1q ě ´2` 2

5 `
3
5 `

1
2 ˆ 2 “ 0.

Therefore, ω˚pvq ě ´2` 1
3 `

3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

– dpu1q “ 6. There are two possible cases below:
∗ dpyq “ 2. Then dpx1q ě 7 by Lemma 6.1. By Lemma 6.16 (1),
we see that n4`pu1q ě 2, meaning that τpu1 Ñ u2q ě

1
2 by

(R2.1a). It follows that ω˚pu2q ě ´2` 1
2 `

3
5 `

1
2 ˆ 2 “ 1

10 . By
Fact 6.3 (3)-(4), y gets a charge of at least 1

2 from x1. Therefore,
ω˚pyq ě ´2` 1

2 ˆ 4 “ 0. This means that u2 sends all its extra
charge of 1

10 to v. Hence, ω˚pvq ě ´2` 1
3 `

3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

∗ dpx1q “ 2. Then dpyq ě 5, implying that n4`pu1q ě 2. If
n4`pu1q ě 3, then τpu1 Ñ u2q ě

2
3 by (R2.1a) and thus

ω˚pu2q ě ´2 ` 2
3 `

3
5 `

1
2 ˆ 2 “ 4

15 . By (R6), τpu2 Ñ vq ě 2
15

and so ω˚pvq ě ´2 ` 1
3 `

3
5 `

1
2 ˆ 2 ` 2

15 “ 1
15 . Now as-

sume n4`pu1q “ 2. Then τpu1 Ñ u2q ě
1
2 by (R2.1a) and so

ω˚pu2q ě ´2` 1
2`

3
5`

1
2ˆ2 “ 1

10 . Similarly, we have to show that
u2 does not need to send any charge to x1. Let f 1 denote the face
adjacent to fu2v2 by common edges yx1 and x1v2. If f 1 is not bad,
then ω˚px1q ě ´2`1

4`
3
5`

1
2`

2
3 “

1
60 . Otherwise, assume that f 1

is a bad 5-face. If dpyq ě 6, then ω˚px1q ě ´2` 2
5`

3
5`

1
2ˆ2 “ 0.

Else, dpyq “ 5. By Lemma 6.16 (2.2), n4`pyq ě 3, and thus
τpy Ñ x1q ě

1
2 , implying that ω˚px1q ě ´2` 1

2`
3
5`

1
2ˆ2 “ 1

10 .
Consequently, u2 sends all its extra charge of 1

10 to v by (R6.2),
and, therefore, ω˚pvq ě ´2` 1

3 `
3
5 `

1
2 ˆ 2` 1

10 “
1
30 .
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– dpu1q ě 7. If dpx1q “ 2, then dpyq ě 5 by Lemma 6.1, and thus
τpu1 Ñ u2q ě

3
5 . So ω

˚pu2q ě ´2` 3
5 ˆ 2` 1

2 ˆ 2 “ 1
5 . By (R6),

τpu2 Ñ vq ě 1
10 . So ω˚pvq ě ´2 ` 1

3 `
3
5 `

1
2 ˆ 2 ` 1

10 “
1
30 .

Otherwise, assume that dpyq “ 2. Then ω˚pu2q ě ´2 ` 1
2 `

3
5 `

1
2 ˆ 2 “ 1

10 . By Lemma 6.16 (1), dpx1q ě 6. If dpx1q ě 7,
then τpx1 Ñ yq ě 1

2 by Fact 6.3 (3)-(4). If dpx1q “ 6, then
n4`px1q ě 2 by Lemma 6.16 (1). So τpx1 Ñ yq ě 1

2 by (R2.1a).
Thus, ω˚pyq ě ´2` 1

2 ˆ 4 “ 0. Hence, by (R6.2), u2 sends 1
10 to

v directly, and, therefore, ω˚pvq ě ´2` 1
3 `

3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

Case 3b(2): dpv2q “ 8. Let x1, . . . , x5 denote the other five neighbours of v2. Recall
that n4`pv1q ď 2 and n4`pv2q ď 2. By symmetry, we have three cases:
• n4`pv1q “ n4`pv2q “ 2. By (R1.1), τpv1 Ñ vq ě 1

3 . By (R2.1a),
τpv2 Ñ vq ě 2

3 . Thus, ω
˚pvq ě ´2` 1

3 `
2
3 `

1
2 ˆ 2 “ 0.

• n4`pv1q “ 2 and n4`pv2q “ 1. Namely, x1, . . . , x5 are all 3´-vertices.
By Lemma 6.17 (2.1), we have n3pv2q ě 2, implying that τpv2 Ñ vq ě
4´ 1

2ˆ2
8´3 “ 3

5 by (R2.1b).
– Assume fu2v2 is not bad. By Lemma 6.6, u1 has a 7`-neighbour

if dpu1q “ 5. So τpu1 Ñ u2q ě
1
3 . Thus, ω˚pu2q ě ´2 ` 1

3 `
3
5 `

1
2 `

2
3 “

1
10 , and so τpu2 Ñ vq ě 1

10 by (R6.2). Hence,
ω˚pvq ě ´2` 1

3 `
3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

– Assume fu2v2 is a bad 5-face. Let fv2u2 “ ru1u2v2x1ys. Then
by Lemma 6.1, dpx1q “ 2 and dpyq ě 5. This ensures us that
n4`pu1q ě 2.
∗ dpu1q “ 5. By Lemma 6.17 (2.2.1), n4`pu1q ě 3, implying
that τpu1 Ñ u2q ě

1
2 by (R1.1). Thus we have that ω˚pu2q ě

´2` 1
2`

3
5`

1
2ˆ2 “ 1

10 . Similarly, we show that x1 is not poor and
thus u2 sends all its extra charge to v. If dpyq ě 6, then τpy Ñ
x1q ě

1
2 by (R2.1a). Thus, ω˚px1q ě ´2` 1

2 `
3
5 `

1
2 ˆ 2 “ 1

10 .
Now assume dpyq “ 5. Let f 1 denote the face adjacent to fu2v2

by common edges yx1 and x1v2. If f 1 is not bad, then it sends a
charge of 2

3 to x1, and, therefore, ω˚px1q ě ´2` 1
4`

3
5`

1
2`

2
3 “

1
60 . Otherwise, assume f 1 is a bad 5-face. By Lemma 6.17 (2.2.2),
we see that n4`pyq ě 3, so τpy Ñ x1q ě

1
2 by (R1.1). Thus we

have that ω˚px1q ě ´2 ` 1
2 `

3
5 `

1
2 ˆ 2 “ 1

10 . Consequently,
ω˚pvq ě ´2` 1

3 `
3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

∗ dpu1q “ 6. If n4`pu1q ě 3, then τpu1 Ñ u2q ě
2
3 by (R2.1a) and

thus ω˚pu2q ě ´2` 2
3`

3
5`

1
2ˆ2 “ 4

15 . By (R6), τpu2 Ñ vq ě 2
15 .

So ω˚pvq ě ´2 ` 1
3 `

3
5 `

1
2 ˆ 2 ` 2

15 “
1
15 . Now suppose

n4`pu1q “ 2. Then τpu1 Ñ u2q ě
1
2 by (R2.1a). Similarly,

if fx1v2 is not bad, then ω˚px1q ě ´2 ` 1
4 `

3
5 `

1
2 `

2
3 “

1
60 .

Else, fx1v2 is bad. If dpyq ě 6, then τpy Ñ x1q ě
2
5 . If

dpyq “ 5, then by Lemma 6.17 (2.2.2), it has at least three
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4`-neighbours. So in each case, τpy Ñ x1q ě
1
2 by (R1.1).

Hence, ω˚px1q ě ´2 ` 1
2 `

3
5 `

1
2 ˆ 2 ` 3

5 “
1
10 . So x1 is not

poor, meaning that ω˚pvq ě ´2` 1
3 `

3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

∗ dpu1q ě 7. By (R2.1a), τpu1 Ñ u2q ě
3
5 . Then ω˚pu2q ě

´2 ` 3
5 `

3
5 `

1
2 ˆ 2 “ 1

5 , and thus τpu2 Ñ vq ě 1
10 by (R6.2).

Hence, ω˚pvq ě ´2` 1
3 `

3
5 `

1
2 ˆ 2` 1

10 “
1
30 .

• n4`pv1q “ 1. Then n4`pv2q ě 2 by Lemma 6.17 (1). Moreover,
dpu1q ě 7 by Lemma 6.6. By (R1.1) and (R2.1a), τpv1 Ñ vq ě 1

4 and
τpv2 Ñ vq ě 2

3 . So ω
˚pu2q ě ´2` 1

2`
2
3`

1
2ˆ2 “ 1

6 . By (R6), v gets at
least 1

12 from u2. We conclude that ω˚pvq ě ´2` 1
4`

2
3`

1
2ˆ2` 1

12 “ 0.
Case 3b(3): dpv2q “ 9. Let NGpv2q “ tu2, u3, v, x1, . . . , x6u.

• n4`pv1q ě 2. Then τpv1 Ñ vq ě 1
3 by (R1.1). If n4`pv2q ě 2, then

τpv2 Ñ vq ě 5
7 by (R2.1b). So ω˚pvq ě ´2` 1

3 `
5
7 `

1
2 ˆ 2 “ 1

21 . In
what follows, assume that n4`pv2q “ 1. Then each xi is a 3´-vertex
for i P t1, . . . , 6u. Moreover, by (R2.1b), τpv2 Ñ vq ě 5

8 .
– If fu2v2 is not bad, then ω˚pu2q ě ´2` 1

4 `
5
8 `

1
2 `

2
3 “

1
24 . Thus,

ω˚pvq ě ´2` 1
3 `

5
8 `

1
2 ˆ 2` 1

24 “ 0 by (R6).
– Suppose that fu2v2 is bad. Let fu2v2 “ ru1u2v2x1ys such that
dpx1q “ 2. By Lemma 6.1, dpyq ě 5. It implies that n4`pu1q ě 2.
∗ n4`pu1q ě 3. Then ω˚pu2q ě ´2 ` 1

2 `
5
8 `

1
2 ˆ 2 “ 1

8 . So
ω˚pvq ě ´2` 1

3 `
5
8 `

1
2 ˆ 2` 1

16 “
1
48 by (R6).

∗ n4`pu1q “ 2. If dpu1q ě 6, then τpu1 Ñ u2q ě
1
2 by (R2.1) and

(R3), and thus ω˚pu2q ě ´2` 1
2 `

5
8 `

1
2 ˆ 2 “ 1

8 . By (R6), it
is easy to calculate that ω˚pvq ě ´2` 1

3 `
5
8 `

1
2 ˆ 2` 1

16 “
1
48 .

Now suppose dpu1q “ 5. By Lemma 6.6, dpyq ě 7. Denote by f 1
the other face adjacent to fu2v2 distinct from f . If f 1 is not bad,
then ω˚px1q ě ´2` 1

2 `
5
8 `

1
2 `

2
3 “

7
24 . Otherwise, assume f 1

is bad. Let f 1 “ ryx1v2x2zs such that dpx2q “ 2, implying that
dpzq ě 5. Then ω˚px1q ě ´2` 3

5`
5
8`

1
2ˆ2 “ 9

40 . So in each case,
τpx1 Ñ u2q ě

9
80 by (R6). Hence, ω˚pu2q ě

1
3`

5
8`

1
2ˆ2` 9

80 “
17
240 . Therefore, ω

˚pvq ě ´2` 1
3 `

5
8 `

1
2 ˆ 2` 17

240 “
7

240 .
• n4`pv1q “ 1. Then dpu1q ě 7 by Lemma 6.6. By (R1.1), τpv1 Ñ vq ě

1
4 .
– Suppose n4`pv2q “ 2. Then τpv2 Ñ vq ě 5

7 by (R2.1b). Since
ω˚pu2q ě ´2 ` 1

2 `
5
7 `

1
2 ˆ 2 “ 3

14 , by (R6), we have that
τpu2 Ñ vq ě 3

28 , and thus ω˚pvq ě ´2` 1
4 `

5
7 `

1
2 ˆ 2` 3

14 “
5
28 .

– Suppose n4`pv2q “ 1. By Lemma 6.18, n3pv2q ě 2, and so
τpv2 Ñ vq ě

5´ 1
2ˆ2

9´3 “ 2
3 by (R2.1b). Note that ω˚pu2q ě ´2 `

1
2 `

2
3 `

1
2 ˆ 2 “ 1

6 . So τpu2 Ñ vq ě 1
12 by (R6), and hence

ω˚pvq ě ´2` 1
4 `

2
3 `

1
2 ˆ 2` 1

12 “ 0.
Case 3b(4): dpv2q ě 10. If n4`pv1q ě 2, then τpv1 Ñ vq ě 1

3 by (R1.1), and thus
ω˚pvq ě ´2 ` 1

3 `
2
3 `

1
2 ˆ 2 “ 0. Otherwise, assume n4`pv1q “ 1. By
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Lemma 6.6, we affirm that u1 is a 7`-vertex. At this moment, ω˚pu2q ě
´2 ` 1

2 `
2
3 `

1
2 ˆ 2 “ 1

6 . So τpu2 Ñ vq ě 1
12 by (R6), and, therefore,

ω˚pvq ě ´2` 1
4 `

2
3 `

1
2 ˆ 2` 1

12 “ 0.

This completes the proof of Theorem 6.1.



Chapter 7

An pF1, F4q-partition of graphs
with low genus and girth at least
6

This chapter is based on the following paper:

[10] M. Chen, A. Raspaud, and W. Yu. An pF1, F4q-partition of graphs with low genus
and girth at least 6. J. Graph Theory, 99(2):186–206, 2022.

In this chapter, we study vertex partitions of graphs under restriction on maximum
average degree. Recall that the maximum average degree of G is defined to be madpGq “
maxt2|EpHq|

|V pHq| : H Ď Gu. By considering sparse graphs, Borodin and Kostochka [5]
obtained that every graph G satisfying madpGq ď 16

5 admits a p∆1,∆4q-partition. It
follows immediately that every graph in PG6 admits a p∆1,∆4q-partition. In this chapter,
we use potential technique and discharging method to improve this result to forests
partition.

For a given graph G and vertex subset S Ď V pGq, we define

ρpS,Gq :“ 8|S| ´ 5|EpGrSsq|. (7.1)

The main result in this chapter is the following.

Theorem 7.1. If a graph G satisfies that

ρpS,Gq ą ´1 for each S Ď V pGq, (7.2)

then G admits an pF1, F4q-partition.

By definition, madpGq ď 16
5 if and only if ρpS,Gq ě 0 for each S Ď V pGq. So we

deduce the following result from Theorem 7.1.

Theorem 7.2. Every graph G with madpGq ď 16
5 admits an pF1, F4q-partition.

86
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The genus of a graph is the minimal integer r such that the graph can be drawn
without crossing edges on a sphere with r handles. Using the general Euler’s formula,
one can prove that for any graph G with genus r and girth at least g, the average degree,
denoted adpGq, satisfies:

adpGq ď
2g
g ´ 2 `

4gpr ´ 1q
pg ´ 2q|V pGq| .

This contributes to obtain the same result for planar graphs (graphs with genus 0) and
toroidal graphs (graphs with genus 1) of girth at least 6. In particular, one may easily
derive Corollary 7.1 from Theorem 7.2, which is a strengthening of a result in [5].

Corollary 7.1. Every graph of genus at most 1 and girth at least 6 admits an pF1, F4q-
partition.

In Section 7.1, we give some basic notations. In Section 7.2, we use the potential
technique to find the forbidden configurations in a minimum counterexample, then apply
the discharging technique to obtain a contradiction in Section 7.3. Finally in Section 7.4,
we give some concluding remarks.

7.1 Preliminaries
A flag of G is a pendant block formed by four vertices of G in which the non-cut vertices
induce a K1,2 and the cut vertex (we will call it the base vertex or a host) is adjacent to
all other vertices, see Figure 7.1 (left). Meanwhile, the non-cut vertices in a flag are said
to be special vertices. By an i-host we mean a vertex v P V pGq which is the base vertex
of precisely i flags. A pendant host is defined to be a 5-host which is adjacent to exactly
one non-special vertex, as shown in Figure 7.1.

x

y
z

i
x

i
y

i
z

x

y

z
x

y
z

x

y

z

Figure 7.1: A base vertex, an i-host and a pendant host.

Obviously, every pendant host has degree 16. A good vertex is a 5`-vertex which is
not a pendant host. Let i P t1, 4u, Fi is one of the two parts of the pF1, F4q-partition.
Sometimes, we call v an Fi-vertex if v belongs to Fi. An Fi-neighbour of v is an Fi-vertex
adjacent to v. Furthermore, we call v Fi-saturated if v is an Fi-vertex and it has exactly i
Fi-neighbours. We shall denote by G˚ the graph obtained from G by deleting all special
vertices.
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Definition 7.1. A graph H is smaller than a graph G if
(i) |V2`pH

˚q| ă |V2`pG
˚q|, or if

(ii) |V2`pH
˚q| “ |V2`pG

˚q| and |V pH˚q| ă |V pG˚q|, or if
(iii) |V2`pH

˚q| “ |V2`pG
˚q|, |V pH˚q| “ |V pG˚q| and |EpH˚q| ă |EpG˚q|, or if

(iv) |V2`pH
˚q| “ |V2`pG

˚q|, |V pH˚q| “ |V pG˚q|, |EpH˚q| “ |EpG˚q|, and |V pHq| ă
|V pGq|.

Let G be a smallest counterexample to Theorem 7.1 in the sense of Definition 7.1.
If G is disconnected, then the union of pF1, F4q-partitions of components of G is just
an pF1, F4q-partition of G. Moreover, if G contains a 1-vertex, say v, then let u be
the unique neighbour of v. Take an pF1, F4q-partition of G ´ v. We may obtain an
pF1, F4q-partition of G by adding v to Fi such that u R Fi. Thus in what follows, we
may assume that G is a connected graph with minimum degree at least 2.

7.2 Structural analysis of a minimum counterexample

Observation 7.1. In an pF1, F4q-partition of a flag, there are at least two F4-vertices.

Claim 7.1. Let v be a host that is incident to at least five flags. If the subgraph induced
by v and all its incident flags has an pF1, F4q-partition, then v belongs to F1.

Proof. Suppose to the contrary that v is in F4. By Observation 7.1, at least one special
vertex of each flag incident to v belongs to F4. Hence, v is adjacent to at least five
F4-vertices, a contradiction.

Claim 7.2. Suppose S Ă V pGq. The following statements hold.

(1) If we add a vertex v P V pGq´S to S such that v is adjacent to at least two vertices
of S, then ρpS Y tvu, Gq ď ρpS,Gq ´ 2;

(2) If we add a flag H to S such that |V pHq X V pSq| “ 1, then ρpS Y V pHq, Gq “
ρpS,Gq ´ 1;

Proof. (1) By definition,

ρpS Y tvu, Gq “ 8|S Y tvu| ´ 5|EpGrS Y tvusq|
ď 8|S| ` 8´ 5p|EpGrSsq| ` 2q
“ ρpS,Gq ´ 2.

(2) By definition,

ρpS Y V pHq, Gq “ 8|S| ` 3ˆ 8´ 5p|EpGrSsq| ` 5q “ ρpS,Gq ´ 1.

This completes the proof of Claim 7.2.

Claim 7.3. G˚ is not a complete graph Ki with 1 ď i ď 2.
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Proof. Suppose to the contrary that G˚ contains some Ki for i P t1, 2u. If i “ 1, we
let K1 “ v. Since G has no 1´-vertex, v is incident to at least one flag in G, denoted
by T1, T2, . . . , Tm. Then G “ Yi“mi“1 Ti due to the fact that G is connected. It is easy to
establish an pF1, F4q-partition for G by adding v to F1 and all special vertices to F4, a
contradiction. Now suppose that i “ 2. Let uv be an edge in G˚ such that u and v are
incident to m and n flags in G, respectively. Similarly, m ě 1 and n ě 1. We can also
produce an pF1, F4q-partition by adding u and v to F1 and all special vertices to F4, a
contradiction.

Claim 7.4. For i ě 6, G does not contain any i-host.

Proof. Suppose to the contrary that v is an i-host for some integer i ě 6. Let H be
obtained from G by deleting the vertices (apart from v) of one incident flag based on
v. By Definition 7.1, H is smaller than G. Take an pF1, F4q-partition of H. Observe
that now v is still incident to at least five flags in H and thus v P F1 by Claim 7.1. So
we may obtain an pF1, F4q-partition of G by adding all deleted special vertices to F4, a
contradiction.
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Figure 7.2: The auxiliary graph B.

Next we have to introduce an auxiliary graph B where the base vertex b is a pendant
host which is adjacent to the other pendant host b1, as shown in Figure 7.2. First, we
shall present Claim 7.5, which is quite useful and very important in the rest of paper.

Claim 7.5. Let S Ă V pGq and ∅ ‰ S ‰ V pGq. Then ρpS,Gq ą 0.

Proof. Suppose to the contrary that there exists a non-empty proper subset S such
that ρpS,Gq ď 0. If GrSs is disconnected, then one of its connected component, say S1,
satisfies that ρpS1, Gq ď 0, and thus we may choose S1 instead of S. For convenience, in
the following discussion, we let H “ GrSs. The following facts 7.1-7.2 are helpful.

Fact 7.1. The minimum degree of H is at least 2.

Proof. Since H is connected, we may assume to the contrary that H contains a 1-vertex
v. Then, ρpS ´ tvu, Gq “ 8|S ´ tvu| ´ 5|EpGrS ´ tvusq| “ ρpS,Gq ´ 3 ă ´1. This
contradicts the assumption that ρpS ´ tvu, Gq ą ´1.

Fact 7.2. Each flag of G is either completely in H or disjoint from H.

Proof. Let T be a flag of G. If |V pT q X S| “ 1, then by Claim 7.2 (2), we have that
ρpS Y V pT q, Gq “ ρpS,Gq ´ 1 ď ´1, a contradiction. If 2 ď |V pT q X S| ď 3, then there
exists a vertex v P V pT q ´ S such that v is adjacent to at least two vertices of H. By
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Claim 7.2 (1), ρpSYtvu, Gq ď ρpS,Gq´ 2 ă ´1, a contradiction. Hence, |V pT qXS| “ 0
or |V pT q X S| “ 4, verifying Fact 7.2.

By Fact 7.2, we confirm that H is smaller than G and it satisfies the condition of
Theorem 7.1 since S Ă V pGq. By the minimality of G, H has an pF1, F4q-partition. We
are going to construct a graph rG by applying following steps.

Step 1: deleting S;

Step 2: adding a copy of B to G;

Step 3: joining v to b P V pBq if v P V pGq ´ S and v is adjacent to an F1-vertex u P S;

Step 4: adding five distinct flags based on v if v P V pGq ´ S and v is adjacent to an
F4-vertex u P S.

Fact 7.3. rG is smaller than G.

Proof. By Fact 7.2, we see that all vertices in GrV pGq ´ Ss˚ also belong to V p rG˚q. It
means that each 2`-vertex in GrV pGq ´ Ss˚ must be a 2`-vertex of V p rG˚q. Notice
that B has exactly two vertices in rG˚. That is, b and b1. Moreover, d

rG˚
pb1q “ 1 and

d
rG˚
pbq ě 1. If there are at least two vertices belonging to S such that they are of degree

at least 2 in G˚, then it is obvious that |V2`p rG˚q| ă |V2`pG
˚q| and thus we are done.

Otherwise, we have two cases to discuss:

• Assume that there is no vertex of S which is a 2`-vertex of G˚. Then H˚ is the
complete graph Ki for some i P t1, 2u. First consider the case that H˚ “ K1.
Denote by u the vertex of H˚. By Fact 7.1, we are sure that u must be incident
to t ě 1 flags in H. It follows from Claim 7.4 that t ď 5. Thus, ρpS,Gq “
8|S|´5|EpGrSsq| “ 8ˆp3t`1q´5ˆ5t “ 8´ t ě 3, which violates the assumption
that ρpS,Gq ď 0. Next consider the case that H˚ “ K2. Let H˚ “ xy with
dH˚pxq “ dH˚pyq “ 1. Then neither x nor y can be adjacent to any vertex in
V pGq ´ S, and thus xy is also a K2 in G˚, contradicting Claim 7.3.

• Assume that there is exactly one vertex, say u P S, such that dG˚puq ě 2. In this
case, we further deduce that d

rG˚
pbq ě 2; otherwise, |V2`p rG˚q| “ |V2`pG

˚q| ´ 1
and thus we are done. Now let u1, u2, . . . , udGpuq denote all neighbours of u in
G˚. Clearly, at most one of them belongs to H; otherwise, we deduce that
|V2`p rG˚q| “ |V2`pG

˚q| and |V p rG˚q| ă |V pG˚q|, and thus rG is smaller than G by
Definition 7.1. Again, we deduce that H˚ “ K2 and let H˚ “ xy. Similarly, by
the above discussion, we may obtain a contradiction.

Fact 7.4. For any subset A Ď V p rGq, we have that ρpA, rGq ą ´1.

Proof. In what follows, let A be the subset with minimum ρpA, rGq satisfying that
ρpA, rGq ď ´1. Let A1 “ AXV pG´Hq, A2 “ AXV pBq and A3 “ A´V pBq. Obviously,
A1 Ď A3. By the minimality of ρpA, rGq, if a flag T of G satisfies |V pT q XA| ě 1, then
by Claim 7.2 (1)-(2), we deduce that V pT q Ď A.
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Next, let x be the number of edges that connect A1 and those F4-vertices in H, and
y be the number of edges that connect A1 and those F1-vertices in H, respectively. We
first derive the following:

ρpA1, Gq “ 8p|A3| ´ 15xq ´ 5p|Ep rGrA3sq| ´ 25xq
“ ρpA3, rGq ` 5x.

On the other hand, we have that

ρpA, rGq “ ρpA2 YA3, rGq

“ 8|A2 YA3| ´ 5|Ep rGrA2 YA3sq|

“ 8|A2| ` 8|A3| ´ 5p|Ep rGrA2sq| ` |Ep rGrA3sq| ` yq

“ ρpA2, rGq ` ρpA3, rGq ´ 5y
“ ρpA2,Bq ` ρpA3, rGq ´ 5y.

Therefore,
ρpA, rGq “ ρpA2,Bq ` ρpA1, Gq ´ 5x´ 5y.

Let W “ S YA1. Then W Ď V pGq. Thus,

ρpW,Gq “ ρpS YA1, Gq

“ 8p|S| ` |A1|q ´ 5|EpGrS YA1sq|
“ 8|S| ` 8|A1| ´ 5p|EpGrSsq| ` |EpGrA1sq ` x` yq
“ ρpS,Gq ` ρpA1, Gq ´ 5x´ 5y
“ ρpS,Gq ` ρpA, rGq ´ ρpA2,Bq.

At this point, one may calculate that ρpA2,Bq ě 0. Therefore, we have that
ρpW,Gq ď ρpA, rGq ď ´1, which violates the assumption of Theorem 7.1.

Up to now, we ensure that rG has an pF1, F4q-partition. By Claim 7.1, b P F1, b1 P F1,
and each vertex of V pGq ´ S which is adjacent to an F4-vertex of S also belongs to F1.
So b is F1-saturated, implying that each vertex of V pGq ´ S that is both adjacent to b
and an F1-vertex of S must be in F4. Therefore, the combination of partitions of H and
rG produces an pF1, F4q-partition of G, a contradiction.

In order to avoid redundancy in proofs of Claims 7.6-7.8, we would like to give the
following observation.

Observation 7.2. Suppose that dG˚pvq ě 2 such that v1, v2 are two of the neighbours
of v in G˚. Let H be the graph obtained from G´ v by adding two flags T1 and T2 based
on v1 and v2, respectively. Then H admits an pF1, F4q-partition.

Proof. Clearly, |V2`pH
˚q| ă |V2`pG

˚q| due to the fact that v is still a 2`-vertex in G˚.
So by Definition 7.1, we have that H is smaller than G. If H does not admit any
pF1, F4q-partition, it follows immediately that there exists a subset S Ď V pHq such
that ρpS,Hq is minimum and ρpS,Hq ď ´1. Obviously, at least one special vertex of
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T1 and T2 belongs to S since otherwise S Ď V pGq and thus ρpS,Hq “ ρpS,Gq ą ´1
by the assumption of Theorem 7.1, a contradiction. Next, let S1 “ S X V pGq. If
|S1 X tv1, v2u| “ 0, then we can obtain a new vertex set, say S˚, by adding flags T1 or
T2 to S. It follows from Claim 7.2 (1)-(2) that ρpS˚, Hq ă ρpS,Hq, which contradicts
the selection of S. If |S1 X tv1, v2u| “ 1, w.l.o.g., S1 X tv1, v2u “ tv1u, then similarly by
Claim 7.2 (1)-(2) and the choice of ρpS,Hq, we know that T1 must be completely in S.
Thus, we obtain that

ρpS1, Gq “ 8|S1| ´ 5|EpGrS1sq|
“ 8p|S| ´ 3q ´ 5p|EpHrSsq| ´ 5q
“ ρpS,Hq ´ 3ˆ 8` 5ˆ 5
“ ρpS,Hq ` 1
ď 0.

This contradicts Claim 7.5.
Next we consider the last case that |S1 X tv1, v2u| “ 2. Namely, v1 and v2 are both

in S1. Then similarly we deduce that T1 and T2 are completely in S. Let S˚ “ S1 Y tvu.
We have that S˚ Ă V pGq. Then

ρpS˚, Gq “ 8|S˚| ´ 5|EpGrS˚sq|
“ 8p|S| ´ 6` 1q ´ 5p|EpHrSsq| ´ 10` 2q
“ ρpS,Hq ´ 5ˆ 8` 40
ď ´1.

This contradicts the assumption of Theorem 7.1. Therefore, we complete the proof
of Observation 7.2.

Let v P V pGq. Denote by fpvq the number of flags based on v in G. For brevity, we
use d˚pvq instead of dG˚pvq.

Claim 7.6. For v P V pG˚q, we have that d˚pvq ` fpvq ě 3. In particular, each 2-vertex
in G is special. Besides, if fpvq ě 1, then d˚pvq ` fpvq ě 6.

Proof. First suppose to the contrary that G˚ contains a vertex v satisfying that d˚pvq `
fpvq ď 2. By Claim 7.3, we confirm that d˚pvq ě 1. The following discussion splits into
two cases in light of the value of d˚pvq.

Case 1: d˚pvq “ 1.

Then fpvq ď 1. As dGpvq ě 2, we deduce that fpvq “ 1. That is, v is a 4-vertex in
G which is incident to exactly one flag, say T . Let v1 be the other neighbour of v not
on T . Let H “ G´ V pT q. Clearly, H is smaller than G, and H satisfies the condition
of Theorem 7.1. Thus H has an pF1, F4q-partition. If v1 P F1, then we add v and both
special 2-vertices of T to F4 and the special 3-vertex of T to F1. Otherwise, assume that
v1 P F4. We add v to F1 and all remaining special vertices of T to F4. In each case, one
may verify that the obtained partition of G is an pF1, F4q-partition, a contradiction.
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Case 2: d˚pvq “ 2.
Then fpvq “ 0, implying that dGpvq “ 2. Let NGpvq “ tv1, v2u. Let H be the graph

obtained from G ´ v by adding two flags T1 and T2 based on v1 and v2, respectively.
By Observation 7.2, H has an pF1, F4q-partition. Notice that for each i P t1, 2u there
is at least one vertex of Ti (apart from vi) belonging to F4. So in order to obtain an
pF1, F4q-partition of G, it suffices to add v to F4 if at least one of v1 and v2 belongs to
F1, and add v to F1 otherwise.

Hence, we conclude that d˚pvq ` fpvq ě 3, which guarantees us that each 2-vertex in
G must be special.

Next suppose that fpvq ě 1. If d˚pvq`fpvq ď 5, let T1, . . . , Tfpvq be the incident flags
based on v and denote by v1, . . . , vd˚pvq the other neighbours of v which are not lying on
Ti. Let H “ G´ pY

i“fpvq
i“1 V pTiq ´ vq. Apparently, H is smaller than G, and it satisfies

the condition of Theorem 7.1. So by the minimality of G, H has an pF1, F4q-partition.
If v P F1, then we can add all the deleted vertices of Yi“fpvqi“1 V pTiq to F4. Otherwise,
assume that v P F4. If v1, . . . , vd˚pvq are all in F4, then we can first change v to F1 and
then go back to the previous case. Otherwise, there exists some vi P F1. In this case,
we add all deleted special 3-vertices to F4 and other special 2-vertices to F1. Since
d˚pvq ` fpvq ď 5 and some vi P F1, one may easily check that the obtained partition of
G is an pF1, F4q-partition, a contradiction.

Corollary 7.2. Each special vertex has a base vertex of degree at least 8.

Proof. Let v be a special vertex of G whose base vertex is u. Then fpuq ě 1. By
Claim 7.6, we deduce that dGpuq “ d˚puq ` 3fpuq ě 6` 2fpuq ě 8.

For convenience, let phpvq denote the number of pendant hosts adjacent to a vertex
v P V pGq.

Claim 7.7. If v is a non-special 3-vertex, then phpvq “ 0.

Proof. Suppose that dGpvq “ 3 and NGpvq “ tv1, v2, v3u, where v1 is a pendant host
such that v1 is incident to exactly five flags T1, . . . , T5. Let H be obtained from G´ v
by adding two flags T ˚2 and T ˚3 based on v2 and v3, respectively. By Observation 7.2, H
admits an pF1, F4q-partition. Moreover, by Claim 7.1, we know that v1 P F1. We are
going to show an pF1, F4q-partition of G, which contradicts our assumption. If at most
one of v2 and v3 belongs to F4, then we add v to F4. Otherwise, assume that v2 P F4
and v3 P F4. At this point, we only need to first add v to F1, and then move all the
special vertices of each Ti to F4.

For a non-special 3-vertex u, if u has i (resp. at least i) 4`-neighbours in G, then u
is said to be a 3i-vertex (resp. 3i`-vertex). Moreover, if u is adjacent to one 30-vertex
(resp. two 30-vertices), then we call u a weak 3-vertex (resp. bad 3-vertex). In what
follows, a vertex w is called heavy if it is adjacent to at least one 6`-vertex which is
incident to at most four flags.

Claim 7.8. Suppose that v is a 30-vertex in G. Then at least two of its neighbours are
heavy.
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Proof. Let v be adjacent to v1, v2, v3 such that each vi is a 3´-vertex in G. Notice that
dGpviq ‰ 1 for all i “ 1, 2, 3. If there is some vi having degree 2, say dGpv1q “ 2, then by
Claim 7.6, v1 is a special 2-vertex, and thus v2 and v3 should be lying on the flag. This
contradicts Corollary 7.2.

Next, assume that all neighbours of v are 3-vertices. Let Npviq “ tv, u2i´1, u2iu for
each i P t1, 2, 3u. Suppose to the contrary that there is at most one heavy vertex among
v1, v2 and v3. In other words, at least two neighbours of v, say v2 and v3, are not heavy.
So only v1 might be heavy. Let H be obtained from G´ v1 by adding two flags T1 and
T2 based on u1, u2, respectively. Since d˚pv1q ě 3, by Observation 7.2, we know that H
admits an pF1, F4q-partition.

Next, we are going to establish an pF1, F4q-partition for G. Let S “ tv, u1, u2u. If at
most one vertex of S belongs to F4, then it suffices to add v1 to F4. If all vertices of S
belong to F4, then we may add v1 to F1. Otherwise, assume that exactly two vertices of
S are in F4. So only one vertex of S belongs to F1. All that remains is to discuss two
cases below.

• v P F1 and u1, u2 P F4. Then, at most one of v2 and v3 belongs to F1. If v2 and v3
are both in F4, then one may directly add v1 to F1. Or else, assume w.l.o.g., that
v2 P F1 and v3 P F4. Then we first change v to F4 and then add v1 to F1.

• u1 P F1 and v, u2 P F4. If v2, v3 P F1, then add v1 to F4. If v2, v3 P F4, then first
change v to F1 and then add v1 to F4. Now assume that v2 P F1 and v3 P F4.
Notice that at most one of u3 and u4 belongs to F1. If u3 and u4 are both in F4,
then we may change v to F1 and then add v1 to F4. Otherwise, w.l.o.g., assume
that u3 P F4 and u4 P F1. Since v2 is not heavy, by Claim 7.1, u3 must be a
5´-vertex. Then we can change v2 to F4, v to F1, and add v1 to F4. If the obtained
partition of G is not as required, then the unique possible case is that dGpu3q “ 5
and u3 becomes F4-saturated. Therefore, we may further change u3 to F1.

In each of the above cases, one can easily verify that the obtained partition of G is
an pF1, F4q-partition.

Claim 7.9. If dGpvq “ 4, then phpvq ď 2.

Proof. Suppose to the contrary that G has a 4-vertex v adjacent to at least three
pendant hosts v1, v2 and v3. Let v4 be the neighbour of v different from v1, v2 and v3.
Let H be the graph obtained from G´ v by adding one flag T based on v4. Clearly, by
Definition 7.1, H is smaller than G.

First, we show that H satisfies the condition of Theorem 7.1. Suppose that there
exists a subset S Ď V pHq such that ρpS,Hq is minimum and ρpS,Hq ď ´1. Then at
least one special vertex of T belongs to S. In the following, let S1 “ S X V pGq. By
Claim 7.2 (1)-(2) and the choice of ρpS,Hq, we know that all the vertices of T are
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completely in S. Thus, we obtain that

ρpS1, Gq “ 8|S1| ´ 5|EpGrS1sq|
“ 8p|S| ´ 3q ´ 5p|EpHrSsq| ´ 5q
“ ρpS,Hq ` 1
ď 0.

This contradicts Claim 7.5, and hence H satisfies the condition of Theorem 7.1 and
then it admits an pF1, F4q-partition. By Claim 7.1, v1, v2 and v3 all belong to F1. So
one can easily add v to F4 to construct an pF1, F4q-partition of G, a contradiction.

The following Claim 7.10-Claim 7.13 will play an important role in discharging
argument in Section 3.3. For simplicity, we use nkpvq to denote the number of k-
neighbours of v.

Claim 7.10. Let v P V pGq. Suppose that d˚pvq “ 2 and fpvq “ 4. Then phpvq “
n3pvq “ 0.

Proof. Let v1 and v2 be two neighbours of v in G˚. Suppose, w.l.o.g., to the contrary
that v1 is either a pendant host or a 3-vertex. The discussion is divided into two cases
below:

Case 1: v1 is a pendant host.

By definition, v1 is incident to exactly five flags. Let H be the graph obtained from G
by deleting v1 and all its incident flags. Then H is a subgraph of G and thus H satisfies
the condition of Theorem 7.1. So by the minimality of G, H has an pF1, F4q-partition.
Then one may add v1 to F1 and all deleted special neighbours to F4. If the resultant
partition is not an pF1, F4q-partition of G, then we deduce that v is F1-saturated. Namely,
v P F1 and v has one F1-neighbour. If v2 P F1, then we change v to F4, and all special
3-neighbours and special 2-neighbours of v to F4 and F1, respectively. Otherwise, assume
that v2 P F4. At this point, it suffices to change all special neighbours of v to F4.

Case 2: v1 is a 3-vertex.

Denote by u1, u2 two neighbours of v1 distinct from v. Let H be the graph obtained
from G´ v1 by adding one flag based on u1, u2 and v, respectively. For convenience, we
use the notation T1, T2, T3 to represent these new added flags incident to u1, u2 and v,
respectively. By Definition 7.1, we know that H is smaller than G.

Next, we show that H satisfies the condition of Theorem 7.1. Suppose to the contrary
that there exists a subset S Ď V pHq such that ρpS,Hq is minimum and ρpS,Hq ď ´1.
Then for each i P t1, 2, 3u, at least one special vertex of Ti belongs to S. In the following,
let S1 “ S X V pGq. There are fours cases to discuss.

• |S1Xtu1, u2, vu| “ 0. Then we can get a subgraph with smaller ρ by Claim 7.2 (1)-
(2), a contradiction.
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• |S1 X tu1, u2, vu| “ 1. W.l.o.g., assume that S1 X tu1, u2, vu “ tvu. By the choice
of ρpS,Hq, we know that T3 is completely in S. Thus, we obtain that

ρpS1, Gq “ 8|S1| ´ 5|EpGrS1sq|
“ 8p|S| ´ 3q ´ 5p|EpHrSsq| ´ 5q
“ ρpS,Hq ´ 24` 25
“ ρpS,Hq ` 1
ď 0.

This contradicts Claim 7.1.

• |S1 X tu1, u2, vu| “ 2. W.l.o.g., assume that S1 X tu1, u2, vu “ tu1, u2u. Then both
T1 and T2 are completely in S. Let S˚ “ S1 Y tv1u and thus S˚ Ă V pGq. Then

ρpS˚, Gq “ 8|S˚| ´ 5|EpGrS˚sq|
“ 8p|S| ´ 6` 1q ´ 5p|EpHrSsq| ´ 10` 2q
“ ρpS,Hq ´ 40` 40
ď ´1.

This contradicts the assumption of Theorem 7.1,

• |S1 X tu1, u2, vu| “ 3. That is, tu1, u2, vu Ă S1. By the choice of ρpS,Hq, we know
that T1, T2 and T3 are completely in S. Let S˚ “ S1 Y tv1u. Then

ρpS˚, Gq “ 8|S˚| ´ 5|EpGrS˚sq|
“ 8p|S| ´ 9` 1q ´ 5p|EpHrSsq| ´ 15` 3q
“ ρpS,Hq ´ 64` 60
“ ρpS,Hq ´ 4
ă ´1.

This contradicts the assumption of Theorem 7.1.

In each case, one may always obtain a contradiction, and hence H satisfies the
condition of Theorem 7.1, meaning that H admits an pF1, F4q-partition. Now we show
that the pF1, F4q-partition of H can be extended to G. Note that v P F1 by Claim 7.1,
since v is incident to five flags in H. If at most one of u1 and u2 belongs to F4, then we
can add v1 to F4. Otherwise, assume that u1, u2 P F4. If v2 P F4, we can add v1 to F1
and change all v’s special neighbours to F4. Otherwise, assume that v2 P F1. Here, one
may first move v to F4, then change all v’s special 3-neighbours to F4 and all v’s special
2-neighbours to F1. Finally v1 can be added to F1 preserving its property.

In what follows, let n˚3ipvq be the number of 3i-neighbours of v in G˚. A similar
definition can be given for n˚3i`

pvq.
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Claim 7.11. Let v P V pGq. Suppose that d˚pvq “ 3 and fpvq “ 3. If n˚31pvq ě 1, then
v is adjacent to at least one good 6`-vertex.

Proof. Let v1, v2 and v3 be all neighbours of v in G˚. W.l.o.g., assume that v1 is a
31-vertex such that two neighbours of v1, say u1, u2, are 3-vertices. Recall that a good
6`-vertex is a 6`-vertex which is not a pendant host. So next, suppose to the contrary
that for i P t2, 3u, each vi is either a 5´-vertex or a pendant host. Let H be the graph
obtained from G´ v1 by adding one flag T based on v. Clearly, |V2`pH

˚q| ă |V2`pG
˚q|.

By Definition 7.1, H is smaller than G.
First, we prove that H satisfies the condition of Theorem 7.1. Suppose to the contrary

that there is a subset S Ď V pHq such that ρpS,Hq is minimum and ρpS,Hq ď ´1. It
is obvious that at least one special vertex of T belongs to S. Denote S1 “ S X V pGq.
If v R S1, then we can get a smaller ρ by Claim 7.2 (1)-(2), violating our choice of S.
Thus, v P S1. Moreover, by the selection of ρpS,Hq, we deduce that T is completely in
S. Thus, we have that

ρpS1, Gq “ 8|S1| ´ 5|EpGrS1sq|
“ 8p|S| ´ 3q ´ 5p|EpHrSsq| ´ 5q
“ ρpS,Hq ´ 24` 25
“ ρpS,Hq ` 1
ď 0.

This contradicts Claim 7.5. So H admits an pF1, F4q-partition.
Next, we are going to show that the pF1, F4q-partition of H can be extended to G.

Let S “ tu1, u2, vu. If all vertices of S belong to F4, then we add v1 to F1. If at most
one vertex of S belongs to F4, then we add v1 to F4. Otherwise, assume that exactly
two vertices of S are in F4. In other words, exactly one vertex of S is in F1.

• First suppose that u1 P F1 and u2, v P F4. Notice that v is incident to four flags in
H. By Observation 7.1, we know that v has four F4-neighbours in H, and thus we
are sure that both v2 and v3 are in F1. So we can add v1 to F4 successfully.

• Now suppose that v P F1 and u1, u2 P F4. If v2, v3 P F4, then we can add v1 to
F1 and change all special neighbours of v to F4. Otherwise, w.l.o.g., assume that
v2 P F1 and v3 P F4. Since each pendant host belongs to F1 by Claim 7.1, we
deduce that v3 is a 5´-vertex in G. In this case, we change v to F4, all v’s special
3-neighbours to F4 and all v’s special 2-neighbours to F1. If the obtained partition
of G is not as desired, then the unique possible case is that dGpv3q “ 5 and v3 has
five F4-neighbours. So we may continue to change v3 to F1.

Claim 7.12. Let v P V pGq. Suppose that d˚pvq “ 4 and fpvq “ 2. Then phpvq “ 0.

Proof. Suppose to the contrary that there is a neighbour u of v such that u is a pendant
host in G˚. Let H be the graph obtained by deleting the incident two flags based on v
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(apart from v). Then H is smaller than G and satisfies the condition of Theorem 7.1.
Hence, H admits an pF1, F4q-partition due to the minimality of G.

If v P F1, then we add all the deleted special neighbours of v to F4. Now suppose
that v P F4. Since u is a pendant host, u belongs to F1 by Claim 7.1. So if v has exactly
three F4-neighbours in H, then one may first change v to F1, all special neighbours
of u to F4, and finally add all the deleted special neighbours of v to F4. Otherwise,
assume that v has at most two F4-neighbours in H. In this case, we may add two special
3-neighbours of v to F4 and four special 2-neighbours of v to F1. In each case, one may
inspect that the obtained partition is an pF1, F4q-partition of G, a contradiction.

Claim 7.13. Let v P V pGq with d˚pvq ` fpvq “ 6. If fpvq P t1, 2u and n˚4`pvq “ 0, then
the following hold:
(1) n˚32` pvq ě 1;
(2) If n˚32` pvq “ 1, then the unique 32`-neighbour of v is adjacent to at least two good
6`-vertices.

Proof. Let NG˚pvq “ tv1, . . . , vd˚pvqu such that vi is a 3-vertex for each i P t1, . . . , d˚pvqu.
For each v1, let u1i and u2i denote the two neighbours of vi distinct from v. Let H be
the graph obtained from G by deleting all flags (apart from v) based on v. Then H
is smaller than G and it satisfies the condition of Theorem 7.1. Thus, H admits an
pF1, F4q-partition due to the minimality of G.

If v P F1, then we can directly add all the deleted special neighbours to F4. Suppose
now that v P F4. If at least two vertices of NG˚pvq belong to F1, then it is easy to add
the deleted special 3-neighbours of v to F4 and the deleted special 2-neighbours to F1.
If all vertices of NG˚pvq belong to F4, then we first move v to F1 and then add all the
deleted special neighbours to F4. So next, we may consider the case that exactly one
vertex of NG˚pvq belongs to F1. W.l.o.g., suppose that v1 P F1 and v2, . . . , vd˚pvq are all
in F4. If v1 is not F1-saturated, namely, u11, u21 P F4, then move v to F1 and we may
go back to the previous case. Otherwise, assume that v1 is F1-saturated. It means that
exactly one of u11 and u21 belongs to F1. Next, we will make use of contradictions to
show (1) and (2).

(1) Suppose to the contrary that for all i P t1, . . . , d˚pvqu, vi is a 31-vertex. So both
u11 and u21 are 3´-vertices. W.l.o.g., assume that u11 P F1 and u21 P F4. Then we
can change v1 to F4, v to F1, and finally add all the deleted special neighbours to F4
successfully.

(2) Let vj be the unique 32`-neighbour of v. If j ‰ 1, then v1 is still a 31-vertex
and thus the argument is the same as the previous case. Now assume that j “ 1. By
definition, at least one of u11 and u21 is a 4`-vertex, say dGpu11q ě 4. Since v is a good
6`-vertex, in order to show (2), we will prove that u11 is a good 6`-vertex. Suppose
to the contrary that u11 is either a 5´-vertex or a pendant host. First, we move v1 to
F4 and v to F1. If the resulting partition is not an pF1, F4q-partition, then it must be
the case that u11 P F4 and u21 P F1. By Claim 7.1, we deduce that u11 is a 5-vertex.
Furthermore, u11 has exactly five F4-neighbours in G. At this point, one may change
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u11 to F1 and add all the deleting special neighbours to F4. It is easy to verify that the
current partition is an pF1, F4q-partition of G.

Claim 7.14. Let v be a 4-vertex in G such that n3pvq ` phpvq “ 4. If there is at most
one 32`-vertex adjacent to v, then G contains at least one good 5`-vertex.

Proof. Let v1, . . . , v4 denote all neighbours of v. By Claim 7.9, phpvq ď 2. Then
n3pvq ě 2 due to the assumption that n3pvq ` phpvq “ 4. W.l.o.g., assume that
dGpv1q “ dGpv2q “ 3. Denote by xi and yi the two neighbours of vi for i P t1, 2u. Since
there is at most one 32`-neighbour of v, we may further assume that v1 is a 31-vertex. Let
H “ G´ v. Obviously, H is smaller than G and it satisfies the condition of Theorem 7.1.
Hence, H admits an pF1, F4q-partition.

Let S “ tv1, v2, v3, v4u. By Claim 7.1, each pendant host belongs to F1. So if at
most one vertex of S belongs to F4, then this vertex must be a 3-vertex, and thus we
can add v to F4. Next suppose that there is at most one vertex of S belonging to F1,
say vi P F1. If vi is a 3-vertex, then one can add v to F1. If the obtained partition is
not an pF1, F4q-partition, then we deduce that one of vi’s neighbours, denoted by xi,
belongs to F4 and is of degree at least 5. Otherwise we put vi in F4 since it has at most
three F4-neighbours if it has degree at most 4 and furthermore yi belongs to F1. Hence,
xi is a good 5`-vertex by Claim 7.1. Otherwise, vi is a pendant host. In this case, we
can first change all special vertices of vi to F4 and then add v to F1. Now suppose
that exactly two vertices of S belong to F1. Namely, vi, vj P F1 and vk, vm P F4, where
ti, j, k,mu “ t1, 2, 3, 4u. Again, by Claim 7.1, we confirm that vi, vj are pendant hosts.
Then ti, ju “ t3, 4u and thus v1, v2 P F4. In order to establish an pF1, F4q-partition of
G, we have three possibilities to handle.

• If x1, y1 P F1, then add v to F4.

• If x1, y1 P F4, then move v1 to F1 and add v to F4.

• Now assume that x1 P F1 and y1 P F4, which implies that x1 and v2 cannot be
the same vertex. Since v1 is a 31-vertex, we see that dGpx1q ď 3. Moreover, x1
cannot be a 2-vertex by Claim 7.6. Let x11 and x21 denote the neighbours of x1
distinct from v1. Clearly, if x1 is not F1-saturated, then one may easily change v1
to F1 and then add v to F4. Otherwise, assume w.l.o.g., that x11 P F1 and x21 P F4.
Notice that x21 is distinct from v, since x1 is in F1 and v2 is in F4. Then x21 cannot
be a pendant host by Claim 7.1. In this case, we change x1 to F4, v1 to F1 and
finally add v to F4. If the resultant partition is not as desired, then x21 must be a
good 5`-vertex and thus we are done.

7.3 Discharging procedure
We are now ready to present a discharging procedure that will complete the proof of
Theorem 7.1. For v P V pGq, an initial charge function ω is defined to be ωpvq “ dpvq´ 16

5 .
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By the relation
ř

vPV pGq dpvq “ 2|EpGq| and the assumption of Theorem 7.1, we know
that the total sum of charges of the vertices satisfies the following

ÿ

vPV pGq

ωpvq “
ÿ

vPV pGq

pdGpvq ´
16
5 q ă

2
5 .

Let ω˚pvq be the charge of v P V pGq after the discharge procedure. In order to lead
to a contradiction, we shall prove that

ř

vPV pGq ω
˚pvq ě 2

5 .

Let τpuÑ vq denote the amount of charges transferring from u to v. Below are the
discharging rules:

(R1) Every special 2-vertex and special 3-vertex respectively gets 6
5 and 1

5 from its
8`-neighbour.
(R2) Every 4-vertex sends 1

5 and 1
10 to each 31-neighbour and 32`-neighbour, respectively.

(R3) Every 5-vertex sends 1
5 to each of its 3-neighbour.

(R4) Let u be a 6`-vertex in G adjacent to a 3-vertex v.
(R4.1) Assume that v is a 31-vertex. Then

(R4.1.1) τpuÑ vq “ 2
5 if v is bad;

(R4.1.2) τpuÑ vq “ 3
10 if v is weak;

(R4.1.3) τpuÑ vq “ 1
5 otherwise.

(R4.2) Assume that v is a 32`-vertex. Then
(R4.2.1) τpuÑ vq “ 1

5 if u is weak;
(R4.2.2) τpuÑ vq “ 1

10 otherwise.
(R5) Every 30-vertex gets 1

10 from each of its 3-neighbour which is adjacent to at least
one 6`-vertex.
(R6) Every pendant host gets 1

5 from its 4`-neighbour.

7.3.1 Find charges are nonnegative

In this subsection, we will show that ω˚pvq ě 0 for each v P V pGq. Notice that dGpvq ě 2.

• dGpvq “ 2. Then ωpvq “ ´6
5 . By Claim 7.6, v is a special 2-vertex. Moreover, the

base vertex of v is of degree at least 8 by Corollary 7.2. So by (R1), we have that
ω˚pvq “ ´6

5 `
6
5 “ 0.

• dGpvq “ 3. Then ωpvq “ ´1
5 . If v is special, then similarly, by Corollary 7.2 and

(R1), we obtain that ω˚pvq “ ´1
5 `

1
5 “ 0. Now assume that v is not a special

vertex. Namely, it is not incident to any flags. Let v be a 3i-vertex.

– i “ 0. By Claim 7.8, v has at least two heavy 3-neighbours. By definition,
these two heavy 3-neighbours both have at least one 6`-neighbour. So
ω˚pvq ě ´1

5 ` 2ˆ 1
10 “ 0 by (R5).

– i “ 1. Let v1 be the unique 4`-neighbour of v. If dGpv1q P t4, 5u, then both
(R2) and (R3) guarantee that τpv1 Ñ vq “ 1

5 and thus ω˚pvq “ ´1
5 `

1
5 “ 0.
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Otherwise, assume that dGpv1q ě 6. If v is bad, namely, v has two 30-
neighbours, then by (R4.1.1) and (R5) we have that ω˚pvq ě ´1

5`
2
5´2ˆ 1

10 “
0. If v is weak, namely, v has one 30-neighbour, then by (R4.1.2) and (R5)
we have that ω˚pvq ě ´1

5 `
3
10 ´

1
10 “ 0. Otherwise, one may easily deduce

that ω˚pvq ě ´1
5 `

1
5 “ 0 by (R4.1.3).

– i ě 2. Let v1, v2, v3 denote all neighbours of v such that dGpv1q, dGpv2q ě 4.
If dGpv3q ě 4, then ω˚pvq “ ´1

5 ` 3ˆ 1
10 “

1
10 by (R2). Suppose dGpv3q ď 3.

If dGpv1q, dGpv2q ď 5, then similarly we deduce that ω˚pvq “ ´1
5 ` 2ˆ 1

10 “ 0
by (R2) or ω˚pvq “ ´1

5 `
1
5 “ 0 by (R3). Otherwise, by symmetry assume

that dGpv1q ě 6. If v3 is a 30-vertex, then v is weak, and thus τpv1 Ñ vq “ 1
5

by (R4.2.1) and τpv Ñ v3q “
1
10 by (R5). Moreover, τpv2 Ñ vq ě 1

10 by (R2)
and (R3). So ω˚pvq ě ´1

5 `
1
5 `

1
10 ´

1
10 “ 0. Or else, it is not difficult to

deduce that ω˚pvq ě ´1
5 ` 2ˆ 1

10 “ 0 by (R2), (R3) and (R4.2.2).

• dGpvq “ 4. Then ωpvq “ 4
5 . By (R2), v sends each neighbour at most 1

5 . Thus,
ω˚pvq ě 4

5 ´ 4ˆ 1
5 “ 0.

• dGpvq “ 5. Then ωpvq “ 9
5 . By (R3), we see that ω˚pvq ě 9

5 ´ 5ˆ 1
5 “

4
5 .

• dGpvq ě 6. Obviously, v P V pG˚q. If fpvq “ 0, then ω˚pvq ě dGpvq´
16
5 ´

2
5dGpvq “

3
5dGpvq ´

16
5 ě 2

5 by (R4) and (R6). Otherwise, by Claim 7.4, we have that
1 ď fpvq ď 5. At this point, one may obtain that fpvq ` d˚pvq ě 6 by Claim 7.6.
This fact will be used later frequently without any special mention. Moreover, by
(R1), we observe that v sends a charge of 2 ˆ 6

5 `
1
5 “

13
5 to all special vertices

incident to the same flag. Since dGpvq “ d˚pvq ` 3fpvq, v has a charge of at least
d˚pvq ` 3fpvq ´ 16

5 ´
13
5 fpvq which equals d˚pvq ´ 16

5 `
2
5fpvq after transferring

charges to all its adjacent special vertices. For shortness, we define

σpvq “ d˚pvq ´
16
5 `

2
5fpvq.

There are four cases that need to be handled.

– Assume fpvq “ 1. If d˚pvq ě 6, then by (R4), we have that ω˚pvq ě
σpvq ´ 2

5d
˚pvq “ 3

5d
˚pvq ´ 14

5 ě
4
5 . Otherwise, assume that d˚pvq “ 5. Then

σpvq “ 11
5 . By Claim 7.13 (1), we see that either n˚4`pvq ě 1 or n˚4`pvq “ 0

and n˚32`pvq ě 1. By (R4.2) and (R6), we know that at least one neighbour
in G˚ of v takes charge at most 1

5 from v. Thus, ω˚pvq ě 11
5 ´

1
5 ´ 4ˆ 2

5 “
2
5 .

– Assume fpvq “ 2. If d˚pvq ě 5, then ω˚pvq ě σpvq´ 2
5d
˚pvq “ 3

5d
˚pvq´ 12

5 ě
3
5

by (R4). Otherwise, assume that d˚pvq “ 4. Then σpvq “ 8
5 . Similarly, by

Claim 7.13 (1), v is either adjacent to at least a 4`-vertex or a 32`-vertex in
G˚. Therefore, ω˚pvq ě 8

5 ´
1
5 ´ 3ˆ 2

5 “
1
5 by (R4) and (R6).

– Assume fpvq “ 3. If d˚pvq ě 4, then ω˚pvq ě σpvq´ 2
5d
˚pvq “ 3

5d
˚pvq´ 10

5 ě
2
5

by (R4). Otherwise, suppose that d˚pvq “ 3. Then σpvq “ 1. If n˚31pvq “ 0,
then by (R4.2) we have that ω˚pvq ě 1´ 1

5 ˆ 3 “ 2
5 . Or else, suppose that
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n˚31pvq ě 1. On the one hand, by (R4.1), such a 31-neighbour gets charge
at most 2

5 from v. On the other hand, v is adjacent to at least one good
6`-vertex by Claim 7.11. By (R1)-(R6), this kind of good 6`-vertex does not
obtain any charges from v. Hence, ω˚pvq ě 1´ 2

5 ˆ 2 “ 1
5 .

– Assume fpvq “ 4. By (R4), ω˚pvq ě σpvq ´ 2
5d
˚pvq “ 3

5d
˚pvq ´ 8

5 ě
4
5 if

d˚pvq ě 4 and ω˚pvq ě σpvq ´ 2
5d
˚pvq “ 3

5d
˚pvq ´ 8

5 ě
1
5 if d˚pvq “ 3. Now

consider the case that d˚pvq “ 2. By Claim 7.10, we are sure that v cannot
be adjacent to any pendant hosts or 3-vertices. Therefore, ω˚pvq ě σpvq ě 2

5 .
– Assume fpvq “ 5. If d˚pvq ě 3, by (R4), ω˚pvq ě σpvq ´ 2

5d
˚pvq “ 3

5d
˚pvq ´

6
5 ě

3
5 . If d

˚pvq “ 1, namely, v itself is a pendant host, then σpvq “ ´1
5 . By

(R6), we see that ω˚pvq ě ´1
5 `

1
5 “ 0. Now consider the final case that

d˚pvq “ 2. Then σpvq “ 4
5 . If n˚31pvq ď 1, then ω˚pvq ě 4

5 ´
2
5 ´

1
5 “

1
5 by

(R4) and (R6). Otherwise, we deduce that ω˚pvq ě 4
5 ´

2
5 ˆ 2 “ 0 by (R4.1).

7.3.2 Total charge

Now we are going to show that
ř

vPV pGq ω
˚pvq ě 2

5 . First, we observe the following.

Observation 7.3. G contains at least one good 4`-vertex.

Proof. Let v P V pGq. Clearly, dGpvq ě 2. We note that all 2-vertices must be special
by Claim 7.6. So if v is a special 2- or 3-vertex, then it must be adjacent to a vertex,
say u, having degree at least 8 by Corollary 7.2. Actually, u is the base vertex of its
incident flag. If u is not a pendant host, then we are done. Otherwise, assume that
u is a pendant host having the unique neighbour u1 in G˚. Note that dGpu1q ě 4 by
Claim 7.6 and Claim 7.7. Moreover, v cannot be a pendant host since otherwise G˚
contains a complete graph K2, violating Claim 7.3. Therefore, u1 is a good 4`-vertex.

Next suppose that v is a non-special 3-vertex. If v is a 31`-vertex, then its 4`-
neighbour is just a good 4`-vertex by Claim 7.7, and thus we are done. Now assume
that v is a 30-vertex. By Claim 7.8, we are sure that v has at least two heavy neighbours
each of which is adjacent to a good 6`-vertex.

Finally suppose that v is a 4`-vertex. If v is a pendant host, then its unique neighbour
in G˚, denoted by u, must be a 4`-vertex by Claim 7.6 and Claim 7.7, and it cannot be
a pendant host by Claim 7.3, and therefore we are done.

We have to present following two more useful lemmas.

Lemma 7.1. If v is a 4`-vertex in G, then ω˚pvq ě 1
5 except in the following three

cases:
(A1) dGpvq “ 4 and n3pvq ` phpvq “ 4;
(A2) dGpvq ě 6, fpvq “ 5 and d˚pvq “ 1;
(A3) dGpvq ě 6, fpvq “ 5 and d˚pvq “ n˚31pvq “ 2.

Proof. Let v be a k-vertex with k ě 4. If k “ 4 and n3pvq`phpvq ‰ 4, then it follows from
(R2) and (R6) that ω˚pvq ě 4´ 16

5 ´3ˆ 1
5 “

1
5 . If k “ 5, then ω˚pvq ě 5´ 16

5 ´5ˆ 1
5 “

4
5
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by (R3) and (R6). Now suppose that k ě 6. By the discussion of Section 3.3.1, one may
conclude that ω˚pvq ě 1

5 if fpvq ď 4, or fpvq “ 5 and d˚pvq ě 3, or fpvq “ 5, d˚pvq “ 2
and n˚31pvq ď 1.

Lemma 7.2. Let v P V pGq be a 6`-vertex. Then ω˚pvq ě 2
5 except in the following four

cases:
(B1) fpvq “ 2 and d˚pvq “ 4;
(B2) fpvq “ 3, d˚pvq “ 3 and n˚31pvq ě 1;
(B3) fpvq “ 4 and d˚pvq “ 3;
(B4) fpvq “ 5 and d˚pvq P t1, 2u.

Proof. It is trivial by the discharging argument of 6`-vertices in Subsection 7.3.1.

In what follows, let z P V pGq be a good 4`-vertex by Claim 7.3. We have three cases
in view of dGpzq.

Case I: dGpzq “ 5.

Then ω˚pzq ě 5 ´ 16
5 ´ 5 ˆ 1

5 “
4
5 by (R3) and (R6), and hence

ř

vPV pGq ω
˚pvq ě

ω˚pzq ě 4
5 .

Case II: dGpzq ě 6.

Let z1, z2, . . . , zd˚pzq denote all neighbours of z in G˚. Next, in order to show that
ř

vPV pGq ω
˚pvq ě 2

5 , by Lemma 7.2, we have to deal with four cases below:

Case (B1). fpzq “ 2 and d˚pzq “ 4. Then σpzq “ 8
5 . By Lemma 7.1, we assert that

ω˚pzq ě 1
5 . Moreover, by Claim 7.13 (1) we know that v has at least either

one 4`-neighbour or one 32`-neighbour, say z1.

• First suppose that z1 is a 4`-neighbour. Clearly, z1 cannot satisfy
(A1) and (A3). If (A2) occurs, then z1 is a pendant host, contradicting
Claim 7.12. So by Lemma 7.1 we ensure that ω˚pz1q ě

1
5 and hence

ř

vPV pGq ω
˚pvq ě ω˚pzq ` ω˚pz1q ě

1
5 `

1
5 “

2
5 .

• Now suppose that z1 is a 32`-neighbour. If n˚32` pvq ě 2, then ω˚pzq ě
8
5´2ˆ 1

5´2ˆ 2
5 “

2
5 by (R4), meaning that

ř

vPV pGq ω
˚pvq ě ω˚pzq ě 2

5 .
So next, assume that z1 is the unique 32`-neighbour of z. Denote
by x1, y1 two neighbours of z1 distinct from z. By Claim 7.13 (2),
we see that z1 is adjacent to at least two good 6`-vertices, denoted
by w1, w2, where tw1, w2u Ă tx1, y1, zu. It is obvious that w1, w2
cannot be vertices satisfying the cases of (A1)-(A3) of Lemma 7.1, and
thus ω˚pw1q ě

1
5 and ω˚pw2q ě

1
5 , implying that

ř

vPV pGq ω
˚pvq ě

ω˚pw1q ` ω
˚pw2q ě

1
5 `

1
5 “

2
5 .

Case (B2). fpzq “ 3, d˚pzq “ 3 and n˚31pzq ě 1. By Lemma 7.1, we are sure that
ω˚pzq ě 1

5 . W.l.o.g., assume that z1 is a 31-neighbour of z. It follows from
Claim 7.11 that z is adjacent to one good 6`-vertex, say z2. Clearly, z2
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cannot satisfy (A1) and (A2) since it is not a pendant host. Moreover,
(A3) will not occur because z is not a 31-vertex. Hence, ω˚pz2q ě

1
5 by

Lemma 7.1, and thus
ř

vPV pGq ω
˚pvq ě ω˚pzq ` ω˚pz2q ě

1
5 `

1
5 “

2
5 .

Case (B3). fpzq “ 4 and d˚pzq “ 3. Then σpzq “ 7
5 . By Lemma 7.1, we have that

ω˚pzq ě 1
5 .

• If n4`pzq ě 1, say z1 is a 4`-neighbour of z, then z1 cannot be the cases
of (A1) and (A3). If (A2) does not happen on z1, then by Lemma 7.1,
we obtain that ω˚pz1q ě

1
5 and therefore

ř

vPV pGq ω
˚pvq ě ω˚pzq `

ω˚pz1q ě
1
5 `

1
5 “

2
5 . Otherwise, assume that z1 is a pendant host. By

(R6), it gets charge 1
5 from z, and thus ω˚pzq ě 7

5 ´
1
5 ´ 2 ˆ 2

5 “
2
5 ,

implying that
ř

vPV pGq ω
˚pvq ě ω˚pzq ě 2

5 .

• If n˚32` pzq ě 1, then by (R4.2), this 32`-neighbour gets charge at
most 1

5 from z, and hence ω˚pzq ě 7
5 ´

1
5 ´ 2ˆ 2

5 “
2
5 , meaning that

ř

vPV pGq ω
˚pvq ě ω˚pzq ě 2

5 .
• Now suppose that n˚31pzq “ 3. If none of z1, z2 and z3 is bad, then
by (R4.1.2) and (R4.1.3) we affirm that z sends a charge of at most
3ˆ 3

10 “
9
10 to all these 3-neighbours, and thus ω˚pzq ě 7

5´
9
10 “

1
2 ą

2
5 .

It follows that
ř

vPV pGq ω
˚pvq ě ω˚pzq ą 2

5 . Otherwise, suppose
w.l.o.g., that z1 is bad. That is, z1 is adjacent to exactly two 30-
vertices, denoted by u1 and u2. By Claim 7.8, each ui has two heavy
neighbours which are adjacent to 6`-vertices incident to at most four
flags. For simplicity, let w1 and w2 denote these two 6`-vertices.
Notice that some wi might be the same as z. But we can still ensure
that one of w1 and w2 which is distinct from z, say w1, cannot
satisfy (A1) to (A3). Thus, ω˚pw1q ě

1
5 by Lemma 7.1 and, therefore,

ř

vPV pGq ω
˚pvq ě ω˚pzq ` ω˚pw1q ě

1
5 `

1
5 “

2
5 .

Case (B4). fpzq “ 5 and d˚pzq P t1, 2u. By assumption, z is not a pendant host,
meaning that d˚pzq “ 2, and then σpzq “ 4

5 . If each zi gets a charge of
at most 1

5 from z, then ω˚pzq ě 4
5 ´ 2ˆ 1

5 “
2
5 and thus

ř

vPV pGq ω
˚pvq ě

ω˚pzq ě 2
5 . Otherwise, by (R4.1.1) and (R4.1.2) we assume that each zi

is either weak or bad. So both z1 and z2 are 31-vertices. Let xi and yi
denote other two neighbours of zi distinct from z. By symmetry, assume
that each xi is a 30-vertex. By Claim 7.8, we know that for each i P t1, 2u,
at least two neighbours of xi are heavy. Namely, there exists at least one
6`-vertex, say w, such that fpwq ď 4. Obviously, w ‰ z due to the fact
that fpzq “ 5. So by the discussion of (B1)-(B3), one may guarantee that
ř

vPV pGq ω
˚pvq ě ω˚pwq ě 2

5 .

Case III: dGpzq “ 4.
Then ωpzq “ 4

5 . Clearly, fpzq “ 0 by Corollary 7.2. Let NGpzq “ tz1, . . . , z4u. For
i P t1, . . . , 4u, dGpziq ‰ 1 and dGpziq ‰ 2 due to Claim 7.6. Moreover, if zi is a 5-vertex
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or a good 6`-vertex, then we may go back to previous Case I and Case II. So in what
follows, we assume that n3pzq ` n4pzq ` phpzq “ 4. There are two cases as follows:

• n3pzq ` phpzq ď 3. Say z1 is a 4-vertex. Then ω˚pzq ě 4
5 ´ 3 ˆ 1

5 “
1
5 by (R2)

and (R6). Similarly, ω˚pz1q ě
1
5 . Therefore,

ř

vPV pGq ω
˚pvq ě ω˚pzq ` ω˚pz1q ě

1
5 `

1
5 “

2
5 .

• n3pzq ` phpzq “ 4. If z is adjacent to at least two 32`-vertices, say z1 and z2,
then let z1i, z2i denote other two neighbours of zi distinct to z for each i P t1, 2u.
W.l.o.g., assume that dGpz11q ě 4 and dGpz

1
2q ě 4. Obviously, neither z11 nor

z12 can be a pendant host by Claim 7.7, and thus we can suppose that both z11
and z12 are 4-vertices since otherwise we may reduce the argument to Case I and
Case II. Again, applying (R2) and (R6), ω˚pzq ě 4

5 ´ 2 ˆ 1
10 ´ 2 ˆ 1

5 “
1
5 and

ω˚pz1iq ě
4
5 ´ 3 ˆ 1

5 ´
1
10 “

1
10 for both i “ 1, 2. Therefore,

ř

vPV pGq ω
˚pvq ě

ω˚pzq ` ω˚pz11q ` ω
˚pz12q ě

1
5 ` 2ˆ 1

10 “
2
5 . Now suppose that z is adjacent to at

most one 32-vertex. By Claim 7.14, G contains at least one good 5`-vertex, and
hence we can go back to Case I and Case II.

Therefore, we complete the proof of Theorem 7.1.

7.4 Concluding remarks

We know that Borodin et al. [4] constructed a graph in P6 which has no pF0, Fdq-partition,
where d is a non-negative integer. Hence, this fact guarantees us that the subscript of F1
in Corollary 7.1 cannot be further improved. Still, we suspect that the class of F4 can
be strengthened to F3. To conclude this chapter, we would like to propose the following
problem.

Question 7.1. Does every graph in P6 admit an pF1, F3q-partition?
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