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Résumé

La partition des graphes est 'un des problémes centraux de la théorie des graphes,
issu du célebre probléeme des 4 couleurs. Dans cette thése, deux problemes majeurs
concernant la partition des graphes sont considérés : la séparation des arétes des graphes
signés et la décomposition des sommets des graphes creux.

Dans la premiere partie de cette thése, nous nous concentrons sur les problémes de
packing de signature des graphes signés. Un graphe signé (G, o) est un graphe G équipé
d’une signature o qui attribue a chaque aréte de G un signe (+ ou —). Le concept clé qui
sépare un graphe signé d’un graphe 2-arétes-colorées est la notion de commutation, une
commutation sur un sous-ensemble X de sommets de G consiste a multiplier les signes de
toutes les arétes dans la coupe d’aréte (X, V\X) par —. Un graphe signé (G,o’) est dit
équivalent au sens de commutation (ou simplement équivalent) & (G, o) s’il est obtenu
par une commutation sur une coupe d’aréte. Ensuite, nous définissons le nombre de
packing de signature du graphe signé (G, o), noté p(G, o), comme le nombre maximal de
signatures tel que chaque o; est équivalent a o, et les ensembles E_, arétes négatifs de
(G, 0;), sont disjoints par paires. Nous montrons qu’il est capturé par un homomorphisme
spécifique. Et nous établissons une connexion avec plusieurs problémes bien connus :
par exemple, le probléeme des quatre couleurs, la conjecture de coloration des arétes
de Seymour. Plus précisément, nous montrons d’abord que si G est un graphe simple
biparti sans K5-mineur, alors pour toute signature o, nous avons p(G, o) = 4. Ensuite,
nous continuons a utiliser le langage du nombre de packing et étendons la technique
pour vérifier que pour tout graphe planaire signé anti-équilibré (G, o) de circonférence
négative d’au moins 5, nous avons p(G, o) = 5. Enfin, nous étudions une généralisation
du nombre de packing. Au lieu de considérer une signature et ses signatures équivalentes,
nous séparons k signatures qui ne sont pas nécessairement équivalentes. Puisqu’il existe
un graphe planaire de nombre de packing 1, nous recherchons des conditions suffisantes
pour un graphe planaire tel que nous puissions séparer 2 ou 3 signatures.

La deuxieme partie de cette thése porte sur la décomposition des sommets des graphes
creux. Nous étudions d’abord la décomposition des sommets des graphes planaires de
circonférence au moins 5. Il est connu que tout graphe planaire de circonférence au moins
5 peut étre décomposé en deux sous-graphes induits, I'un de degré maximum au plus 3,
I’autre de degré maximum au plus 5. Nous renforcons ce résultat en montrant que ces
sous-graphes induits peuvent étre choisis pour étre des foréts. Nous travaillons ensuite
sur les graphes creux avec une condition de degré moyen maximum. Plus précisément,
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nous utilisons la méthode du potentiel pour prouver que tout graphe G de mad(G) < ¥
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peut étre un sommet décomposé en deux foréts de degré maximum au plus 1 et 4. Par
conséquent, tout graphe de genre au plus 1 et de circonférence d’au moins 6 admet
également une telle décomposition.

Mots clés: graphe signé, nombre de packing, graphe creux, décomposition des sommets.



Abstract

Graph partition is one of the central problem in graph theory, originated from the
famous 4-color problem. In this thesis, two major problems concerning graph partition
are considered: the edge separation of signed graphs and the vertex decomposition of
sparse graphs.

In the first part of this thesis, we focus on signature packing problems of signed
graphs. A signed graph (G, o) is a graph G equipped with a signature o which assigns
to each edge of G a sign (either + or —). The key concept that separates a signed
graph from a 2-edge-colored graph is the notion of switching, a switching at a subset
X of vertices of G is to multiply the signs of all edges in the edge-cut (X, V\X) by
—. A signed graph (G, ¢’) is said to be switching-equivalent (or simply equivalent) to
(G, o) if it is obtained by a switching on an edge-cut. Then we define the signature
packing number of a signed graph (G, o), denoted p(G, o), to be the maximum number
of signatures o1, 09, -+ , 07 such that each o; is switching equivalent to ¢ and the sets
E,., negative edges of (G, 0;), are pairwise disjoint. We show that it is captured by
specific homomorphism. Then we establish connection to several well-known problems:
e.g. the four coloring problem, Seymour’s edge coloring conjecture. More precisely, we
first show that if G is a Ks-minor-free bipartite simple graph, then for any signature o
we have p(G, o) = 4. Secondly, we continue using the language of packing number and
extend the technique to verify that for any antibalanced signed planar graph (G, o) of
negative girth at least 5, p(G, o) = 5. Thirdly, we study a generalization of the packing
number. Instead of considering one signature and its equivalent signatures, we separate
k signatures which are not necessarily switching equivalent. Since there exists planar
graph of packing number 1, we investigate sufficient conditions for a planar graph such
that we could separate 2 or 3 signatures.

The second part of this thesis is about vertex decomposition of sparse graphs. We
first study the vertex decomposition of planar graphs of girth at least 5. It is known
that every planar graph of girth at least 5 can be vertex decomposed into two induced
subgraphs, one of maximum degree at most 3, the other of maximum degree at most 5.
We strengthen this result by showing that these induced subgraphs can be chosen to be
forests. We then work on sparse graphs with maximum average degree condition. More
precisely, we use potential method to prove that every graph G of mad(G) < % can be
vertex decomposed into two forests of maximum degree at most 1 and 4. Consequently,
every graph of genus at most 1 and girth at least 6 also admits such decomposition.
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Introduction en francais

Le théoréme des 4-couleurs, 'une des découvertes les plus remarquables de la théorie des
graphes, a été présenté pour la premiere fois comme une question par Francis Guthrie
en 1852, qui a essayé de colorer une carte avec quatre couleurs de telle sorte que deux
régions adjacentes n’aient pas la méme couleur. Le probleme, qui était si simplement
décrit mais si difficile & prouver, a attiré I'attention de nombreux mathématiciens de
I’époque. Apres diverses tentatives pendant plus de cent ans, une premieére preuve
complete, assistée par ordinateur, a été réalisée par Kenneth Appel et Wolfgang Haken
en 1976. Cependant, la preuve était impossible pour un humain de vérifier a la main.
Depuis la premiere preuve, un algorithme plus efficace avec moins de configurations a été
trouvé par Neil Robertson, Daniel P. Sanders, Paul Seymour et Robin Thomas en 1996.

Basé sur le langage des graphes plutot que sur les cartes, le théoreme des 4 couleurs
peut étre énoncé comme suit : Chaque graphe planaire peut étre correctement 4-coloré.
Sur la base de cette déclaration, il y a eu de nombreuses reformulations et généralisations,
dont certaines ont motivé I’étude de cette these. L’une des reformulations équivalentes
les plus célebres du théoreme des 4 couleurs proposé par Tait est que les arétes de chaque
graphe cubique planaire sans pont peut étre correctement 3-coloré. Plus tard, Paul
Seymour a proposé une conjecture plus générale sur la coloration des arétes des graphes
planaires, en disant que tout graphe planaire k-régulier est k-aréte colorable si pour
chaque ensemble X de nombre impair de sommets, 1’aréte coupée (X,V — X) est de
taille au moins k. Une autre reformulation du théoréeme des 4 couleurs concernant la
décomposition du graphe est qu’un graphe planaire est 4-colorable si et seulement si son
ensemble de sommets peut étre décomposé en quatre parties, chaque partie induit un
ensemble indépendant, ce qui a encore inspiré I’étude de la décomposition des sommets
problémes de graphes.

Dans cette these, nous considérons le probléme de packing qui sépare ’ensemble
des arétes d’un graphe signé, tel que les sous-ensembles d’arétes sont des signatures
équivalentes du graphe signé, et le probleme de décomposition de sommets qui partitionne
I’ensemble de sommets d’'un graphe creux, de sorte que les sous-ensembles de sommets
induisent des graphes spécifiques. Ces deux problémes capturent le théoréeme des 4
couleurs. Nous définissons le nombre de packing du graphe signé, et montrons qu’il est
capturé par un homomorphisme spécifique. Ensuite, nous établissons une connexion
avec plusieurs problémes bien connus: par exemple, le probleme des quatre couleurs, la
conjecture de coloration des arétes de Seymour. Enfin, nous étudions le probléeme de
décomposition des sommets des graphes creux. Plus de détails sont présentés dans les



vi

sections suivantes.

La conjecture de coloration des arétes de Seymour

A la fin du 19e siecle, P. G. Tait a proposé sa propre preuve du théoréme des quatre
couleurs, bien que la preuve ne soit pas correcte, ses efforts ont abouti a une contribution
trés importante a la théorie des graphes, puisqu’il a donné une formulation équivalente
du théoreme des 4 couleurs en termes de coloration des arétes.

Théoréme 1. [47] Tout graphe cubique planaire sans pont est 3-arétes-colorable.

Notez que ce n’est pas vrai en général pour les graphes cubiques sans pont non
planaires, comme le montre le graphe de Petersen. Observez que si un graphe r-régulier
est r-aréte-colorable, alors chaque classe de couleur est une correspondance parfaite.
Par conséquent, pour tout ensemble de sommets X avec un nombre impair de sommets,
le nombre d’arétes qui ont exactement une extrémité dans X (c’est-a-dire la taille de
Paréte coupée (X, X€)) est au moins r. En 1975, P. Seymour a conjecturé qu’avec la
condition de planarité, 'affirmation opposée est également vraie.

Conjecture 1. [46] Tout k-graphe planaire est k-arétes-colorable.

Ici un k-graphe est un multigraphe k-régulier tel que chaque ensemble X de nombre
impair de sommets I’aréte coupée (X, V\X) est de taille au moins k. La Conjecture 1
a été vérifiée pour les cas de k < 8. Alors que les cas k = 0, 1,2 sont triviaux, le cas
r = 3 indique que tout graphe planaire cubique sans pont est 3-arétes-colorable. Par le
résultat de Tait, ceci est équivalent au théoreme des 4 couleurs. Les cas k =4 et k=5
ont été prouvés par B. Guenin [23] en se basant sur la notion de packing des T-joints.
Cependant, I’ceuvre de Guenin reste inédit. Le cas suivant k = 6 a été résolu par Dvorak,
Kawarabayashi et Kral’ [18] en 2016. La preuve pour le cas k = 7 a été donnée par
Chudnowsky, Edwards, Kawarabayashi et Seymour [14]. Le cas k = 8 a été résolu par
Chudnowsky, Edwards et Seymour [15]. Toutes ces preuves pour les valeurs k > 4 sont
basées sur des réductions au cas précédent, par conséquent, le théoréme des 4 couleurs
est supposé. De plus, la preuve des cas k = 6,7, 8 s’appuie sur la preuve non publiée des
cas k =4,5.

Homomorphisme au cube projectif signé

Un cube projectif de dimension d, noté PC,4, est construit a partir d’un hypercube H4 en
ajoutant une nouvelle aréte entre chaque paire de sommets antipodaux dans 4. Notez
que K4 est un cube projectif de dimension 2. Par conséquent, le théoréme des 4 couleurs
est équivalent a l'affirmation selon laquelle tout graphe planaire (simple) correspond
a PCs. En 2007, R. Naserasr a conjecturé ce qui suit, qui est une généralisation du
théoreme des 4 couleurs.
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Conjecture 2. [34] Tout graphe planaire de circonférence impaire au moins 2d + 1
admet un homomorphisme a PCoq.

Un cube projectif signé de dimension d, noté SPCy, est obtenu a partir de PCy en
attribuant un signe positif a toutes les arétes de I’hypercube H, et un signe négatif
aux arétes entre chaque paire de sommets antipodaux dans Hy. En 2005, B. Guenin a
proposé la conjecture suivante.

Conjecture 3. [24] Tout graphe planaire bipartite signé de circonférence négatif 2d
admet un homomorphisme & SPCoq_1.

Plus tard en 2013, R. Naserasr, E. Rollovd et E. Sopena a prouvé que les deux
conjectures ci-dessus sont fortement liées a la Conjecture 1 de Seymour sur la coloration
des arétes.

Théoréme 2. [34] Tout (2d + 1)-graphe planaire est (2d + 1)-aréte-colorable si et
seulement si tout graphe planaire de circonférence impaire au moins 2d + 1 admet un
homomorphisme & PCoyq.

Théoréme 3. [37] Tout 2d-graphe planaire est 2d-aréte-colorable si et seulement si
tout graphe biparti signé planaire de circonférence déséquilibrée au moins 2d admet un
homomorphisme & SPCog_1.

Décomposition des sommets du graphe

Soit Cy,...,Ck désignent k classes de graphes. Si V(G) peut étre partitionné en k
sous-ensembles de sommets V1, ..., Vj tel que le sous-graphe G[V;] appartienne a C; pour
chaque 1 < i < k, alors nous appelons une telle partition de sommets une (Cy, ..., C)-
partition. Pour simplifier, nous utilisons F, F;, Ay et I pour dénoter respectivement
la classe des foréts, la classe des foréts de degré maximum au plus d, la classe des
graphes de degré maximum au plus d, et la classe des graphes vides. Il est évident que
I = Ay = Fyet Ay = Fi. Le probleme des partitions de sommets des graphes sous
certaines restrictions sur les conditions de circonférence ou le sparseness a été largement
étudié.

Le théoreme des 4 couleurs garantit que tout graphe planaire admet une (I,1,1,1)-
partition. Notez qu’il existe un graphe planaire, par exemple, le graphe complet Ky,
n’ayant aucune (I, I, I)-partition. Le résultat de O. V. Borodine [2] sur la coloration
acyclique implique notamment que tout graphe planaire admet une (I, F, F')-partition.
C’est le meilleur dans le sens oti, comme montré dans [7] par G. Chartrand et H. V.
Kronk, il existe des graphes planaires qui n’admettent pas une (F, F')-partition. K. S.
Poh [43], en 1990, a montré que tout graphe planaire admet une (Fs, Fy, Fy)-partition.

A. Raspaud et W. Wang [44] ont prouvé que tout graphe planaire sans k-cycles pour
un k € {3,4,5,6} fixe admet une (F, F')-partition. En 2013, M. Chen, A. Raspaud et W.
Wang [8] ont amélioré ce résultat aux graphes planaires sans triangles sécants. Soit PG,
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la famille des graphes planaires de circonférence au moins g. Il a été prouvé dans [33]
qu'’il existe un graphe appartenant & PG4 n’ayant aucune (Ag, , Ag, )-partition pour une
paire d’entiers non négatifs quelconques d; et do. En 2017, F. Dross, M. Montassier, et
A. Pinlou [17] ont montré que tout graphe de PGy a une (F, F5)-partition.

Pour un graphe dans PGs, O. V. Borodin, et A. N. Glebov [3] ont prouvé qu'il a une
(F, Fy)-partition. F. Havet et J. S. Sereni [27] ont prouvé qu’il possede une (Ay, Ay)-
partition, I. Choi et A. Raspaud [12] ont prouvé qu’il posseéde une (Ag, As)-partition,
ces deux résultats ont été améliorés par I. Choi, G. Yu, et X. Zhang [13] en montrant
qu’il possede une (Ag, Ag)-partition. O. V. Borodine et A. V. Kostochka [5] ont prouvé
que tout graphe dans PG5 admet une (Ag, Ag)-partition. Et I. Choi et al. [11] a montré
qu’il posseéde une (Aj, Ajg)-partition. De plus, dans [12], I. Choi et A. Raspaud ont
posé la question intéressante suivante.

Question 1. Tout graphe de PG5 possede-t-il une (Ag4,, Ay, )-partition pour tout
di+ds =8,do>=dy =17

Récemment, X. Li, J. Liu, et J. Lv [31] ont montré que la Question 1 est vraie pour
le cas di = 1 et dy = 9. Les seuls cas restants vers la Question 1 sont que d; = 1 et
7<dy <8

Pour les graphes de PGg, un résultat de R. Skrekovski dans [48] implique que tout
graphe de PGg a une (As, Ag)-partition. Ceci a été amélioré par G. G. Chappell et al.
[6] en prouvant que chaque graphe dans PGg a une (F, Fy)-partition. En considérant
des graphes creux, O. V. Borodin et A. V. Kostochka [5] ont obtenu que tout graphe G
satisfaisant mad(G) < % admet une (A, Ay)-partition. Il s’ensuit immédiatement que
tout graphe dans PGg admet une (A1, Ay)-partition. Dans la direction opposée, O. V.
Borodin et al. [4] ont construit un graphe dans PGg qui n’a pas de (Fy, Fy)-partition,
ou d est un entier non-négatif.

Contributions et organisations

Packing des signatures dans les graphes signés

Dans la partie II, nous nous concentrons sur les probléemes de packing des graphes signés.

Dans le chapitre 3, nous définissons le nombre de packing de signature d’un graphe
signé (G, o), noté p(G, o). Tout d’abord en lien avec des développements récents sur
la théorie des homomorphismes de graphes signés nous montrons que pour un graphe
signé (G,o), p(G,0) = d + 1 si et seulement si (G,0) admet un homomorphisme a
SPCG, ou SPCY est obtenu a partir de SPCq en ajoutant une boucle positive a chaque
sommet. Dans des cas particuliers, nous avons: I. Un graphe simple GG est 4-colorable si
et seulement si p(G,—) = 2. I1. Un graphe biparti signé (G, o) correspond a SPCj si
et seulement si p(G, o) = 3 notant que SPCj3 est identique a (K44, M), c’est le graphe
signé sur Ky 4 ou I'ensemble des arétes négatives forme un appariement parfait. Sur la
restriction aux graphes planaires, I est alors une réaffirmation du théoreme des 4 couleurs
et I est sous-entendu par un travail inédit de B. Guenin. Apres un développement plus
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approfondi de cette théorie du packing dans les graphes signés, nous donnons une preuve
indépendante de I qui fonctionne sur la classe plus large des graphes sans Ks-mineur.
Plus précisément, nous prouvons que: Si G est un graphe simple biparti sans Ks-mineur,
alors pour toute signature o, on a p(G, o) = 4. L’énoncé s’avere strictement plus fort
que le théoréme des quatre couleurs et est prouvé en I'assumant. De plus, nous montrons
que I ne peut pas étre étendu a la classe de tous les graphes simples planaires signés.
D’autres développements, y compris les implications algorithmiques, sont envisagés.

Dans le Chapitre 4, nous continuons a utiliser le langage du nombre de packing et
nous étendons la technique pour vérifier le cas k = 5 de la Conjecture 1. Plus précisément,
nous prouvons que pour tout graphe planaire signé anti-équilibré (c’est-a-dire équivalente
a tous les bords négatifs) (G,o) de circonférence négative au moins 5, nous avons
p(G,0) = 5. Comme preuve du cas k = 4, nous donnons d’abord une reformulation
du théoreme, puis nous faisons l'induction et utilisons différentes déclarations pour
différentes directions de I’induction.

Dans le Chapitre 5, nous étudions une généralisation du numéro de packing. Au lieu
de considérer une signature et ses signatures équivalentes, nous considérons k signatures
o1,092,...,0r (pas nécessairement équivalentes) et demandons s'il existe des signatures
01,0%,...,0}, ol 0, est une commutation de oy, telle que les ensembles d’arétes négatives
E_, sont disjoints par paires. Il est connu qu'’il existe un graphe simple planaire signé dont

le nombre de packing est 1 [28]. Ainsi, pour un graphe planaire général, séparer deux
signatures n’est pas toujours possible méme si o1 = 0o. Dans ce chapitre, nous prouvons
qu’étant donné un graphe planaire G sans 4-cycle et deux signatures quelconques o
et m sur G, il existe des commutations o’ et 7’ de o et m, respectivement, telles que
E, nE_, = @. Comme corollaire de la 3-dégénérescence, nous pourrions également
séparer deux signatures sur un graphe planaire sans triangle, ou sans 5-cycle ou sans
6-cycle. De plus, nous prouvons que ’on pourrait séparer trois signatures sur des
graphes de degré moyen maximal inférieur a 3, en particulier sur des graphes planaires
de circonférence au moins égale a 6.

Décomposition des sommets des graphes creux

Dans la partie III, nous nous concentrerons sur la décomposition des sommets des graphes
Creux.

Dans le chapitre 6, nous étudions la décomposition des sommets des graphes planaires
de circonférence au moins égale a 5. On sait que tout graphe planaire de circonférence
au moins 5 admet une (As, As)-partition. Dans ce chapitre, nous renforgons ce résultat
en prouvant que tout graphe planaire de circonférence au moins 5 admet une (F3, F5)-
partition.

Dans le chapitre 7, nous étudions la décomposition des sommets des graphes creux
de condition de degré moyen maximum. Plus précisément, nous utilisons la méthode
des potentiels pour montrer que tout graphe G avec mad(G) < % admet une (Fy, Fy)-
partition. En corollaire, tout graphe de faible genre et de circonférence au moins
égale a 6 admet une (F}, Fy)-partition. Nous savons qu’il existe un graphe planaire de
circonférence 6 qui n’a pas de (Fy, Fy)-partition [4], ou d peut étre un entier non négatif.



Ce fait garantit que l'indice de F} ne peut pas étre amélioré davantage. Pourtant, on ne
sait pas si la classe de Fj peut étre renforcée ou non.
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Chapter 1

Introduction

The 4-color theorem, one of the most outstanding discovery in graph theory, was first
presented as a question by Francis Guthrie in 1852, who tried to color a map with four
colors such that no two adjacent regions have the same color. The problem, which
was so simply described but so difficult to prove, caught a lot of attention of many
mathematicians at the time. After various attempts during more than one hundred
years, a first complete proof, assisted by computer, was achieved by Kenneth Appel and
Wolfgang Haken in 1976. However, the proof was infeasible for a human to check by
hand. Since the first proof, a more efficient algorithm with less configurations have been
found by Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas in 1996.

Based on language of graphs rather than maps, the 4-color theorem can be stated as:
Every planar graph can be properly 4-colored. Based on this statement, there have been
many restatements and generalizations, some of which has motivated the study of this
thesis. One of the most famous equivalent restatement of the 4-color theorem proposed
by Tait is that every planar bridgeless cubic graph is 3-edge-colorable. Later Paul
Seymour proposed a more general conjecture about the edge coloring of planar graphs,
saying that every k-regular planar graph is k-edge colorable if for each set X of odd
number of vertices the edge cut (X,V — X) is of size at least k. Another restatement of
the 4-color theorem regarding graph decomposition is that a planar graph is 4-colorable
if and only if its vertex set can be decomposed into four parts, each part induces an
independent set, which further inspired the study of the vertex decomposition problems
of graphs.

In this thesis, we consider the packing problem which is separating the edge set
of a signed graph, such that the edge subsets are equivalent signatures of the signed
graph, and vertex decomposition problem which is partitioning the vertex set of a sparse
graph, such that the vertex subsets induce specific graphs. Both of these problems
capture the 4-color theorem. We define the packing number of signed graph, and show
that it is captured by specific homomorphism. And then we establish connection to
several well-known problems: e.g. the 4-coloring problem, and Seymour’s edge coloring
conjecture, etc. Finally, we study the vertex decomposition problem of sparse graphs.
More details are shown in the following sections.
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1.1 Seymour’s edge-coloring conjecture

In the late 19th century, P. G. Tait proposed his own proof of the Four Color Theorem,
although the proof was not correct, his efforts resulted in a very important contribution
to graph theory, as it gave an equivalent formulation of the 4-color theorem in terms of
edge-coloring.

Theorem 1.1. [/7] Every planar bridgeless cubic graph is 3-edge-colorable.

Note that this is not true in general for non-planar cubic bridgeless graphs, as shown
by the Petersen graph. Observe that if an r-regular graph is r-edge-colorable, then every
color class is a perfect matching. Therefore, for any vertex set X with odd number of
vertices, the number of edges which has exactly one endpoint in X (i.e. the size of the
edge cut (X, X€)) is at least r. In 1975, P. Seymour conjectured that with the condition
of planarity the opposite statement is also true.

Conjecture 1.1. [/6] Every planar k-graph is k-edge-colorable.

Here a k-graph is a k-regular multigraph such that each set X of odd number of
vertices the edge cut (X, V\X) is of size at least k. Conjecture 1.1 has been verified for
the cases of k < 8. While the cases k = 0, 1, 2 are trivial, the case r = 3 states that every
bridgeless cubic planar graph is 3-edge-colorable. By the result of Tait, this is equivalent
to the 4-color theorem. The case k = 4 and k = 5 were proved by B. Guenin [23] based
on the notion of packing T-joins. However, the work of Guenin remains unpublished.
The next case k = 6 was solved by Dvordk, Kawarabayashi, and Kral’ [18] in 2016.
The proof for the case k = 7 was given by Chudnowsky, Edwards, Kawarabayashi, and
Seymour [14]. The case k = 8 was solved by Chudnowsky, Edwards, and Seymour
[15]. All these proofs for the values k > 4 are based on reductions to the previous case,
therefore, the 4-color theorem is assumed. Furthermore, the proof of cases k = 6,7,8
relies on the unpublished proof of the cases k = 4, 5.

1.2 Homomorphism to signed projective cube

A projective cube of dimension d, denoted by PCg4, is built from a hypercube Hy by
adding a new edge between each pair of antipodal vertices in Hy. Note that Ky is
projective cube of dimension 2. Therefore, 4-color theorem is equivalent to stating that
every planar (simple) graph maps to PCq. In 2007, R. Naserasr conjectured the following,
which is a generalization of the 4-color theorem.

Conjecture 1.2. [3/] Every planar graph of odd-girth at least 2d + 1 admits a homo-
morphism to PCoq.

A signed projective cube of dimension d, denoted by SPCg4, is obtained from PCy by
assigning positive sign to all the edges of the hypercube H, and negative sign to the
edges between each pair of antipodal vertices in Hg. In 2005, B. Guenin proposed the
following conjecture.
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Conjecture 1.3. [2/] Every signed bipartite planar graph of negative-girth 2d admits a
homomorphism to SPCog_1.

Later in 2013, R. Naserasr, E. Rollovd and E. Sopena proved that both the above two
conjectures are strongly connected to Conjecture 1.1 by Seymour about edge-coloring.

Theorem 1.2. [3/] Every planar (2d + 1)-graph is (2d + 1)-edge-colorable if and only
if every planar graph of odd girth at least 2d + 1 admits a homomorphism to PCaq.

Theorem 1.3. [37] Every planar 2d-graph is 2d-edge-colorable if and only if every
planar signed bipartite graph of unbalanced girth at least 2d admits a homomorphism to

SPCaq-1.

1.3 Vertex decomposition of graphs

Let Ci,...,Cy denote k classes of graphs. If V(G) can be partitioned into k vertex
subsets V1, ..., Vi such that the subgraph G[V;] belongs to C; for each 1 < i < k, then
we call such a vertex partition a (Cy, ..., Ck)-partition. For simplicity, we use F, Fj;, A4
and I to denote the class of forests, the class of forests of maximum degree at most
d, the class of graphs of maximum degree at most d, and the class of empty graphs,
respectively. It is obvious that I = Ay = Fy and Ay = Fy. The problem of vertex
partitions of graphs under some restrictions on girth conditions or sparseness has been
widely studied.

The 4-color theorem ensures that every planar graph admits an (I, I, I, I)-partition.
Note that there exists planar graph, for example, the complete graph K4, having no
(I,1I,I)-partition. O. V. Borodin’s result [2] on acyclic coloring in particular implies
that every planar graph admits an (I, F, F')-partition. This is the best in the sense that,
as shown in [7] by G. Chartrand and H. V. Kronk, there are planar graphs which don’t
admit an (F, F)-partition. K. S. Poh [43], in 1990, showed that every planar graph
admits an (Fy, Fy, Fy)-partition.

A. Raspaud and W. Wang [44] proved that every planar graph without k-cycles for
some fixed k € {3,4,5,6} admits an (F, F)-partition. In 2013, M. Chen, A. Raspaud and
W. Wang [8] improved this result to planar graphs without intersecting triangles. Let
PG, denote the family of planar graphs of girth at least g. It has been proved in [33]
that there is a graph belonging to PG4 having no (Ag,, Ag,)-partition for pair of any
non-negative integers dy and ds. In 2017, F. Dross, M. Montassier, and A. Pinlou [17]
showed that every graph in PG, has an (F, F5)-partition.

For a graph in PG5, O. V. Borodin, and A. N. Glebov [3] proved it has an (F, Fp)-
partition. F. Havet and J. S. Sereni [27] proved that it has a (A4, Ay)-partition, and
I. Choi and A. Raspaud [12] proved it has a (A3, As)-partition, these two results have
been improved by I. Choi, G. Yu and X. Zhang [13] by showing that it has a (As, Ay)-
partition. O. V. Borodin and A. V. Kostochka [5] proved that every graph in PG5 has a
(Ag, Ag)-partition. And I. Choi et al. [11] proved it has a (A;, Ajg)-partition. Moreover,
n [12], I. Choi and A. Raspaud put forward the following interesting question.
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Question 1.1. Does every graph in PG5 have a (Ag,, Ag, )-partition for all d + da = 8,
where do > di = 17

Recently, X. Li, J. Liu and J. Lv [31] showed that Question 1.1 is true for the case
that dp = 1 and do = 9. The only remaining cases toward Question 1.1 are that dy =1
and 7 < dp < 8.

For graphs in PGg, a result of R. Skrekovski in [48] implies that every graph in
PGe has a (As, Az)-partition. This was further improved by G. G. Chappell et al. [6]
by proving that every graph in PGg has an (Fy, Fy)-partition. By considering sparse
graphs, O. V. Borodin and A. V. Kostochka [5] obtained that every graph G satisfying
mad(G) < % admits a (A, Ay)-partition. It follows immediately that every graph in
PG admits a (Ay, Ayg)-partition. In the opposite direction, O. V. Borodin et al. [4]
constructed a graph in PGg which has no (Fpy, Fy)-partition, where d is a non-negative
integer.

1.4 Contributions and organizations

1.4.1 Packing signatures in signed graphs

In Part II, we focus on packing problems of signed graphs.

In Chapter 3, we define the signature packing number of a signed graph (G, o),
denoted by p(G,o). First in connection to recent developments on the theory of
homomorphisms of signed graphs we prove that for a signed graph (G, o), p(G,0) = d+1
if and only if (G, o) admits a homomorphism to SPCY, where SPC is obtained from
SPC,4 by adding a positive loop to every vertex. In special cases we have: I. A simple
graph G is 4-colorable if and only if p(G,—) > 2. II. A signed bipartite graph (G, o)
maps to SPCs if and only if p(G, o) > 3 noting that SPCj3 is the same as (K44, M),
that is the signed graph on K, 4 where the set of negative edges forms a perfect matching.
On restriction to planar graphs, I is then a restatement of the 4-color theorem and I7 is
implied by an unpublished work of B. Guenin. After further development of this theory
of packing in signed graphs, we give an independent proof of 11 which works on the larger
class of Ks-minor-free graphs. More precisely we prove that: If G is a K5-minor-free
bipartite simple graph, then for any signature o we have p(G, o) = 4. The statement
is shown to be strictly stronger than the four-color theorem and is proved assuming it.
Furthermore, we show that I cannot be extended to the class of all signed planar simple
graphs. Further development, including algorithmic implications, are considered.

In Chapter 4, we continue using the language of packing number and extend the
technique to verify the case k = 5 of Conjecture 1.1. More precisely, we prove that for
any antibalanced (i.e. switching equivalent to all edges negative) signed planar graph
(G, o) of negative girth at least 5, we have p(G,0) = 5. As the proof of case k = 4, we
first provide a reformulation of the theorem, then we do induction and use different
statements for different directions of the induction.

In Chapter 5, we study a generalization of the packing number. Instead of considering
one signature and its equivalent signatures, we consider k signatures 01,09, . .., 0k (not



Chapter 1. Introduction 6

necessarily switching equivalent) and ask whether there exist signatures o/, 05, ..., 0},
where o7 is a switching of ¢;, such that the sets of negative edges E_, are pairwise disjoint.

It is known that there exists a signed planar simple graph whose paéking number is 1 [28].
Thus for a general planar graph separating two signatures is not always possible even if
01 = 9. In this Chapter, we prove that given a planar graph G with no 4-cycle and any
two signatures o and 7 on G, there are switchings ¢’ and 7’ of o and =, respectively,
such that £, n E_, = @. As a corollary of 3-degeneracy, we could also separate two
signatures on a planar graph with no triangle, or with no 5-cycle or with no 6-cycle.
Moreover, we prove that one could separate three signatures on graphs of maximum
average degree less than 3, in particular on planar graphs of girth at least 6.

1.4.2 Vertex decomposition of sparse graphs

In Part III, we will focus on the vertex decomposition of sparse graphs.

In Chapter 6, we study the vertex decomposition of planar graphs of girth at least 5.
It is known that every planar graph of girth at least 5 admits a (As, Aj)-partition. In
this chapter, we strengthen this result by proving that every planar graph of girth at
least 5 admits an (F3, F)-partition.

In Chapter 7, we study the vertex decomposition of sparse graphs of maximum
average degree condition. More precisely, we use potential method to prove that every
graph G with mad(G) < % admits an (F}, Fy)-partition. As a corollary, every graph
with low genus and girth at least 6 admits an (Fy, Fy)-partition. We know that there
exists planar graph of girth 6 which has no (Fpy, Fy)-partition [4], where d can be any
non-negative integer. This fact guarantees that the subscript of F7 cannot be further
improved. Still, whether the class of Fy can be strengthened or not is unknown.
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Preliminary

A graph is a pair G = (V, E), where V is a set whose elements are called vertices, and E
is a set of paired vertices, whose elements are called edges. The vertices of an edge are
called the endpoints of the edge. An edge having two identical endpoints is called loop. If
two edges have the same endpoints, then they are multiedges. A simple graph is a graph
without loops and multiedges and a multigraph is a graph without loops. The order of a
graph is its number of vertices |V|. The size of a graph is its number of edges |E|. A
subgraph H of a graph G is a graph such that V(H) € V(G) and E(H) < E(G), we
say H is a proper subgraph of G is either V(H) & V(G) or E(H) < E(G). For ScV,
we say that G[S] is an induced subgraph of G which is formed from the vertex set S
and all of the edges connecting pairs of S. For a vertex subset X of V(G), the edge-cut,
denoted by (X, V\X), is the set of edges that have one endpoint in X and have the
other endpoint in V\X.

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn
on the plane in such a way that its edges intersect only at their endpoints. A face of the
graph is a region bounded by a set of edges and vertices in the embedding. We use F(G)
to denote its face set. The degree of a vertex v is the number of edges that are incident
to v, denoted by d(v). The degree of a face f, denoted by d(f), is the number of edges
incident with f (a cut-edge is counted twice). The set of neighbours of a vertex, denoted
by N(v), are all the vertices adjacent to v. A k-vertex (resp. k™ -vertex and k™~ -verter)
is a vertex of degree k (resp. at least k and at most k). The same notation can be
applied to faces. Given a graph G, the minimum degree and maximum degree, denoted
by §(G) and A(G), respectively, are the minimum and maximum among all the d(v)’s
for v € V(G). The average degree of a graph G is defined to be % and the maximum

average degree of G, denoted by mad(G), is defined to be mad(G) = max{% :H < G}.

A walk of graph G is a sequence of vertices and edges, v, ey, v, ..., €,_1, Uk, Such
that 1 < ¢ < k, the edge e; has endpoints v; and v; 41, note that vertices and edges can
be repeated. A walk is said to be a closed walk if the starting and ending vertices are
identical. A path is a walk such that all the vertices are distinct. A cycle is a close walk
such that all the vertices are distinct except the starting and ending vertices. The length
of a walk, path or cycle is the number of its edges. A path or a cycle of length k is call
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a k-path or k-cycle. An odd (or even) cycle is a cycle of odd (or even) length. The girth
of a graph G is defined to be the length of a shortest cycle in G, denote by g(G).

2.1 Signed graph and Homomorphism

Signed graphs were introduced by Harary [25] in 1954. Since then, interest in them has
continued to grow and investigations have branched out in many different directions.
One consistent theme involves considering definitions and theorems concerning ordinary
graphs and seeing how they generalize into the broader class of signed graphs. Sometimes
the generalizations can be quite significant and interesting. (Think about how significant
and beautiful is the generalization of calculus from R to C.)

A signed graph (G, o) is a graph G equipped with a signature o which assigns to
each edge of G a sign (either + or —). When the signature is clear from the context or
can be omitted, we sometimes denote the signed graph by G. An edge with the sign —
is called a negative edge and an edge with the sign + is called a positive edge. Given a
signed graph (G, o), the sets of positive and negative edge of (G, o) is denoted by E}
and E, respectively. Given a labeled signature such as o; in (G, 0;) and when there
is no ambiguity, we may write £;” in place of £, . Given a signed graph (G,o) with
E' = E_, sometime we rather write (G, E’) instead of (G, o). A signed multigraph on
two vertices with two parallel edges of different signs is call a digon.

With {+,—} viewed as a multiplicative group, the key concept that separates a
signed graph from a 2-edge-colored graph is the notion of switching (also referred to as
“resigning” by some researchers). A switching at a vertex v, is to multiply the sign of all
edges incident to v by a —, noting that a loop on v is incident to it from both ends and,
therefore, a switching at v does not change sign of a loop at v. To switch at each of the
vertices of a subset X of vertices of G is to multiply the signs of all the edges in the
edge-cut (X, V\X) by —. A signed graph (G, ¢’) is said to be switching-equivalent (or
simply equivalent) to (G, o) if it is obtained from the other by a sequence of switchings
or, equivalently, by a switching on an edge-cut. It is easily observed that (G, o1) and
(G, 02) are switching equivalent if and only if the symmetric difference E; AE; is an
edge cut of G. Besides, it is straightforward to check that this is indeed an equivalence
relation among all possible signatures.

Given a signed graph (G, o) and a subgraph H of G, (H, o) is said to be a signed
graph which keeps the sign of the edges as (G, o). Moreover, if H is a spanning subgraph
of G and we get (H,0’) from (H, o) by switching at X < V(H), then we say (G,0’) is
obtained from (G, o) by switching at X < V(G) since H is a spanning subgraph of G.
One may easily observe that (H,o') is also a signed graph that keeps the sign of the
edges as (G, d’).

The Sign of a structure in (G, o) is the product of the signs of its edges, considering
multiplicity. Structures of highest importance are cycles and closed walks. Note that
the sign of either of them is invariant under a switching operation and they determine
some crucial properties of a signed graph. An unbalanced or negative cycle (balanced
or positive) in signed graph is a cycle having an odd (even) number of negative edges.
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If every cycle in a signed graph (G, o) is positive, then (G, o) is said to be balanced.
A signed graph (G, o) is said to be antibalanced if (G, —o) is balanced. A theorem of
Zaslavsky says that the set of negative cycles (equivalently the set of positive cycles)
uniquely determines the equivalent class of signatures:

Theorem 2.1. [51] Given two signatures o and o' on a graph G, they are equivalent if
and only if they have the same set of negative cycles.

Closed walks are the key structures of a signed graph. Sign and parity of the length
of closed walks partition them into four categories: positive and even, positive and odd,
negative and even, negative and odd. Given a signed graph (G, o), the length of a
shortest closed walk in each of these categories will be denoted, respectively, by goo(G, o),
901(G,0), g10(G,0), g11(G, o) the logic being that the first index represents the parity
of the number of negative edges and the second represents the parity of the total number
of edges. Furthermore, the length of a shortest negative closed walk will be denoted
by g_(G,0) (i-e., g—(G,0) = min{g10(G,0),911(G,0)}). For each of these parameters,
when there is no closed walk of the type that is considered, the corresponding parameter
is set to be 0.

As long as (G, o) has at least one edge, goo(G,0) is 2 as a traversing an edge in
both direction is always a positive closed walk of length 2. It is not difficult to build
an example of signed graph (G, o) where the value of g;;(G,0) for ij € Z3, ij # 00 is
obtained by a closed walk which is not a cycle. However, at least two of these values,
if they are all bounded, will always be obtained by a proper cycle. More precisely, the
two smallest of the values {g01(G, o), g01(G, ), g01(G,0)} correspond to cycles because
if a shortest closed walk of type ij, ij € {01, 10,11}, is not a cycle, it must be formed of
merging of the two closed walks of types {01,10,11} — ¢j. Thus the only value of g;;
which is possibly not recognized by a cycle is the largest of the three values. This, in
particular, implies that a shortest negative closed walk is always a cycle. Thus g_(G, o)
may also be defined as the length of a shortest negative cycle and referred to as the
negative girth of (G, o). We note that in these definitions a loop is considered as a cycle
of length 1 and two parallel edges form a cycle of length 2.

Given a graph G, the signed graph (G, —) (respectively, (G, +)) is the signed graph
where all edges are negative (positive). For a positive integer I, C_; is a negative cycle
of length [ together with any of its equivalent signatures.We may then denote a positive
cycle of length [ by C.; or simply by Cj.

Given ij € Z3, ij # 00, the class G;; of signed graphs is defined as follows:

Gij = {(G,0) | guj1(G,0) = o for i'j' € Z3 — 00,i'§" # ij}.

In other words, given a signed graph (G, o) € G;;, every closed walk of (G, o) is either
a positive even closed walk or a closed walk whose parity of number of negative edges
and the length are determined by ¢ and j, respectively. Thus, based on Theorem 2.1 we
have:

e Go1 is the class of signed graphs (G, o) which can be switched to (G, +),
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e Gy consists of signed graphs (G, o) which can be switched to (G, —),

e Gy is the class of all signed bipartite graphs.

Each of the first two items can be regarded as a natural embedding of graphs into the
larger class of signed graphs. As p(G, +) = o, the preferred embedding of graphs into
signed graphs in the study of packing signatures is (G, —). This has extra advantage that
works better with minor theory of signed graphs. The class Gy is also of importance for
this study.

2.1.1 Coloring of signed graphs

The concept of coloring of signed graph was first introduced by Zaslavsky [50] in 1981,
which is a natural extension and generalization of vertex coloring of graphs. One of
the most natural notion is 0-free coloring. Given a signed graph (G, o) and a positive
integer k, a 0-free 2k-coloring of (G, o) is a mapping ¢ : V(G) — {£1, £2,...,+k} such
that for any edge e = uv of (G, 0), c(u) # o(e)c(v).

One can easily observe that if (G, o) contains a positive loop, then it does not admit
any proper 2k-coloring for any k. Furthermore, a signed graph (G, o) admits a 0-free
2k-coloring if and only if for every switching equivalent signature o’, (G, o’) also admits
0-free 2k-coloring.

2.1.2 Homomorphism of signed graphs

Homomorphisms of graphs is an important topic within graph theory and its generaliza-
tion to signed graphs hints at an even richer theory.

Given signed graphs (G,o) and (H,7), a homomorphism of (G,o0) to (H,w) is a
mapping ¢ of the vertices and edges of GG to the vertices and edges of H, respectively,
such that adjacencies, incidences and signs of closed walks are preserved. Essentially,
regarding Theorem 2.1, a homomorphism is expected to preserve the signs of cycles,
however, the image of a cycle could be a closed walk rather than a cycle. One should
note that replacing cycles with closed walks in Theorem 2.1 we still have the same
conclusion.

When there exists a homomorphism (G, o) to (H,w) we write (G,0) — (H, 7). A
homomorphism of (G,0) to (H,n) is said to be edge-sign-preserving if, furthermore,
signs of the edges are preserved. When it is needed to distinguish the two notions,
the former might be referred to as switching homomorphism because of the following
connection:

Theorem 2.2. [39] A signed graph (G,o) admits a homomorphism to a signed graph
(H, ) if for a signature o’ on G, equivalent to o, the signed graph (G,o’) admits an
edge-sign-preserving homomorphism to (H, ).

The definition of homomorphism implies a basic no-homomorphism lemma;:

Lemma 2.1. If (G,0) — (H, ), then g;;(G,0) = g;j(H, ™) for every ij € Z3.
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It follows from the definitions and Theorem 2.2 that homomorphisms of signed
graphs generalize the notion of chromatic number of graphs. More precisely, we have
the following observation.

Observation 2.1. Given a graph G, we have x(G) < k if and only if (G, —) — (Kk, —).

This restatement of k-coloring is also helpful to state the Odd-Hadwiger conjecture
of Gerards and Seymour (see for example [21]). Recall that minor of a signed graph
(G, o) is a signed graph obtained from (G, o) by the following four operations: deleting
vertices, deleting edges, contracting positive edges, and switching.

Conjecture 2.1 (Odd-Hadwiger). If (G,—) has no (Kyy1,—)-minor, then (G,—) —
(Kka _>

2.2 Packing number of signed graphs

Given a signed graph (G, o), the signature packing number, or simply the packing number
of (G, o), denoted p(G, o), is the maximum number of signatures oy, o2, ..., 0; such that
each o; is switching equivalent to o and the sets E; are pairwise disjoint. If (G, o) is
equivalent to (G, +), then by taking the all positive signature any arbitrary number
of times, the conditions are satisfied. Hence, in this case we may set p(G,+) = .
Noting that this is a characterization of signed graphs with no negative cycle. For any
other signed graph the packing number is a finite integer, which, moreover, admits the
following basic upper bound.

Lemma 2.2. Given a signed graph (G, o), we have p(G,0) < g—(G,0).

Proof. When (G, o) has no negative cycle, then, by Theorem 2.1, it is equivalent to
(G, +) and in this case both p(G, o) and g_(G, o) are set to be co. Otherwise, let C be
a negative cycle of length g_(G, o) and let 01, 09,...,0; be a packing of (G,0). Then
each o; must assign a negative sign to at least one distinct edge of C, thus proving that
I cannot be more than the length of C. O

The upper bound of this lemma in general can be far from equal. Indeed soon we
will see how to find examples of signed graphs whose girth is as large as one wishes,
but its packing number is 1. Furthermore, we will also observe that to decide if the
equality holds in Lemma 2.2 for a general signed graph (G, o) is an NP-complete problem.
However, the study of sufficient conditions under which the equality in Lemma 2.2 holds
captures a number of well studied theories in graph theory, with the 4-coloring problem
and the Four-Color Theorem being among the most famous ones.

Given a signed graph (G, o), we say it packs if p(G,0) = g_(G, o). Perhaps the most
important signed graph that packs is (K4, —). In Figure 2.1 a 3-packing of (K4, —) is
presented with indication of the switching that has resulted in each of the given signed
graph. Observe that the negative edges of 01, o2 and o3 correspond to the (unique)
proper 3-edge-coloring of K4. This leads to further developments discussed about packing
in this thesis.
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Figure 2.1: A 3-packing of (Ky, —)

On the other hand, as the smallest and perhaps simplest example of a simple
signed graph whose packing number is 1 we have (K5, —). It can be easily checked
that p(K5,—) = 1 and thus p(Kx,—) = 1 for every k > 5. A strong conjecture, (see
Chapter 3, Subsection 3.4.2 for a precise statement) is that under certain restriction this
signed graph is also a minimal signed graph with respect to taking minor and having
packing number 1.

The next lemmas are among earliest observation in the study of packing number of
signed graphs.

Lemma 2.3. Given a graph G which is not bipartite, the packing number of the signed
graph (G, —) is an odd number.

Proof. Since G is not bipartite it has an odd cycle which is a negative cycle in (G, —).
Thus p(G, —) is a finite number. Let o1, 09,...,09 be a packing of even order, that
is to say the sets E;  are pairwise disjoint. Let Ey41 = E(G) — Ef v Ey --- U Ej.
Then it is straightforward to verify that each odd cycle of G intersects E9; 11 in an odd
number of edges and each even cycle intersects it in an even number of edges. Thus, by
Theorem 2.1, the assignment o9;,1 which assigns a negative sign to the edges in Fo; 41
and positive sign to all the other edges produces a signed graph (G, o9,4+1) equivalent to
(G, —). Therefore, the packing number of (G, —) can never be an even number. O

The proof of the next lemma is quite similar to the proof of the previous lemma and
we skip it.

Lemma 2.4. The packing number of any signed bipartite graph is an even number.

The notion of packing signatures of a signed graph is developed from a discussion
between R. Naserasr and T. Zaslavsky. A parallel and somewhat similar study is then
carried on by a N. Lacasse, a Ph.D. student of Zaslavsky. His results are presented
in [30] where the notion of negating set is employed to refer to the set of negative
edges in a signed graph. In recent discussion with D. Cornaz we have learned that an
equivalent form of the notion is mentioned [20]. This formulation together with the main
contribution of [20] to this subject is mentioned in following subsections and Chapter 3.
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2.2.1 Packing negative cycle covers

We point out here that the signature packing number is the same as negative cycle cover
packing number of a signed graph. Based on this equivalence we have the following
theorem of Gan and Johnson which can be regarded as the first result on this subject.

Given a signed graph (G, o), a set CC' of the edges of G is said to be negative cycle
cover of (G, ), or simply a cycle cover of (G, o) if it contains at least one edge from each
negative cycle of (G, o). A collection CCy,CCq,...,CC; of cycle covers of (G, o) is said
to be a cycle cover packing if no pair of them have a common element. The maximum
number of cycle covers in a cycle cover packing is said to be cycle cover packing number
of (G,0). It turns out that the cycle cover packing number of any signed graph is equal
to the signature packing number of it. This claim is immediately followed by employing a
notion of minimality and a correspondence between minimal elements of the two notions.

Given a signed graph (G, ), a signature ¢’ obtained from a switching of o is said
to be minimal if for no other switching o” we have E_, < E_,. Similarly, a cycle cover
CC of (G, o) is said to be minimal if no proper subset of it is a negative cycle cover
of (G, o). Tt is immediate that every equivalent signature of (G, o) contains a minimal
signature and that every cycle cover of it contains a minimal cycle cover. Thus, in each
of the definition of the packing numbers if we restrict ourselves to the minimal elements
of the corresponding set, we have the same result. That the signature packing number
and the negative cycle packing number of a signed graph (G, o) are equal then follows
from the following lemma first proved in [26] (see Theorem 7 of this reference).

Lemma 2.5. Given a signed graph (G,o), every minimal cycle cover is a minimal
signature and vice versa: every minimal signature is a minimal cycle cover.

Restated in our language of packing signatures, one of the results of [20] is to show
that K3, that is the signed graph of Figure 2.2, is a minor minimal signed graph which
does not pack. It is easily observed that p(K2) = 1 while g_(K3) = 2. On the other
hand:

Theorem 2.3. [20] If a signed graph (G,c) has no K3-minor, then it packs, i.e.,
p(G,0) = g-(G,0).

Figure 2.2: p(K3) =1

This result would also follow from the structural result of Gerarad’s from Chapter 3
of [22], where he provide a decomposition theorem for the class of signed graphs with no
K2-minor.
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Packing signatures in signed
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Chapter 3

Packing signed bipartite planar
graphs

This chapter is based on the following paper:

[41] R. Naserasr and W. Yu. Packing signatures in signed graphs. Accepted for
publication in STAM J. Discrete Math., 2023.

The question of determining the packing number, introduced in Chapter 2, in a class
of signed graphs captures or relates to some of the most prominent studies in graph
theory. For example the four-color theorem can be restated as: For every planar simple
graph G we have p(G,—) = 3. Motivated by Seymour’s edge coloring conjecture and its
relation with homomorphism to signed projective cubes, in this chapter, we consider the
packing number of signed bipartite graphs.

In Section 3.1, we first connect the notion of packing number to the theory of
homomorphism of signed graphs. Precisely, we show that for a signed graph (G, o),
p(G,0) = d+ 1 if and only if (G, o) admits a homomorphism to SPCY, where SPC
is obtained from SPC, by adding a positive loop to every vertex. In Section 3.2, we
consider the relation between 4-coloring and packing number. In Section 3.3, we discuss
packing number of signed planar graphs and some conjectures which are generalization
of the 4-color theorem. In Section 3.4, we prove that : If G is a Ks-minor-free bipartite
simple graph, then for any signature o we have p(G, o) = 4. The statement is shown to
be strictly stronger than the four-color theorem and is proved assuming it.

3.1 Signed Projective Cubes

The signed projective cube of dimension d, denoted SPCy, is a signed graph on Z4 as
the vertex set where two vertices are adjacent by a positive edge if they are at hamming
distance 1 and by a negative edge if they are at hamming distance d. That is to say
SPC, is built from the hypercube of dimension d by taking all the edges to be positive

15
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and adding a negative edge between each pair of antipodal vertices. For the sake of
completeness we also define SPCy to be the signed graph on one vertex with a negative
loop. The first few signed projective cubes are depicted in Figure 3.1. For equivalent
definitions of SPC4 and for a proof of the following lemma we refer to [37] and [39].

Figure 3.1: SPC, for d € {0,1,2, 3}

Lemma 3.1. For odd values of d, SPCq € G190 and for even values of d, SPCq € G11.
Moreover g_(SPCq) = d + 1.

Given the signed graph SPCg4, one may label its positive edges by the coordinate that
is the witness of the hamming distance 1 between its two ends and label negative edges
by J. It is easily observed that this labeling is a proper edge-coloring of the underlying
graph PC,. Furthermore, in this edge-coloring each pair of colors induces an edge cut
of PC4. Thus the signed graph (PCy, 7;), where 7; assigns a negative sign to the edges
labeled ¢ for ¢ < d and to the edges labeled J for ¢ = d + 1, is switching equivalent to
SPCy4. As no pair of these d + 1 signatures share a common negative edge, and together
with g_(SPCq) = d + 1 we have:

Lemma 3.2. Given a non negative integer d, the signed graph SPCq packs. More
precisely p(SPCq) = g—(SPCq) = d + 1.

Observe that in the above example of (d + 1)-packing of SPC,4, we not only find
examples of signatures without sharing a negative edge, but also partition the set of
edges of PC, into sets of negative edges of the signatures. It is shown in [37] that the
problem of decomposing edges of a signed graph into d + 1 sets, each corresponding to
the negative edges of an equivalent signature, is equivalent to a homomorphism problem
where the signed graph SPCy plays the role of universal target. More precisely, we have
the following theorem:

Theorem 3.1. [37] Given a non negative integer d, the edge set of a signed graph (G, o)
can be decomposed into d+ 1 sets E1, Fo, ..., Eq.1, with each E; being the set of negative
edges of a switching equivalent signed graph (G, o0;), if and only if (G,0) — SPCy.

Here using a modification on a signed projective cube we introduce a variant of this
theorem which captures packing problems of signed graphs where the edge set is not
necessarily decomposed, but rather a number of disjoint subsets are selected.

Definition 3.1. We define SPCJ to be the signed graph obtained from the signed
projective cube of dimension d by adding a positive loop to each of its vertices.
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Figure 3.2: SPCY for d € {0,1, 2, 3}

The first few examples of SPCy are given in Figure 3.2.

Theorem 3.2. Given a non negative integer d, for a signed graph (G,o), we have
p(G,0) =d+ 1 if and only if (G,0) — SPCY.

Proof. Let (G,0) be a signed graph. First suppose (G,0) — SPCY. Following the
discussion on equivalent signatures of SPCy, we denote by (SPCY, ;) the signed graph
on SPC; where for i = 1,2,...,d, the edges labeled ¢ are the negative edges and for
i = d + 1 the edges labeled J are the negative edges. Then for each 7,7 =1,2,...,d+ 1,
the set of edges of G mapped to the negative edges of (SPCY, m;) forms the set of negative
edges of a signature o; of G which is equivalent to o. As these sets are disjoint, we have
p(G,o) =d+1.

For the inverse assume that p(G,0) = d + 1. Thus there are at least d + 1 signatures

01,09,...,04+1 such that each o; is switching equivalent to o and the sets E,” are
d+1
pairwise disjoint. Let E' = E(G) — | J E; . Let G’ be the graph obtained by contracting

i=1
all edges in E'. Let o} be the signature on G’ induced by the signature o; on G; that is

to say the set of edges assigned a negative sign by o is the set E; .

We claim that each pair of o} and a§ are switching equivalent signatures on G’. This
follows from discussion in Section 4 of [51], and can verified directly as well. Since o; and
o; are switching equivalent signatures on G, there is a cut (X, V\X) in G such that if
(G, 0;) is switched on X we get (G, 0;). As an edge uv of E’ is positive in both of these
signatures, u and v should either be both in X or both in V\X. Thus by contracting
the edges in E’ the edge cut (X, V\X) would induce an edge cut (X', V(G')\X’) of G'.
Starting with the signed graph (G’, o), a switching on the edge cut (X', V(G')\X’)
would then result in (G’,07%), thus proving that o; and o’ are switching equivalent.

Thus the edges of G’ are decomposed into d + 1 disjoint parts as the negative edges
of the signatures o}, and, therefore, by Theorem 3.1, (G, 07) admits a homomorphism
to SPCy4. This then easily extends to a homomorphism of (G,o01) to SPC§ by noting
that the edges in E’ are positive in (G, 01) and are mapped to the positive loops. [

Following the proof technique of Lemmas 2.3 and 2.4 we have the following lemma
which connects Theorem 3.1 and Theorem 3.2.
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Lemma 3.3. A signed graph (G, o) belongs to Gio u G11 if and only if its edge set can
be partitioned into sets Ey, Es, ..., E;, for some integer |, each of which is the set of
negative edges of a signature o; equivalent to o.

Theorem 3.3. Given a signed graph (G, o) of packing number d + 1, we have (G,0) €
glo U gn Zf and only lf (G,U) - SPCd

3.2 4-coloring of graphs and Packing signed graphs

Since SPCy is switching equivalent to (K4, —), and considering the fact that for a non
bipartite graph G the packing number of (G, —) is always an odd number we have the
following.

Theorem 3.4. A graph G is 4-colorable if and only if p(G,—) = 2.

Proof. If G is bipartite, then p(G, —) = 0 and G is 4-colorable, in which case there is
nothing left to prove. Thus we assume G is not bipartite.

A graph G is 4-colorable if and only if it admits a homomorphism to Ky. By
Theorem 2.2, that is to say: A graph G is 4-colorable if and only if the signed graph
(G, —) admits a homomorphism to (K4, —). Since (K4, —) is switching equivalent to
SPCq, we have: a graph G is 4-colorable if and only if (G,—) maps to SPCy. As
(G,—) € Gi1, by Theorem 3.3 and Theorem 3.1, G is 4-colorable if and only it has
packing number at least 3. Finally, since (G, —) € Gi1, and by Lemma 2.3, a graph G is
4-colorable if and only if (G, —) has a packing of order 2. O

Using the four-color theorem, or rather a strengthening of it on the class of Kjs-
minor-free graphs, and by Lemma 2.3, we have the following corollary.

Corollary 3.1. Given a Ks-minor-free graph G with no loop, we have p(G,—) = 3.

Given a graph G, a signed bipartite graph S(G) is defined as follows: vertices of
S(G) consist of vertices of G as one part of S(G) and for each edge uv two vertices
labeled Xy, Yuy on the other part of S(G). For each edge uv of G then we build a 4-cycle
ULy VYup- The signature of S(G) is an assignment 7y which assigns a negative sign to
exactly one edge of each 4-cycle of the constructed bipartite graph. We note that the
choice of 7 is arbitrary and that different choices are not necessarily switching equivalent
but they result in (switching) isomorphic graphs. This construction was first introduced
in [38]. The following theorem is implied using a result of [38] and Theorem 3.3.

Theorem 3.5. Given a simple graph G, we have p(G,—) = 3 if and only if p(S(G)) = 4
(for any choice of ).

Thus to prove that p(S(G)) > 4 is the same as proving that G is four-colorable.
Noting that for every planar graph G, the associated signed graph S(G) is a signed
bipartite planar graph, to claim that every signed planar simple bipartite graph has
packing number at least 4 is stronger than the four-color theorem. This is proved to be
the case and is discussed in more details in the next section.
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3.3 Packing signed planar graphs

An example of a signed planar simple graph which does not map to SPCY is given in
[36]. Combined with Theorem 3.2 we have the following.

Proposition 3.1. There exists a signed planar simple graph (G, o) satisfying p(G, o) =
1.

Thus in Corollary 3.1, the assumption on the signature, i.e., that (G,0) € Gi1, is
essential. However, with this kind of restriction a generalization of the 4CT can be
proposed as follows.

Conjecture 3.1. Every signed planar graph in Gi11 U Gig packs.

That is to say: given a signed planar graph (G, o) € G11 U Gio, the packing number
of (G, o) is equal to the negative girth of (G, o). We note that a signed connected graph
is in G117 U Gy if it has no positive odd closed walk, i.e. go1(G,0) = 0.

From the discussion of Section 3.1 it follows that Conjecture 3.1 is equivalent to:

Conjecture 3.2. Given a signed planar graph in Gi1 v Gio, if g—(G,0) = d + 1, then
(G,0) = SPCy.

This conjecture, which is partly proposed in [34] and partly in [24], is shown [34]
and [37] to be equivalent to the following conjecture, which is a restricted version of P.
Seymour.

Conjecture 3.3. Given a k-reqular planar graph, it is k-edge-colorable if for each set
X of odd number of vertices the edge cut (X, V\X) is of size at least k.

It is easily observed that the connectivity condition in this conjecture is necessary.
The conjecture is a generalization of Tait’s reformulation of the 4CT. Thus the case
k = 3 is implied by the 4CT. The cases k = 4,5 were settled by B. Guenin, in 2002 using
the notion of packing T-joins but it remains unpublished. The claimed proof is based on
induction on k, thus the 4CT (the case k = 3) is assumed. The result is extended by
several authors for £k = 6,7,8. Our result in this work, based on the notion of packing,
implies a proof of the case k = 4. Our proof has some similar elements to that of Guenin.
There are advantages in our approach, a notable one being that: since faces are not
needed, our result works for any minor closed family of 4-colorable graphs. The largest
of those is the class of K5-minor-free graphs, but taking some smaller class one may get
a proof without using the 4CT. More precisely we prove that:

Theorem 3.6. Any signed bipartite simple Ks-minor-free graph has a packing number
at least 4.

To prove Theorem 3.6 we establish a number of lemmas that could be of use for the
general case of Conjecture 3.1. These are collected in the next section.
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3.4 Packing and minors

The advantage of Conjecture 3.1 is that induction on the negative girth looks possible
and indeed we will prove the case of negative girth being 4 use negative girth 3 (which
is equivalent to the 4CT). This is based on the following easy lemma. We recall that for
a subset Fp of the edges of a graph G, the graph obtained from contracting all edges in
G is denoted by G/Ej.

Lemma 3.4. Let (G,01) and (G, o)) be two switching equivalent signed graphs with no
common negative edge. Then p(G,o01) = p(G/Ey, EY) + 1, where Ey and E) are the sets
of the negative edges of (G,01) and (G, o)), respectively.

Proof. Let 09,03,...,0,+1 be k signatures on G/E; such that each is equivalent to
(G/E1, EY) and that no pair of them have a common negative edge. Let Es, Ej, ..., Exi1
be the set of negative edges in (G/E1,09), (G/E1,03), ...,(G/E1,0k+1), respectively.
Then it is quite straightforward to check that (G, E1), (G, E2), (G, Es), ..., (G, Ex11)
is a packing of (G, 071). O

In applying this lemma one should note that if (G,o1) is in Gi1, then (G/E,, EY)
is in Gyp and that conversely, if (G,o01) € Gio, then (G/Eq, E7) € G11. Thus if we are
attempting to prove that for a minor closed family C of graphs, every signed graph (G, o),
(G,0) € Gi11 U Gip and G € C, packs, then in an approach which is based on induction
on the negative girth of (G, o), assuming the claim holds as long as g_(G,0) < k, and
given a signed graph (G, o) in the class satisfying g_(G,0) = k + 1, it would be enough
to find signatures o1 and of, each equivalent to o and such that g_(G/E1,07) = k.

When (G, o) is in Gy, finding o] or rather Ej] is quite simple, it would be enough to
set B : E\E;. Thus in this case the main task in hand would be to find an appropriate
o1. When (G, 0) is in Gq1, then we must provide both o1 and o} when applying this
technique. However, in this case finding ¢’ can also be done with a condition on oy: let
(G,01) be a switching of (G, —) with the property that every negative cycle of (G, —),
that is every odd cycle of G, has at least one (therefore, at least 2) positive edges. Thus
in the minor (G/E1) of G every negative closed walk of G has an image which is a
nontrivial closed walk of G/E;. The set of all these closed walks have a @-property:
that if we take three x — y walks P, P> and P5, then of the three closed walks Pj P,
P, P; and P»Pj either none or exactly two of them are in the set. Then it follows from
Theorem 10 of [39] that this set of closed walks is the set of negative closed walks of
a signature on G/F;. Taking E] as the set of negative edges of such a signature then
works.

Thus based on this discussion, Conjecture 3.1 is equivalent to the following conjecture:

Conjecture 3.4. Given a signed planar graph (G, o) € G11 U Go, there is an equivalent
signature o1 such that every negative cycle of (G, o) has at least g— (G, o)) — 1 positive
edges.

Theorem 3.7. Conjecture 3.1 and Conjecture 3.4 are equivalent.
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Proof. That Conjecture 3.1 implies Conjecture 3.4 is straightforward: if o1, 09,...,0%
is a packing of (G, o), then any of ¢;’s satisfies the condition of Conjecture 3.4: every
negative cycle of (G, ;) has at least one negative edge in each of (G, 0;), j # 4, all of
which are positive in (G, 0;).

Suppose Conjecture 3.4 holds. Let (G, o) be a counterexample to Conjecture 3.1 of
minimum possible negative girth, say k. By the statement of Conjecture 3.4 there is a
switching equivalent signature o; where each negative cycle has at least £ — 1 positive
edges. Considering the signed graph (G/FE1,0]), where o is a signature equivalent to
o but disjoint from it, the negative girth is k — 1. By our choice of (G, o), which has
minimal negative girth among all counterexamples, (G/E1,0}) packs. Thus there are
signatures g, 03, .. .0, where no pair of them have a common negative edge. Together
with E1q, then they correspond to signatures o1, 09, ..., 0 proving that (G, o) packs. [

Following this formulation, given a signed graph (G, o) of negative girth k, a negative
cycle whose number of positive edges is (strictly) less than & — 1 will be referred to as
super negative cycle. Thus Conjecture 3.4, and, therefore, Conjecture 3.1, are to say
that any planar signed graph (G, o) € Gi1 U Gio can be switched so that it has no super
negative cycle.

There are a couple of important remarks to make here: first is that we did not really
use the assumption of planarity here, rather we used the fact that we are working with
a minor closed family of graphs, or even more precisely, we want the minor G/E; to
be in our family. The second remark is that if we restrict both conjectures on subclass
of signed graphs of negative girth at most k, then these restricted versions are still
equivalent.

Following these observation, we would like to work with a minor closed family C of
graphs such that any signed graph (G, o) with G € C and (G, o) € G11 U G packs. If we
take all signed graphs (G, —) in this family, where G is a simple graph, then the fact that
(G, —) packs implies, in particular, that G is 4-colorable. Thus, in particular, K5 is not
in C and as C is a minor closed family, we are working with a subclass of K5-minor-free
graphs. One may assume that C is indeed the class of Ks-minor-free graphs, but there
is advantage in this general statement which will be pointed out in Subsection 3.4.2.

Before continuing, we state a couple of facts on Ks-minor-free graphs.

The first is the following classic theorem of Wagner on characterization of K5-minor-
free graph. Here W is the graph of Figure 3.3.

Figure 3.3: Wagner graph
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Theorem 3.8. (Wagner) Every edge-mazximal graph with no Ks-minor can be obtained
by means of 3-sum and 2-sum, starting from planar triangulations and copies of W.

A 3-sum of two graphs G and H is to identify the vertices of one triangle of G with
the vertices of a triangle of H. Similarly, their 2-sum is to identify the vertices of an
edge from G with the vertices of an edge from H. A first and classic corollary of this
decomposition theorem is that, the four-color theorem can be extended to the class of
Ks-minor-free graphs, this is a classic application of this decomposition theorem. A
second corollary is to extend the application of the Euler formula to bound the number
of edges of a triangle-free members of the class, we give a proof of this folklore fact for
the sake of completeness.

Proposition 3.2. If G is a Ks-minor-free graph of girth at least 4, then |E(G)| <
2|lV(G)| — 4.

Proof. First we build a graph G’ from G by adding edges to make it edge-maximal
while it remains K5-minor-free. Obviously, G is a spanning subgraph of G’. Then by
Theorem 3.8, G’ is obtained from 3-sum or 2-sum of planar triangulations and copies of
W. Suppose G’ is obtained by clique-sums of G, G5, ..., G.. Without loss of generality,
let G7 be the clique-sums of G, ..., G.. Let G; be the subgraph of G/ contained in G,
let H; be the subgraph of G/ contained in G. Then G = Gy, and it suffices to prove that
‘E(Gn)’ < 2’V(Gn)‘ —4.

We first claim that the inequality holds for each H;. That is because each H; is
either planar and triangle-free, in which case |E(G1)| < 2|V (G1)| — 4 by application
of the Euler formula, or it is a spanning subgraph of W, and the inequality holds for
W itself. Thus in particular G; = H; satisfies the conditions. We complete the proof
by induction on i, showing that each G; satisfies the bound. That is because if G/ is
obtained from 3-sum of G7_; and G, then G; is formed from G;_1 and H; by identifying
three vertices and at most two edges. Since they both satisfy the inequality, G; also
satisfies it. If GY is obtained from 2-sum of G}_; and G}, then G; is formed from G;_;
and H; by identifying two vertices and at most one edge, and similarly, G; also satisfies
the inequality. O

We are now ready to state and prove the following.

Theorem 3.9. Let C be a minor closed family of graphs whose members are 4-colorable.
Then for any bipartite simple graph G in C and for any signature o we have p(G,0) = 4.

Proof. Assume that (G, o) is a minimal counterexample to the theorem. That is to say
that G is a simple bipartite graph in C with a signature o such that p(G,o) = 2 and
that for any edge e of G, the signed bipartite graph (G — e, o) has packing number at
least 4.

Here the signature in (G — e, o) is the restriction of the signature of (G, o), thus,
with a minor abuse of notation, we use o to denote both. Furthermore, if (G — e,0”) is
obtained from (G — e, o) by switching at a subset X of vertices, then we may use (G, 0”)
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to denote the signature which is obtained from (G, o) by switching at the same vertex
set X, in this case (G — e,0’) will be induced signed subgraph of (G, o’).

With this notation and with the assumption on the minimality of (G, o), we conclude
that for each edge e of G, there are four signatures o1, o9, o3 and o4 such that any pair
of them either have no common negative edge, or e is their only common negative edge.
We recall, by Theorem 3.7, (G, o) is also a minimal counterexample to Conjecture 3.4.
As we are considering negative girth to be 4, given a signature, a super negative cycle
is a negative cycle with only one positive edge. If for any signature equivalent to o, in
particular for one of the signatures o, i = 1,2, 3, 4, the signed graph (G, o;) has no super
negative cycle then we are done. On the other hand (G — e, 0;) has no super negative
cycle for i = 1,2, 3,4 because each negative cycle has at least one negative edge in each
o; which is a positive edge in the other three signatures. Thus each (G, 0;), i = 1,2,3,4,
must have a super negative cycle which contains e.

One easily observes that replacing a signature o;, ¢ = 1,2,3,4, with a minimal
signature contained in o; may only decrease the number of super negative cycles. Thus
we may assume each o; is a minimal signature. This in particular implies that:

not all edges incident to the same vertex are negative in a given o;. (3.1

)

Let e = uv be an edge where d(u) = 2. Let 01, 09, 03, 04 be a 4-packing of (G —e, o)
consisting of four minimal signatures. We claim that, for each signature o;, ¢ = 1,2, 3,4,
at least one super negative cycle C; in (G, 0;) has the following property:

P1. Except possibly the two vertices of the only positive edge of Cj, every (other)
vertex of C; has a degree at least 4 in G.

Since o;’s are assumed to be minimal, and by (3.1), in none of (G, 0;) the two edges
incident to u are negative. They cannot be both positive either, as otherwise (G, ;)
has no super negative cycle and we are done. If necessary by switching at u we may
assume e = uv is the negative edge in each of (G, 0;) and that the other edge incident
to u, say uw, is positive in all of them. We now consider a super negative cycle C; of
(G, 0;). Observe that, as this cycle must contain e, and since u is a vertex of degree 2,
it must also contain ww, and thus ww is its only positive edge. Let = be a vertex on
C; which is of degree 2 or 3 in G and z ¢ {u,w}. Then x is not of degree 2 because of
(3.1), thus d(x) = 3. Let zy be the edge incident to = which is not on C;. Observe that,
again by (3.1), xy is a positive edge of (G, 0;). Moreover, as x ¢ {u,w}, xy is distinct
from ww. Thus no super negative cycle of (G, 0;) contains the edge zy. Let o} be the
signature on G obtained from a switching at the vertex x. Observe the following 3 facts:
1. C; is not a super negative cycle in (G, 0}), 2. Because = ¢ {u,w}, the number of
positive edges incident to u is not decreased but it may have gone up if z = v. 3. If C}
is a super negative cycle of (G, 0’), then C! is also a super negative cycle of (G, 0;) and
moreover, signs of each edge of C/ are the same in both (G,0;) and (G, 0}). Thus if a
super negative cycle of (G, o)) satisfies the conditions of P1 then we are done, otherwise
we repeat the process. As we are working with a finite graph, and the number of super
negative cycles is finite, at the end either we find a super negative cycle that satisfies
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the conditions of P1, or we obtain a signature with no super negative cycle in which
case we can find a packing of four signatures and we are done.

In conclusion, we have a 4-packing o1, 09, 03, 04 of (G — e, o) with the property that
each (G,0;), i = 1,2,3,4, contains a super negative cycle C; in which uw is the only
positive edge, and, except for u and w, every other vertex on C; is of degree at least 4 in
G. Let x; be the neighbour of v on C; distinct from u. Observe that as G is bipartite, x;
is also distinct from w. We observe, furthermore, that any pair of the signatures o; and
gj, 1,7 € {1,2,3,4}, can only have e = uv as the common negative edge. We conclude
that v has (at least) four neighbours each of which is of degree 4.

This argument can be repeated exchanging the roles of v and w, thus we conclude
that:

Claim 3.1. For each vertex u of degree 2, each of its neighbors v and w has four
neighbors each of degree at least 4.

Next we aim to prove a similar claim for the neighborhood of a 3-vertex. Proofs are
quite similar, but we need to take care of further details.

Let u be a vertex of degree 3 and let v, w and t be its three neighbors. Consider

= wv and let o1, 09, 03, 04 be a 4-packing of (G — e, 0) consisting of four minimal
signatures. We first observe that in each of (G,0;), i = 1,2,3,4, not all three edges
uwv, uw,ut are of a same sign. That is because three of them being negative would
contradict our choice of ¢;’s being minimal and three of them being positive will leave
no room for a super negative cycle in (G, 0;) containing uv, noting that there is also no
super negative cycle in (G — e, 0;) by our choice of o1, 02, 03, 04. If for any of o; the
signed graph (G, 0;) contains two negative edges incident to u, then we will switch at u
to get a signature o7.

So altogether we will work with signatures o/, o}, 0%, o) such that in each signed
graph (G, o}), the signature o) assigns one negative and two positive signs to the edges
wv,uw,ut and o) is either the same as o;, or is obtained from o; by switching at w.
Observe that, by the choice of 0y, i = 1,2, 3,4, any pair of signatures among o}’s have at
most one common negative edge, and if so, that edge is one of uv, uw, ut. We may further
modify o}’s to have them as minimal signatures. One may remind the reader again
that replacing a o] with potentially minimal subset would not create a new intersection
among o}’s and that the only affect such a replacement may have on super negative
cycles is to kill off some.

We claim again that, for each signature o}, i = 1,2, 3,4, at least one super negative
cycle C; in (G, o)) has the following property: every vertex of C; not incident with the
positive edge of C; has degree at least 4 in G.

To prove the claim we first note that C; is also a super negative cycle of (G, ;).
That is because first of all edges not incident to u that are negative in (G, o}) are also
negative in (G, 0;). Secondly, since the only positive edge of C; is incident to u, each
edge of C; which is not incident to u is negative in both (G, o}) and, therefore, in (G, 0;).
Thirdly, since C; is a negative cycle of (G, o), and as G is bipartite, in both (G, o;) and
(G, 0f) one of the two edges incident with w is positive and the other is negative.
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We conclude two facts from this: 1. that every super negative cycle of (G, o}) must
contain the edge uv, and, therefore, 2. the positive edge of every super negative cycle of
(G,0}) is incident to u. We note that this is not necessarily true for (G, 0;).

We now consider a shortest super negative cycle C; of (G, 0}) and assume that it
contains a vertex z not incident to the positive edge of C; and that d(x) < 3. Once again
by the fact that o} is a minimal signature, we conclude that = must be of degree exactly
3 and that the edge xy which is the edge incident with x but not in C; must be positive.
We claim that y # u. Otherwise, since C; must contain u as well, zy is a chord of C;.
Then xy creates two cycles with C; and the part that does not contain the positive edge
of C; is a super negative cycle of (G,o}) but it is shorter than Cj, contradicting the
choice of C;.

That y # u implies that no super negative cycle of (G, o}) contains zy. Let o/ be the
signature obtained from a switching of (G, o}) at x. What we have observed is that: 1.
C;, which was a super negative cycle of (G, 0}), is not a super negative cycle in (G, o),
and 2. for every super negative cycle C of (G, o) each edge of C has the same sign in
(G,0) and (G,o}). We observe that ¢/ is not necessarily minimal, however, replacing
it with a minimal signature can only kill off some super negative cycles without any
change on the signs of edges of the remaining one. Thus the remaining super negative
cycles are the super negative cycles of (G, o)) without any change to the signs of their
edges. We continue this process, if we end up with a signature where there is no super
negative cycles, then we have found a 4-packing of (G, ). Else we must end up with a
super negative cycle C/ where each vertex not incident with the positive edge of C is of
degree at least 4 in (. Since we have retained the sign of super negative cycles during
the process, C/ is also super negative cycle of (G, o)) with the property that each vertex
not incident with the positive edge of C! is of degree at least 4 in G. We recall that each
super negative cycle of (G, o}) must contain the edge e = uv and that its only positive
edge must be incident to w. Thus if vz;, z; # u, is an edge of C/, then z; is of degree at
least 4 in G. As this must be true for every i, ¢ = 1,2, 3,4, we have proved the following
claim.

Claim 3.2. If v is a vertex of degree 3 in G, then its nieghbors x, y and z each has at
least four neighbors of degree at least 4.

We may now employ the discharging technique to obtain a contradiction.
Discharging procedure
The initial charge of each vertex v is defined as: w(v) = d(v). As G is Ks-minor-free
and bipartite (thus triangle-free), by Proposition 3.2, we have Z w(v) < 2|V(G)| —-8.
veV (G
However, the following discharging rule will redistribute Charges( szlch that each vertex
has a charge of at least 4, contradicting this formula.

(R1) Each vertex of degree 2 or 3 receives a charge of 1 from each of its neighbors.

Our two claims imply that for vertex v of degree 2 or 3 all neighbors are of degree
at least 5, and thus while v gets a charge of 1 from each of its neighbors, it looses no
charges, and thus has a final charge of at least 4. On the other hand a neighbor of such
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a vertex v has at least four vertices each of which is of degree at least 4, thus its charge
will never go below 4. O

Corollary 3.2. Any signed bipartite Ks-minor-free graph admits a homomorphism to
SPCs.

3.4.1 Algorithmic conclusion

We recall that the proof of the four-color theorem provided in [45] leads to a quadratic
time algorithm for 4-coloring of planar graphs. More precisely, that is an algorithm
A which takes as an input a simple planar graph G and gives as an output a proper
4-coloring of G, in time O(|V (G)|?). Using the Wagner decomposition theorem, this
works on the class of Kz-minor-free graphs as well. This is equivalent to giving a
3-packing of the signed graph (G, —) as we discussed before. We may then use this
algorithm to give an algorithm BP which takes as an input a signed bipartite planar
simple graph (G, o) and gives, as an output, a 4-packing of (G, o) in time O(|V(G)?).
This follows easily from our proof: Since G is planar, bipartite and simple, it has at most
2n — 4 edges. We may simply assume G is 2-connected as one may combine solutions on
distinct 2-connected blocks. Our discharging proof implies that G has either a vertex
v of degree 2 where at least one of the neighbors, say z, has at most 3 neighbors of
degree at least 4, or it has a vertex u of degree 3 each of whose neighbors have at most
3 neighbors of degree 4 or more.

Having found such a vertex v or u, that can be done in a linear time, we remove
from (G, o) an edge e incident to v or u. Assume a solution o1, 02, 03,04 is provided
for (G — e,0). By the proof given in the previous section we know one of the four
signed graphs (G, 01), (G, 02), (G, 03), (G, 04) has no super negative cycle. This can be
verified by checking for a loop in the graphs G/Ey, G/E2, G/E3 and G/Ey4, noting that
contracting these edges and looking for a loop can all be done in linear time. Suppose
G/Ej4 has no loop. Then we apply algorithm A on the graph G/FEj to get signatures o},
ah, ob. These three signatures together with o4 form a 4-packing of (G, o).

To find a solution for (G — e, o), which we had assumed in the argument above, one
may repeat the same process. Assuming G is on n vertices, since G has at most 2n — 8
edges, the algorithm A might be recalled at most 2n — 8 times. As algorithm A runs in
time O(n?), the running time of the full algorithm is O(n?).

Mapping a signed bipartite graph (G, o) to SPCs, given a 3-packing o1, 09,03, can
be done in linear time: label negative edge in (G, o1) by 001, those in (G, 02) by 010,
ones in (G, o3) by 100 and then label the remaining edges 111 noting that they form the
negative edges of an equivalent signature. Observe that sum of the labels of the edges in
each cycle is 000. Now for each connected component of (G, o) take an arbitrary vertex,
say z and map it to the vertex 000 of SPC3. Then for a vertex y in the same component
as x, take an zy path P and map y to sum of labels of edges of the path P. It can be
readily verified that this is a mapping of (G, o) to SPCs.

We note that the algorithm works the same for signed bipartite Ks-minor-free graphs.
However, the planar case has the following application on the dual.
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Corollary 3.3. Given a 4-reqular planar multigraph G where each set X of odd number
of vertices is connected to V\X by at least 4 edges, we have X'(G) = 4. Moreover, a
4-edge-coloring can be found in time O(|F(G)|3), where |F(G)| is the number of faces of
G.

3.4.2 Concluding remarks

We introduced the notion of packing signatures in signed graph and we established
connections with a number of problems such as 4-coloring of graphs, edge-coloring of
planar graphs, etc.

We proved that given a minor closed family C of 4-colorable graphs, for any bipartite
simple graph in C and any signature o on it, the packing number of (G, o) is at least
4. The largest family to which this result may apply is the class of Ks-minor-free
graphs where 4-colorability of a general member is established by the four-color theorem.
However, if we take smaller classes where 4-coloring can be verified without the use of
the four-color theorem, then the result on the packing number will also be independent
of the four-color theorem. An interesting case to mention is the following.

Theorem 3.10. Given a signed bipartite simple graph (G, o) where G has treewidth at
most 3, we have p(G,0) = 4.

Corollary 3.4. Every signed bipartite simple graph of treewidth at most 3 admits a
homomorphism to SPCs.

The class of graphs of treewidth at most 3 is a minor closed family of graphs that
is a subclass of K5-minor-free graphs. More precisely, as proved in [1], it consists of
graphs which do not have any of the four graphs of Figure 3.4 as a minor. That loop-free
members of this class are 4-colorable follows from the fact that edge-maximal elements
are 3-trees. Thus Theorem 3.10 is proved without using the four-color theorem.

WP T A

Figure 3.4: Forbidden minors for graphs of treewidth at most 3

On the other hand, it would be expected that a stronger version of Theorem 3.9
would hold. Such a strengthening would be based on the notion of minor of signed
graphs rather than minor of graphs. More precisely the following conjecture is stronger
than Conjecture 3.1.

Conjecture 3.5. Given a signed graph (G,o) € Gi1 v Gio, if (G,0) has no (Ks5,—)-
minor, then it packs.



Chapter 3. Packing signed bipartite planar graphs 28

The idea of induction on the negative girth would work here as well. That is because
if o1 and oy are two disjoint signatures each equivalent to (G, o), then (G/E1, E») is a
minor of (G,0), and if (G, o) € G11 U Gip, then (G/E1, E2) € G11 U Gip.

However, the class of signed graphs with no (K5, —)-minor is not a sparse family
and contains signed graphs with O(n?) number of edges. Thus one cannot expect
the discharging technique we used here to work directly. However, one may look for
decomposition results where the planar case studied here would work as a base class.



Chapter 4

Packing antibalanced
triangle-free signed planar graphs

This chapter is based on the following paper:

[40] R. Naserasr and W. Yu. On the packing number of antibalanced signed simple
planar graphs of negative girth at least 5. Submitted, 2022.

As introduced in Chapter 3, the following conjecture is a reformulation of Conjec-
ture 1.1, which is an extension of the 4-color Theorem.

Conjecture 4.1. Every signed simple planar graph in Gi1 U Gio packs.

In the subclass of planar graphs the conjecture can restated using the dual notion of
packing T-joins where T" would be vertices of the dual that correspond to the negative
faces of the planar embedding. The statement of the conjecture based on the notion
packing T-join was first proposed by B. Guenin in early 2000’s who then gave a proof of
the next two cases. In our language that would be proving the conjecture for members
of the class whose negative girth is 4 or 5. The T-join approach is extended in three
follow up work which means that the conjecture is proved for the cases with negative
girth at most 8. We note that proof for each case of girth condition relies on the proof
for the earlier cases, thus dependent on the proof of the 4-color theorem. However, the
work of Guenin remains unpublished and mostly not available.

An independent proof for the case of girth 4 is given in Chapter 3. This proof has
extra advantage that works for any minor closed family that are 4-colorable. Thus, on
the one hand it works for the larger family of K5-minor free graphs, and, it provides a
proof with the use of the 4-color theorem for subclasses such as graphs of treewidth at
most 3.

In this chapter, we continue using the language of packing number and extend the
technique as last Chapter to verify the case of negative girth 5 of Conjecture 4.1. More
precisely, we prove that for any antibalanced signed planar graph (G, o) of negative
girth at least 5, we have p(G,o) = 5. In Section 4.1, we first give some notions and then

29
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give full picture of the proof, start with providing a reformulation of the theorem and
then we do a double induction and use different statements for different directions of the
induction. In Section 4.2, we stablish a rich enough structure around vertices of degree 2
and 3 to apply discharging technique in Section 4.3 and finally get a contradiction with
Euler’s formula.

4.1 Preliminaries

Given a signed graph (G, o) of negative girth k, a negative cycle C' of it is said to be super
negative if it has at most k — 2 positive edges. The key property of a super negative cycle,
relevant to this study, is in the following observation. Let ¢’ be a signature equivalent to
o but disjoint from it, one can easily find such a signature using following Theorem 4.1.

Theorem 4.1. Given signed graph (G,o) and a set o1,...,0, of signatures each equiv-
alent to o, there exists a signature o’ which has no common negative edge with any of
(G, 03)’s if and only if the set U]_, E; induces a bipartite graph.

Let G/, be the graph obtained from G by contracting the negative edges of o and let
o’ be the signature on G /o where the negative edges of it are the images of the negative
edges of (G, 0’). That (G/,,0") is well defined because the two signatures do not share a
negative edge. Now a negative cycle C' in (G 4, 0’) is of length less than or equal to k — 2
if and only if it is the image of a super negative cycle of (G, o). This is the key point in
showing that the following is equivalent to Conjecture 4.1. We refer to Chapter 3 for
more details.

Conjecture 4.2. Any signed planar graph in Gi1 U Gio admits an equivalent signature
o' where (G,0’) has no super negative cycle.

We shall note that the property of having no super negative cycle is a homomorphism
property in the following sense: Suppose (H, ) is a signed graph where every negative
cycle has at least [ positive edges. If a signed graph (G, o) maps to (H,7), then there is a
signature o’ equivalent to o such that in (G, ¢’) each negative cycle has at least [ positive
edges. One such choice for ¢’ is by taking inverse image of = under the homomorphism
of (G,0) to (H,n).

This observation and Theorem 3.2 imply that given an integer k£, a minimum
counterexample (G, o) of negative girth k to each of Conjecture 4.1 and Conjecture 4.2
must have no proper homomorphic image which satisfies all three conditions: It negative
girth k, it is planar, and it is in G1; U G19. Then, combined with the folding lemma of
[29] which applies to cases in Gi; and the folding lemma of [37] that applies to cases in
G0, we conclude that in every planar embedding of (G, o) each face must be a negative
k-cycle.

The rest of this chapter is about proving the following theorem.

Theorem 4.2. For any antibalanced signed simple planar graph (G, o) of negative girth
at least 5, we have p(G,o) = 5.
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The following is the full picture of the proof. We are assuming that each planar
graphs in G171 U Gig with negative girth at most 4 packs. Let us take a planar graph
(G,0) in G11 with negative give at least 5. We want to prove that p(G, o) = 5. Let us
suppose we can find a switching equivalent signature ¢’ such that (G, ¢’) has no super
negative cycle. By Theorem 4.1, we can find a second equivalent signature ¢” such that
(G,0") and (G, 0”) have no negative edge in common. We then contract all the negative
edges in (G, 0’) and consider the negative edges of ¢” as a signature on this new graph.
This would be a signed planar graph in Gig whose negative cycles are of length at least 4.
Applying the case of negative girth 4, we have four disjoint signatures on the contracted
graphs. Together with ¢/ we have a total of five signature with no pair of them having a
common negative edge.

So what remains is to show is that (G, o) admits an equivalent signature with no
super negative cycle. At this point the second inductive step kicks in. We assume G is a
smallest counterexample. That is to say: G is a planar graph in Gi; which has no loop
and no triangle, it does not admits a packing of size five and among all such example, it
has (first) minimum number of vertices and (second) minimum number of edges. The
order on the number of vertices together with the folding lemma implies that all faces
are H-cycles. The minimality of the number of edges means removing any edge e, the
remaining signed graph must admit a 5-packing. Viewing each of these five signatures as
a signature on G, equivalent to o, we must have a super negative cycle. However, each
such a cycle must include e. This would be enough to stablish a rich enough structure
around vertices of degree 2 and 3 to apply discharging technique and get a contradiction
with Euler’s formula. Thus we split details of the proof to three parts: dealing with
2-vertices, 3-vertices and then discharging.

4.2 Structural properties of the vertices

4.2.1 2-vertices

Let v be a vertex of degree 2 in G and let z and y be its two neighbours, furthermore,
in the rest of this subsection e is the edge vz and €’ is the edge vy.

Let 01,092,053, 04, 05 be the five signatures equivalent to o such that, when restricted
on G — e, they have no common negative edge. Thus e is the only potentially common
negative edge among some of these signatures. Fach (G,o0;) must contain a super
negative cycle. If more than one, then we choose one and name it C;. Moreover we
denote by P; the z — y path in C; that does not contain v. Furthermore, we assume o;’s
are minimal in the sense that there is no other signature on G — e equivalent to o such
that all its negative edges are also negative in ;. Clearly replacing each signature with
a minimal one does not affect the packing property. However, then we may have a set of
edges each of which is positive in all five of (G — e, 0;). Let Eg be such set of edges of
G — e. We proceed with a series of claims.

Claim 4.1. We have one of two:
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o FEither o;(e) # o;(€’) for each i, i = 1,2,...,5, in which case all the positive edges
of each C; must be in Eg.

e Or for exactly one of the five signatures, say o5, we have o;(e) = o;(€') in which
case the positive edge of each P; in (G,0;), i = 1,2,3,4, is a negative edge in

(G,05).

Proof. First we show that we cannot have two such signatures satisfying o;(e) = o;(e’).
Suppose to the contrary that two of them, say o1 and o9, assign the same sign to e and
¢/. By switching at v, if necessary, in each of (G,01) and (G, 02) we may assume that
o1(e) = o1(€¢) = + and o2(e) = oa(e’) = +. This implies that all the edges of P; are
given a negative sign in (G, 01) and, similarly, all the edges of P, are given a negative
sign in (G, 02), and thus a positive sign in (G, 01). Recall that, since each C; is an odd
cycle, each P; is a path of odd length. Then the closed walk induced by P; U Ps, in
(G, 01), and hence in (G, o), is negative closed walk of even length. This contradicts the
fact that (G,0) € G11.

Hence, and without loss of generality, we assume o;(e) # o;(e’) for i = 1,2,3,4.
Then for each i, ¢ = 1,2,3,4, the path P, has a unique positive edge in (G, 0;). Let us
name this edge e;. Then we first observe that e; cannot be negative in any of (G, 0;),
J =1,2,3,4 as otherwise, C; would be a positive cycle in (G, ;). If o5(e) # o5(€’), then
for C;, i = 1,2, 3,4, to be negative in (G, 05) we have o5(e;) = + which implies the first
case of the claim. If o5(e) = o5(€’), then for C;, i = 1,2, 3,4, to be negative in (G, o5)
we must have o5(e;) = — in which case we have the second part of the claim. ]

Note that one may change the sign of all edges in Fg to negative in (G, 05). As
(G — e,0) is in Gy1, the resulting signature is also equivalent to . Thus we may assume
that the second item of the claim is always the case at the cost of allowing o5 not to
be minimal. Under this assumption, we may also assume that o5(e) = o5(¢’) = +, as
otherwise we may switch at v in (G, 05). This, in particular, means that for any super
negative cycle C5, e and €' are the only positive edges.

We should note that in choosing the super negative cycle C; of (G, 0;) one may have
more than one choice. Next we aim at showing that among the possible choices, at least
one should have a fair number of high degree vertices. Recall that in our case of negative
girth 5 a super negative cycle has either 2 or 0 negative edges. Thus if a super negative
cycle has at least one positive edges, then it has precisely two positive edges.

Claim 4.2. Assume o’ is a minimal signature equivalent to o such that every super
negative cycle of (G, ") contains xvy with one positive edge and one negative edge, and
that, moreover, the other positive edge is incident to either x or y. Then in one of the
super negative cycles of (G, c’) every vertex which is not incident to a positive edge is of
degree at least 4 in G.

Proof. That ¢’ is assumed to be a minimal signature implies, in particular, that no vertex
is incident to only negative edges. Among all the signatures for which the conditions of
Claim 4.2 hold but the conclusion does not, we take ¢’ to be one where the number of
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super negative cycles of (G, 0’) is minimized. To get a contradiction we need to show
that this number must be 0.

Suppose not and let C1,Cy, ... C, be the set of super negative cycles of (G, o’) and
assume that Cj is a shortest one among these cycles. Since the condition does not
hold, C has a vertex z whose two neighbours on C; are connected to it by negative
edges (with respect to the signature ¢’) and dg(z) < 3. Since not all edges incident to
a vertex are negative, we must have dg(z) = 3 and that the third neighbour of z, say
2/, is adjacent to it with a positive edge. We first claim that 2’ ¢ {z,y}. Let P{ be the
x — z path in Cy which does not include v and P be the z — y path which does not
include v. Observe that only one of P| and P have a positive edge. We continue the
proof assuming that P}’ has a positive edge, which then must be incident to y. The
other case would be symmetric. If 2/ = x, then P| together with zz induces a cycle with
exactly one positive edges, depending on the parity of the length, that would either be a
negative even cycle or a positive odd cycle both of which is forbidden in a member of
Gi1. If 2/ = y, then the cycle Cf obtained from C; by replacing P/’ with the zy is also a
super negative cycle of (G, o01) whose length is less than Cy, contradicting the choice of
Ch.

Since 2’ ¢ {z,y}, and by our assumption that in every super negative cycle of (G, c")
each positive edge is either incident to = or to y, we conclude that the edge 2z’ does not
belong to any super negative cycle of (G, o’). We now consider the signature ¢” obtained
from (G, o’) by a switching at z. Then the each super negative cycle of (G,c”) is also a
super negative cycle of (G, o’) with the same signature. Thus (G, 0”) also satisfies the
conditions of the claim, but it less super negative super cycles than (G, ¢’), contradicting
the choice of o”. O

We note that each of o1, 09, 03, and o4 satisfies the conditions of the claim, and,
therefore, the conclusion hold on these four signatures. For o5 this would depend on
the possible cases of Claim 4.1. To take a better advantage of this case, we consider a
signature of where the negative edges are those of o5 and the edges in Fg. It is already
mentioned that of is an equivalent signature. We have to following claim on (G, o%).

Claim 4.3. In (G,o}) there exist a super negative cycle C' in which all vertices, but
possibly x, v and y, have degree at least 4 in G.

Proof. Observe that in (G, of) the edges zv and vy are of the same sign. Thus if needed,
by a switching at v we may assume they are both positive. This implies that in every
super negative cycle of (G, of) all edges not incident to v are negative. Let C1,Co, ..., C,
be the set of super negative cycles of (G, 0%). If each of them has a vertex of degree 2 or
3, by switching at all those vertices we will get a signature with no super negative cycle,
contradicting the minimality of the counterexample. The details that such switching does
not create new super negative cycles and that each switching kills of the corresponding
super negative cycle is similar to the previous claim. O

Claim 4.4. In each of (G,0;), i = 1,2,3,4, one of the followings holds:

o FEither x ory has a negative neighbour whose degree in G is at least 4.
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e Fach of x and y have a negative neighbour of degree 3.

Proof. Suppose to the contrary that one of them, say (G, o1) does not satisfy the claim.
That means, for one of x of y, say y, all negative neighbours (possibly none) are of degree
2. Let (G, o)) be obtained from (G, o1) by switching at all negative neighbours of y.
Since each of these vertices are of degree 2 and each is incident to at least one negative
edge, the switching does not create a new super negative cycle. As y has no negative
neighbour in (G, o}), the condition of Claim 4.2 holds for (G, 07). Thus (G, 0]) has a
super negative cycle C' where each vertex not incident to a positive edge is of degree at
least 4. Let 2’ be the neighbour of x in C, x # v. Since C' must be of length at least 5
and both positive edges are incident to y, both edge of C incident with z’ are negative
and thus 2’ has degree at least 4. Moreover, as x is not adjacent to y, and switchings
were done only at neighbours of y, the sign of the edge zz’ is negative in (G, o1) as well.
This means z’ is a negative neighbour of  whose degree is at least 4, thus the first case
of the claim holds. O

Claim 4.5. Suppose that u and v are two adjacent 2-vertices with u' and v' being the
other neighbour, respectively. Then both u' and v' have degree at least 6 and have at
least 5 41 -neighbours.

Proof. By minimality of the counterexample we have signature packing o1, 02, 03,04, 05
of (G —{u,v},0). Each of these signatures can be extended to G such that first of all
(G, 0;) is equivalent to (G, o), secondly in each of them both uv and vv’ are positive, and
thirdly, the condition that uv and vv’ having the same sign can be fulfilled by switching,
if necessary, at v, u or both.

Since each (G, ;) has to have a super negative cycle, then uu’ must be a negative
edge in all of them and this would be the only common negative edge between any pair
of them. Each of these five signatures, however, satisfies the conditions of Claim 4.1,
thus there is a super negative cycle C; in (G, 0;) where vertices not incident to positive
edges are 4" -vertices. In C; the neighbour u; of v/, u; # u, is not incident to a positive
edge. Since u'u; is negative only in (G, 0;), the vertices u; are 5 distinct 4*-neighbours
of u/. As u is also a distinct neighbour of «/, it has total of at least six neighbours. The
claim for v’ follows by symmetry. O

Claim 4.6. Suppose that u is a 2-vertex with u' and v as neighbours and that v is
3-vertex with its two other neighbours being vi and vo. Then, first of all, v’ has at least
four 41 -neighbours. Secondly, among v1 and vy either one has at least four 4T -neighbours
or together they have at least five 4T -neighbours.

Proof. We consider induced signed subgraph by deleting the edge wu’ and as before
define o1, 09, 03, 04 to be four minimal signatures with no common negative edge and
let of be the signature which assigns negative to the edges that are not negative in any
of (G —uu',0;), 1 < 4. As before, we consider o; and of as signatures on G rather than
G — uv/, thus some of them have uu as (the only) common negative edge.

By our choice of ¢f only the second case of Claim 4.1 can happen. Then if necessary,
in (G, o0f) we switch at u to get a (G, o) where uu’ and uv are both positive, noting
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that each super negative cycle of (G,of) is also a super negative cycle of (G, 0f). As
there must be at least one such cycle, and as there are already two positive edges, all
other edges must be negative. That implies that, in particular, at least one of the two
edges vv; and vvg is negative in (G, o0f). We consider two cases depending on if only
one is negative or both.

First assume the case that of(vv1) = — and of(vv2) = +. Since each edge beside
wu' is negative in only one of the signatures, we may assume o (vv1) = —. Then for each
j # 1, in (G, 0;) all the positive edges of each of the super negative cycle are incident to
v, and, thus, by Claim 4.2 for j < 4 and by Claim 4.3 in the case of j = 5 we have a
super negative cycle in (G,o;) in which the neighbour of «’ distinct from w is of degree
at least 4. We note moreover that the positive edges of any super negative cycle in
(G, 0;) are negative in o5. This implies that vvp cannot be a positive edge in these
cycles. Thus the second positive edge of any super negative cycle in (G,0;), j <4, j # i
is vv1. Again using Claim 4.2 the neighbour of v in each of these cycles must be at
least of degree 4. Since that is the case for the super negative cycle of (G, o) as well, v;
must have at least four such neighbours.

Now we consider the case that of(vvy) = of(vva) = —. In this case then for all j’s,
7 =1,2,...,5 every super negative has two positive edges incident with v. Thus, first of
all v/ will have at least five 4™ -neighbours, secondly, each of the signatures will imply a
4*-neighbour for either vy or for vy, giving a total of at least five such neighbours for
the two of them. O

4.2.2 3-vertices

Similar to the last subsection, let o1, 09,03, 04, 0% be the five signatures equivalent to o
such that, when restricted on G — e, for a fixed edge e, each edge in G — e is negative in
exactly one of these five signatures, and o;’s are minimal for ¢ = 1,2, 3,4. Thus e is the
only potentially common negative edge among some of these signatures. As (G, 0;) is
a counterexample to Conjecture 4.2, each (G, 0;) contains at least one super negative
cycle, one of which is named C;.

Claim 4.7. FEvery 4-cycle of G contains a vertex of degree at least 4.

Proof. Suppose not, let C' = vivovsviv; be a 4-cycle that all its vertices have degree at
most 3. By the folding lemma, every face of G is of length 5. Thus C is not a facial
cycle, hence it is a separating cycle. Moreover, since G is 2-connected, at least two
of vy, v9,vs3,v4 have neighbours inside of C, and similarly at least two of them have
neighbours outside. But since each v; is a 37-vertex, it follows that they are all 3-vertices
and that precisely two of them have neighbours inside and two of them have neighbours
outside. By symmetry, we consider two case: (1) v1,vs have neighbours inside C, (2)
v1,v3 have neighbours inside C. In case (1), the path vjvsvsvy is part of a facial cycle
inside C. As every facial cycle is a 5-cycle, there is a common neighbour of v; and vs.
But that would make triangle with vjva. In case (2), considering the faces inside C
formed by vivevs and vivgvs, we conclude that the neighbours x,y of v; and vs inside
C' are themself adjacent and that the edge xy is part of both mentioned faces. That
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implies that x and y are adjacent 2-vertices. But we have already seen that for adjacent
2-vertices x,y their other neighbours must be of degree at least 6. O

Claim 4.8. If C is a shortest super negative cycle, then C' contains no chord.

Proof. Observe that a chord on a negative cycle creates one positive cycle and one
negative cycle. Let C' be a shortest super negative cycle with a chord e. Let C’ be the
negative cycle created by C and e. We claim that C’ is a shorter super negative cycle,
contradicting the choice of C. That C’ is negative is by our choice. That it is shorter is
by the fact that there are no parallel edges and e is a chord of C'. It remains to show
that C” is super negative, i.e. it has at most two positive edges. Since C' has at most
two positive edges in C' U {e} there are at most three positive edges. But as (G, o) is
switching equivalent to (G, —), every negative cycle (which is an odd cycle of G) has an
even number of positive edges, thus C’ has at most two positive edges. ]

Claim 4.9. Let v be a vertex of degree 3 in G and N (v) = {v1,va,v3}, such that both vy
and vs have degree 3. Let o’ be a signature equivalent to o such that every super negative
cycle of (G,c’) contains vvy, noting that such a signature exists by the minimality of
(G,0). If (G,0") has the extra property that every super negative cycle has two positive
edges each of which is incident to at least one of v, va or vs, then there exists a super
negative cycle Cyr such that every vertex not incident to a positive edge is of degree at
least 4 in G.

Proof. Among all the signatures for which the conditions of Claim 4.9 hold but the
conclusion does not, we take ¢’ to be one where the number of super negative cycles
of (G, 0’) is minimum. To get a contradiction we would like to show that this number
must be 0. Let N(v;) = {v, z;,y;} for i = 2,3.

Let Cy,Cy,...,C, be the set of super negative cycles of (G, 0’) and assume that C;
is a shortest one among these cycles. Since the conclusion of the claim on (G, o’) does
not hold, C has a vertex z whose two neighbours on C] are connected to it by negative
edges (with respect to the signature ¢’) and dg(z) < 3. If all edges incident to z are
negative, then we consider (G, ¢”) obtained from (G, o) by switching at z. We observe
that super negative cycles of (G, c”) are exactly those super negative cycles of (G, o’)
which do not contain z. Thus (G, 0”) also satisfies the conditions of the claim, but it
has less super negative super cycles than (G, c’), contradicting the choice of o”.

Since both edges of C incident to z are negative we must have dg(z) = 3 and that
the third neighbour of z, say 2/, is adjacent to it with a positive edge. We claim z2’
belongs to some super negative cycle of (G,0’). Suppose not. Let m be the signature
obtained from (G, ¢’) by switching at z. Then, first of all, there is still no super negative
cycle in (G, ) containing zz’, because for cycles containing this edge number of positive
edges is the same in (G,0’) and (G, 7). Secondly, any super negative cycle of (G, ")
containing z has two more positive edges in (G, 7). Since we assume every super negative
cycle of (G, 0") has two positive edges, those containing z, in particular Cy, are not super
negative in (G, 7). This contradicts with the number of super negative cycles of (G, o’)
being minimum. Thus 22’ is in a super negative cycle, say C;, 2 <i < 7.
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Next we claim that z ¢ {v,v1}. We assume to contrary and first consider the case
that z = v. Recall that vv; is an edge of C. Between vs and vs, by symmetry, assume
vuz € Cy. As edges of Cy incident to z are negative we have o’ (vv1) = o/(vv3) = — and
since not all edges incident to z are negative we have o’ (vvg) = 4. Since C; must have
two positive edges, and they must be incident to v or ve or w3, the vertex vy should
be on C and moreover should be incident to a positive edge of C;. Noting that vvs is
not an edge of Cy, xov9ys should be a part of C;. This implies that vvs is a chord of
(1, contradicting Claim 4.8. Next we consider the case that z = v;. Recall that 22’
is a positive edge of a super negative cycle C; of (G,0’) for some 2 < i < r. By the
assumption, every positive edge of C; is incident to one of v, v9 or vs. That means vy is
adjacent to one of v, vo, v with a positive edge. If vv; is a positive edge we have a digon
otherwise we have a triangle. But either case contradicts the assumption on (G, o).

Since zz’ must be a positive edge of super negative cycle C; and since all such edges
are incident to one of v, v9, v3 we must have z € {vy, v3, X2, Y2, 3, y3}. By symmetries
we consider only two possibilities of z = vy or 2 = x9. First let z = vy, If 2/ = v,
then C7 contains the edge 22’ as a chord and we have contradiction with Claim 4.8. If
2" € {xa,y2}, say 2’ = yo, then o’(vve) = o’ (vexe) = —, since vu; is also an edge of C,
vvg is not. As all positive edges are incident to v, vy or v and since there are two such
edges in C1, vs is a vertex of C1, but then again vvs is a chord contradicting Claim 4.8.

Finally assume z = x5 and let N(zg9) = {ve,zh, 25}, If 2/ = af, or 2/ = 24, since 22/
belongs to a super negative cycle, positive edges of super negative cycles are incident to
v, vg or vz and as G contains no triangle, 2’ = v3, in which case vvoxovsv is a 4-cycle
which contains four 3-vertices, contradicting Claim 4.7. Therefore, we must have 2’ = vo,
then o' (z22)) = o' (x224) = — and ahaexy is a part of C;. If vug € Cy, then 22’ is again
a chord of C4, which contradicts Claim 4.8. So vvy ¢ C1, by symmetry we may write
Oy as vivvzzs Prabaexl Pyvy. If o’ (vvg) = —, then again vvexs creates two cycles from
C1 one of which is negative. And this negative cycle has at most two positive edges,
therefore is a super negative cycle and thus contains the edge vv;. By Claim 4.7, path
vivvgxs Prabas must have length at least 3, as otherwise together with vo we will have a
4-cycle all whose vertices are of degree 3. Replacing this path with vvoxo we find a shorter
super negative cycle, contradicting the minimality of C. Next let o/(vvy) = +. By the
assumption on C, the fact that every cycle has even number of positive edges, and the
fact that the edges of the path xoxf Pov; are all negative, we must have o/ (vvy) = —, as
otherwise the cycle vyvvexexh Pyvq has three positive edges. Since positive edges of Cy
must be incident to v, vy or vs, we have o’ (vv3) = o' (vsx3) = +. Furthermore x4 Pyv,
has an even number of edges since otherwise v1vvezoxh Povy is a shorter super negative
cycle. Recall that 2z’ is also in the super negative cycle C;. We consider the following
two cases.

1. If vve € C;, then by our assumption vvs ¢ C;, thus we may write C; as v1vvexe Pyuy,
but then the cycle obtained from two paths from x5 to v; of C7 and C; forms a
super negative cycle which does not contain vv; and contains no positive edge, a
contradiction.
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2. Otherwise vvy ¢ Cj, let C; = vivuzys Psaxbaavays Pyvi. But then the cycle vusys Psah
x9uv contains exactly three positive edges, which never happens in (G,0’). O

Claim 4.10. Let v be a vertex of degree 3 in G and N (v) = {v1,v2,v3}, such that both
vo and vy have degree 3. Then vy has at least two neighbours of degree at least 4.

Proof. Let G' = G —vv; and 01, 02, 03, 04, 0% be the five signatures equivalent to o such
that, when restricted on G’, they have no common negative edge. Thus vv; is the only
potentially common negative edge among some of these signatures. Each (G, 0;) must
contain a super negative cycle using the edge vv;. If more than one, then we choose one
and name it C;. Let N(v;) = {v,x;,y;} for i = 2,3.

We first claim that among all these five signatures, there are at least two, in which,
after switching at v, vy and v3 (if necessary), we have the following: first of all in each
of the four paths vivv;z; and vivvy;, ¢ = 2,3, there are at least two positive edges,
secondly, we do not create any new super negative cycle. First suppose vve and vvs
belong to the same signature, say £ . Then in each of the other signatures, namely
02,03,04 and of, vve and vz are both positive. If vu; is also positive on at least two of
09,03,04,0%, then we are done. Assume in (G, 02), vv; is negative and both vvy and
vvg are positive. Let 0% be obtained by switching at v. We first observe that every super
negative cycle of (G, %) is also a super negative cycle of (G, 02) because for i = 2,3,
if one of v;x; or v;y; is negative in of, then we switch at v;. Let o4 be the resulting
signature. We observe that first of all no new super negative cycle is created, secondly
in (G, 04) each of vyvv;z; and vivvy; has at least two positive edges. Next w.l.o.g. let
vvy € By and vuz € E5 . Then in (G, 0;), i = 1,2, we could first switch at v (if necessary)
to make vvy positive, since exactly one of vvs and vvs is positive, this switching will not
create new super negative cycle. And then similarly we could either switch at vy or vg if
necessary.

Therefore, we could find ¢} and o), obtained from o7 and oy by switching at v, vy
and v3, such that all the super negative cycles use the edge vv; and their two positive
edges are either incident to v, ve or vs. Thus by Claim 4.9, their exists a super negative
cycle C] of (G, o)) (similarly in (G, 0%)) such that every vertex not incident to a positive
edge is of degree at least 4 in G. Let v} be another neighbour of v; in Cf, since vy is
not adjacent to ve or vs, v1v] € o1. Then we claim that d(v]) = 4. If not, v} is incident
to a positive edge of C], which means v| € {z2,y2,23,y3}. Let v] = 9, since each
super negative cycle has length at least 5 and C] uses the edge vvy, we have vuy ¢ Cf
and zovz ¢ C] if it exists. Therefore both vozy and wvays belong to C and vz is
positive. Since vuz € C], by our claim above C] contains at least three positive edges, a
contradiction. Therefore d(v]) = 4. Together with the same conclusion in (G, d%), we
have that v; has at least two neighbours of degree at least 4. O

Claim 4.11. Let u and v be two adjacent vertices of degree 3 in G. Assume o' is a
signature equivalent to o, such that every super negative cycle of (G,o’) contains uv and
contains two positive edges which are incident to either w or v. Then there exists a super
negative cycle such that every vertex not incident to a positive edge is of degree at least

4 in G.
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Proof. As in the proof of Claim 4.9 among all the signatures for which the conditions of
Claim 4.11 hold but the conclusion does not, we take ¢’ to be one where the number of
super negative cycles of (G, ¢’) is minimum, and, moreover, we take ¢’ to be a minimal
signature. Let N(u) = {u1,us} and N(v) = {v1,vs2}.

Let Cq,C5,...,C, be the super negative cycles of (G, '), and assume w.l.o.g. that
|C1| < |Cj], 2 < j < r. If the conclusion does not hold, then C has a vertex z whose
two neighbours on C; are connected to it by negative edges and dg(z) < 3. Minimality
of ¢/ implies that dg(2) = 3 and that the third neighbour of z, say 2/, is adjacent to it
with a positive edge. Furthermore, 2z’ is in a super negative cycle, say C;, 2 < ¢ < r, as
otherwise by switching at z we have less super negative cycles.

As each of u and v is incident to a positive edge of C1, z ¢ {u,v}. Considering the
super negative cycle C;, zz' is a positive edge, thus by our assumption one of the end
point is u or v. As z ¢ {u,v}, we have 2’ € {u,v} and hence z € {uy,ug,v1,v2}. W.lLo.g.
let z = u; and 2z’ = w. But then uwu; is a chord of C; and we have a contradiction with
Claim 4.8. O

Claim 4.12. Let vi,v9,v3 and vs be four vertices of degree 3, and o’ be a signature
equivalent to o such that the following holds.

1. v; is adjacent to vi41, 1 =1,2,3.

2. 0/(1)1?)2> = —, U,(U2U3) = 0’(113?)4) = +.

3. Fach of vy and v3 is incident to exactly two positive edges.

4. Either vy is incident to two positive edges or vy s incident to three positive edges.

5. Every super negative cycle of (G,c’) contains the positive edge vavs.

6. The other positive edge of any other super negative cycle must be incident to one
of the v; (i€ {1,2,3,4}).

Then there exists a super negative cycle of (G, c’) such that every vertex not incident
to a positive edge is of degree at least 4 in G.

i) I3 Q
) :

1 V2 v3 2
z1 T4

Figure 4.1: Four vertices of degree 3 in Claim 4.12

Proof. Again among all the signatures for which the conditions of Claim 4.12 hold but
the conclusion does not, we take o’ to be one where the number of super negative cycles
of (G,0’) is minimum. Let the other two neighbours of v; be z;,y; for i = 1,4, and the
third neighbour of v; be x; for j = 2,3, as shown in Figure 4.1. Suppose to the contrary
that C1,Cy, ..., C, are the set of super negative cycles of (G, o’) and assume that C} is
a shortest one among these cycles. Thus C; has a vertex z whose two neighbours on
C are connected to it by negative edges and dg(z) < 3. It follows that dg(z) = 3 and
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that the third neighbour of z, say 2/, is a positive neighbour, moreover, 22’ is in a super
negative cycle, say Cj, 2 <l <.

Since in (G, 0’) every super negative cycle contains vov3 as a positive edge, z ¢ {vq, v3}.
And since each positive edge of any super negative cycle is incident to some v;, we have
z € {v1,v4, %1, T2, T3, T4,Y1,Ys}. By symmetries we consider following possibilities.

1. z = v1. Since o'(vivy) = —, vive € C1 and at least one of vix1,v1y; is negative.
By assumption vy is incident to three positive edges, and thus vy ¢ C7. This
contradicts with the fact that positive edges of every super negative are incident
to v;.

2. z = vy. Since o’(v3vy) = +, and edges in C; incident to z are both negative, we
have that vizy, v4ys € C1 and o' (vgry) = 0’ (v4ys) = —, and hence 2z’ = v3. By the
original assumption of the claim, o’(viz1) = o’(v1y1) = +. Recall that every super
negative cycle of (G, ¢’) must contain v9vs. But any cycle that contains both vovs
and v3vy must contain at least one more positive edge. This is contradiction with
the fact that zz’ is in a super negative cycle.

3. z = x9. Since o’ (vox2) = + and voxs ¢ C1 we must have vive € Cq. But then voxs
is a chord of C7 which contradicts the Claim 4.8.

4. z = x3. Since the super negative cycle C; contains the positive edges 2z’ and wvyvs,
it contains no other positive edges, in particular voxo ¢ C;. Thus v1 € C;. So
each of v; and z3 is incident with at least two negative edges, and they are not
connected by a negative edge, since otherwise v1vovsxs induces a negative 4-cycle.
Recall that if a vertex of degree 3 is incident with at least two negative edges,
then a switching at it may eliminate some super negative cycle, but will never
create a new one. Thus if we switch at both v; and x3, then the remaining set of
super negative cycles all must still contain the edge vovs. But then in the new
signature all edges incident to v2 and vs are positive, which implies that every
cycle containing vov3 has at least three positive edges and there can be no super
negative cycle.

5. z = mx4. First suppose vqzy € C1, then o'(vyry) = — and by the assumption
o'(v1z1) = o' (v1y1) = +. Therefore vzvy ¢ Cq, since otherwise there will be three
positive edges in C. However in this case v3vy is a chord of (', this contradicts
the Claim 4.8. Now suppose vsz4 ¢ Cq, then 2’ = vy and o'(v4x4) = +. We now
consider the super negative cycle C; containing v4z4 (= 22’). As it must contain
the positive edge vovs as well, it can have no other positive edge. In particular,
v3v4 is not in Cj. This implies that first of all v4y4 € C; and, secondly, that v4y4 is a
negative edge in (G, o’). But then, by the assumption of o/(vi21) = o/ (v1y1) = +,
the cycle C; contains three positive edges, contradiction with C; being a super
negative cycle because it must contain at least one of vix1, viy; and vexs, all of
whom are positive.
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6. z =x1. If viz1 = v12 is in C1, then it must be a negative edge of C;. Thus vy is
incident to at most one positive edge. The assumption of the claim implies that all
edges incident to vy are positive. That implies vq ¢ C] as otherwise C1 will have
at least three positive edges. As each positive edge of C; should be incident to
one of vy, v9, vz, the second positive edge of C7 can only be either vy, or vexs, in
either case it follows that vivs is a chord of Cf, a contradiction with Claim 4.8.

So we may assume vizy ¢ C1. This implies that 2/ = vy and that o' (viz1) = +.
As C1 has no chord, v; ¢ Cq. This implies voxs € Cy and since o' (voxg) = +, it
is the only other positive edge of C'y. Thus vsvs ¢ C1 and hence, vsxs € C1. We
now claim that xyx9 € C7, that is because otherwise in the union of C; and the
path x1v1v9 we will find a shorter super negative cycle. Moreover, we observe
that o’(z122) = —. We now consider the cycle C] obtained from C; by replacing
x122v9 With z1v1vy. This cycle is also a super negative cycle of (G,0’) and is of
the same length as C;. Thus there must be a vertex z; of C] which is of degree
three in G, and both edges of C] incident to 21 are negative. Repeating the same
argument as in cases 1-5, we conclude that z; € {x1,y1}. The case z; = y; is not
possible as otherwise C] contains a chord, and the case z; = x1 is not possible
because o’ (viz1) = +. O

Claim 4.13. Let v1,v2,v3,v4 be vertices of degree 3 in G such that v; is adjacent to
vir1, @ = 1,2, 3, where other neighbours of v;’s are labelled as in Figure 4.1. Then either
each of xo and x3 has at least three neighbours of degree at least 4, or one of xo and x3
has at least four neighbours of degree at least 4.

Proof. Let G' = G — v9v3 and let 01, 09,03, 04,05 be the five signatures equivalent to
o such that, when restricted on G’, they have no common negative edge. So vovs can
be the only common negative edge among some of these signatures. Each (G, 0;) must
contain a super negative cycle using the edge vovs, one of which is named C;.

In each signature o;, ¢ = 1,...,5, if voxo and vivy have the same sign, then by
switching at vy and vs (if necessary), we can either be sure that all the super negative
cycles have exactly two positive edges and that each of them is incident to either vy or
vs. Then by Claim 4.11, there exists a super negative cycle C; such that every vertex
not incident to a positive edge is of degree at least 4 in GG. It is easy to observe that in
at least three of the signatures o1, 09,03, 04, 05, say o1, 02, and o3, the edges voxo and
v1v2 have the same sign. Since we only switch at v9 and vs, in each of the signatures
o1, 09, and o3, either v1 or o has a negative neighbour of degree at least 4 in each of
(G,01), (G,02), and (G,03). If in each of (G, 04) and (G, 05) either the pair v;vy and
v9xy have the same sign or the pair v3v, and vszs have the same sign, then in total vy
and xo, as well as v4 and x3 have five neighbours that are of degree at least 4 in G. As
either v1 or vy can have at most two such neighbours, zo and x3 must have at least 3 of
them. We note that the conclusion holds.

Hence we suppose o4(viv2) = —o4(vexs) and o4(v3vy) = —o4(v3zs). Since we can
switch at either vy or vs (if necessary), we assume vovs is positive. If o4(vowe) = o4(v323),
then we first make vjv9 and vsvy to be negative by switching at ve and vz (if necessary).



Chapter 4. Packing antibalanced triangle-free signed planar graphs 42

If at least one of vix1 and v1y; (resp. vyx4 and v4yy) is negative, then after switching
at v1 (resp. v4), we will not create any new super negative cycle. Otherwise, both
vizy and v1y; (resp. vqry and vyyy) are positive. In either case, each cycle containing
vovsg has at least three positive edges, which is a contradiction. Therefore, we may
suppose o4(voxe) = —o4(v3rs), and w.l.o.g. assume o4(vexy) = +. By switching at vy,
if necessary, we can make sure that v; is incident to at least two positive edges, let the
obtained signature be ¢7;. Then the positive edges of each super negative cycle in (G, o)
must be incident to either v or ve. Since o) (vsvs) = +, every super negative cycle of
(G, o)) contains the edge vsxs. By Claim 4.12, there exists a super negative cycle such
that every vertex not incident to a positive edge is of degree at least 4. Therefore, either
x3 has a negative neighbour (in (G, 04)) of degree at least 4, or x3 is adjacent to one of
z1 and yp. If we switch at vo and vs, by symmetry, we have that either xo has a negative
neighbour (in (G, 04)) of degree at least 4, or x is adjacent to one of x4 and y4. Now it
suffices to consider two cases based on oj.

Case 1: Either o5(viv2) = o5(vaza) or o5(vsvy) = o5(vszs). Applying the same
argument as conclude that for each (G,0;), i = 1,2, 3, either v; or x2 has a negative
neighbour of degree at least 4. Similarly either vy or x3 have a negative neighbour of
degree at least 4. Since d(z1) = d(x4) = 3, both x5 and x3 have at least two neighbours
of degree at least 4. Suppose the conclusion of the claim does not hold, assume xo has
at most two neighbours of degree at least 4, w.l.o.g. assume x, is adjacent to x4. Since
x3 can have at most three neighbours of degree at least 4, x3 is adjacent to either x; or
y1, which implies x2 has at least three neighbours of degree at least 4, a contradiction.

Case 2: o5(vivy) = —o5(vexs) and o5(v3vy) = —o5(vszs). Applying the same
argument as for oy, either zo has a negative neighbour (in (G, 03)) of degree at least 4,
or x9 is adjacent to one of x4 and y4. Similarly either x3 has a negative neighbour (in
(G, 05)) of degree at least 4, or x3 is adjacent to one of z1 and y;. Again we suppose
the conclusion does not hold, and assume x5 has at most two neighbours of degree at
least 4. W.l.o.g. let xo be adjacent to x4 and o4(x2x4) = —. Since 3 can have at
most three neighbours of degree at least 4, w.l.o.g. we assume x3 is adjacent to x1 and
o4(x1w3) = —. Therefore, both 25 and x3 have at least two neighbours of degree at
least 4. Hence, it must be the case that x9 is adjacent to y4 and o5(z2ys) = —, which
implies that x3 has three neighbours of degree at least 4. But then x3 must be adjacent
to y1 and o5(z3y;) = —, which implies z2 has three neighbours of degree at least 4, a
contradiction. O

4.3 Discharging procedure

In the following, we will use the discharging technique to get a contradiction. The initial
charge w on V(G) U F(G) is defined as follows: w(z) = d(z)—4 for every z € V(G) U F(G).
By the relation 3 cy/(q) d(v) = X sep(q) d(f) = 2|E(G)| and Euler’s formula, the initial
total charge of the vertices and faces satisfies the following:

Y, wl@ = ) (@) —4) = —4V(G) +4E(G)| - 4F(G)| = -8.

2eV (G)UF(G) 2eV(G)UF(G)
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Since any discharging procedure preserves the total charge of G, after applying
appropriate discharging rules to change the initial charge w to the final charge w* such
that w*(z) = 0 for every x € V(G) u F(G), we can have the contradiction below:

0< Z w(z) = Z w(z) = =8,

zeV(G)UF(G) zeV(G)UF(G)
and thus completes the proof.

For brevity, we call a 4T-vertex big, and a 3~ -vertex small. For a vertex v, by ni(v) we
denote the number of k-neighbours of v and by n(v) the number of big neighbours of v.
Given a face f, ng(f) is the number of k-vertices incident to f. For x,y € V(G) u F(G),
let 7(z — y) denote the charge transferring from z to y. For a 5-face f = [viva...v501],
if it is incident to exactly two small vertices, say d(v1) = d(v3) = 2, np(v2) = 3 and v9 is
not adjacent to any 3-vertex, then we call f and vy special. We will do discharging in
three stages. Below are our needed discharging rules for first stage:

(R1) Let d(v) = 5. If ny(v) = 4, then v sends 1 to each adjacent small vertex. Otherwise
if n3(v) + np(v) = 4, then v sends 1 to each 2-neighbour, and %@?Q(v)
3-neighbour.

(R2) Let d(f) = 5. If ng-(f) =1, then f sends 1 to the incident small vertex.

to each

After the first round of discharging, each 3-vertices which is adjacent to a 5 -vertex
v with ny(v) = 4 or incident to a face f with ns—(f) = 1, has a non-negative charge.
If a 2-vertex is incident or adjacent to at least two of the following, then it would end
up with a non-negative charge: face with only one small vertex or 5t-vertex with four
3T -neighbours. We call these small vertices rich. In the following rules, if not specified,
the small vertices that we consider are those who remain negative, and refer to them
as poor vertices. We use 5'-face to denote 5-face incident to i poor vertices. A 3-vertex
is called 3y ;-vertex, if it is adjacent to k vertices each of which has at least three big
neighbours, at least two either rich or poor 3-neighbours, and is incident to I 5%-faces.

(R3) For the 5T -vertex v such that ny(v) < 3 and nz(v) +ny(v) < 3, each of them sends
d(v)—4
na(v)

(R4) Suppose f is a non-special 5-face. Then

(R4.1) If f is a 5'-face, f sends 1 to incident small vertex;

(R4.2) If f is a 5%-face, then f sends % to each small vertex incident to f.

(R4.3) If f is a 53-face then

(R4.3.1) If ny(f) = 2 and n3(f) = 1, then f sends 1 to each incident 2-vertex.

(R4.3.2) If no(f) =1 and ng(f) = 2, then f sends 3 to the incident 2-vertex. First
suppose [ is incident to a 3 -vertex. If k +1 > 2, then f sends % to the other 3-vertex;
If k=1 and [ =0, then f sends % to 31 p-vertex and % to the other 3-vertex; If k =0
and [ = 1, and moreover it is incident to a 53-face which contains no 2-vertex, then f
sends % to this 3¢ 1-vertex, and % to the other 3-vertex. Otherwise, f sends % to each
incident 3-vertex.

to each 2-neighbour.
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(R4.4) If f is a 53-face such that n3(f) = 3ora 54" _face, then f does not give charge
to any incident 3 ;-vertex such that k + 1 > 2, but sends % to each incident 31 g-vertex,

then distribute its remaining charge equally among the other incident 3-vertices.

Given a special face F' with a special vertex v, a charge pot at (F,v) is the set of
consecutively adjacent special faces whose special vertex is v, as shown in Figure 4.2.
The total charge of the pot is the number of faces it contains as shown in (R5). After
carrying out (R1)-(R4), we apply (R5) as follows.

Figure 4.2: Charge pot

(R5) Special face contributes 1 to its charge pot, each 2-vertex in exactly one charge pot
take needed charge such that its final charge is non-negative from its charge pot, and
each 2-vertex in two different charge pots takes charge which together with the charge
get from the special vertex is exactly one from each of its charge pot with respect to the
special vertex.

First, we observe that the following facts are true.

Fact 4.1. Let d(v) = 2 and N(v) = {v1,v2}, then ny(vy) + np(ve) + w > 6.

Fact 4.2. A non-special 5-face sends charge at least % to its incident 2-vertex.

In what follows, we are going to show that w*(z) > 0 for all z € V(G) u F(G) and
the charge pot is also non-negative.

Let v € V(G). First suppose d(v) = 5. If ny(v) = 4, then w*(v) > d(v) — 4 —
(d(v) —4) = 0 by (R1). Or if ng(v) + np(v) = 4, then w*(v) = d(v) —4 — ne(v) —nz(v) x
%@?2@) = 0 by (R1). Otherwise, by (R3), w*(v) = d(v)—4—na(v) x dg)(;;l = 0. Since
4-vertex v does not participate in the discharging procedure, w*(v) = w(v) = d(v)—4 = 0.

Assume d(v) = 3. If v is rich, then it has non-negative charge. Suppose v is not rich.
If v is incident to at least one 5'-face, then w*(v) = 3 —4 + 1 = 0 by (R4.1). Otherwise
let N(v) = {v1,v2,v3}, denote by f; the face that is incident to v such that vv; and vv;4q
are its two boundary edges (indices modulo 3).

If v is adjacent to 2-vertex, say d(v1) = 2, then by Claim 4.6, ve or v3 has at least 4
big neighbours or in total they have at least 5 big neighbours. Since v is poor, w.l.o.g.,
assume ny(v2) = 3 and ny(vs) = 2. And the other neighbour of vy, say v] has at least 4
big neighbours. Since n3(ve) + ny(ve) =4, f1 is incident to at most two poor vertices,
thus 7(fi — v) > 1 by (R4.2). If d(vs) = 3, then f3 is a 5%-face, and 7(f1 — v) > 3
by (R4.2). Thus w*(v) > =142 x 1 = 0. Suppose d(vs) > 4. Let v} and v} be the
other two vertices of f. By Claim 4.5 and Claim 4.6, either both of them have degree
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at least 3 or one of them has degree 2 and the other has degree at least 4. Therefore,
either 7(vy — v) = 5 by (R1) or f» is a 5%-face and 7(f> — v) = 3, both imply that
w*(v) = —-1+2x 5 =0.

Suppose now v is not adjacent to any 2-vertices. If v is also not adjacent to any
3-vertex, then by the fact that v is poor, Claim 4.5 and Claim 4.6, for ¢ = 1,2,3, f; is
either adjacent to three 3-vertices or it is a 5°-face, therefore 7(f; — v) > 1 by (R4.2)
and (R4.4).

If v is adjacent to exactly one 3-vertex, say vi, then again fs is either incident to
three 3-vertices or fs is a 5%-face, therefore 7(fo — v) > 3 by (R4.2) and (R4.4). Let
f1 = vurz1y1v2 and f3 = vvizeyovs. Since f;, ¢ = 1,2,3, cannot contain two 2-vertices,
each of them sends at least # to v by (R4.3.2) and (R4.4). First if v is a 3j-vertex,
such that k + 1 > 2, then w*(v) > —1+2 x 3 = 0 by (R1) and (R4.2). For cases
that k +1 < 1, if k = 1, then we have w*(v) > -1+ 5 + 3+ +2 x & = & by (R1).
If | = 1, we consider following cases. If v is incident to a 53-face which contains no
2-vertex, then w*(v) > —1+ 5 + % + é = 0 by (R4.2) and (R4.3.2). Therefore we could
always assume that 7(f; — v) > 1 and 7(fs — v) > I by (R4), which implies that
w*(v) = -1+ % +2x % =0 by (R4.2). Thus k = [ = 0, we suppose f1, f3 are 53" faces
and fo is a 53-face that contains no 2-vertex. By (R4), we still have that 7(f; — v) > i
and 7(f3 > v) > 1.

1. First suppose both f; and f3 do not contain any 2-vertex, if they are both 53-faces,
then both of them send a charge of £ to v by (R4.4) and thus w*(v) > —14+3x 3 = 0.
So let fi be a 5*face, then by Claim 4.13, ny(x2) = 3. Then when d(y2) = 3,
7(f3 = v) = 2 by (R4.4), and when d(y2) > 4, 7(f3 — v) = § by (R4.2). Thus
wiv) = -1+++5+1=21.

2. Either d(z1) = 2 or d(z2) = 2, by symmetry, we assume d(z;) = 2. Then by
Claim 4.6, xo has at least three big neighbours and y; has at least four big
neighbours. If d(y,) = 3, then by (R4.4), 7(f3 — v) > %, and thus w*(v) >
—1+ 1+ 2+1=1by (R4.3.2). Assume now that d(yz) = 2. If ng(zz) > 2 or
ny(22) > 4, then by (R4.3.2) and (R4.2), each of f; and f3 will send v at least 3,
thus w*(v) > —1 + 3 x # = 0. So suppose nz(zz) = 1 and ny(z2) = 3. Then by
Claim 4.4, ny(v3) = 2 and f3 is a 52-face, which contradicts with our assumption
that f3is a 53" _face.

3. Either d(y1) = 2 or d(y2) = 2, by symmetry, we assume d(y1) = 2. Then d(x;) > 4.
And we know that d(z2) > 3. By Claim 4.4 and the fact that f; is a 53" _face,
ny(21) = 3 or ny(v2) = 3. First suppose ny(v2) = 3, then by (R1), 7(ve — v) > 3

and thus w*(v) > —1+ 3 +2 x ¥ + 1 = 2. Suppose now that ny(z1) = 3, then

ny(ve) = 1 since otherwise y; is rich. By Claim 4.4, ng(z1) > 2. By (R4.3.2),
7(fi > v) = £. If f3 is also a 5°-face, then we have 7(f3 — v) > %. Otherwise f3
is a 5%-face such that all the small vertices have degree 3, then by Claim 4.13, the
third neighbour of x5 has at least three big neighbours. The third face of vy is

either a 52-face or a 53-face with no 2-vertex, therefore, either v; is a 31 1-vertex or
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both v; and zy are 3; g-vertices, by (R4.4), we always have 7(f3 — v) > % And
w*(v) = —-1+3x =0

Suppose v is adjacent to two 3-vertices, say ve and v3. Let the other two vertices
of f; be x; and y; in the clockwise order, i = 1,2,3. By Claim 4.10, ny(vy) = 2. Again,
since f;, 1 = 1,2,3, cannot contain two 2-vertices, each of them sends at least % to v
by (R4.3.2) and (R4.4). Similarly if v is a 3j;-vertex, such that k+1 > 2 or k = 1,
then w*(v) = 0. Suppose k = 0 and [ = 1, if v is incident to a 53-face which contains
no 2-vertex, then w*(v) > —1+ 3 + & + ¢ = 0 by (R4.2) and (R4.3.2). By (R4.3.2), f;
sends charge at least i to v, except fo is a 5°-face.

If one of x5 and yo has degree 2, then by Claim 4.6, f is a 5?-face. Then w*(v) >
—1+4 442 x § =0by (R4.2). If one of 5 and y, has degree 3, say d(z2) = 3, then
by Claim 4.13, either one of v; or y; has at least four big neighbours, or both of them
have at least three big neighbours. Therefore either f; is a 52-face, or ny(v1) = 3 and
ng(v1) = 2, both imply that w*(v) > —1+ 5 + 2 x I = 0. Therefore, we may assume
both x9 and ys have degree at least four, and 7(fo — v) = % by (R4.4).

If either y; or x3 has degree at most 3, by symmetry say d(y;) < 3, then by Claim 4.6
and Claim 4.13, either f5 is a 52-face which implies w*(v) > —1+ % +2x % = 0 by (R4.2),
or both v; and x9 has at least three big neighbours. If n3(v1) > 2, then 7(v; — v) > %
by (R1) and thus w*(v) > 0. So we suppose n3(v1) = 1 and ny(vy1) = 3. Then d(z1) > 4
and 7(f1 — v) > 3. If d(x3) < 3, then similarly either f, is 5*-face or 7(f3 — v) > 3,
we have w*(v) = 0. Therefore, we assume d(z3) > 4. If d(y3) > 4, then f3 is a 5°-face
which gives v enough charge. Otherwise d(y3) = 2 since n3(v1) = 1, then by Claim 4.4,
either f3 is again a 52-face or f3 is a 53-face and w3 is incident to a 5%-face and a 53-face
which contains no 2-vertex, in both cases 7(f3 — v) > % by (R4.2) and (R4.3.2). So we
always have w*(v) > —1+3 x 1 = 0.

In the following we may assume both y; and z3 have degree at least 4. If both x;
and y3 have degree at least 3, then each f; sends at least % to v by (R4.2) or (R4.4),
and w*(v) = -1+ 3 x % = 0. Assume d(z1) = 2, if f; is a 5>-face, then 7(f; > v) > 1
and w*(v) = —1 + % + % + i = % Suppose f; is a 53-face. If vy is incident to a
52-face, since vy is incident to another 53-face which contains no 2-vertex, by (R4.3.2),
T(fi > v) = % Otherwise we may assume the face f' = vozozhyjy; that ve incident is
a 53-face, both x4 and gy} must have degree at most 3. We first derive that d(y}) = 3,
since otherwise by Claim 4.5 and Claim 4.6, y; has at least four big neighbours. By
Claim 4.4 and the fact that both z1 and v are poor, ny(y1) = 3 and thus 7(f; — v) > %
by (R4.3.2). By symmetry, either d(y3) = 2 or d(y3) = 3, 7(f3 > v) = % Thus we have
w*(v) = —-1+3x 3 =0.

Finally suppose v is adjacent to three 3-vertices. Then by Claim 4.10, for ¢ = 1,2, 3,
each f; is a 53-face that contains no 2-vertex, thus sends at least % to v by (R4.4), and
w*(v) = —-1+3 x %

Assume now d(v) = 2 and let N(v) = {v1,v2}. If v is rich, or it is incident or adjacent
to at least two of the following, then it would end up with a non-negative charge by (R1)
and (R4.1): 57-vertex which has at least four 3T-neighbours, and face with only one
3~ -vertex, and 5'-face.



Chapter 4. Packing antibalanced triangle-free signed planar graphs 47

Otherwise first suppose that v is adjacent to a 2-vertex v1. Then by Claim 4.5, vy has
at least five big neighbours and both incident faces are 52-faces and not special. So we
have w*(v) >2—4+41+2x = 0by (R1) and (R4.2). Suppose now v is adjacent to a
3-vertex v1. By Claim 4.6, vy has at least four big neighbours and both incident faces are
5% -faces and not special, thus by (R1), (R4.2) and (R4.3), w*(v) >2—4+1+2x 3 =0.

Suppose d(v1) = d(v2) = 4. Then by the Fact 4.1, all the neighbours of v; and v
except v are big vertices. Thus the incident faces of v only contains one small vertex
and v is rich.

Suppose d(v1) = 5 and d(ve) = 4. If v; has at least four big neighbours, then by
definition the incident faces of v are not special since otherwise vy is a special vertex,
thus w*(v) >2—4+1+2x 3 =0 by (R1) and Fact 4.2. Otherwise since d(v2) = 4,
by Fact 4.1, ny(v1) = 3. If np(va) < 2 or ng(vy) = 1, then ny(vy) + n3(v1) = 4, which
implies that 7(v; — v) = 1 by (R1) and the incident faces of v are not special, so
w*(v) =2 —4+1+2x 1 =0. Suppose now ny(v2) = 3 and nz(v1) = 0. If the incident
faces of v are not special, then both of them contains only one small vertex which implies
that v is rich. Otherwise by (R5) v would get enough charge such that w*(v) = 0.

Suppose both v; and vo have degree at least 5. If one of the incident faces of v is
special, then, by (R5), w*(v) = 0. Otherwise, if at least one of v; and v has at least four
3*-neighbours, then w*(v) >2—4+1+2 x 1 =0 by (R1) and Fact 4.2. Suppose now
both v; and ve have at most three 3*-neighbours. Then by Fact 4.1, ny(v1) = ny(vs) = 3,
thus for i = 1,2 7(v; — v) > % by (R3). Since the incident faces are not special, each of
them sends a charge of at least 3 to v. Therefore w*(v) >2—4+4x £ = 0.

Let f € F(G) and d(f) = 5. If f is special, then by (R5) w*(f) = 5—4—1 = 0. Thus
we may assume f is not special. If f is incident to at most one small vertex, then by (R2)
wH(f) =5—4—1=0. If f is a 5'-face, then w*(f) >5—-4—1=0by (R3). If f is a
5%-face. Then w*(f) >5—4—2x & =0 by (R4.2). Suppose f is a 53-face. If no(f) = 2
and n3(f) = 1, then by (R4.3.1) w*(f) >5—-4—2x 1 =0. If no(f) = 1 and ng(f) = 2,
then by (R4.3.2), either w*(f) >5—-4—3+2x I =00rw*(f) >5—-4—-L1+1+1=0.
Finally suppose f is a 54" -face, it has non-negative charge by (R4.4).

It remains to show that every charge pot has non-negative charge. Observe that in a
special face, every 4"-vertex except the special vertex has at least 3 big neighbours by
Fact 4.1. Let P be a charge pot with special vertex v which is obtained by k£ consecutive
special faces fi, fa,..., fx. Let vi,ve,...,vpr1 be the consecutive 2-vertices on the
special faces. Then by (R5) w(P) = k and there are k + 1 2-vertices which will take
charge from P. By (R3), v in total sends charge at least (k + 1) x Hiiﬁ’_zi = k to these
2-vertices. Let N(v1) = {v,v]}, fo and f1 be the incident faces of v;. If d(v]) = 4, then
fo contains only one small vertex and thus 7(fo — v) = 1 by (R2). Suppose v] = 5, then
7(v) — v1) = 3 by (R3). If fo is not special with respect to v}, then 7(fo — v) > by
(R4.2). Otherwise by (R5) v; gets charge 1 from v} and the charge pot respect to v].
By symmetry viy1 gets charge at least 1 which is not from v or the charge pot respect
to v. Thus w*(P) = k — (2(k + 1) — k —2) = 0. This completes our proof.
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4.4 Concluding remarks

In this Chapter, using the result of Chapter 3 which itself is based on the 4-color theorem,
we showed for every triangle free planar simple graph G, the signed graph (G, o) has a
packing number at least 5. Unlike the result of Chapter 3, the discharging technique
used here is based on a planar embedding of G and thus cannot be applied to the
class of Ks-minor-free graphs directly. However, an extension from planar graphs to
Ks-minor-free graphs is already shown in [35].

It is unclear if this result can be proved independent of 4-color theorem. It is also
not clear how important is the choice of the all negative signature. More precisely we
would like to ask:

Question 4.1. What is the best possible lower bound on the packing number of planar
signed graph of girth at least g?



Chapter 5

Separating signatures in signed
planar graphs

This chapter is based on the following paper:

[42] R. Naserasr and W. Yu. Separating signatures in planar signed graphs. Accepted
for publication in Discrete Appl. Math., 2023.

In this chapter, as a generalization of the packing number, instead of considering one
signature and its equivalent signatures, we consider the following: given k signatures
01,09,...,0, on a given graph G we say they are separable if there are signatures
01,0%,...,0, where o} is a switching of oy, such that the sets £, are pairwise disjoint.
In particular, if we choose these k signatures to be o, then being separable implies
p(G,0) = k. Given a graph G, if any set of k signatures on G are separable, then we
say G has k-separation property.

The problem of packing number at least 2 is strongly connected to a notion of proper
coloring of signed graphs first introduced by Zaslavsky in [50]. Recall that it is a coloring
¢ of vertices of (G, o) where colors are nonzero integers such that c(x) # o(zy)c(y). In
a further study of this concept, Macajovd, Raspaud and Skoviera [32] conjectured that
colors {+1, +2} are enough for proper coloring of any signed planar simple graph. This
conjecture was recently disproved by Kardos and Narboni [28].

Connecting this two notions, it is shown in [39], a signed graph (G, o) has packing
number 2 if and only if (G, —o) admits a {£1, £2}-coloring, where (G, —0) is obtained
from (G, o) by turning the positive (resp. negative) edges to be negative (resp. positive).
This implies that there exists a signed planar simple graph whose packing number is 1,
see Chapter 3 for more details. In this chapter, we investigate sufficient conditions for a
planar graph to have 2- or 3-separation property. We prove the followings.

Theorem 5.1. Given integer i, i € {3,4,5,6}, any planar graph without a cycle of
length © has 2-separation property.

Theorem 5.2. Fvery planar graph of girth at least 6 has 3-separation property.

49
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The last theorem is a corollary of a more general result on graphs of maximum
average degree less than 3. In Section 5.1, we prove Theorem 5.1. Proof of Theorem 5.2
is provided in Section 5.2. In the last section, Section 5.3, we have concluding remarks
where we mention connection to homomorphisms.

5.1 Separating 2 signatures in subclasses of signed planar
graphs

In the rest of this section G will be a minimum counterexample to Theorem 5.1. We will
see soon that this minimum counterexample has to be 2-connected and be of minimum
degree at least 4. Thus in developing the terminology that is followed we consider G to
be 2-connected and of minimum degree at least 4.

The counterexample G will be regarded as a plane graph that is a graph together
with a planar embedding. As we consider 2-connected graphs every face is bounded by
a cycle of G. We say that two faces (or cycles) are adjacent or intersecting if they share
a common edge or a common vertex, respectively. Suppose that v is a k-vertex, and let
v1,. ..,V be the neighbours of v in the clockwise order. For i = 1,...,k, f;(v) denotes
the face incident with the vertex v with vv;, vv; 41 (where the summation in the indices
are taken modulo k) as boundary edges. As G is a plane graph of minimum degree at
least 4, this is well defined.

For a € F(G), we write a = [ujug - - - u;] if uy,ug, ..., u; are the incident vertices of
a in a cyclic order. As G is 2-connected and minimum degree at least four, each edge
e = ujujq of a face a determines a face adjacent to a at e. This face will be denoted by
fj(a), where j = 1,...,[ and the summation in the indices are taken modulo I.

For two signatures o and 7 on G, and for an edge wv € E(G), let sor(uv) =
{o(uwv)m(uv)} < {+,—} x {+,—}. Observe that to separate o and 7 is to find sig-
natures o', switching equivalent to o, and 7/, switching equivalent to 7, such that
Sorar(uv) # —— for every edge uv. For a vertex u define Sy (u) as multiset Syr(u) =
[sor(€) | e isincident with w]. Thus the order of S,r(u) is the degree of u. Let
S* = {++4,+—,—+}. We say a vertex v is saturated by o and 7 if S* S S, (v).

A path in G all whose vertices are of degree 4 in G is called a light path. Two
paths are said to be verter disjoint if their internal vertices are distinct. We say an
m-face a = [viva - - vy,] is a light face if d(v;) = 4 for all ¢ = 1,...,m. A 5-face with
four vertices of degree 4 and one vertex of degree 5 is called a weak 5-face. A weak
5-face is said to be super weak 5-face if it is adjacent to at least four triangles. For
z € V(G) u F(G), let n3(x) denote the number of triangles incident or adjacent to x
and n,(z) be the number of incident or adjacent weak faces.

It is well-known that every planar graph is 5-degenerate and that every triangle-free
planar graph is 3-degenerate. It is shown in [49] that every planar graph without a 5-cycle
is 3-degenerate. Similarly it is shown in [19] that every planar graph without 6-cycles
is 3-degenerate. In the following, we will see that in a minimum counterexample to
Theorem 5.1, the minimum degree is at least 4, which cannot be the case for 3-degenerate
graphs. This would imply the claim of the theorem for each of the conditions of being
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triangle-free, having no 5-cycle or having no 6-cycle. What remains to prove is that if G
is a planar graph with no 4-cycle, then any two signatures on it can be separated.

5.1.1 Structural properties of a minimum counterexample

Recall that G is a minimum counterexample to Theorem 5.1. That is to say either G
has no triangle, or no 4-cycle, or no 5-cycle or no 6-cycle and there are signatures o and
m on G such that no matter how we switch them there is an edge which is assigned a
negative sign by each of the two signatures.

The first observation is that GG is connected, as otherwise separating signatures on
each connected component, which would be possible by minimality, would be also a
separation of the two signatures on the whole graph. Almost the same argument implies
the following stronger claim.

Lemma 5.1. The minimum counterezample G is 2-vertex-connected.

Proof. Suppose to the contrary that v is a cut vertex of G. Let G = G U G4 such that v
is the unique common vertex of G; and G2, and there does not exist any edges between
V(G1) — v and V(G3) — v. Given two signatures o and 7 on GG, we consider subgraphs
(G1,0), (G1,7), (Ga,0), and (Go, 7). By the assumption of the minimality of G, there
are switchings o1 and 7 on Gy (resp. o3 and w3 on G2) of o and 7, respectively, such
that they have no common negative edge.

In particular, in G; (resp. G2), in order to get the switchings o1 and m; (resp. o2
and m2) of o and 7, we could choose to switch at a subset Vi (resp. V2) of V(G1) (resp.
V(G3)) which does not contain v. Thus in G, if we switch at subset V7 U V5 which does
not contain v as well, we find switchings ¢’ and 7’ of o and , such that ¢’ and 7’ have
no common negative edge. This shows that a minimal counterexample cannot have a
vertex cut of one vertex. ]

Lemma 5.2. Given an edge uwv € E(G) let G' = G — uwv and assume o' and 7' are
switchings of o and T, respectively, such that (G',o’) and (G',7’) are separated. Then
both w and v are saturated by o’ and @ in G'.

Proof. Towards a contradiction and without loss of generality, assume S* & S,/ (u).
Since ¢’ and 7’ have no common negative edge as signatures on G — uv, and G is
counterexample, considering the extension of these signatures to G we have s,/ (uv) =
——. Assume aff ¢ Sy (u), aff € S*. If a = +, switch ¢’ at u; if 8 = +, switch 7’ at
u. After this operation, we have signatures ¢” and 7” both on G which agree with o’
and 7’ (respectively) on every edge that is not incident to u. Thus, by the choice of ¢’
and 7, no edge which is not incident to u is negative in both. But, furthermore, based
on our switchings {——} ¢ S(u) and thus ¢” and 7" are switchings of o and 7 that are
separated, a contradiction. O

Corollary 5.1. The minimum degree of G is at least 4.

Thus as mentioned above, the case when G has no triangle or no 5-cycle or no 6-cycle
is settled because any such a planar graph must be 3-degenerate.
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Lemma 5.3. Let P be a light path of G, e € P. Assume o, and 7. are switchings of o
and 7, respectively, such that (G,o.) and (G, m.) have only e as their common negative
edge. Then given an edge € of P, by switching o. on a set X of vertices of P and
switching m. on a set'Y of the vertices of P, for some choices of X and Y, we have
signatures oo and T where €' is the only common negative edge of (G,0e) and (G, mer).

Proof. Suppose P = vivg - v and e = {v;v;41}, where ¢ € {1,2,...k — 1}. By our
assumption Sy . (viviy1) = {——}. By Lemma 5.2, S, . (vi) = Spor. (vig1) = S*. With
the same idea as in the proof of Lemma 5.2, and assuming ¢ > 2, we may apply switchings
at the vertex v; so that v;_jv; is the only common negative edge of the resulting two
signatures. Similarly, assuming ¢ < k — 2 we may apply switchings at the vertex v;;1
so that v;y11v;19 is the only common negative edge of the resulting two signatures.
Continuing this process, and noting that each time switchings are only done on one of
v;’s, j = 2,...k — 1, we have the desired claim. O

Lemma 5.4. There is no pair of vertices connected by three vertex disjoint light paths.

Proof. Assume to the contrary that P, P>, P3 are three vertex disjoint light uv-paths
and label them as follows: Py = uxy---2;v, Po = uyy - - - y;v, and P3 = uzy - - - 2,0, where
1,7,k = 0, noting that k = 0 means P3 = uv and that, since G is a simple graph, only
one of these values can be 0. Thus, without loss of generality, we may assume ¢ > j > 1
and k > 0. Since G has no 4-cycle, we also conclude that ¢ > 2. Moreover, we may
choose Pp, P>, P53 to be shortest subject to being internally vertex disjoint. This implies,
in particular, that for any pair of non-consecutive vertices on a path P; (i = 1,2,3),
they are not adjacent in GG. Recalling that all vertices of a light path are of degree 4 in
G, let t, w be the neighbours of u, v which are not on any of P, P», or Ps, respectively.
Let G’ = G — ux;. By the minimality of G, assume o’ and 7’ are switchings of o and
m, respectively, such that (G’,0’) and (G',n’) are separated. Thus when ¢’ and 7" are
viewed as signatures on G we have s,//(uxi) = {——} and both u and x; are saturated.
Noting that k is allowed to be 0, we consider two cases depending on this.

First consider the case k > 1, as depicted in Figure 5.1. We may apply Lemma 5.3 to
switch only at the internal vertices of P; to obtain signatures ¢” and «” such that z;v is
the only edge with s,n»(2;0) = ——. Therefore, considering signatures ¢” and 7", and
by Lemma 5.2, the vertex v must be saturated. Recall that in the process of getting o”
and 7 from ¢’ and 7’ we are considering only switchings at the internal vertices of P;.
Furthermore, since P;’s chosen to be shortest, no internal vertex of P; is adjacent to v.
That means, in particular, that the signs of the three edges y;v, zxv, wv each incident
to v remain untouched when switching ¢’ to ¢” and 7’ to ©”. We conclude that

{SG’W’(ij)a So’w’(zkv)a SG’W’(w'U)} = {++a +—, _+}' (5-1)

Next, restarting from signatures ¢’ and 7’ and applying Lemma 5.3 to the path
x1uy; - - - y;v (that is the path obtained from P5 by adding the edge zju at the start),
and as before, we conclude that

{Sa/ﬂ/(l’ﬂ)), Salﬂ/(zkv), Salﬂ/(wv)} = {++, +—, —+}. (52)
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In this argument that £ > 1 helps us to confirm that the signs of the three edges
incident to v other than y;v remain the same.

Equations 5.1 and 5.2 imply that s,/ (20) = se/ (y;0).

Similarly, considering paths P; and xjuz;---zxv we conclude that s, (zv) =
Sgrm (zKv). However, this leads to contradiction with either of the identities 5.1 and 5.2.
This concludes the statement for the case that k > 1.

Now assume k = 0, that is to say uv is an edge of G, this case is depicted in Figure 5.1.
First suppose that, except for the edge uv, no vertex of P; is connected to a vertex
of P,. Our first claim in this case is that sy (uy1) = sera(Y1y2) = -+ = Ser (y;v).
That is because by applying Lemma 5.3 and Lemma 5.2 to the path xiuy y2 - - - yjv we
get that Sy (Y1) — Sor (Yiyi—1) = S™ and by applying the same lemma to the path
UT1T2 - T0YY5-1 - - - y1 we get that Sy (y1) — Sorm (Yiyie1) = S™.

Next we claim that s,/ (2;v) = S,/ (uv). That is for similar reasons as the previous
claim and by considering the two paths P, and xjuv. Furthermore, applying Lemma 5.2
to signature ¢” and n” which have only x;v as common negative edge, and are obtained
from switching of ¢’ and 7’ (respectively) on internal vertices of Py, we conclude that:

{SU/Tr/(uv)a So'n! (ij)v So'n! (wv)} = {++a +—, _+}' (5'3)

Recall that u is saturated by ¢’ and 7’ where uz is negative in both signatures.
This means

{50'/71'/ (Ut)a So’ﬂ"(uyl)a Sa’ﬂ’(uv)} = {++7 +—, _+}' (5'4)

Comparing identities 5.3 and 5.4 we have: s,/ (ut) = sy (vW).

Observe that when applying Lemma 5.3 to get uy; as the only common negative edge,
we apply switchings at u in one or both of the signatures. Assuming the new signatures
are o’ and 7" one observes that syrpr(ur1) = Sei(uyr) and thus syrpr(uv) = Sy (ut).
Therefore, sy (uv) = Sy (VW).

If we now apply Lemma 5.3 to ¢” and 7" on the path P, so to have y;v as the only
common negative edge, as we will not change signs of the other three edges incident
with v we will end up with a vertex v which is not saturated, contradicting Lemma 5.2.

Figure 5.1: 3 disjoint light paths between v and v
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For the final case, suppose beside uv, there exists another edge connecting a vertex
of P; to a vertex of P». Let x,y, be such an edge. Since 7 > 2, and by exchanging the
roles of u and v, if needed, we may assume that p < i — 1. In this case, as before we
apply Lemma 5.3 to the following three paths: Pi, zquv, and uxy - - - 2py, - - - y;v. From
the first we conclude that {s,//(uv), Sgra’(yjv), S (WV)} = {++, +—, —+}. From the
second we conclude that {s,/(2iv), Sgrn' (Y;V), Sorn(wv)} = {++,+—, —+}. And the
last one implies {Sy/r (wV), Sgrr (TiV), Sgr (W)} = {++, +—, —+}. Comparing the first
two we conclude that s, (uv) = s, (2;v), then first with second sy (uv) = s517(y;v)
which contradicts, say, the third identity. O

Corollary 5.2. There are no adjacent light faces in G.

We may now apply discharging technique to conclude our claim.

5.1.2 Discharging for planar graphs without 4-cycles

In this section, we apply discharging technique to complete the proof of Theorem 5.1 for
the case of Cy-free planar graphs.

We define a weight function w on the vertices and faces of G by letting w(v) = d(v) —
for each v € V(G) and w(f) = d(f) — 4 for f € F(G). It follows from Euler’s formula
and the relation >} .y ) d(v) = X pep ) d(f) = 2|E(G)| that the total sum of weights
of the vertices and faces satisfies the following

D) [d) =4+ > df)—4) =-8.

veV (G) fEF(G)

Next we design appropriate discharging rules and redistribute weights accordingly.
Once the discharging is finished, a new weight function w* is produced. The total
sum of weights is kept fixed when the discharging is in process. Nevertheless, after the
discharging is complete, we will show that w*(z) > 0 for all x € V(G) u F(G). This
contradiction implies that no such counterexample exists.

Let v be vertex of degree 4 whose neighbours in clockwise orientation are v, v,
vs, and vyg. Let f1, fa, f3, and fi be the face containing vivvs, vovvs, vsvvy, and v4vVy
respectively. If d(vs) = d(vq) =4, d(v1) = d(v2) = 5, d(f2) = d(f4) = 3, d(f3) =5, and
d(f1) = 5, then we say f3 is a receiver of fi.

For z,y € V(G) u F(QG), let 7(x — y) denote the amount of weights transferred from
T to y.

Our first discharging rule is as follows:
R1: Each 5*-face sends 1 5 to each adjacent 3-face and = to each of its receiver.

Let v be a 5-vertex with fi, fo, ..., f5 being the faces incident to v. Assume f; and f3
are triangles and, furthermore, that f4 is a super weak 5-face. Then it is easily observed
that f5 is not a super weak 5-face.

The next two discharging rules are as follows:
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R2: If d(v) = 5, ng(v) = 1, say d(f1) = 3, then let (v — fo) = 7(v — f5) = 3.

R3: If d(v) = 5 and ng(v) = 2, say d(f1) = d(f3) = 3, then 7(v — f3) = % Fur-
thermore, if there exists one super weak 5-face f’, f' # fo, then 7(v — f') = %,
1

otherwise 7(v — f4) = 7(v — f5) = 5.

The remaining two rules are about 6™ -vertices.

R4: If d(v) = 6 and f is a face incident to v and adjacent to one triangle also incident
1

to v, then 7(v — f) = 3.
R5: If d(v) = 6 and f is a face incident to v and adjacent to two triangles each incident
to v, then 7(v — f) = 2.

In the following, we will show that w*(x) = 0 for all x € V(G) u F(G).

First we consider vertices, let v € V(G). By Corollary 5.1, d(v) > 4. Note that no
4-vertex participates in discharging argument, so w*(v) = w(v) = d(v) — 4 = 0 for any
4-vertex v. Next we consider 5-vertices. Let v be any such a vertex, then w(v) = 1. By
the fact that G contains no 4-cycle we have 0 < n3(v) < 2. If ng(v) = 0, then the charge
of v is not changed, i.e., w*(v) = w(v) = 1. If ng(v) = 1, the charge of v is changed
(only) by the R2, and in this case w*(v) = w(v) —2 x & = 3. If ng(v) = 2, then R3 is
the only rule that changes the charge of v and under this rule at most a charge of 1 is
given from v to its incident face. Thus w*(v) > 0.

It remains to consider 67 -vertices. Let v be such a vertex. d(v) = 6. For i = 1,2,
let m;(v) denote the number of incident faces adjacent to i triangles each incident to
v. Observe that, by definition, m;(v) 4+ 2ma(v) < 2n3(v) < d(v) (the latter inequality

. . . (v)+2ma(v)
because of being Cy-free). In applying R3 the vertex v loses a charge of T2,

Thus w*(v) = d(v) — 4 — w Therefore, w*(v) = d(v) — 4 — @. As d(v) = 6
we have w*(v) = 0.

Now we consider faces, let f € F(G). First assume d(f) = 3, in other words f is a
triangle. Recall that original charge w(f) = —1. Since G has no Cjy, each of the faces
adjacent to f is of size at least 5. Then by rule R1, each of them sends a charge of % to
f and thus w*(f) =3 —-4+3x £ =0.

Next we consider 5-faces, let f = [v1 - - - v5] be such a face. For the original charge of
f we have w(f) =5—4 = 1. If f is adjacent to at most two triangles, then f gives a
charge of % to each of the triangles it is adjacent to and it has at most one receiver, so
can only lose a charge of 2 x % + % = %, thus the final charge is at least %

Suppose f is adjacent to precisely 3 triangles. If f has no receiver, then it only loses
charge by R1 and by this rule loses exactly a charge of 3 x % =1, hence w*(f) = 0. If
f has exactly one receiver, let vo be the common vertex of f and its receiver. Then,
by the definition of a receiver, v1,vs each has degree at least 5. We now consider the
position of the third triangle adjacent to f. If it is one of f3 or f5, say f3, then by R3
or R5, depending on if d(v3) = 5 or d(v3) > 6, the vertex vs gives a charge of % to f,
concluding that w*(f) > %. Otherwise fy is the third triangle adjacent to f. In such a
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case the two faces f3 and f5 are 5"-faces. We claim that neither is a super weak 5-face.
By contradiction, suppose f3 is a super weak 5-face. Then, it must be adjacent to at
least four triangles. As f is not a triangle, all the other faces adjacent to f3 are triangles.
This implies that vertices v3 and v4 are each of degree at least 5, but this contradicts the
second condition of being a super negative 5-face which is to have four vertices of degree
4. If f5 (or f5) is a 67-face, then, by R4, it gives a charge of 1 to f, raising w*(f) to at
least 1 . If they are both 5-faces, then, by R3 each of v1 and v3 gives a charge of 1 to f.
The ﬁnal charge of f in this is at least 1 + 6 -3 x 3 125 30

Suppose f is adjacent to 4 triangles and by symmetry assume f1, fa, f3, and f; are
the triangles. The receiver face implies that there are at most two receivers for f, and
moreover if there is at least one, then one of vy, v3 or v4 has to be of degree at least 5.
If one of vy, v3 or vy is of degree at least 5, either by R3 or by R5 it Will give a charge
of 2 to f and thus the final charge of f would be at least 1 + 2—4xz—2x 1% = 1—15
Let now assume the vertices ve, vs, and vy are all of degree 4. In such case, if vs and
v1 each has degree at least 5 or one of them has degree at least 6, then f5 cannot be a
weak face and either by applying R3 to both vy and vs or applying R4 to the one which
is a 67-vertex, a total charge of at least % is given to f and thus the final charge of
f is non-negative. If one of v; and vs is degree 4 and the other, say vs is of degree 5,
then f is a super weak 5-face and thus by R3 the vertex vs will give a charge of % to f,
resulting a final charge of f to be positive. If all vertices v1,...,vs are of degree 4, i.e.,
f is a light face, then since there is no adjacent light faces (Corollary 5.2) for each of
the triangles fi,..., f4 the vertex of f; which is not on f is a 5T-vertex. Then f is a
receiver for the face adjacent to f; and fo and for the face adjacent to fy and f3 and
also for the face adjacent to f3 and fy. It, therefore receives a charge of 1% from each of

these 3 for a final charge of w*(f) > 1+3x & —4x + = L.
Finally we consider the case where all faces adjacent to f are triangles. Recall that
f has at most two receivers. So it loses at most 5 x = + 2 x =. If two of v;’s are 5+

vertices, then either by R3 or by R5 they each gives a charge of 2 to f and the final
charge of f is positive. If only one of v;’s, say vy, is a 5T -vertex, then f has no receiver
and only loses a charge of 5 x 3 but gains 3 2 from v; and again the final charge would be
non-negative. If none of v;’s 1s abt- vertex i.e., f is a light face, by Corollary 5.2, for
each of the triangles fi,..., f5 the vertex of f; Which is not on f is a 5T-vertex. Thus f
is a receiver of five faces determined by consecutive triangles around it. Hence by R1, it
receives 5 X = from each of these five faces, to have a final charge of 0. This conclude
all the cases for a b-face.

Next assume that f = [v1---vg] is a 6-face. Then w(f) = 2. If f is adjacent to at
most 5 triangles, then it has at most two receivers, and hence it loses at most 5 x z +2 X 1 =
(all in R1) hence w*(f) > . If all the six faces adjacent to f are triangles, we conslder
two possibilities depending on the degrees of v1,...,vg. If at least one of them is a
5*-vertex, then either by R3 or by R5 it gives a charge of % to f. As f can have at most
three receivers, the final charge of f remains non-negative. If all vertices on f are of
degree 4, then f has no receiver and the final charge of f is 0.

Finally we consider 7*-faces. Recall that faces only lose charge by R1. There are at
most d(f) triangles adjacent to f, and it can have at most [d(f )] receivers. Thus for the
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final charge of f we have w*(f) = d(f) —4 — 3d(f) — 3 x 2d(f) = 2d(f) —4 > %. This
completes the proof.

5.2 Separating 3 signatures in signed planar graphs of
girth 6

In this section we provide a maximum average degree condition which is sufficient for any
three signatures on a graph to be separated. Theorem 5.2 will be immediate consequence
then.

Theorem 5.3. Every simple graph of maximum average degree less than 3 has a 3-
separation property.

Proof. Let G be a minimum counterexample. That, in particular means there are three
signatures o1, 02, and o3 on G that are not separable but for any edge e, the restrictions
of the three signatures on G — e are separable. After proving a few claims, and using
discharging technique then we will show that G itself must have average degree at least
3 contradicting our hypothesis on the maximum average degree of G.

For three signatures o1, o2 and o3 on G, and for an edge uv € E(G), let S, 0y04 (uv) =
{o1(wv)oz(uwv)os(uv)} < {+,—} x {+,—} x {+,—}. For a vertex u define a multiset
Sor0005 (W) = [Soy0905(€)|€ € Ey], where E, is the set of edges incident to u. We
may use s(uv) and S(u) when the signatures are clear from the context. Let S* =
{(+++,—-++,+—+,++-}.

The first observation, which is easy to derive, is that G is 2-connected. Thus in
particular the minimum degree is at least 2. To achieve our goal then we have three
claims about the neighbourhood of vertices of degree 2.

Claim 1. Both neighbours of a 2-vertex v in G have degree at least 4.

Proof of the claim. Let N(v) = {v1,v2} and assume to the contrary, that d(vy) < 3.
Let G’ = G — vvy. By the minimality of G, assume o}, o5, and 0% are switchings
of 01, 09, and o3, respectively, such that (G’,0}), (G',0}), and (G', 0%) are separated.
Since d¢gr(v) = 1, and by a switching at v in any signature that needs, we may assume
Sot oy, (001) = {+ + +}. When o7, 03, and o3 are viewed as signatures on G, vvs is
the only edge not satisfying the condition which means at least two of the signatures
must assign negative to vvy. If one of them, say o} assigns positive to vve, then by
switching v at the signature o (or o) we have separation. Thus we may assume
Sot oy (VU2) = {— — —}.

At this point, it suffices to find one or two signatures, o; and o7, such that if o;
or both ¢} and 03 are switched at ve, then vvy is still the only edge not satisfying our
condition. If we manage to find o/, or o and ag, then we may also switch signature
o), L ¢ {i,j}, at v. After these switchings, vv; will be negative at one signature only,
and vvy with be either positive in all or negative in just one signature, and thus we
have three separated signatures. To choose o} and possibly o’ among o7, 05, and o3 we
consider the two edges, e; and es incident to vo but different from vvo. If they are both
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negative in a signature, we choose that one to be o} and no need for a second. If each of
the edges is assigned only positive sign by each of the signatures, then o, can be any of
the three signatures and again no need for a second choice. Otherwise, we note that at
most two of the signatures can assign different signs to e; and es. If only one, then we
choose that signature to be o; and if two we take them both to be o} and o7. o

Claim 2. A 4-vertex v can have at most two 2-neighbours.

Proof of the claim. Let N(v) = {v1,v9,v3,v4}. Toward a contradiction assume that
d(v;) = 2 for i = 1,2,3. For each i, i = 1,2, 3, let the other neighbour of v; be v}. Let
G’ = G — vvy. By the minimality of G, we have signatures o/, o5, and of as switchings
of o1, 09, and o3, respectively, such that (G',0}), (G',0%), and (G’ 0%) are separated.
In what follows, we consider signatures o}, o5, and o4 on G. Again since dg(v1) = 1,
without loss of generality, we may assume s(viv]) = {+ + +}. The same argument as in
the previous case then implies that s(vvy) = {— — —}.

If S(v) N S* < 2, then we continue the same argument as in the previous case, where
v is a neighbour of the 2-vertex v; and to our purpose it is of degree |S(v) N S*| + 1. So
we assume S(v) N S* = 3. We observe that by switching at ve, in the signatures that
are needed, we may exchange s(vve) and s(vevh). If after such switchings the previous
condition holds, we are done. If not, either s(vve) = s(vov)) in which case by switchings
at vo we may conclude that s(vve) = s(vvs) and then we are done as before, or s(vavh)
is distinct from each of s(vva), s(vvs), and s(vvs). Repeating the same argument we
conclude that s(vsvh) = s(vevh). We may now do enough switchings at ve and vs so
that s(vve) = s(vvs). Then the process can be completed as before. o

Claim 3. A 5-vertex v can have at most four 2-neighbours.

Proof of the claim. Let N(v) = {v1,...,v5}. Assume to the contrary that d(v;) = 2
for i = 1,...,5. We name the other neighbour of v; as v,. Let G’ = G — vv;. By the
minimality of G, assume o}, 0%, and o4 are switchings of o1, o2, and o3, respectively,
such that (G, 01), (G',0%), and (G', o) are separated. As in the previous two cases, we
may assume s(v1v]) = {+ + +} and s(vv;) = {— — —}. Furthermore, by switching at
v;’s, if necessary, we can assume that none of s(vv;), i = 2,...,5,is {+ + +}. Thus for
some 4 and j, 2 < i < j < 5, we have s(vv;) = s(vv;). At this point we note that in the
proof of Claim 2 we never applied a switching at v4. Thus we may now continue the
same proof as in the Claim 2 by treating v; and v; as v4 and not switching at these two
vertices. o

Finally to complete the proof we show that the three forbidden configurations of
Claims 1, 2, and 3 imply an average degree of at least 3.

We first define w on the vertices of G by letting w(v) = d(v) for each v € V(G). The
single discharging rule is as follows.

R': Each 4*-vertex sends § to each 2-neighbour.

Let w*(v) be the charge of v after applying the rule. Let v € V(G). As observed
before, d(v) = 2. If d(v) = 2, then by Claim 1, v is adjacent to two vertices of degree
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at least 4. Thus, w*(v) =2+ 2 x % = 3 by (R'). The discharging rule does not change
w(v) if d(v) = 3. If d(v) = 4, then by Claim 2, v has at most two 2-neighbours, thus
w*(v) =4 —-2x % = 3. When d(v) = 5, by Claim 3, v has at most four 2-neighbours,
thus w*(v) = 5—4 x % = 3. Finally if d(v) = 6, then w*(v) > d(v) — @ = @ >3. O

5.3 Conclusion

We have known that problem of packing signatures in signed graphs relates to some
of the most prominent problems in graph theory such as the four-color theorem and
edge-coloring problems as shown in Chapter 3. The question of separating a given set of
k signatures captures the k-packing of signature problem because one can simply take
k identical signatures. The question then can be translated back to a homomorphism
problem as follows.

A multi-signed graph, denoted (G,o01,09,...,07), is a graph G together with [
signatures. A multi-signed graph (G, o1, 09,...,07) is said to admit a homomorphism to
a multi-signed graph (H, 7, ma,...,m) if there is a mapping f of vertices and edges of G
to vertices and edges of H, respectively, which is a homomorphism of (G, ;) to (H,m;)
for every i, ¢ = 1,2,...,1. That is to say incidences and adjacencies are preserved, and
the sign of any closed walk in (G, 0;) is the same as the sign of its image in (H, ;).

4+
+ ++
—+7F F+-
- —+ +— +—+
Figure 5.2: (L1,0) Figure 5.3: (L2,01,02) Figure 5.4: (L3, 01, 09,03)

Given an integer [, let L; be the multi-signed graph on a single vertex with [ + 1
loops eg, e1, . ..e; where ¢q is assigned a positive sign by each of the signatures and e;
is assigned a negative sign by o; and positive sign by all other signatures. The cases
[ =1,2,3 are presented in Figures 5.2, 5.3, and 5.4. It is then immediate to restate the
separating problem we have studied here as a homomorphism problem.

Theorem 5.4. A multi-signed graph (G, o01,02,...,07) admits a separation if and only
it admits a homomorphism to Lj.



Part 111

Vertex decomposition of sparse
graphs

60



Chapter 6

An (F3, F5)-partition of planar
graphs of girth at least 5

This chapter is based on the following paper:

[9] M. Chen, A. Raspaud, W. Wang, and W. Yu. An (F3, F5)-partition of planar graphs
with girth at least 5. Discrete Math., 346(2):Paper No. 113216, 17, 2023.

Let Cy,...,Cy denote k classes of graphs. Recall that a graph G admits a (Cy,...,Ck)-
partition, if V/(G) can be partitioned into k vertex subsets Vi,...,Vj such that the
subgraph G[V;] belongs to C; for each 1 < i < k. We use F, F;, Ay and I to denote the
class of forests, the class of forests with maximum degree at most d, the class of graphs
with maximum degree at most d, and the class of empty graphs, respectively. Obviously,
I = Ay = Fyand Ay = F;. The famous 4-color theorem guarantees that every planar
graph admits an (I, I, I, I)-partition.

In this chapter, we study vertex partitions of graphs under restriction on girth
condition. Recall that PG, denote the family of planar graphs of girth at least g. It has
been proved in [33] that there is a graph belonging to PG4 having no (A4, , Ag, )-partition
for any non-negative integers dy and ds. Therefore, we are aiming to find a refinement
of forest partitions of PGs. More specifically, we prove the following.

Theorem 6.1. Fvery graph in PGs admits an (Fs, F5)-partition.

This is an improvement of a result in [12] stating that every graph in PG5 admits
a (As, As)-partition. Our proof is based on the discharging technique. Assume that
G is a minimum counterexample to Theorem 6.1. In Section 6.1, we first give some
basic notations. In Section 6.2, we study the structural properties of the minimum
counterexample. Finally in Section 6.3, the discharging technique is employed to prove
that G does not exist, which finishes the proof.
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6.1 Preliminaries

Arguing by contradiction, we assume that G = (V, E) is a counterexample to Theorem 6.1
minimizing |V (G)|. Embedding G into the plane, we get a plane graph G = (V, E, F)
with the face set F'. It is obvious that G is connected with ¢g(G) = 5. If G contains
a l-vertex, say v, then let u be the unique neighbour of v. Take an (F3, F5)-partition
of G —v. One may easily reach an (Fj3, F5)-partition of G by adding v to F;, where
i€ {3,5} and u ¢ F;. Thus, in what follows, assume that G is a connected graph of
minimum degree at least 2.

For f € F(G), we use b(f) to denote the boundary walk of f and write f =
[uiug ... uy] if uy,ug,. .., u, are the vertices of b(f) appearing in a boundary walk of
f. For x € V(G) u F(G), we use n;(z) to denote the number of i-vertices adjacent
or incident to z. Let uv € E(G). If d(v) = k, then we call v a k-neighbour of u. We
may similarly define a k*-neighbour or a k~-neighbour of u. Let i € {3,5}. Given a
(partial) (F3, F5)-partition of G’ & G, a vertex v is said to be an F;-vertez if v € F;. An
F;-neighbour of v is an Fj-vertex adjacent to v. Furthermore, we call v F;-saturated if
v is an F;-vertex with exactly 7 Fj-neighbours. By definition, it is easy to see that an
Fi-saturated vertex has at least ¢ neighbours.

Let f be a 5-face of G. We call f good, weak, and bad if na(f) = 0, na(f) = 1 and
na(f) = 2, respectively, as shown in Figure 6.1. Let v be a 3-vertex in G. We call v
heavy if ng+(v) > 2, and light otherwise, as shown in Figure 6.2. For our convenience,
we use ngn(u) and ngi(u) to denote the number of heavy 3-vertices and light 3-vertices
adjacent to u, respectively.

Figure 6.1: good, weak and bad 5-faces

/Q /i%
5T 5T 4= 4=

Figure 6.2: heavy and light 3-vertices

For all figures in this part, a vertex is represented by a solid node when all of its
incident edges are drawn; otherwise it is represented by a hollow node.
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6.2 Structural analysis of minimum counterexample

6.2.1 Elementary structural lemmas
Lemma 6.1. [12] Every 2-vertex is adjacent to a 5 -vertex and a 7% -vertez.
Lemma 6.2. [12] No 3-vertex can be incident to any bad 5-face.

Lemma 6.3. Let v be a 2-vertex adjacent to vi and ve such that d(vi) < 6. Then vy is
Fs-saturated and vy is Fy-saturated in G — v.

Proof. By Lemma 6.1, d(vy) = 7. Clearly, G — v admits an (Fj, F5)-partition due to
the minimality of G. If vy, ve € F; for some fixed i € {3,5}, then it is easy to get an
(F3, Fs)-partition of G by putting v to Fj such that j € {3,5}\{i}. Otherwise, we deduce
that v; and vs belong to different forest partitions. If vy € F5, then vo € F3, and thus we
can directly add v to F5, and further move v; to Fj if vy is Fs-saturated in G — v. So
now assume that vy € F3 and ve € F5. If one fails to put v to F3 or F5, then we obtain
immediately that v; is F3-saturated and vy is Fs-saturated in G — v. L]

Lemma 6.4. Let v be a 2-vertex adjacent to vy and ve such that d(vi) =5 and d(vy) = 7.
Let Ng(v1) = {v,21,...,24} and Ng(v2) = {v,y1,...,ys}. Then the following holds:
(1) If ng+(v1) = 1, say d(x1) = 4, then x1 € F5;
(2) If ng+ (v2) = 1, say d(y1) = 4, then y1 € F3.

Proof. By the minimality of G, G — v has an (F3, F5)-partition. By Lemma 6.3, v; is
Fs-saturated and vy is Fs-saturated in G — v.

(1) Suppose otherwise that x1 € F3. Then exactly one vertex of xs,...,z4 belongs
to F5. Since x2, x3, x4 have degree at most 3, we can change vy to F5 and then add v to
F35 to obtain an (F3, F5)-partition of G, a contradiction.

(2) Suppose otherwise that y; € F5. Similarly, exactly one vertex of ya, ..., ys belongs
to F3. Again since yo, ..., ys have degree at most 3, we can change v9 to F3 and then
add v to F5 to reach an (F3, F5)-partition of G, a contradiction. d

Lemma 6.5. Every 3-vertex v has at least one 51 -neighbour.

Proof. Suppose to the contrary that all v's neighbours, denoted by v1, vy and v3, are of
degree at most 4. Then, by the minimality of G, G — v admits an (F3, F5)-partition. If
v1, U2, v3 € Fy for some fixed i € {3, 5}, then we could add v to F}, where j € {3,5}\{i}.
Otherwise, we assume that there exists some i € {3,5}, so that exactly one vertex of the
set {v1, v, v3} belongs to F;. W.l.o.g., assume that vy € F;. Then, we put v to F;. Since
d(vy) < 4, if the resultant partition of G is not an (Fj, F5)-partition, then ¢ = 3 and
v1 is F3-saturated in G — v. It suffices to further change v; to F5, and thus obtain an
(F3, F5)-partition of G, a contradiction. O

Lemma 6.6. Let v be a 5-vertexr with na(v) + nyi(v) = 1. Then nq+ (v) = 1.
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Proof. Let v be adjacent to v, vs,...,v5 such that vy is either a 2-vertex or a light 3-
vertex. Suppose to the contrary that d(v;) < 6 for each i € {2,3,4,5}. By the minimality
of G, G —v; admits an (Fj, F5)-partition.

Case 1: Assume that vy is a 2-vertex.

Denote by v} the other neighbour of v;. By Lemma 6.3, v is F3-saturated in G — v;
and v} € F5. W.Lo.g., assume that ve, vs,v4 € F3 and vs € F5. Then, we change v to Fs,
put v1 to F3, and further change vs to Fj if it is Fy-saturated in G — v. One may check
that the obtained partition is our desired partition, a contradiction.

Case 2: Assume that vy is a light 3-vertex.

Let v} and v{ denote the other two neighbours of vy different from v. By definition,
d(v]) < 4 and d(v]) < 4. In what follows, let S = {v,v],v{} and {3, j} = {3,5}. If all
vertices of S belong to the same forest partition, say F;, then we may put vy to Fj. Now
assume that exactly one vertex of S is in Fj and the remaining two vertices of S are in
F;.

e If v e F; and vj, v} € F}, then we add vy to Fj. If the obtained partition is not an
(F3, F5)-partition, then we assert that i = 3, j = 5, and v is F3-saturated in G — vy.
W.l.o.g., suppose that v € F3 for all k = 2,3,4 and vs € F5. At this moment,
we can change v to F5, and then change vs to Fj if it is F5-saturated in G — vy,
ensuring that the obtained partition of G is an (F3, F5)-partition, a contradiction.

e Now, by symmetry, assume that v] € F; and v,v] € F;. Firstly, add v; to F;. If
the resultant partition is not our wanted, then i = 3 and v} is Fs-saturated in
G — v;1. Tt follows that d(v]) = 4. Then we may further change v} to F5 to get an
(F3, F5)-partition of G, a contradiction. O

In the following, we say a vertex v is an i/ -vertez if i < d(v) < j.

Lemma 6.7. Let v be a 6°-verter. If ny+ (v) = 0, then ngn(v) = 2.

Proof. Let Ng(v) = {v1,v9,...,vx} with 6 < k < 9. By assumption, d(v;) < 3 for all
i€ {1,2,...,k}. If d(v;) = 2, then we use v} to denote the other neighbour of v;. If
d(v;) = 3, then let v}, v/ denote the other two neighbours (distinct to v) of v;. Suppose
to the contrary that ngn(v) < 1. W.l.o.g., assume that v; is either a 2-vertex or a light
3-vertex for each i € {2,3,...,k}.

Clearly, G — {v,va,...,vx} has an (F3, F5)-partition due to the minimality of G.
Firstly, let 2 <i <k, d,d' € {3,5} and d # d'. If d(v;) = 2, then we add v; to F; when
vl € Fy. If d(v;) = 3 and v}, v € Fy, then add v; to Fy. Next, we have to count the
number of vertices among v1,...,v; being in F5.

If there are at most five Fs-vertices in Ng(v), then we add v to F5, and then add
all remaining 3-vertices to F3. Notice that it may occur some conflicts if v; € F3 for
2 < j < k and vj or vj is F3-saturated. In this case, we may further change v} or
v;’ to F5 and thus obtain an (F3, F5)-partition of G, a contradiction. Otherwise, we
deduce that at least six F5-vertices are in Ng(v). This implies that there are at most
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three Fs-vertices in Ng(v) due to k < 9. Hence, it suffices to add v to F3 and add all
remaining 3-vertices to Fy, leading to a contradiction. O

6.2.2 Structure of 5-faces
For convenience, we use S, (v) to denote the set of Fj-neighbours of v, where i € {3, 5}.

Lemma 6.8. Suppose that f = [v1 ... vs] is a weak 5-face such that d(v1) = 2, d(va) = 5,
d(vs) = d(v4) = 3 and vs is light. Then vy is a heavy 3-vertex.

Proof. Suppose to the contrary that vy is light and let v5 and v} be the third neighbour
of v3 and vy, respectively. By Lemma 6.1, d(vs) = 7, and thus we have that d(v5) <4
and d(vy) < 4. Let G = G — {v3}. By the minimality of G, G’ admits an (F3, F5)-
partition. If |Sg (v3)| = 0 or |Sg,(v3)| = 0, then we add v3 to F5 and Fj, respectively.
If |Sp (v3)| = 1, then add vz to F5 easily since all its neighbours are of degree at most
5. Next, consider the remaining case that |Sg, (v3)| = 2. There are three possibilities
below:

o If vg,v5 € F5 and vy € F3, then add v3 to Fj easily without causing any conflicts.

o If vg,u4 € F5 and v4 € F3, then add vz to F3 and further change v to F5 if it is
F3-saturated in G’.

e Now assume that v5,v4 € F5 and ve € F3. Then one of v} and vs belongs to Fj
since otherwise add vs to Fj easily. Similarly, one of v} and vs belongs to F3 since
otherwise first change vy to F3 and then go back to previous case. If v € F3 and
v5 € F5, then change vg to F3 and further change v} to Fj if it is F3-saturated in
G’, and then go back to the former case. Or else, assume v} € F5 and vs € F3. In
this case, it remains us to change v; to F5, add v to F3, and finally change vs to
F5 if it is F3-saturated in G’. One can easily check that the obtained partition of
G is an (F3, F5)-partition, a contradiction. O

Lemma 6.9. Suppose that f = [v1...v5] is a bad 5-face such that d(vi) = 2, d(v2) =7,
d(vs) =5 and ns+ (vs) = 1. Then ny+(v2) = 2.

Proof. Let Ng(v2) = {v1,vs,u1,...,us} and Ng(vs) = {vi,vs4, w1, we, ws}. Suppose
otherwise that vy has at most one 4™ -neighbour. Let G’ = G — {v;}. Then G’ admits
an (F3, F5)-partition due to the minimality of G. By Lemma 6.3, vo € F5 and v has
exactly five Fy-neighbours, and vs € F3 and v5 has exactly three F3-neighbours. Since f
is bad, exactly one of v and vy is of degree 2.

First suppose that d(vs) = 2. By Lemma 6.1, d(v3) > 7. It follows that all vertices
of uy,...,us are 3~ -vertices by assumption. W.l.o.g., let w; be the 5"-neighbour of vs.
By Lemma 6.4 (2), we know that vs € F3. If w; € F3, then we could change vs to F5 and
add v1 to F3 since ws, w3, v4 have degree at most 4. So wy € Fy, implying that ws, w3, v4
are in F3 and all ug,...,us are in F5. We only need to change v4 to F5 and then add v;
to F3.
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Now suppose that d(vs) = 2. Then d(vs4) = 5 by Lemma 6.1, which implies that all
w1, ws, w3 are 4~ -vertices. By assumption, we may let u; be the 4"-neighbour of vy
if it exists. If vy € F3, then exactly one of wy,ws,ws is in F5, say wy. One may first
add v; to F3, and then change v5 to F5. Next, assume that vy € F5. Recall that vy has

exactly five F5-neighbours. If v € Fj3, then all uq,...,us are in F5, and so we only need
to change vy to F3 and then add vy to F5. If v € F5, then it suffices to change vs to F3
and then go back to the previous case. O

Lemma 6.10. Suppose that f = [vy ... vs] is a bad 5-face such that d(vy) = 2, d(vy) = 8
and d(vs) = 5. If d(vs) = 2 and ny+(v2) = 1, then nz(vy) = 1.

Proof. Let Ng(v2) = {v1,v3,u1,...,us}. Let G’ = G — {v1}. By the minimality of G,
G’ admits an (F3, F5)-partition. Again, by Lemma 6.3, we know that v is Fs-saturated
and vy is F3-saturated.

Suppose to the contrary that d(u;) = 2 foralli € {1,...,6}. By Lemma 6.1, d(vs3) > 7.
If vy € F5, then w; € F3 for each ¢ € {1,2,3}. We can add v; to F3 and then change
vs to Fj, a contradiction. Next assume vy4 € F3. If vg € F3, then change vy4 to Fj
and then reduce to the above case. Otherwise, assume that vs € F5. Since vy has
exactly five F5-neighbours, we may let u; and us be in F5. Let Ng(up) = {vg,u}} and
Ng(ug) = {vg,ub}. At this moment, one may first change v9 to F3, and then add v; to
F5. If the resultant partition is not our desired partition, we may deduce that both u}
and u), are in F3. In this case, it suffices to continue to change both u; and us to Fj, a
contradiction. O

6.2.3 Structure of adjacent 5-faces

Lemma 6.11. Suppose f = [v1...v5] and g = [v1vs...vs] are adjacent weak 5-faces
such that d(ve) = d(vg) = 2, d(v4) = d(vs) = d(ve) = 3 and d(v1) = 6. Then at least

one of vy and vg is a heavy 3-vertez.

Proof. Since g(G) = 5, we have that |V(f) n V(g)] = 2. That is, {ve,vs,v4} N
{ve,v7,v8} = ¢, as shown in Figure 6.3. Let v} and vj denote the third neighbour of
vg and vg not on the boundary of f and g, respectively. By Lemma 6.1, we know that
both v3 and v; are 7T -vertices. Suppose to the contrary that neither v4 nor vg is a
heavy 3-vertex. It follows that v} and vg are both 4~ -vertices. Due to d(vi) = 6, let
w1, wz, w3 denote the other neighbours of v; different from vq, v5 and vg. G — {vs} has
an (F3, F5)-partition by the minimality of G.
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Figure 6.3: The configuration of Lemma 6.11.

If |Sp (vs)| = 0 or | Sk (vs)| = 0, then we add vs to F5 and F3 directly, respectively.
If |Sk, (vs)| = 1, then we put vs to F5. If the obtained partition of G is not our desired
partition, then it should be the case that v € F5, v4,v6 € F3, and v is Fs-saturated in
G — {vs}. In this case, we only need to change v; to F3 and thus get an (F3, F5)-partition
of G. Now consider the last case that |Sg, (vs)| = 2. If exactly one of vy and vg belongs
to F5, say vg € F5, then it is easy to add vs to F3. So next, assume that vy, vg € F5 and
v1 € F3. There are four subcases below.

e v3, vy € F3. We can add vs to F5 directly.
e v3, vy € F5. We first change vy to F3 and then add vs to Fj.

e v3 € F5 and v) € F5. We first change v4 to F3, add vs to F5, and then change v}
to Iy if it is Fy-saturated in G — {vs}.

e v3 € I3 and v) € F5. By symmetry, suppose that v; € F3 and vj € F5. In this
case, one may change vy and vg both to F5. If at most two of w1, we, w3 are in Fj,
then we further add vs to F3. Or else, we can change vy to F5 and then add v to
Fs. O

Lemma 6.12. Suppose f = [vviujugve] and g = [vivvauguy] are adjacent bad 5-faces
such that d(v) = 2 and d(vy) = 5. If one of the following conditions holds, then d(v2) > 8.
(1) d(u1) = d(uq) = 2 and ny+(v2) = 2;
(2) d(u2) = d(ug) = 2 and ny+(v1) = 2.

Proof. By Lemma 6.1, d(ve) = 7. In each of following cases, suppose to the contrary
that d(vy) = 7. Let Ng(vi) = {v,u1,us, wi, we} and Ng(va) = {v,ua,us, x1,...,24}.
Let G’ = G — {v}. Clearly, by the minimality of G, G’ has an (F3, F5)-partition.
By Lemma 6.3, we know that v; € F3 and vy € F5. Moreover, v; has exactly three
F3-neighbours and vy has exactly five F5-neighbours.

(1) Suppose that d(u1) = d(us) = 2 and ny+(v2) = 2. Then d(uz) = 7 and d(us) > 7
by Lemma 6.1. Since vy has exactly two 4*-neighbours, we know that all z1,..., x4
are 3~ -vertices. Observe that at least one of us and us belongs to F5 because vo is an
F5-saturated vertex. If both us and us are in F5, then exactly one of x1,...,x4 is in
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F3, say x1 € F3. In this case, we can change vy to F3 and then add v to F5. Now by
symmetry, suppose that ug € F5 and ug € F5. This guarantees that x1,...,x4 are all in
F5. If uy € F3, then change uq to F5 and then add v to F3. Or else, assume that uq € F5.
Then all wy, ws, uq belong to Fs, and therefore one can first change v; to F5 and then
add v to F3. One may always obtain a contradiction.

(2) Suppose that d(u2) = d(us) = 2 and ny+(v1) = 2. By Lemma 6.1, both u; and
uy are 5T -vertices. Since vy has exactly two 4*-neighbours, we know that w; and ws
are both 3~ -vertices. If some w; € F5 with i € {1,2}, then change v; to F5 and then add
v to F3. So next, by symmetry, assume that u; € F5. If ug € F3, then change vy to F3
and add v to F5. Otherwise, we change us to F3 and add v to F5. In both cases, one
can always obtain an (F3, F5)-partition of G, a contradiction. O

Lemma 6.13. Suppose f = [vviujugve] and g = [vivvausuy]| are adjacent bad 5-faces
such that d(v) = d(u1) = d(ug) =2, d(v1) =5 and ny+(va) = 2.

(1) If d(vg) = 8, then ng(va) = 2;

(2) If d(v2) =9, then ng(ve) = 1.

Proof. Let Ng(ve) = {v,ua,us,x1,...,x5} with k > 5. Since d(u;) = d(u4) = 2, both
uo and uz have degree at least 7 by Lemma 6.1, and thus all vertices x1,...,x; are
3~ -vertices. Let G’ = G — {v}. Then G’ admits an (F3, F5)-partition by the minimality
of G. Again, by Lemma 6.3, vy is F3-saturated and vy is Fs-saturated. If u; € F5 for
some i € {1,4}, then we can change v; to F5 and then add v to F3. Now suppose both
uy and wuy are in F3. Similarly, if u; € F3 for some i € {2, 3}, say ug, then we can change
u1 to F5 and then add v to F3. In what follows, suppose ug € F5 and ug € F5. It means
that exactly three of x1, ...,z belong to Fs.

(1) Suppose otherwise that n3(v2) < 1. Namely at least four vertices among z1, ..., z5
are of degree exactly 2. If one cannot change vo to F3 without any conflicts, then there
exists some x; with ¢ € {1,...,5} such that d(z;) = 2 and z; € F3, say z1. Let

Ne(x1) = {va, 2} }. Notice that ) € F3. Then we continue to change 1 to Fj, and then
add v to Fy. It is easy to check that the obtained partition is an (F3, F5)-partition of G.

(2) Suppose otherwise that ng(ve) = 0. It follows that z1,...,x¢ are all 2-vertices.
For each ¢ € {1,...,6}, let 2 denote the other neighbour of z; distinct to va. By a
similar discussion as above, we see that exactly three vertices of x1, ...,z belong to F3,
say x1,xs and x3. If we are not able to change vy to F3, then there exist at least two of
x}, x5 and x% being in F3, say 2} and a%. Thus, it remains us to continue to change
and x9 to F3, and finally add v to Fj, a contradiction. ]

Lemma 6.14. Suppose f = [vviujugve] and g = [vivvouguy] are adjacent bad 5-faces
such that d(v) = d(u2) = d(uz) = 2, d(vi) = 5 and ny+(v1) = 2. Then the following
holds.

(1) d(u;) = 8 for some i€ {1,4};

(2) If d(u1) = 8 and d(usg) < 7, then ng+ (ur) > 2.

Proof. Let wy and wy denote the other two neighbours of vy different from w1, u4 and v.
By Lemma 6.1, we have that d(u1) = 5, d(ug) = 5 and d(ve) = 7. Since ny+(v1) = 2,
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both w; and we are 3~ -vertices. In the following, let G’ = G — {v}. Then by the
minimality of G, G’ admits an (F3, F5)-partition. By Lemma 6.3, v; is F3-saturated and
v is Fys-saturated. If either wy or wo belongs to Fy, then we change v1 to F5 directly,
and further add v to F3. Next, assume that wi,wy € F3, implying that exactly one of uq
and uy is in F5.

(1) Suppose to the contrary that both u; and uy are 7~ -vertices. By symmetry, let
ui; € F5. Then ug € Fs. If ug € F5, then change us to F3, and add v to F5. Or else,
assume that uo € F3. If there are still some conflicts to change v1 to F5, then u; has
already five Fy-neighbours distinct to vy. It follows that d(u;) = 7. In this case, one can
first change uy to F3, v1 to F5, and finally add v to F3, a contradiction.

(2) Since d(v1) = 5, we may suppose to the contrary that all neighbours of u; not on
f,say x1,...,xq, are of degree at most 3.

Consider the first case that u; € F5. Then uy € F3. If us € F5, then we change us to
F3, and add v to F5. Otherwise, uo € F3. If we failed to change vy to Fy, then u; must
be an Fjs-saturated vertex in G’. Namely, exactly five vertices among x1,...,Zg are in
F5 and the remaining one is in Fj since d(uj) = 8. At this moment, we can change u
to F3, vy to F5 and finally add v to Fj.

Now consider the case that ugq € F5. Then uy € F3. If ug € F5, then we change us
to F3 and add v to F5 immediately. Otherwise, assume ug € F3. Since d(ug) < 7, it is
easy to establish an (F3, F5)-partition of G by changing v; to F5, adding v to F3, and
changing u4 to F3 if it is Fs-saturated in G'.

In each case, one may verify that the obtained partition is an (Fj3, F5)-partition of
G, a contradiction. O

Lemma 6.15. Suppose f = [vviujugve] and g = [vivvauguy] are adjacent bad 5-faces
such that d(v) = d(uz) = d(us) = 2, d(v1) =5 and d(va) = 7. Then for each i€ {1,2},
we have that ng+(v;) = 2.

Proof. By Lemma 6.1, d(u;) = 5 and d(u3) > 7. Let G’ = G — {v}. Then by the
minimality of G, G’ admits an (Fj3, F5)-partition. Let w1, wy and x1,. .., x4 denote the
other neighbours of v; and v, respectively. By Lemma 6.3, v is Fi-saturated and vy is
Fs-saturated in G'.

First suppose to the contrary that v; has exactly one 4™-neighbour. That is, u is
such a vertex. It follows that d(w;) < 3 for i € {1,2}. By Lemma 6.4 (1), we see that
uy € F5. If us € F5, then we can change us to F3 and then add v to F5 successfully.
Otherwise, assume that ug € F3. It means that all remaining neighbours of vy that are
r1,...,24 and ug, belong to F5. We only need to further change vy to F3 and then add
v to F3, a contradiction.

Now suppose to the contrary that v, has exactly one 4" -neighbour. Namely, us is
such a vertex. Then d(x;) < 3 for all i € {1,...,4}. By Lemma 6.4 (2), ug € F5. If
uy € F3, then we can change u4 to F5 and further add v to F3. Otherwise, assume that
uyg € Fy. It suffices to change vy to F5 and then add v to F3 successfully. O

Next, for simplicity, in Lemmas 6.16-6.19, we will use f. to denote the face that is
adjacent to f by the common edge e.
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Lemma 6.16. Suppose f = [vviujugve] and g = [vivvausuy] are adjacent bad 5-faces
such that d(v) = d(ug) = d(uq) = 2, d(v1) =5, d(v2) =7, ng+(v1) = 2 and ny+ (ve) = 2.
Let fu,p, = [urugvaxiy| be a bad 5-face. Then we have:
(1) If d(y) = 2, then for each t € {uy,x1}, we have d(t) = 6; moreover, ny+(t) = 2 if
d(t) = 6.
(2) Suppose d(z1) = 2.

(2.1) If d(u1) = 5, then ny+(u1) = 3;

(2.2) If d(y) = 5 and the face adjacent to fu,y, by common edges yx1 and xivy is
bad, then ny+(y) = 3.

Proof. Let Ng(v1) = {v, u1, uq, w1, ws} and Ng(ve) = {v, u2,us,x1,...,24}. By Lemma 6.1,
d(ui) = 5 and d(usg) = 7. Since ny+(v1) = 2, w.l.o.g., assume that d(w;) > 4. Let
G’ = G — {v}. By the minimality of G, G’ admits an (F3, F5)-partition. By Lemma 6.3,
v is F3-saturated and vy is Fy-saturated. If uy € F5, then change vy to F5 and add v to
F3. So uyg € F3. If ug € F3, then change uy to F5 and go back to the previous case. It
follows that usg € Fy. If ug € F3, then it is easy to change vs to F3 and then add v to Fj.
Therefore, us € F5. Here, one may further deduce that u; € F3 since otherwise we can
change us to F3 and reduce to the former case.

(1) Suppose d(y) = 2. By Lemma 6.1, d(x1) = 5. This means that all remaining
vertices w2, 3,4 are 37 -vertices due to ny+(ve2) = 2. If z1 € F5, then we can easily
change vy to F3 and then add v to F5 successfully. So next assume xq € F3. This implies
that ug, 9, x3, x4 all belong to F5. If y € F3, then change y to F5, us to F3, and finally
add v to F5. In what follows, assume that y € F5.

We first shall prove that d(t) = 6 for each t € {uy,z1}. If d(u1) =5, let y1,y2 denote
its other two neighbours. Then both y;, y2 are in F3 since otherwise we can change uo to
F3 and then add v to Fy successfully. This fact enables us to change u; to F5 and then
add v to F3, a contradiction. So d(u;) = 6. Similarly, if d(z1) = 5, let 21, 22, 23 denote
its other three neighbours, then we can change vo to F3 and add v to F5. If the resultant
partition is not our desired partition, it should be the case that x1 is F3-saturated in G’.
That is, all 21, 22, 23 belong to F3. Thus, we have to further change x; to F5 to reach an
(F3, F5)-partition of G, a contradiction. Hence, d(x1) = 6.

Next we shall prove that for each t € {uj,x1}, ng+(t) = 2 if d(t) = 6. First
suppose to the contrary that d(u;) = 6 and n4+(u1) = 1. It means that each vertex in
Ng(u1)\{v1,u2,y} is a 37 -vertex. Since |Ng(ui)\{vi,u2,y}| = 3, we first observe that
u1 must be Fi-saturated, since otherwise we can change ug to F3 and then add v to Fs,
a contradiction. This implies that exactly one vertex in N¢g(up)\{v1, u2,y} belongs to F5.
Therefore, we can change uy to F5, us to F3, and then add v to F3, a contradiction. Now
suppose to the contrary that d(z1) = 6 and ny+ (z1) = 1. Then |Ng(z1)\{v2,y}| = 4 and
all vertices in Ng(z1)\{ve,y} have degree at most 3. We deduce that x; is Fs-saturated,
since otherwise we can change vy to F3 and then add v to Fj, a contradiction. This
also implies that exactly one vertex of Ng(z1)\{ve,y} belongs to F5. Hence, it is easy
to change x1 to F5, vo to F3 and then add v to F5. One can verify that the obtained
partition is our desired partition, a contradiction.
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(2) Suppose that d(x1) = 2. By Lemma 6.1, d(y) > 5. It is obvious that z; € F,
since otherwise we can change vy to F3 and then add v to Fy, a contradiction. If y € Fj,
then we can change x; to F3 and then add v to Fs easily. Next, we can assume that
Yy € F3.

e Assume d(uj) = 5. Suppose otherwise that u; has at most two 4*-neighbours.
That is, d(y1) < 3 and d(y2) < 3, where y1,y2 € Ng(u1)\{vi,u2,y}. If we can
change uy to Fj, then it is easy to obtain an (F3, F5)-partition by further adding v
to F5. Otherwise,it must be the case that u; is F3-saturated. Namely, exactly one
of y1, 42 belongs to F3, and thus exactly one of yi, 42 belongs to F5. Therefore, we
can change u; to F5, and then add v to F3, a contradiction. Hence, ng+ (uq1) = 3.

e Assume d(y) = 5. Suppose to the contrary that ny+ (y) < 2. Let y1, y2, y3 denote
the other three neighbours of y distinct to u; and x1. Let f' = [yz1vaz2y1] be a
bad 5-face. Observe that y is F3-saturated since otherwise we can change z1 to Fj3
and then add v to F5 successfully. It guarantees us that exactly two of y1, ys, y3
belong to F3 and the remaining one belongs to F5. Since f’ is bad, we see that
either xo or y; is a 2-vertex.

— If d(x2) = 2, then d(y1) = 5 by Lemma 6.1. Then d(y;) < 3 for both i = 2, 3.
One may deduce that x9 € F5; if not, we can change v9 to F3 and then add
v to F5, a contradiction. This would imply that y; € Fj3, since otherwise we
can change xo to F3 and then add v to F5, a contradiction. Therefore, we
can change y to F5, 1 to F3 and then add v to F5.

— If d(y1) = 2, then d(x2) = 7 by Lemma 6.1. We deduce that xz9 € F3, since
otherwise we can change vy to F3 and then add v to F5, a contradiction. If
y1 € F5, then change y to F5, x1 to F3, and finally add v to F5. Otherwise,
we may first change y; to F5 and then go back to the former case. O

Lemma 6.17. Suppose f = [vviujugve] and g = [vivvausuy]| are adjacent bad 5-faces
such that d(v) = d(u2) = d(ug) = 2, d(v1) = 5 and d(vy) = 8. Then we have:
(1) If ng+ (v1) = 1, then ny+(vy) = 2.
(2) Suppose ny+(v1) = 2 and ng+ (vy) = 1. Then
(2.1) n3(va) = 2;
(2.2) Let fuyw, = [urugvaz1y] be a bad 5-face.
(2.2.1) If d(uy) = 5, then ng+(u1) = 3;
(2.2.2) If d(y) = 5 and the face adjacent to fy,m, by common edges yxri and xivy
is bad, then ny+(y) = 3.

Proof. Let Ng(v1) = {v,u1,uq,wi,we} and Ng(ve) = {v,ug,us,x1,...,25}. Then
d(u1) = 5 and d(ug) = 7 by Lemma 6.1. By the minimality of G, G — {v} admits
an (F3, Fy)-partition. By Lemma 6.3, v; is F3-saturated and ve is Fs-saturated. If
uy € F5, then change v to F5 and add v to F3. So uyq € F3. If ug € F3, then change uy
to F5 and then add v to F3. Next, assume that ug € F5. If ug € F3, then we change vo
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to F3, change us to Fj if u; € F3, and then add v to F5. Thus, uo € F5. Moreover, one
may further deduce that u; € Fj.

(1) Suppose to the contrary that ny+(vy) < 1. That is, all x1,...,z5 are 3~ -vertices.
Since ny+(v1) = 1, we know that d(w;) < 3 for both i € {1,2}. Thus, we can first change
v1 to F5, and then add v to Fj successfully, a contradiction.

(2) Since ny+(v1) = 2 and ny+(ve) = 1, let d(wy) = 4 and d(z;) < 3 for all
i€ {l,...,5}. By a similar way, it is not difficult to obtain that ug € F5 and u; € F3.

(2.1) Suppose otherwise that ng(ve) < 1. W.lo.g., assume that d(z;) = 2 for all
i€{1,2,3,4}. If vy cannot be successfully changed to Fj, it must be the case that two
vertices among x1,...,x5 are in F3, let x1,x; € F3, where i € {2,3,4,5}, so that the
unique neighbour of z1, denoted by z/, belongs to F3. In this case, we only need to
further change z1 to F5, v to F3, and finally add v to F5, a contradiction.

(2.2) Since d(z1) < 3, by Lemma 6.1, we affirm that d(z1) = 2 and d(y) > 5.
Similarly, we deduce that z1 € F5 and y € F3.

(2.2.1) Suppose otherwise that ny+(u1) = 2. Then the remaining two neighbours of
u1 not on f, say yi,ys, are of degree at most 3. Notice that exactly one of y;, y2 belongs
to F5 by Lemma 6.3. Thus, we can change u; to F5 and then add v to F3.

(2.2.2) Suppose to the contrary that ny+(y) < 2. Let f' = [yz1vaz22] be the bad
5-face adjacent to fu,u,. By Lemma 6.1, d(z2) = 2 and d(z) = 5. So the other two
neighbours of y different from x1,uq, 2z, denoted by t1,to, are 3~ -vertices. Similarly,
x9 € F5 and z € F3. Moreover, y is F3-saturated by Lemma 6.3. This ensures us that
one of t1,ty belongs to F5. So we can obtain an (F3, F5)-partition of G by changing y to
F5, x1 to F3 and finally adding v to F5, a contradiction. O

Lemma 6.18. Suppose f = [vviujugve] and g = [vivvauguy] are adjacent bad 5-faces
such that d(v) = d(uz) = d(us) = 2, d(v1) =5 and d(va) = 9. If ng+(vi) = 1 for both
i €{1,2}, then nz(ve) = 2.

Proof. Let Ng(v1) = {v,u1, uq, w1, ws} and Ng(ve) = {v, ug, us, 1, ..., r¢}. By Lemma 6.1,
d(u1) = 5 and d(us) = 7. Since ny+(v1) = ny+(v2) = 1, we see that d(w;) < 3 for

i € {1,2} and d(z;) < 3 for j € {1,...,6}. Let G’ = G — {v}. Then G’ admits an
(F3, F5)-partition. Again, by Lemma 6.3, we assert that vy is F3-saturated and vg is
Fs-saturated. Similarly, by an analogous discussion as above lemma, we derive that
uy € F3 and ug € F5.

Suppose to the contrary that ng(vy) < 1. W.l.o.g., assume that xi,...,z5 are 2-
vertices and xg is a 37 -vertex. Then u; € Fy since otherwise we can change v; to Fj
and then add v to F3. If ug € F5, then we can change it to F3 and then add v to F5. So
ug € F3. Because vy is an Fj-saturated vertex, there exist exactly four vertices among
x1,...,Te belonging to F5, and therefore the remaining two vertices of x1, ...,z are in
F5. W.lo.g., assume that x1,x; € F3 such that i € {2,...,6}. One can change vy to F3.
If the resultant partition is not our wanted, then the unique neighbour of x; different
from vy must be in F3, and hence we only need to change z; to F5 and then add v to
Fy successfully . O



Chapter 6. An (F3, F5)-partition of planar graphs of girth at least 5 73

Lemma 6.19. Suppose f = [vviujugve] and g = [vivvausuy] are adjacent bad 5-faces
such that d(v) = d(ug) = d(ug) = 2, d(v1) = 6 and ng+(v;) = 1 for each i € {1,2}. Then
(1) d(ve) = 8;

(2) If d(ve) =8, d(u1) = 5 and ny+(u1) = 2, then fuyy, cannot be a bad 5-face.

Proof. Let Ng(v1) = {v,u1,uq, w1, w2, w3} and Ng(vy) = {v,ug,us,x1,...,x5}. Let
G' = G — {v}. Then G’ admits an (F3, F5)-partition due to the minimality of G. By
Lemma 6.1, d(u1) = 5 and d(ug) = 7. Since ng+ (v1) = ny+ (v2) = 1, we see that d(w;) < 3
for all i € {1,2,3} and d(x;) < 3 for all j € {1,...,k}. Moreover, by Lemma 6.3, v; is
Fs-saturated and vy is Fy-saturated.

(1) By Lemma 6.1, suppose to the contrary that d(vy) = 7. That is, k = 4. If us € F5,
then exactly one of uo, x1,..., x4 belongs to F3, which enables us to change vy to F3 and
then add v to F5 successfully. Now assume that ug € F3. This means that uo, x1,...,24
are all in F5. If u; € F5, then we may change us to F3 and then add v to F5. Otherwise,
suppose u; € F3. If uy € F3, then change uy to F5 and then add v to F3. Or else, assume
ug € F5. It is easy to obtain an (F3, F5)-partition by changing v to F5 and adding v to
F3, a contradiction.

(2) Suppose to the contrary that fy,., = [uiugvez1y] is a bad 5-face. By Lemma 6.1,
d(z1) =2 and d(y) = 5. Let Ng(u1) = {v1,u2,y,y1,y2}. Then d(y1) < 3 and d(y2) <3
due to the assumption that ny+(u1) = 2. If ug € F3, then at most one of z1,..., x5
belongs to F3, and thus we can change vy to F3, us to Fy if u; € F3, and finally add v
to F5. So ug € F5. This ensures us that u; € F3 since otherwise one may change us to
F3 and then go back to the former case. Moreover, u; is F-saturated. By a similar way,
we deduce that x1 € F5 and y € F3. This implies that exactly one of 1, yo is in F5, and
therefore one can firstly change u; to F5, and then add v to F3. ]

6.3 Discharging procedure

In what follows, we will apply a discharging procedure to derive a contradiction. An initial
charge w on V(G) u F(G) are defined as: w(x) = d(z) — 4 for every xz € V(G) u F(G).
By the relation }},cy (¢ d(v) = 2[E(G)| and Euler’s formula, we see that the total sum
of charge of the vertices and faces satisfies the following

Yw@) = > (dx)—4) = -8

zeV(G)UF(G) zeV(G)UF(G)

Note that any discharging procedure preserves the total sum of charges on G. So if
we can define appropriate discharging rules to change the initial charge w to the final
charge w* on V(G) u F(G) such that > w*(x) = 0, then we have obtained a

zeV(G)UF(G)
contradiction.

For z € V(G) u F(G), we use 7(x — y) to denote the amount of charges transferring
from x to y. Suppose that v is a heavy 3-vertex adjacent to vy, v, and vz such that
d(v1),d(v2) = 5 and vz is a 47 -vertex. Let f; be the face incident to v by vv;, vv;y; as
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boundary edges, where indices are taken modulo 3. If d(f2) = 5, then we call v a special
3-vertex of fy. We usually use nss(f2) to denote the number of special 3-vertices of fs.
Below are the needed discharging rules:

(RO) Every heavy 3-vertex v sends % to each light 3-neighbour w if one of the faces
incident to uv is a 6*-face.
(R1) Let v be a 5-vertex in G.

(R1.1) If ny+(v) = 1, then v sends ﬁ to each of 2-neighbour and light
3-neighbour;

(R1.2) Otherwise, v sends + to each 3~-neighbour.
(R2) Let v be a 6%-vertex.

(R2.1) If ng+ (v) = 1, then

(R2.1a) when v is a 67-vertex, v sends Z(;i)(:ﬁ to each 37 -neighbour;

(R2.1b) when v is an 8%-vertex, v sends % to each 3-neighbour and then
distributes its excess charge of d(v) — 4 — $n3(v) uniformly among its 2-neighbours.

(R2.2) If ny+(v) = 0, then v sends % to each heavy 3-neighbour and then
distributes its excess charges d(v) — 4 — #ngn(v) uniformly among its 2-neighbours and
light 3-neighbours.

(R3) Every 10" -vertex sends

(R4) Let f be a 5-face.

(R4.1) If f is bad, then f sends % to each incident 2-vertex;

(R4.2) If f is weak, then f sends % to each incident 2-vertex and ﬁ(f) to each
incident 3-vertex;

(R4.3) If f is good, then f sends é to each special 3-vertex and to each incident 3-
vertex that has at least one 7" -neighbour. It then distributes its excess charge uniformly
among other incident 3-vertices.

(R5) Every 67-face f sends 2 to each incident 2-vertex and i to each incident 3-vertex.

i(v)(_;; to each 3™ -neighbour.
-

After carrying out (R0)-(R5), we denote by (v) the excess charge of a 2-vertex v.
Call a 2-vertex v poor if v(v) < 0.

(R6) Let v be a 2-vertex incident to f; and fo with vy(v) > 0.
(R6.1) If f1 and f2 are both incident to poor 2-vertices, then v gives @ to each f;
and then f; distributes %v) uniformly among incident poor 2-vertices, where i € {1,2};
(R6.2) If exactly one of f; and fo is incident to poor 2-vertices, say fi, then v gives

v(v) to f1 and then f; distributes v(v) uniformly among incident poor 2-vertices.

Let f € F(G). First, we show that w*(f) = 0. Since g(G) > 5, we see that d(f) > 5.
If fis a 67-face, then n3(f) < d(f) — 2n2(f) by Lemma 6.1. So by (R5) we have
that w*(f) > d(f) — 4 — 2na(f) — Ins(f) = d(f) — 4 — Zna(f) — $(d(f) — 2n2(f)) =
%d(f) —4 > 0. Now suppose that d(f) = 5. Then w(f) = 1. If f is bad, namely
na(f) = 2, then we obtain that w*(f) > 1— 3 x 2 = 0 by (R4.1). If f is weak, then
na(f) = 1, and thus w*(f) > 1— 2 — ﬁ(f) x ng(f) = 0 by (R4.2). If f is good,
let ns«(f) denote the total number of the incident special 3-vertices and the incident
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3-vertices that are adjacent to at least one 7" -vertex. Then, by (R4.3), we conclude that
w*(f) =1 —4n3(f)=1—¢x5>0.

Next, let v € V(G). We remind that G’ has minimum degree at least 2. If d(v) > 10,
then w*(v) = d(v) — 4 — dlv) -4 ns-(v) = 0 by (R3). Now suppose that 6 < d(v) < 9.

ng—(v)
If ny+ (v) = 1, then either w*(v) > d(v) — 4 — Z(v)(_;; x nz-(v) = 0 by (R2.1a) when v is a
-
d(v)—4—%n3(v)

67-vertex, or w*(v) = d(v) — 4 — 3ns(v) — O] x n2(v) = 0 by (R2.1b) when v
is an 8%-vertex. Otherwise, assume that n+ (v) = 0. By (R2.2), it is easy to deduce that

w*(v) = d(v)—4—%n3h(v)—%al)l—w X (n2(v)+mng(v)) = 0. Noting that no 4-vertex
participates in discharging argument, so w*(v) = w(v) = d(v) —4 = 0 for each 4-vertex v.
If d(v) = 5, then w(v) = 1. One may easily obtain that w*(v) > 1 — m X nz-(v) =0
by (R1.1) if ng+ (v) > 1 and w*(v) = 1—5 x + =0 by (R1.2) otherwise.

What remains is to discuss the cases that d(v) = 3 and d(v) = 2. From the discharging
rules we have the following two facts:

Fact 6.1. Every 51 -vertex sends a charge of at least % to each heavy 3-neighbour by
(R1.2), (R2) and (R3).

Fact 6.2. Fach Tt -vertex sends a charge of at least % to each light 3-neighbour by (R2),
(R3) and Lemma 6.7.

Claim 6.1. FEach 3-vertex v € V(G) has a nonnegative final charge.

Proof. Clearly, w(v) = —1. Let Ng(v) = {v1,v2,v3} and f; denote the face incident to
v by vv;, vv;+1 as boundary edges, where indices are taken modulo 3. By Lemma 6.2,
none of fi, fa, f3 can be a bad face. If v is heavy, w.l.o.g., assume that v; and vy are
5t-vertices. By Fact 6.1, 7(v; — v) > & for each i € {1,2}. Since g(G) > 5, we see
that d(f;) > 5 and thus 7(f; — v) > % for each i € {1,2,3} by (R4) and (R5). So if
d(vs) > 5, then we have that w*(v) > —1 +  x 6 = 0. Otherwise, assume d(v3) < 4. If
d(f1) = 6, then, by (R5), d(f1 — v) > 5. If d(f1) = 5, then n3(f1) < 3 basing on the
fact that v; and v are both 5'-vertices, and thus by (R4.2) and (R4.3), we calculate that
d(fi = v) = % These two facts ensures us that v always gets a charge of at least % from
f1. If either fy or f3 is a 61-face, say fa, then 7(fo — v) = % by (R5), and, therefore,
w*(v) = =1+ 1+1+3x1—1%=0by (R0). Otherwise, assume that d(f>) = d(f3) = 5.
By definition, v is a special 3-vertex of fy and f3, and hence w*(v) > —1+ % +4x é = 0.

Now suppose that v is a light 3-vertex. By Lemma 6.5, we may, w.l.o.g., assume that
d(v1) = 5 and both vy and vz are 4~ -vertices. By Lemma 6.2, v cannot be incident to
any bad 5-faces. It follows from (R4) and (R5) that v gets a charge of at least § from
each incident face. The following discussion is split into three cases depending on the
degree of v;.

Case 1. d(v1) = 7. Then, by Fact 6.2, we have that 7(v; — v) = %, and, therefore,
w*(v) = -1+ 3 +3x g =0.
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Case 2. d(v1) = 6. If ny+ (v1) > 1, then 7(v1 — v) > Z by (R2.1a). Otherwise, we know

that nsn(v1) = 2 by Lemma 6.7, and thus T(’l)l —v) = ¥ = 2 by (R2.2).

So if v is incident to at least one 6*-face, then it sends % to v by (R5), and
here each of the other two faces incident to v still sends a charge of at least
% to v. It follows that w*(v) > -1+ 2 + 1 + 2 x = L. Now suppose that
d(f1) = d(f2) = d(f3) = 5. Denote by f1 = [vviuiugva], fo = [vvouzusvs] and
f3 = [vuvsusugv]. Note that fy is good by Lemma 6.1.

e Fist assume that at least one of f; and f3 is good. By symmetry, let f; be
such a good 5-face. If d(vy) = 3, then at least one of ug, us is a 5+—Vertex by
Lemma 6.5, implying that 7(f; — v) +T(f2 —v)>min{i+3, 1+ =

by (R4.3). At this moment, 7(fs — v) = 3><2 =1 ¢ by (R4.2) if f3 is Weak

or 7(f3 — v) = 1 by (R4.3) if f3 is good. Thus, w ( )= —1+2+143 = —§
Now suppose that d(vy) = 4. Tt is easy to derive that T(f1 —v) = 3,
7(f > v) > 1 by (R4.3), and hence w*(v) > -1+ 2+ J + 1+ = 2.

e Now assume that both f; and f3 are weak. Then d(u;) = d(ug) = 2 and
thus ug, us are both 7*-vertices by Lemma 6.1. If at least one of vy and v is
4-vertex, say vy, then 7(fi — v) = % by (R4.2), 7(fo = v) > 1 by (R4.3),
and 7(f3 — v) > & by (R4.2), which implies that w*(v) > —1+2+1+ 1+
t = 2. Otherwise, suppose that d(vz) = d(v3) = 3. By Lemma 6.11, we

6
. 1—Lx2
affirm that at least one of ug, uyg is a 5-vertex. So 7(fa — v) = — = %

by (R4.3), which implies that w*(v) > -1+ 2+ +2x = &,

Case 3. d(v1) = 5. By Lemma 6.6, v; is adjacent to at least one 7T-vertex. So
T(v1 = v) = 1 by (R1.1). If v is incident to at least two 6T-faces, then
w*(v) = —14+2x £+ 3+ ¢ =15 by (R4) and (R5). Next, assume that v is
incident to exactly one 6-face. By symmetry, we have two cases.

e d(f1) = 6. Then 7(f; — v) > £ by (R5). Let fo = [UUQU3U42}3] and f3 =
[vvsusugvr]. Recall that fg is good So 7(f2 > v) = 1 by (R4 3) If f3is
good, then 7(f3 — v) > I by (R4.3), and thus w*(v) > —1+ titi4g =
a5. Otherwise, assume that f3 is weak. Then by Lemma 6.1, d(U6) =2and
d(U5) 7. If d(vs) = 4, then 7(f3 — v) =1 by (R4.2) and 7(fo > v) > §
by (R4.3). Therefore, w*(v) > —1+ 1+ il,, +1 —I-% = %. Otherwise, assume
that d(v3) = 3. By Lemma 6.8, v3 must be a heavy 3-vertex, meaning
that d(us) > 5. So 7(f3 — v) > ¢ by (R4.2), 7(f2 — v) > 1 by (R4.3),
and thus w*(v) > -1+ 3+ 3+ 1+ % =0.

e d(f;) = 6. Again 7(fo — v) = £ by (R5). Let fi = [vvjujugvs] and
fs = [vvsusugvy]. If at least one of f; and f3 is good, say fi1, then
7(fi > v) = 7 by (R4.3), and 7(f3 — v) > ¢ by (R4.2), thus w*(v) >
-1+ % + i + % + % = 0. Next, suppose that f; and f3 are both weak.
Similarly, it is easy to deduce that d(u1) = d(ug) = 2 and thus ug, us are
both 7*-vertices by Lemma 6.1. If d(v;) = 4 for some i € {2,3}, say va,
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then by (R4.2), 7(fi — v) > % and 7(f3 — v) > %, and thus w*(v) >
—1+ 4+ 1+ 1+ % == Otherwise, suppose that d(ve) = d(vs) = 3. By
Lemma 6.8, both vy and v3 are heavy, and hence 7(vy — v) =

(vs —
v) = by (RO), implying that w*(v) > -1+ 1+l +1 4141 x2=1

Now, assume that d(f1) = d(f2) = d(f3) = 5. Let fi = [vviujugve], fo =
[vvougugvs], f3 = [vvsusugvi], and let wy,wy denote the other two neighbours
of v1 distinct to u1, ug and v. Since g(G) = 5, neither w; nor wy can be incident
to f1, f2 or f3. Noting that ng+(v1) = 1, we have to discuss following three
subcases.

e ng+(v1) = 3. Then 7(v; — v) > § by (R1.1) and 7(f; — v) > # for each
i€{1,2,3} by (R4.2) and (R4.3). Thus, w*(v) > -1+ 3 +3><7—0

e ng+(v1) = 2. Then 7(vy — v) > § by (R1.1). If d(u;) > 4 for some fixed
i€ {1,6}, say d(u1) = 4, then f; is good due to d(u2) # 2 by Lemma 6.1,
and thus 7(f1 — v) > £ by (R4.3), 7(f2 — v) > £ by (R4.3) since f; is
good, implying that w*(v) = —1 + % + % + % + % = %. Now suppose that
both w; and ug are 3~ -vertices. Then d(w;) = 4 for each i € {1,2}. If both
f1 and f3 are good, then w*(v) = —1 + % +14+ % +1= %. Otherwise,
assume at least one of f; and f3 is weak, say fi. Then d(u1) = 2, meaning
that d(u2) = 7 by Lemma 6.1.

— If d(vg) = 4, then 7(f1 = v) > 3, (fz—w))/i 7(fs > v) = § by
(R4.2) and (R4.3), and hence w*(v) > -1+ 3+t + 1+t =4,
— If d(vs) = 4, thenT(flﬁv)>6a (f2ﬁv) D T(fs— )Z%by

(R4.2) and (R4.3), and thus w*(v) > -1+ 1+t + + + 1 = 1.

— Suppose that d(ve) = d(v3) = 3. By Lemma 6.8, we see that vy
cannot be light. Namely, d(ug) > 5. Since d(us) # 2, we know
that d(ug) = 2 if f3 is weak, and thus d(us) > 7 by Lemma 6.1.
Again, by Lemma 6.8, vs is heavy. That is, d(u4) > 5, implying
that 7(f> — v) = + by (R4.3) and 7(f; — v) = £ by (R4.2) for
both i € {1,2}. Thus, w*(v) > -1+ 1 + & + # + ¢ = 0. Otherwise,
assume f3 is good. Here, f3 sends at least 7 to v by (R4.3) and hence
w*v) = -1+t +Lt+3+1=0.

e ny+(v1) = 1. Then 7(vy — v) > 7 by (R1.1). By symmetry, we have
three possibilities below:

— f1 and f3 are both good. Lemma 6.5 ensures that us, vo, us, ug, v3, us
cannot be all 3-vertices at the same time. That is, one of them must be
a 4+—vertex If d(uz) = 4, then 7(fi » v) +7(fa = v) +7(fs > v) =
L+ i+ L =41 Tf d(vo) = 4, then 7(f1 > v) + 7(f2 = v) + 7(f3 —
v) 2 %4—%—1—% = % If d(usz) = 4, then 7(fi — v) + 7(f2 —
v) +7(fs > v) =1+ 1+ 1 =2 Thus, in every case, one deduce
that w*(v) > -1+ 1 +3 =0



Chapter 6. An (F3, F5)-partition of planar graphs of girth at least 5 78

— f1is weak and f3 is good. By Lemma 6.1, d(uy) = 2 and d(ug) > 7.
If d(vy) = 4, then w*(v) > -1+ + 3+ 1+ 1 = 3. If d(v) = 4,
then w*(v) > -1+ 1+ 1+ 1+ 1 = 0. Otherwise, assume that
d(vy) = d(v3) = 3. By Lemma 6.8, we see that d(us) > 5. If
d(ug) = 4, then 7(fa > v) = +7(f3 > v) = ? +1=2by (R4.2)
and (R4.3). Or else, we affirm that d(us) > 5 by Lemma 6.5, and
thus 7(fo > v) = +7(fs > v) = % + 1 = 11 by (R4.2) and (R4.3).
Consequently, w*(v) > -1+ 1 + 1+ 11 = &L

— f1 and f3 are both weak. By Lemma 6.1, d(u;) = d(ug) = 2 and
d(u;) = 7 for each ¢ = 2,5. If d(vy) = 4, then by (R4.2) and (R4.3),
w*(v) = -1+ 1+ % +14 % = 0. Otherwise, let d(v3) = d(v4) = 3.
Again, Lemma 6.8 guarantees us that d(us) > 5 and d(ug) = 5.
By (R4.2) and (R4.3), 7(fo > v) > 1 — % x 2 = 2, and therefore
w*v) = -1+3+1+2+31=1 O

Before stating the next claim, using (R1)-(R3) and Lemma 6.6, we would like to
present the following fact that concerns the charges given by a 5'-vertex to each of its
2-neighbours.

Fact 6.3. Let v be a k-vertex with a 2-neighbour u. We have the following:

(1) T(v—>u) > % ifk=5;
(2) (v—»u)/%ifk:z&'
(3) T(v —wu) =5 if ke {7,8};
(4) T(v—>u)=>2 ifk=9

Proof. (1) By Lemma 6.6, we have that n,+(v) > 1, and hence 7(v — u) > 1 by (R1.1).

(2) We need to discuss two cases based on the value of ng+ (v). If ny+ (v) = 1, then

by (R2.1a), we have that 7(v — u) > % = % Otherwise, assume that n4+(v) = 0.

By Lemma 6.7, one may see that nsn(v) > 2. Further by (R2.2), we obtain that
6—4—2x & 5 9

T(v—wu) > —5—0% =35> ¢

(3) First assume that ng+ (v) = 1. If kK = 7, then by (R2.1a), it is easy to deduce that

T(v —>u) > 5% = 1. If k = 8, then by (R2.1b), we have that 7(v — u) > 54 = 2 > 1.

Now assume that n4+( ) = 0. By Lemma 6.7, ngn(v) = 2. Thus, by applying (R2 2),

7T—4—2x % 8 1 8—4—2x1
6 — — 6 —
T(v > u) = =3 >3 whenk =7 and 7(v — u) > = 11 > 1 when

5 6
k =8.

(4) First suppose that k& = 9. If ny+(v) > 1, then by (R2.1b), we can deduce
that 7(v — u) > 252 = 2 > 2. Otherwise, assume that ny+(v) = 0. By (R2.2),

« ‘

4oxl
(v — u)% = 2 > 3. Now suppose that k > 10. By (R3), we may conclude that
v —-u)>04 =3 O

Recall that give a face f and an edge of f, f. denotes the face that is adjacent to f
by the common edge e.
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Claim 6.2. Fach 2-vertex v has nonnegative final charge.

Proof. Let vi,ve denote the neighbours of v. Clearly, w(v) = —2. By Lemma 6.1,
w.l.o.g., suppose that d(v1) > 5 and d(vs) > 7. By Fact 6.3, we see that 7(v; — v) >

and 7(vy — v) = % If v is not incident to any bad 5-face, then each incident face sends a

charge of at least £ to v by (R4.2) and (R5), implying that w*(v) > —2+3+35+2x 2% = .

Next, suppose first that v is incident to exactly one bad 5-face. Denote by f =
[vvgvsvavr]. Note that v gets a total charge of at least % + % + % = % from vy and its
incident faces by (R4) and (R5). It means that in next discussion, we only need to show
that 7(v; — v) > %, that would imply w*(v) > —2+ 2+ % = 0. If d(v1) > 6, then we are
done since 7(v; — v) > £ > % by Fact 6.3 (2)-(4). Now let d(v;) = 5. By Lemma 6.6,
nyg+(v1) = 1. By (R1.1), we may further assume that ny+ (v;) = 1. Actually, observe that
the unique 4*-neighbour is a 7"-vertex by Lemma 6.6. At this moment, if d(vy) = 9,
then 7(vy — v) > 2 by Fact 6.3 (4), and hence w*(v) > -2+ 1+ 2+ 1+ 2 = 4. If
d(v2) = 7, then by Lemma 6.9, we have ny+(vz) > 2, meaning that t(vy — v) > 2
by (R2.1a) and similarly that w*(v) > -2+ 1 + 2+ ; + 2 = &. Now suppose that
d(va) = 8. If ny+(v2) > 2, then we have that (v, — v) > 2 by (R.2.1b) and thus
w*(v) = =2+ 1+ 2+ 3+ 2 =4 If nge(v2) = 0, then by Lemma 6.7, vy has at least

1
two heavy 3-neighbours. So by (R2.2), we have that 7(v2 — v) > 2 gxz = 11. Thus,
w*(v) = =2+ 1 + 1§ + 3 + 2 = 3-. In what follows, it suffice to discuss the case that

ng+(ve) = 1.

by Lemma 6.1. Moreover, n3(v2) = 1 by Lemma 6.10.

7
2z by (R2.1Db), implying that w*(v) > —2+3+3+5+2 = 0.

o If d(vs) = 2, then d(v3) >
1
SoT(va > ) > 52 =&

e If d(v3) = 2, then d(vs) > 7 due to ny+(v1) = 1. By (R2.1b), 7(v2 — v) > 2. Now
we look at fy,e,. By (R4.1), (R4.2) and (R5), T(fuus — v) = 5 if fu,e, i bad or
T(fugus — v) = 2 otherwise. It follows that w*(vs) > -2+ 1+ 2+ 1 +1 =
By (R6), v gets a charge of at least & x 2 = % from vs. Therefore, w*(v)

1 1 4 2 1 _ 1
_2+1+§+7+§+%_E'

v &l

Now suppose that v is incident to two bad 5-faces f = [vviujugve] and g =
[vivvougus]. By (R4.1), 7(f — v) = 7(9 — v) = 5. If both v; and v, have de-
gree at least 7, then by Fact 6.3 (3)-(4), we have that w*(v) > —2+4 x § = 0. Next, by
Lemma 6.1 we can assume that 5 < d(v1) < 6 and d(vy) = 7. It suffices to handle three

cases by the situation of incident 2-vertices.
Case 1: d(uy) = d(uyg) = 2.

By Lemma 6.1, ug and ug are 7*-vertices. By (R2.1) and (R3), 7(ve —> v) = 2. If
d(v1) = 6, then 7(v; — v) > 2 by Fact 6.3 (2), and thus w*(v) > -2+ 242+ 1+1 =0.
Next, suppose that d(vy) = 5. Then ns+(v1) = 1 by Lemma 6.6. Let wy, wy denote the
other two neighbours of v; and assume that d(w;) > 7.

ol

4+(v2) = 3. Then 7(vy — v) > 2 by (R2.1) and (R3). Hence, w*(v) > -2+ I +
2 =0by (RL1).



Chapter 6. An (F3, F5)-partition of planar graphs of girth at least 5 80

e ny+(v2) = 2. By Lemma 6.12 (1), d(vg) > 8. If d(v2) = 8, then by Lemma 6.13 (1),

1
vy has at least two 3-neighbours. So 7(ve — v) > 483:2 = 2 by (R2.1b). If

d(v2) = 9, then by Lemma 6.13 (2), v2 has at least one 3-neighbour, and thus
1
T(vg — v) = % = 3 by (R2.1b). If d(vs) > 10, then T(vy — v) = dlva) =4

N (v2) =

- W > % by (R3). Hence, in each case, one may always deduce that
w*(v) = 243 +3+5+35=0.
Case 2: d(uz) = d(ug) = 2.

By Lemma 6.1, u; and ug are both 5T-vertices, and so 7(v; — v) > £ by (R1.1)
and 7(vy — v) > % by Fact 6.3 (3)-(4). If d(v1) = 6, then 7(v; — v) > 3 by (R2.1a),
meaning that w*(v) > —2+4 x 3 = 0. Next, suppose that d(vi) = 5. Let w1, ws denote
the other two neighbours of vy. If one of w; and ws is a 4™ -vertex, then 7(v; — v) > %
by (R1.1) and thus w*(v) > —2+4 x 1 = 0. Now suppose that both w; and w, are
3~ -vertices. By Lemma 6.14 (1), at least one of u; and uy is of degree at least 8. W.l.o.g.,
assume that d(ul) 8. Moreover, by Lemma 6.12 (2 ) d(vg) If ng+ (v2) = 2, then
T(vg > v) = g5 = 2 by (R2 1b). Sow*(v) > -2+ 1+ 2+ 1+ % = 0. Next, consider
the case that n4+ ’1)2)

Case 2a: d(vy) = 8. If ny+(v2) = 0, then vo is adjacent to at least two heavy 3-vertices

1
by Lemma 6.7, and thus 7(v2 — v) 2 48352 = 1t by (R2.2). If ng+ (v2) = 1,

it is easy to obtain that 7(ve — v) > = by (R2.1a). So both above possibilities
guarantee us that 7(vy — v) > min{ L 5 7} = %.

Case 2a(1): If f,,., is not bad, then 7'(fuw2 — up) > % by (R4.2), (R4.3
and thus w*(ug) > -2+ 3+ 2+ 3 —i—f:%. So 7(ug — v)
implying that w*(v) > 2+1+ =+ 35 +%+%=%.

Case 2a(2): Now assume f,,, is bad. Namely, fusv, 18 & b-face incident to exactly
two 2-vertices. Let fyu,u, = [uiugvazy]. If d(z) = 2, then d(y) = 5 by
Lemma 6.1 and thus nyg+ (u1) = 2 So T(U1 — u2) 2 by (R2.1b) and (R5),
implying that w*(ug) > 2—1— + + ><2—f (R6) T(upy — v) = L.

Therefore, w*(v) = -2 + 3 + + 5 >< 2+ 45 = o Otherw1se assume

that d(y) = 2. By Lemma 6 1, we assert that d(x) >

o If d(uy) =9, then 7(u; — ug) = 3 by (R2 lb) and (R3) and similarly
we obtain that w (u2) > -2+ g + = + X 2 = éé, and, therefore,
w*(v) = 2+ + 2 +f><2+1112_336b (R6).

e d(up) = 8. If d<U4) 7, then ny+(u1) = 2 by Lemma 6.14 (2) and
thus T(u1 — ug) > 2. By the same calculation as above, we have that
w*(v) = zi=. So next suppose that d(uy) > 8. Now we look at the face
fusv,- By a similar discussion as that of Case 2a(1), we may suppose
that fuse, is bad. Let fuqyp, = [uausvezw]. As ny+(ve) < 1, we are sure
that d(z) = 2, which implies that d(w ) > 5 by Lemma 6.1. Similarly,
T(ug — ug) = g. So w*(ug) = 2+ + 3 _|_, ><2— L By (R6),

56°
T(ug = v) = % Consequently, w*(v) > 2+ +4 243 ><2+11112 = ﬁ'

Vo
N‘U'\_/

—~

5),

d(
by (R6.2),
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Case 2b:

Case 2c:

d(va) = 9. If ny+ (v2) = 0, then by Lemma 6.7, we have that nsn(ve) = 2, and
Coxl

so T(ve = v) = 59326 = 2 by (R2.2) and thus w*(v) > 2+ L+24+2x2=0.

Now suppose that ng+(ve) = 1. By (R2.1b), 7(v2 — v) = One may further

assume that d(u;) > 8 by Lemma 6.14 (1). As ny+ (ul) 1 by (R2.1b) and

(R3), we see that 7(u; — ug) = =. If fy,e, is not bad then 7'(fu21,2 — ug) > 2.

Else, (fuzvg - U2) = § Thus w (UQ) > -2 —|—57
T(up — v) > £5 and hence w*(v )2_2+%+§

+2+1x2=1 By (R6),

£ 1 %9
+§X2+ﬁ*336'

d(vy) = 10. Then 7(vy — v)
w*(ug) = -2+ 2+ 2 4+ 4 x2
conclude that w*(v) > -2 + 1

by Fact 6.3 (4). One may deduce that

> 3
= é, and thus T(u2 — v) > 2 by (R6). We
+

14
><2Jr35*105

l\.’)\»—l

Case 3: d(ug2) = d(us) = 2.

Then d(u;) = 5 and d(us) = 7 by Lemma 6.1. We have two subcases depending on

d(Ul).

Case 3a:

Case 3b:

d(v1) = 6. Then 7(v; — v) > 2 by Fact 6.3 (2) and 7(vz — v) > & by
Fact 6.3 (3)-(4). If ng+(v1) = 2 or ny+(v2) > 2, then either 7(v; — v) > 3
or 7(vg > v) = % by (R2.1a), (R2.1b) and (R3). We obtain that w*(v) >
—2+4+1ix4=0o0rw(v) >-2+2+32+1x2=0. Next, suppose that
ng+ (v1) = ng+ (v2) = 1. By Lemma 6.19 (1), d(v2) = 8. If d(’Uz) > 9, then
7(vy — v) = 2 by Fact 6.3 (4), implying that w*(v) > -2+ 2+ 2+ 1 x2=0.
In what follows, we suppose d(v2) = 8. Then 7(vy — v) > 7 by (R2.1b).

e First suppose that f,,.,, is not bad. If d(u;) = 5, then u; has at least
one 7t-neighbour different from v; by Lemma 6.6. This means that
T(up — ug) = %+ by (RL.1). If d(u1) > 6, then 7(u; — up) > 2 by
Fact 6.3 (2)—(4). So 1n each case uy sends at least + to up. Thus,
w¥(ug) > -2+ s +2+1+2 ==L By (R6.1), (u2 —v) = .

27, 47 1 1 3
Therefore, w*(v) > =24+ £+ 24+ 5 X2+ 11 = =5

e Now suppose that fy,., is a bad 5-face. Let fy,,, = [ujugvexy]. As
ng+(v2) = 1, we affirm that d(z) = 2, which leads to d(y) > 5 by
Lemma 6.1. If d(ul) 6, then by (R2.1) and (R3), we have that

T(u1 — ug) = 5. If d(uy) = 5, then by Lemma 6.19 (2), ng+(u1) = 3.
So 7(u; — ug) > 1 by (RL.1). In both cases, we always derive that
wug) = -2+ 1+ +1x2=1. By (R6) (m—»v)?;lg,implying
mmW()>—2+§+7+% 2+28 5"

d(v1) = 5. By (R1.1), 7(v1 — v) > 1. By Fact 6.3 (3)-(4), 7(v2 — v) > 3. Let
w1, wo denote the other two neighbours of vy. If ng+ (v1) = 3 or ny+(ve) = 3,
then 7(vy — v) 5 by (RL.1) or 7(vy — v) 3 by (R2.1b) and (R3). Thus,

w*(v) = 2+7><4—00rw (v) > -2+ 143+ 3 x2=0. Next, assume
that ng+ (v1) < 2 and ny+ (v2) < 2.
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Case 3b(1): d(v2) = 7. Let 1, ...,z4 denote the other four neighbours of vy different
from ugy, us and v. By Lemma 6.15, we assert that ny+(v1) = ng+ (v2) = 2.
Then, 7(v; — v) > £ by (R1.1) and 7(vz — v) > 2 by (R2.1a).

e Suppose that fy,, is not bad. If d(u;) = 5, then by Lemma 6.6,
nz+(u1) = 1 and thus ng+ (u1) > 2. By (RL.1), 7(ug — ug) > 5. If
d(u1) > 6, then 7(u; — uz) > 2 by Fact 6.3 (2)-(4). So uy gets a
charge of at least % from uy. Therefore, w*(ug) = —2+ % + % + % +% =
&. By (R6), w*(v) > -2+ 3+ + 2+ 3 x24+ L& =4

e Suppose that fy,y, is a bad 5-face. Let fy v, = [uiusvexiyl.

— d(u1) = 5. By Lemma 6.16 (1), we are sure that d(y) # 2,
which implies that d(z1) = 2 and d(y) = 5 by Lemma 6.1. By
Lemma 6.16 (2.1), ng+(u1) > 3. By (RL.1), 7(u1 — ug) > 1.
Thus, w*(uz) > -2+ 3 + 2 + 1 x 2 = L. Next, we show that
21 is not a poor 2-vertex, which ensures us that us sends all of
its extra charge to v by (R6). Let f’ denote the face adjacent
t0 fuyw, Dy common edges yx1 and zqve. If f’ is not bad, then
w*(x1) = =2+ 1+ 2+ 5+ 2 = g5. Otherwise, assume that f is a
bad 5-face. If d(y) = 5, then by Lemma 6.16 (2.2), we know that
ny+(y) =3 and then 7(y — x1) > & by (R1.1). If d(y) > 6, then
T(y — 21) = £ by Fact 6.3 (2)-(4). So z1 always gets a charge of
at least % from y, implying that w*(z1) = -2+ % + % + % x2=0.
Therefore, w*(v) > =24+ 2 + 2 + 3 x 2+ 15 = .

— d(u1) = 6. There are two possible cases below:

% d(y) = 2. Then d(z1) = 7 by Lemma 6.1. By Lemma 6.16 (1),
we see that ng+(u1) > 2, meaning that 7(u1 — u2) > 3 by
(R2.1a). It follows that w*(ug) > -2+ 2+ 2+ 1 x2=4. By
Fact 6.3 (3)-(4), y gets a charge of at least 3 from z1. Therefore,
w*(y) = —2+ 3 x 4 = 0. This means that us sends all its extra
charge of%0 to v. Hence, w*(v) > —2—1—%4—%—1—% X 2+% = %.

% d(x1) = 2. Then d(y) > 5, implying that ny+(u1) = 2. If
ng+(u1) > 3, then 7(uy — uz) > % by (R2.1a) and thus
w*(ug) > -2+ 2+ 2+ 1 x2= 4. By (R6), 7(up > v) > &
and so w*(v) = —2+%+%+§x2+% = % Now as-
sume ny+ (u1) = 2. Then 7(u; — uz) > 1 by (R2.1a) and so
w*(ug) > —2+3+32+3x2 = ;. Similarly, we have to show that
ug does not need to send any charge to x1. Let f’ denote the face
adjacent to fy,,, by common edges yz1 and x1vy. If ' is not bad,
then w*(z1) > —2+1+3+3+2 = L. Otherwise, assume that f’
is a bad 5-face. If d(y) > 6, then w*(z1) > —2+24+2+1x2=0.
Else, d(y) = 5. By Lemma 6.16 (2.2), ny+(y) > 3, and thus
7(y — 21) > 1, implying that w*(z1) > -2+ 3+ 2+ 1 x2 = ;5.
Consequently, uo sends all its extra charge of 1—10 to v by (R6.2),

and, therefore, w*(v) > -2+ 2 + 2 + L x 2+ {5 = 4.
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—d(uy) = 7. If d(acl) = 2, then d(y) = 5 by Lemm 1 and thus
T(U1—>U2) So w* (u2)>—2+%x2+%x By (RG)
7'(2—»11)/% Sow(v)>—2+%+%+%x2+% .
Otherwise, assume that d(y) = 2. Then w*(u2) > —2 + 5 +
3 +1x2=4. By Lemma 6.16 (1), d(z1) > 6. If d(z1) > 7,
then 7(z1 — y) > % by Fact 6.3 (3)-(4). If d

ny+ (1) = 2 by Lemma 6.16 (1). So 7(z1 — y) = 5 by (R2.1a).
Thus, w*(y) = —2 + 3 x 4 = 0. Hence, by (R6.2), uz sends 15 to
v directly, and, therefore, w*(v) > —2 + % + % + % x 2+ %0 = %.
Case 3b(2): d(v2) = 8. Let zy,...,z5 denote the other five neighbours of va. Recall
that ny+ (v1) < 2 and ng+ (v2) < 2. By symmetry, we have three cases:

o ng+(v1) = ny+(v2) = 2. By (R1.1), 7(v; — v) > ;. By (R2.1a),
T(vg > v) = 2 . Thus, w*(v )2—2+%+%+%x2:0.

o ny+(vy) =2 and ng+(v2) = 1. Namely, x1,...,z5 are all 37 -vertices.
By Lemma 6.17 (2.1), we have n3(v2) > 2, implying that 7(vy — v) >
4—1x2

<+ = 2 by (R2.1b).

— Assume fy,,, is not bad. By Lemma 6.6, u; has a 7" -neighbour
if d(u1) = 5. So T(uy — ug) > 5. Thus, w*(ug) > -2+ % +
3+3+2 =4 and so 7(ug > v) > ;5 by (R6.2). Hence,
wHv) = -2+ +2+ix2+ L =4

— Assume fy,y, is a bad 5-face. Let fyu, = [u1ugvaziy]. Then
by Lemma 6.1, d(z1) = 2 and d(y) > 5. This ensures us that
ng+ (ug) = 2.

* d(u1) = 5. By Lemma 6.17 (2.2.1), nyg+(u1) > 3, implying
that T(Ul — up) > 3 by (R1.1). Thus we have that w*(ug) >
—24+1 5% 341 5 X2 = ﬁ Similarly, we show that x; is not poor and
thus u2 sends all its extra charge to v. If d( ) = 6 then T(y —
z1) = 5 by (R2.1a). Thus, w*(21) > -2+ 3 + 2 + 5 X 2= ﬁ'
Now assume d(y) = 5. Let f’ denote the faee adjacent t0 fusus
by common edges yx1 and zyvs. If f is not bad, then it sends a
charge of % to x1, and, therefore, w*(z1) = 2+ + +1 + 5=
. Otherwise, assume f is a bad 5-face. By Lemma 6 17 (2 2.2),
we see that ng+(y) = 3, so T(y — xl) 3 by (R1.1). Thus we
have that w*(z1) > -2 + 2 + 5 + = X 2 %. Consequently,
wiv) = -2+ L+ 3+ x2+ 4 = 310

« d(up) = 6. If ng+ (ul) 3, then T(u1 —uz) =% 2 by (R2.1a) and
thus w*(ug) > 2—1—%—# +5 ><2—15 By(RG) T(ug —>v) = &.
So w*(v) = -2 + + + X2+ 5 = % Now suppose
ng+ (ur) = 2. Then T(u1 — ug) > % by (R2.1a). Similarly,
if fyz,v, is not bad, then w*(z1) > —2 + i + % + % + % 610
Else, fr0, is bad. If d(y) > 6, then 7(y — 1) > 2. If

5
d(y) = 5, then by Lemma 6.17 (2.2.2), it has at least three
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+

* d(ul) 7 By (R2. 1a) T(ur — ug) =

—2+2+241x2= 5, and thus T(u2 — v) > 5 by (R6.2).
Hencew()> —2+i+34+ix2+45 =4

e ny+(v1) = 1. Then n4+(v2) > 2 by Lemma 6.17 (1). Moreover,

d(uy) = 7 by Lemma 6.6. By (Rl.l) and (R2.1a), 7(v1 — v) > % and

(v2—>v)/7 So w*(ug) = —2+1+2 +%x2=%. By (R6), v gets at

least 75 from up. We conclude that w ( )= —2+43+2+5%x24+ 54 =0.

Case 3b(3): d(v2) = 9. Let Na(v2) = {ua,ug, v, x1, ..., T}

o ny+(v1) = 2. Then T(v1 = v) = % by (RL.1). If ng+(v2) > 2, then
T(vz > v) = 2 by (R2.1b). Sow*(v) > -2+ 1+ 2+Lix2=4. In
what follows, assume that ny+(v2) = 1. Then each z; is a 37 -vertex
for i € {1,...,6}. Moreover, by (R2.1b), 7(v 2 — v) > 2.
- If quU2 is not bad, then w*(ug) > -2+ 1+ 2+ 3 + 2 = 5;. Thus,
w*(v) = 2+3+8~|—§><2+24—0by(R6)
— Suppose that fi,,, is bad. Let fu,u, = [uiugvaz1y] such that
d(x1) = 2. By Lemma 6.1, d(y) > 5. It implies that ng+(u1) > 2.
* ng+(ug) > 3. Then w*(up) > -2+ 2+ 2+ 3 x2 =1 So
w*(v) = -2+ 1+ 2+ 1 x2+ L =L by (R6).
x ng+(u1) = 2. If d(uy) > 6, then 7(u; — us) > 5 by (R2.1) and
(R3), and thus w*(ug) > =2+ 5 + 2 + £ x 2 = L. By (R6), it
is easy to calculate that w*(v) > =2+ 2 + 3 + & x 24 ;- = .
Now suppose d(u;) = 5. By Lemma 6.6, d(y) = 7. Denote by f’
the other face adjacent to fuw2 distinct from f. If f’ is not bad,
then w*(z1) > —2+ 5 + 3 + 1 + 2 = L. Otherwise, assume f’
is bad. Let f' = [yxlvgxgz] such that d(z2) = 2, implying that
d(z) = 5. Thenw*(z1) > —2+%+%+lx2 = E So in each case,
7'($1 — ug) = & by (R6). Hence w *ug) > 4+ 2+ix24+ 2 =
e hereforew() —2+3+32 +7><2+21470—7

2 ~ 240°
e ny+(v1) = 1. Then d(u1) = 7 by Lemma 6.6. By (R1.1), 7(v1 — v) =
1

I

— Suppose ny+ (v2) = 2. Then 7(vg — v) =
w¥(ug) = -2+ 5+ 2+ 1 x2 =32 by (R6), we have that
T(us — v) > 2, and thus w*(v) > -2+ %

by (R2.1b). Since

y )

2, +3+ix24+ 3 =2
— Suppose ny+(v2) = 1. By Lemma 6.18, nz(v2) > 2, and so
T(vy = v) = Z52= = 2 by (R2.1b). Note that w*(ug) > —2 +
i+ % +ix2= é So T(us — v) > & by (R6), and hence

w¥v) = -2+ 3+ 3 +ix2+ L =0
Case 3b(4): d(vz) > 10. If ny+(v1) > 2, then 7(v; — v) > & by (R1.1), and thus
w*(v) = =2+ 1 + 2+ J x 2 = 0. Otherwise, assume ny+(v1) = 1. By
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Lemma 6.6, we affirm that uy is a 7*-vertex. At this moment, w*(ug) =
—2+3+2+1x2=1% SoT(us > v) > 3 by (R6), and, therefore,

w*v) > -2+ 3+ +ix2+ 45 =0

This completes the proof of Theorem 6.1. O



Chapter 7

An (F, Fy)-partition of graphs
with low genus and girth at least
6

This chapter is based on the following paper:

[10] M. Chen, A. Raspaud, and W. Yu. An (F}, Fy)-partition of graphs with low genus
and girth at least 6. J. Graph Theory, 99(2):186-206, 2022.

In this chapter, we study vertex partitions of graphs under restriction on maximum

average degree. Recall that the maximum average degree of G is defined to be mad(G) =

max{ 2||5((5))|‘ : H € G}. By considering sparse graphs, Borodin and Kostochka [5]

obtained that every graph G satisfying mad(G) < % admits a (A1, Ay)-partition. It
follows immediately that every graph in PGg admits a (A, Ay)-partition. In this chapter,
we use potential technique and discharging method to improve this result to forests
partition.

For a given graph G and vertex subset S € V(G), we define

p(S,G) := 8|S| = 5|E(G[S]). (7.1)
The main result in this chapter is the following.
Theorem 7.1. If a graph G satisfies that
p(S,G) > —1 for each S<V(G), (7.2)

then G admits an (F1, Fy)-partition.

By definition, mad(G) < %2 if and only if p(S,G) > 0 for each S < V(G). So we
deduce the following result from Theorem 7.1.

Theorem 7.2. Every graph G with mad(G) < & admits an (Fy, Fy)-partition.

86
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The genus of a graph is the minimal integer r such that the graph can be drawn
without crossing edges on a sphere with r handles. Using the general Euler’s formula,
one can prove that for any graph G with genus r and girth at least g, the average degree,
denoted ad(G), satisfies:

2g N 4g(r —1)
9-2 (9-2IV(&)|
This contributes to obtain the same result for planar graphs (graphs with genus 0) and

toroidal graphs (graphs with genus 1) of girth at least 6. In particular, one may easily
derive Corollary 7.1 from Theorem 7.2, which is a strengthening of a result in [5].

ad(G) <

Corollary 7.1. Every graph of genus at most 1 and girth at least 6 admits an (Fy, Fy)-
partition.

In Section 7.1, we give some basic notations. In Section 7.2, we use the potential
technique to find the forbidden configurations in a minimum counterexample, then apply
the discharging technique to obtain a contradiction in Section 7.3. Finally in Section 7.4,
we give some concluding remarks.

7.1 Preliminaries

A flag of G is a pendant block formed by four vertices of G in which the non-cut vertices
induce a K2 and the cut vertex (we will call it the base vertez or a host) is adjacent to
all other vertices, see Figure 7.1 (left). Meanwhile, the non-cut vertices in a flag are said
to be special vertices. By an i-host we mean a vertex v € V(G) which is the base vertex
of precisely ¢ flags. A pendant host is defined to be a 5-host which is adjacent to exactly
one non-special vertex, as shown in Figure 7.1.

a base vertex

an i-host a pendant host

¥, X,

Figure 7.1: A base vertex, an i-host and a pendant host.

Obviously, every pendant host has degree 16. A good vertez is a 5+-vertex which is
not a pendant host. Let i € {1,4}, F; is one of the two parts of the (F}, Fy)-partition.
Sometimes, we call v an Fj-vertez if v belongs to F;. An F;-neighbour of v is an Fj-vertex
adjacent to v. Furthermore, we call v F;-saturated if v is an Fj-vertex and it has exactly ¢
F;-neighbours. We shall denote by G* the graph obtained from G by deleting all special
vertices.
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Definition 7.1. A graph H is smaller than a graph G if
(i) [Var (H*)| < |[Vor (G¥)|, or if
(i) [Vor (H*)| = [Vo+ (G*)| and [V(H*)| < [V(G¥)], or if
(ili) [Vor (H*)| = [Va+ (G*)|, [V(H*)| = [V(G*)| and [E(H*)| < [E(G*)], or if
(iv) [Vor (H*)| = Vo (G¥)|, [V(H™)| = [V(G)|, |[E(H*)| = |[E(G¥)], and [V(H)| <
V(G-

Let GG be a smallest counterexample to Theorem 7.1 in the sense of Definition 7.1.
If G is disconnected, then the union of (Fy, Fy)-partitions of components of G is just
an (Fy, Fy)-partition of G. Moreover, if G contains a 1-vertex, say v, then let u be
the unique neighbour of v. Take an (Fi, Fy)-partition of G — v. We may obtain an
(Fy, Fy)-partition of G by adding v to F; such that v ¢ F;. Thus in what follows, we
may assume that G is a connected graph with minimum degree at least 2.

7.2 Structural analysis of a minimum counterexample

Observation 7.1. In an (Fy, Fy)-partition of a flag, there are at least two Fy-vertices.

Claim 7.1. Let v be a host that is incident to at least five flags. If the subgraph induced
by v and all its incident flags has an (F1, Fy)-partition, then v belongs to Fj.

Proof. Suppose to the contrary that v is in Fy. By Observation 7.1, at least one special
vertex of each flag incident to v belongs to Fy. Hence, v is adjacent to at least five
Fy-vertices, a contradiction. ]

Claim 7.2. Suppose S < V(G). The following statements hold.

(1) If we add a vertezv e V(G)—S to S such that v is adjacent to at least two vertices
of S, then p(S v {v}, G) < p(S,G) = 2;

(2) If we add a flag H to S such that |V(H) nV(S)| =1, then p(S v V(H),G) =
p(S, G) - 1;

Proof. (1) By definition,

p(Su{v},G) = 8|S u {v}| = 5|E(G[S v {v}])]
< 8|S| +8 = 5(|E(G[S])| + 2)
= p(S,G) — 2.

(2) By definition,
p(SUV(H),G)=28|S|+3x8—=5(E(G[S])| +5) = p(S,G) — 1.

This completes the proof of Claim 7.2. O
Claim 7.3. G* is not a complete graph K; with 1 <1i < 2.
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Proof. Suppose to the contrary that G* contains some K; for i € {1,2}. If i = 1, we
let K1 = v. Since G has no 17 -vertex, v is incident to at least one flag in G, denoted
by 11,15, ...,T,,. Then G = uéjTTi due to the fact that G is connected. It is easy to
establish an (Fp, Fy)-partition for G by adding v to F} and all special vertices to Fy, a
contradiction. Now suppose that ¢ = 2. Let uv be an edge in G* such that v and v are
incident to m and n flags in G, respectively. Similarly, m > 1 and n > 1. We can also
produce an (Fy, Fy)-partition by adding u and v to F; and all special vertices to Fy, a
contradiction. O

Claim 7.4. For i > 6, G does not contain any i-host.

Proof. Suppose to the contrary that v is an i-host for some integer ¢ > 6. Let H be
obtained from G by deleting the vertices (apart from v) of one incident flag based on
v. By Definition 7.1, H is smaller than G. Take an (F}, Fy)-partition of H. Observe
that now v is still incident to at least five flags in H and thus v € F} by Claim 7.1. So
we may obtain an (F}, Fy)-partition of G by adding all deleted special vertices to Fy, a
contradiction. O

Figure 7.2: The auxiliary graph B.

Next we have to introduce an auxiliary graph B where the base vertex b is a pendant
host which is adjacent to the other pendant host ¥, as shown in Figure 7.2. First, we
shall present Claim 7.5, which is quite useful and very important in the rest of paper.

Claim 7.5. Let Sc V(G) and @ # S # V(G). Then p(S,G) > 0.

Proof. Suppose to the contrary that there exists a non-empty proper subset S such
that p(S,G) < 0. If G[S] is disconnected, then one of its connected component, say S’,
satisfies that p(S’, G) < 0, and thus we may choose S’ instead of S. For convenience, in
the following discussion, we let H = G[S]. The following facts 7.1-7.2 are helpful.

Fact 7.1. The minimum degree of H is at least 2.

Proof. Since H is connected, we may assume to the contrary that H contains a 1-vertex
v. Then, p(S — {v},G) = 8|S — {v}| — 5|E(G[S — {v}])| = p(S,G) —3 < —1. This
contradicts the assumption that p(S — {v},G) > —1. O

Fact 7.2. Fach flag of G is either completely in H or disjoint from H.

Proof. Let T be a flag of G. If |V(T') n S| = 1, then by Claim 7.2 (2), we have that
p(SuV(T),G) = p(S,G) —1 < —1, a contradiction. If 2 < |[V(T') n S| < 3, then there
exists a vertex v € V(T') — S such that v is adjacent to at least two vertices of H. By
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Claim 7.2 (1), p(S u {v},G) < p(S,G) —2 < —1, a contradiction. Hence, |V (T)n S| =0
or [V(T) n S| = 4, verifying Fact 7.2. O

By Fact 7.2, we confirm that H is smaller than G and it satisfies the condition of
Theorem 7.1 since S < V(G). By the minimality of G, H has an (F, Fy)-partition. We
are going to construct a graph G by applying following steps.

Step 1: deleting S;
Step 2: adding a copy of B to G;
Step 3: joining v to be V(B) if v e V(G) — S and v is adjacent to an Fj-vertex u € S

Step 4: adding five distinct flags based on v if v € V(G) — S and v is adjacent to an
Fy-vertex u e S.

Fact 7.3. G is smaller than G.

Proof. By Fact 7.2, we see that all vertices in G[V(G) — S]* also belong to V(G*). It
means that each 2*-vertex in G[V(G) — S]* must be a 2-vertex of V(G*). Notice
that B has exactly two vertices in G*. That is, b and b. Moreover, dgy (0') = 1 and
dg« (D) = 1. If there are at least two vertices belonging to S such that they are of degree
at least 2 in G*, then it is obvious that |Vay (G*)| < |Vay(G*)| and thus we are done.
Otherwise, we have two cases to discuss:

e Assume that there is no vertex of S which is a 27 -vertex of G*. Then H* is the
complete graph K; for some i € {1,2}. First consider the case that H* = Kj.
Denote by u the vertex of H*. By Fact 7.1, we are sure that u must be incident
tot > 1 flags in H. It follows from Claim 7.4 that ¢ < 5. Thus, p(S,G) =
8|S|—5|E(G[S])| = 8% (3t+1)—5x 5t = 8—t > 3, which violates the assumption
that p(S,G) < 0. Next consider the case that H* = K. Let H* = xy with
dp«(z) = dg+(y) = 1. Then neither = nor y can be adjacent to any vertex in
V(G) — S, and thus zy is also a K in G*, contradicting Claim 7.3.

e Assume that there is exactly one vertex, say u € S, such that dg=(u) = 2. In this
case, we further deduce that dg, (b) > 2; otherwise, [Vou (G*)| = |Vau (GF)] — 1
and thus we are done. Now let uy,ug, ..., uq, () denote all neighbours of u in
G*. Clearly, at most one of them belongs to H; otherwise, we deduce that
Vou (G¥)] = |Var (G*)| and |V(G*)| < |V(G*)|, and thus G is smaller than G by
Definition 7.1. Again, we deduce that H* = K5 and let H* = xy. Similarly, by
the above discussion, we may obtain a contradiction. O

Fact 7.4. For any subset A = V(G), we have that p(A,G) > —1.

Proof. In what follows, let A be the subset with minimum p(A,CNJ) satisfying that
p(A,G) < —1. Let A = AnV(G—H), A” = AnV(B) and A” = A—V(B). Obviously,
A’ = A”. By the minimality of p(A,G), if a flag T of @ satisfies |V (T) n A| > 1, then
by Claim 7.2 (1)-(2), we deduce that V(T') < A.
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Next, let z be the number of edges that connect A" and those Fy-vertices in H, and
y be the number of edges that connect A" and those Fj-vertices in H, respectively. We
first derive the following;:

p(A',G) = 8(|A"| — 152) — 5(|E(G[A"])| - 252)
(A" &) + 5.

On the other hand, we have that

p(Av é) = p(A” Y Amv é)
= 84" U A”| = 5|E(G[A" L A"))|
= 8| A"| + 8]4"| = 5(|E(G[A"))] + |E(GTA"])] +v)
= p(A",G) + p(4",G) — by
= p(A”7 B) + p(Am7 é) — 9Y.

Therefore, N
p(A7 G) = p(A”7B) + p(A/a G) — 5T — 5y

Let W =S5u A" Then W < V(G). Thus,

p(W.G) = p(Su A, G)
= 8(IS| + |4]) = 5| E(G[S v A])
= 8|S| + 8| 4| = 5(|E(G[S])] + |E(G[A]) + = +y)
= p(S,G) + p(A',G) — bz — by
= p(S,G) + p(A,G) — p(A", B).

At this point, one may calculate that p(A”,B) = 0. Therefore, we have that
p(W,G) < p(A,G) < —1, which violates the assumption of Theorem 7.1. O

Up to now, we ensure that G has an (Fy, Fy)-partition. By Claim 7.1, be Fy, b € Fy,
and each vertex of V(G) — S which is adjacent to an Fy-vertex of S also belongs to Fj.
So b is Fi-saturated, implying that each vertex of V(G) — S that is both adjacent to b
and an Fi-vertex of S must be in Fy. Therefore, the combination of partitions of H and
G produces an (F}, Fy)-partition of G, a contradiction. O

In order to avoid redundancy in proofs of Claims 7.6-7.8, we would like to give the
following observation.

Observation 7.2. Suppose that dg+(v) = 2 such that vi, vy are two of the neighbours
of v in G*. Let H be the graph obtained from G — v by adding two flags T1 and Ty based
on v and vy, respectively. Then H admits an (Fy, Fy)-partition.

Proof. Clearly, |Vo+ (H*)| < [Va+ (G*)| due to the fact that v is still a 27 -vertex in G*.
So by Definition 7.1, we have that H is smaller than G. If H does not admit any
(Fy, Fy)-partition, it follows immediately that there exists a subset S < V(H) such
that p(S, H) is minimum and p(S, H) < —1. Obviously, at least one special vertex of
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T; and T» belongs to S since otherwise S € V(G) and thus p(S, H) = p(S,G) > —1
by the assumption of Theorem 7.1, a contradiction. Next, let S’ = S n V(G). If
|S” m {v1,v2}| = 0, then we can obtain a new vertex set, say S*, by adding flags T} or
Ty to S. It follows from Claim 7.2 (1)-(2) that p(S*, H) < p(S, H), which contradicts
the selection of S. If |S" n {v1,v2}| =1, w.lLo.g., " n {v1,v2} = {v1}, then similarly by
Claim 7.2 (1)-(2) and the choice of p(S, H), we know that 77 must be completely in S.
Thus, we obtain that

p(5",G) = 8|5'| = 5|E(G[S])|
= 8(IS] = 3) = 5(IE(H[S]| - 5)
=p(S,H)—3x8+5x5
=p(S,H)+1
< 0.

This contradicts Claim 7.5.

Next we consider the last case that |S” n {v1,v2}| = 2. Namely, v; and v9 are both
in S’. Then similarly we deduce that T; and T are completely in S. Let S* = 5" U {v}.
We have that S* < V(G). Then

p(S*,G) = 8|S*| — 5| E(G[S™])]
= 8(|S|—6+1)—5(|E(H[S])| — 10 + 2)
= p(S,H) =5 x 8+ 40
< -1

This contradicts the assumption of Theorem 7.1. Therefore, we complete the proof
of Observation 7.2. O

Let v € V(G). Denote by f(v) the number of flags based on v in G. For brevity, we
use d*(v) instead of dgx(v).

Claim 7.6. For v e V(G*), we have that d*(v) + f(v) = 3. In particular, each 2-vertex
in G is special. Besides, if f(v) = 1, then d*(v) + f(v) = 6.

Proof. First suppose to the contrary that G* contains a vertex v satisfying that d*(v) +
f(v) < 2. By Claim 7.3, we confirm that d*(v) > 1. The following discussion splits into
two cases in light of the value of d*(v).

Case 1: d*(v) = 1.

Then f(v) < 1. As dg(v) = 2, we deduce that f(v) = 1. That is, v is a 4-vertex in
G which is incident to exactly one flag, say T. Let v’ be the other neighbour of v not
onT. Let H=G — V(T). Clearly, H is smaller than G, and H satisfies the condition
of Theorem 7.1. Thus H has an (Fy, Fy)-partition. If v' € Fy, then we add v and both
special 2-vertices of T' to Fy and the special 3-vertex of T' to F;. Otherwise, assume that
v' € Fy. We add v to F and all remaining special vertices of T' to Fy. In each case, one
may verify that the obtained partition of G is an (Fi, Fy)-partition, a contradiction.
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Case 2: d*(v) = 2.

Then f(v) = 0, implying that dg(v) = 2. Let Ng(v) = {v1,v2}. Let H be the graph
obtained from G — v by adding two flags 77 and 75 based on v; and vs, respectively.
By Observation 7.2, H has an (F}, Fy)-partition. Notice that for each i € {1,2} there
is at least one vertex of T; (apart from v;) belonging to Fy. So in order to obtain an
(Fy, Fy)-partition of G, it suffices to add v to Fy if at least one of v; and vy belongs to
Fi, and add v to F} otherwise.

Hence, we conclude that d*(v) + f(v) = 3, which guarantees us that each 2-vertex in
G must be special.

Next suppose that f(v) > 1. If d*(v) + f(v) < 5, let T1, ..., Ty(,) be the incident flags
based on v and denote by vy, ..., vgx(,) the other neighbours of v which are not lying on

T;. Let H=G — (uﬁz{(”)V(TZ-) —v). Apparently, H is smaller than G, and it satisfies
the condition of Theorem 7.1. So by the minimality of G, H has an (F}, Fy)-partition.

If v € F1, then we can add all the deleted vertices of ui{(v)V(Ti) to Fy. Otherwise,
assume that v € Fy. If v, ..., vgx(,) are all in F}, then we can first change v to F7 and
then go back to the previous case. Otherwise, there exists some v; € Fi. In this case,
we add all deleted special 3-vertices to Fy and other special 2-vertices to Fj. Since
d*(v) + f(v) <5 and some v; € F1, one may easily check that the obtained partition of
G is an (Fy, Fy)-partition, a contradiction. ]

Corollary 7.2. FEach special verter has a base vertex of degree at least 8.

Proof. Let v be a special vertex of G whose base vertex is u. Then f(u) > 1. By
Claim 7.6, we deduce that dg(u) = d*(u) +3f(u) =6+ 2f(u) = 8. O

For convenience, let ph(v) denote the number of pendant hosts adjacent to a vertex
veV(G).

Claim 7.7. If v is a non-special 3-vertez, then ph(v) = 0.

Proof. Suppose that dg(v) = 3 and Ng(v) = {v1,v2,v3}, where v; is a pendant host
such that vy is incident to exactly five flags T1,...,T5. Let H be obtained from G — v
by adding two flags 75 and T3 based on vy and vs, respectively. By Observation 7.2, H
admits an (Fy, Fy)-partition. Moreover, by Claim 7.1, we know that v; € F}. We are
going to show an (Fy, Fy)-partition of G, which contradicts our assumption. If at most
one of v and vz belongs to Fy, then we add v to Fy. Otherwise, assume that vy € Fy
and vg € Fy. At this point, we only need to first add v to Fi, and then move all the
special vertices of each T; to Fj. ]

For a non-special 3-vertex u, if u has i (resp. at least 1) 4T-neighbours in G, then u
is said to be a 3‘-vertex (resp. 3" -vertex). Moreover, if u is adjacent to one 3%-vertex
(resp. two 30-vertices), then we call u a weak 3-verter (resp. bad 3-verter). In what
follows, a vertex w is called heavy if it is adjacent to at least one 6"-vertex which is
incident to at most four flags.

Claim 7.8. Suppose that v is a 3°-vertex in G. Then at least two of its neighbours are
heavy.
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Proof. Let v be adjacent to vy, ve, v3 such that each v; is a 37 -vertex in G. Notice that
da(v;) # 1 for all ¢ = 1,2, 3. If there is some v; having degree 2, say dg(v1) = 2, then by
Claim 7.6, vy is a special 2-vertex, and thus vo and v3 should be lying on the flag. This
contradicts Corollary 7.2.

Next, assume that all neighbours of v are 3-vertices. Let N (v;) = {v, ug;—1,ug;} for
each i € {1,2,3}. Suppose to the contrary that there is at most one heavy vertex among
v1,v9 and v3. In other words, at least two neighbours of v, say vo and vs, are not heavy.
So only v; might be heavy. Let H be obtained from G — v; by adding two flags 77 and
T, based on ujp, ug, respectively. Since d*(v1) = 3, by Observation 7.2, we know that H
admits an (F, Fy)-partition.

Next, we are going to establish an (Fp, Fy)-partition for G. Let S = {v, uj, uz}. If at
most one vertex of S belongs to F}, then it suffices to add vy to Fy. If all vertices of .S
belong to Fy, then we may add vy to F7. Otherwise, assume that exactly two vertices of
S are in Fy. So only one vertex of S belongs to F;. All that remains is to discuss two
cases below.

e v e Fy and uy,us € Fy. Then, at most one of vy and vg belongs to Fy. If vy and wvs
are both in Fy, then one may directly add vy to F}. Or else, assume w.l.o.g., that
v9 € Iy and v3 € Fy. Then we first change v to Fy and then add v; to Fi.

e uy € Fy and v,ug € Fy. If vo,v3 € Fy, then add v1 to Fy. If vy, vg3 € Fy, then first
change v to F} and then add vy to Fy. Now assume that vy € F} and vg € Fy.
Notice that at most one of us and u4 belongs to Fy. If us and ug are both in Fy,
then we may change v to F} and then add v; to Fy. Otherwise, w.l.o.g., assume
that us € Fy and uq € Fy. Since v is not heavy, by Claim 7.1, us must be a
5~ -vertex. Then we can change v2 to Fy, v to Fi, and add v to Fy. If the obtained
partition of G is not as required, then the unique possible case is that dg(us) =5
and ug becomes Fj-saturated. Therefore, we may further change us to Fi.

In each of the above cases, one can easily verify that the obtained partition of G is
an (F1, Fy)-partition. O

Claim 7.9. If dg(v) = 4, then ph(v) < 2.

Proof. Suppose to the contrary that G has a 4-vertex v adjacent to at least three
pendant hosts v1,ve and vs. Let vy be the neighbour of v different from vy, ve and vs.
Let H be the graph obtained from G — v by adding one flag T based on vy4. Clearly, by
Definition 7.1, H is smaller than G.

First, we show that H satisfies the condition of Theorem 7.1. Suppose that there
exists a subset S € V(H) such that p(S, H) is minimum and p(S, H) < —1. Then at
least one special vertex of T belongs to S. In the following, let S’ = S n V(G). By
Claim 7.2 (1)-(2) and the choice of p(S, H), we know that all the vertices of T are
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completely in S. Thus, we obtain that

p(S'.G) = 8|5"| = 5|E(G[S])]
= 8(|51 =3) = 5(IE(H[S])| = 5)
=p(S,H)+1
< 0.

This contradicts Claim 7.5, and hence H satisfies the condition of Theorem 7.1 and
then it admits an (Fy, Fy)-partition. By Claim 7.1, v1, vy and v3 all belong to Fj. So
one can easily add v to Fy to construct an (Fy, Fy)-partition of G, a contradiction. [J

The following Claim 7.10-Claim 7.13 will play an important role in discharging
argument in Section 3.3. For simplicity, we use ng(v) to denote the number of k-
neighbours of v.

Claim 7.10. Let v € V(G). Suppose that d*(v) = 2 and f(v) = 4. Then ph(v) =
ns(v) = 0.

Proof. Let v1 and v9 be two neighbours of v in G*. Suppose, w.l.o.g., to the contrary
that v is either a pendant host or a 3-vertex. The discussion is divided into two cases
below:

Case 1: v is a pendant host.

By definition, v; is incident to exactly five flags. Let H be the graph obtained from G
by deleting v; and all its incident flags. Then H is a subgraph of G' and thus H satisfies
the condition of Theorem 7.1. So by the minimality of G, H has an (Fy, Fy)-partition.
Then one may add v; to F; and all deleted special neighbours to Fy. If the resultant
partition is not an (F}, Fy)-partition of G, then we deduce that v is Fj-saturated. Namely,
v € Fy and v has one Fi-neighbour. If vy € Fy, then we change v to Fy, and all special
3-neighbours and special 2-neighbours of v to Fy and FY, respectively. Otherwise, assume
that vy € Fy. At this point, it suffices to change all special neighbours of v to Fj.

Case 2: v is a 3-vertex.

Denote by u;,us two neighbours of v; distinct from v. Let H be the graph obtained
from G — v; by adding one flag based on u;,us and v, respectively. For convenience, we
use the notation 717,75, T3 to represent these new added flags incident to i, us and v,
respectively. By Definition 7.1, we know that H is smaller than G.

Next, we show that H satisfies the condition of Theorem 7.1. Suppose to the contrary
that there exists a subset S € V(H) such that p(S, H) is minimum and p(S, H) < —1.
Then for each i € {1, 2,3}, at least one special vertex of T; belongs to S. In the following,
let S’ =S n V(G). There are fours cases to discuss.

e |S" n{uy,us,v}| = 0. Then we can get a subgraph with smaller p by Claim 7.2 (1)-
(2), a contradiction.
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o |S" n {u1,uz,v}| = 1. W.Lo.g., assume that S’ n {uy,ug,v} = {v}. By the choice
of p(S, H), we know that T3 is completely in S. Thus, we obtain that

p(S',G) = 8|S'| = BIE(G[S])]
= 8(I5] = 3) = 5(IE(H[S]] - 5)
— o(S, H) — 24 + 25
=p(S,H)+1
< 0.

This contradicts Claim 7.1.

o |S" n{u1,uz, v} =2. Wlo.g., assume that S" n {uq,u2,v} = {u1,u2}. Then both
Ty and Ty are completely in S. Let S* = 5" U {v1} and thus S* < V(G). Then

p(S*,G) = 8|S*| — 5| E(G[S™])]
= 8(|S| — 6+ 1) — 5(|E(H[S])| — 10 + 2)
= p(S, H) — 40 + 40
< -1

This contradicts the assumption of Theorem 7.1,

o |S" n {uy,uz,v}| = 3. That is, {u1,uz,v} < S’. By the choice of p(S, H), we know
that Ty, Ty and T3 are completely in S. Let S* = 5" U {v1}. Then

p(S*,G) = 8|S*[ — 5| E(G[S™])]
= 8(|S| -9+ 1) —5(|E(H[S])| — 15 + 3)
= p(S,H) — 64 + 60
=p(S,H)—4
< —1.

This contradicts the assumption of Theorem 7.1.

In each case, one may always obtain a contradiction, and hence H satisfies the
condition of Theorem 7.1, meaning that H admits an (F}, Fy)-partition. Now we show
that the (F}, Fy)-partition of H can be extended to G. Note that v € F} by Claim 7.1,
since v is incident to five flags in H. If at most one of u; and us belongs to Fy, then we
can add vy to Fy. Otherwise, assume that uq,us € Fy. If v9 € Fy, we can add vy to Fj
and change all v’s special neighbours to Fy. Otherwise, assume that vo € F}. Here, one
may first move v to Fy, then change all v’s special 3-neighbours to Fy and all v’s special
2-neighbours to F;. Finally v; can be added to F} preserving its property. O

In what follows, let n;(v) be the number of 3-neighbours of v in G*. A similar
definition can be given for n} . (v).



Chapter 7. An (Fy, Fy)-partition of graphs with low genus and girth at least 6 97

Claim 7.11. Let v e V(G). Suppose that d*(v) = 3 and f(v) = 3. If n:(v) = 1, then
v is adjacent to at least one good 6T -verter.

Proof. Let vi,v2 and vg be all neighbours of v in G*. W.l.o.g., assume that vy is a
3l-vertex such that two neighbours of vy, say u1, ug, are 3-vertices. Recall that a good
6T -vertex is a 67-vertex which is not a pendant host. So next, suppose to the contrary
that for i € {2, 3}, each v; is either a 5~ -vertex or a pendant host. Let H be the graph
obtained from G — v1 by adding one flag T based on v. Clearly, |Vo+ (H*)| < |Vo+ (G*)].
By Definition 7.1, H is smaller than G.

First, we prove that H satisfies the condition of Theorem 7.1. Suppose to the contrary
that there is a subset S € V(H) such that p(S, H) is minimum and p(S, H) < —1. It
is obvious that at least one special vertex of T belongs to S. Denote S" = S n V(G).
If v ¢ S’, then we can get a smaller p by Claim 7.2 (1)-(2), violating our choice of S.
Thus, v € S”. Moreover, by the selection of p(S, H), we deduce that T is completely in
S. Thus, we have that

p(S',G) = 8|S'| = 5|E(G[S])]
= 8(|5| =3) = 5(IE(H[S])| - 5)
— p(S, H) — 24 + 25
=p(S,H)+1
< 0.

This contradicts Claim 7.5. So H admits an (F}, Fy)-partition.

Next, we are going to show that the (F, Fy)-partition of H can be extended to G.
Let S = {u1,uz,v}. If all vertices of S belong to Fy, then we add v to Fj. If at most
one vertex of S belongs to Fy, then we add vy to Fy. Otherwise, assume that exactly
two vertices of S are in Fy. In other words, exactly one vertex of S is in Fj.

e First suppose that uy € F; and uo,v € Fy. Notice that v is incident to four flags in
H. By Observation 7.1, we know that v has four Fj-neighbours in H, and thus we
are sure that both vy and v3 are in F}. So we can add v, to Fj successfully.

e Now suppose that v € F} and u1,us € Fy. If vo,v3 € Fy, then we can add vy to
Fy and change all special neighbours of v to Fy. Otherwise, w.l.o.g., assume that
v9 € F} and vz € Fy. Since each pendant host belongs to F; by Claim 7.1, we
deduce that vs is a 5~ -vertex in G. In this case, we change v to Fy, all v’s special
3-neighbours to Fy and all v’s special 2-neighbours to Fj. If the obtained partition
of G is not as desired, then the unique possible case is that dg(vs) = 5 and vs has
five Fj-neighbours. So we may continue to change v3 to F7. O

Claim 7.12. Let v e V(G). Suppose that d*(v) =4 and f(v) = 2. Then ph(v) = 0.

Proof. Suppose to the contrary that there is a neighbour w of v such that u is a pendant
host in G*. Let H be the graph obtained by deleting the incident two flags based on v
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(apart from v). Then H is smaller than G and satisfies the condition of Theorem 7.1.
Hence, H admits an (F}, Fy)-partition due to the minimality of G.

If v € F1, then we add all the deleted special neighbours of v to Fy. Now suppose
that v € Fy. Since u is a pendant host, u belongs to F1 by Claim 7.1. So if v has exactly
three Fj-neighbours in H, then one may first change v to Fj, all special neighbours
of u to Fy, and finally add all the deleted special neighbours of v to Fy. Otherwise,
assume that v has at most two Fj-neighbours in H. In this case, we may add two special
3-neighbours of v to Fy and four special 2-neighbours of v to F;. In each case, one may
inspect that the obtained partition is an (F7, Fy)-partition of G, a contradiction. O

Claim 7.13. Let v e V(G) with d*(v) + f(v) = 6. If f(v) € {1,2} and n}, (v) =0, then
the following hold:

(1) 0y, (0) > 1;

(2) If n§2+ (v) =1, then the unique 32" _neighbour of v is adjacent to at least two good
6T -vertices.

Proof. Let Ngx(v) = {v1,...,vgx(y)} such that v; is a 3-vertex for each i € {1,...,d*(v)}.
For each vy, let uy; and uo; denote the two neighbours of v; distinct from v. Let H be
the graph obtained from G by deleting all flags (apart from v) based on v. Then H
is smaller than G and it satisfies the condition of Theorem 7.1. Thus, H admits an
(F1, Fy)-partition due to the minimality of G.

If v € F1, then we can directly add all the deleted special neighbours to Fjy. Suppose
now that v € Fy. If at least two vertices of Ngx(v) belong to Fi, then it is easy to add
the deleted special 3-neighbours of v to F; and the deleted special 2-neighbours to F.
If all vertices of Ngx(v) belong to Fy, then we first move v to F; and then add all the
deleted special neighbours to Fj4. So next, we may consider the case that exactly one
vertex of Ngx(v) belongs to F;. W.l.o.g., suppose that v; € F} and va,. .. s Vg () are all
in Fy. If vq is not Fj-saturated, namely, ui1, w21 € Fy, then move v to F; and we may
go back to the previous case. Otherwise, assume that vy is Fj-saturated. It means that
exactly one of w11 and ue; belongs to F}. Next, we will make use of contradictions to
show (1) and (2).

(1) Suppose to the contrary that for all i € {1,...,d*(v)}, v; is a 3'-vertex. So both
w11 and wug; are 3~ -vertices. W.l.o.g., assume that u;; € F; and ug; € Fy. Then we
can change vy to Fy, v to F1, and finally add all the deleted special neighbours to Fjy
successfully.

(2) Let v; be the unique 32" _neighbour of v. If j # 1, then vy is still a 3!-vertex
and thus the argument is the same as the previous case. Now assume that j = 1. By
definition, at least one of u11 and w9y is a 47-vertex, say dg(ui1) = 4. Since v is a good
6T -vertex, in order to show (2), we will prove that uj; is a good 6"-vertex. Suppose
to the contrary that u;; is either a 5~ -vertex or a pendant host. First, we move v; to
Fy and v to Fj. If the resulting partition is not an (Fy, Fy)-partition, then it must be
the case that ui1 € Fy and ug; € Fi. By Claim 7.1, we deduce that uq1 is a 5-vertex.
Furthermore, 111 has exactly five Fy-neighbours in G. At this point, one may change
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u11 to F1 and add all the deleting special neighbours to Fy. It is easy to verify that the
current partition is an (Fy, Fy)-partition of G. O

Claim 7.14. Let v be a 4-vertex in G such that ng(v) + ph(v) = 4. If there is at most
one 32" -vertex adjacent to v, then G contains at least one good 51 -vertex.

Proof. Let vy,...,vs denote all neighbours of v. By Claim 7.9, ph(v) < 2. Then
n3(v) = 2 due to the assumption that ns(v) + ph(v) = 4. W.lo.g., assume that
da(v1) = dg(v2) = 3. Denote by z; and y; the two neighbours of v; for i € {1,2}. Since
there is at most one 32+—neighbour of v, we may further assume that v; is a 3'-vertex. Let
H = G —v. Obviously, H is smaller than G and it satisfies the condition of Theorem 7.1.
Hence, H admits an (F}, Fy)-partition.

Let S = {v1,v2,v3,v4}. By Claim 7.1, each pendant host belongs to F;. So if at
most one vertex of .S belongs to Fy, then this vertex must be a 3-vertex, and thus we
can add v to Fy. Next suppose that there is at most one vertex of S belonging to Fi,
say v; € Fy. If v; is a 3-vertex, then one can add v to Fj. If the obtained partition is
not an (Fy, Fy)-partition, then we deduce that one of v;’s neighbours, denoted by z;,
belongs to Fy and is of degree at least 5. Otherwise we put v; in Fy since it has at most
three Fy-neighbours if it has degree at most 4 and furthermore y; belongs to F}. Hence,
x; is a good 5T-vertex by Claim 7.1. Otherwise, v; is a pendant host. In this case, we
can first change all special vertices of v; to Fy and then add v to Fi. Now suppose
that exactly two vertices of S belong to Fy. Namely, v;,v; € F1 and v, v, € Fy, where
{i,j,k,m} = {1,2,3,4}. Again, by Claim 7.1, we confirm that v;,v; are pendant hosts.
Then {i,7} = {3,4} and thus v;,ve € Fy. In order to establish an (F, Fy)-partition of
(&, we have three possibilities to handle.

o If x1,y; € F1, then add v to Fy.
o If x1,y; € Fy, then move vy to F; and add v to Fj.

e Now assume that x; € F} and y; € Fy, which implies that x; and vy cannot be
the same vertex. Since v; is a 3'-vertex, we see that dg(z1) < 3. Moreover, x;
cannot be a 2-vertex by Claim 7.6. Let 2} and z} denote the neighbours of 1
distinct from vy. Clearly, if z; is not Fj-saturated, then one may easily change v;
to F} and then add v to Fy. Otherwise, assume w.l.o.g., that 2} € F} and zf € Fy.
Notice that zf is distinct from v, since x; is in F} and ve is in Fy. Then 2 cannot
be a pendant host by Claim 7.1. In this case, we change x; to Fy, v to F} and
finally add v to Fy. If the resultant partition is not as desired, then 2 must be a
good 51-vertex and thus we are done. ]

7.3 Discharging procedure

We are now ready to present a discharging procedure that will complete the proof of

Theorem 7.1. For v € V(G), an initial charge function w is defined to be w(v) = d(v) — 1.
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By the relation >3,y () d(v) = 2|E(G)| and the assumption of Theorem 7.1, we know
that the total sum of charges of the vertices satisfies the following

Z w(v) = Z (dg(v)—%ﬁ) < %

veV (G) veV (G)

Let w*(v) be the charge of v € V(G) after the discharge procedure. In order to lead
to a contradiction, we shall prove that 3 ¢ ) w*(v) = 2,

Let 7(u — v) denote the amount of charges transferring from v to v. Below are the
discharging rules:

(R1) Every special 2-vertex and special 3-vertex respectively gets g and % from its
8 -neighbour.
(R2) Every 4-vertex sends % and 1—10 to each 3'-neighbour and 32" -neighbour, respectively.
(R3) Every 5-vertex sends % to each of its 3-neighbour.
(R4) Let u be a 6'-vertex in G adjacent to a 3-vertex v.
R4.1) Assume that v is a 3'-vertex. Then
(R4.1)
(R4.1.1) 7(u — v) = £ if v is bad;
(R4.1.2) 7(u — v) = & if v is weak;
(R4.1.3) 7(u —» v) = % otherwise.
(R4.2) Assume that v is a 32" -vertex. Then
(R4.2.1) 7(u - v) = % if u is weak;
(R4.2.2) 7(u — v) = ;5 otherwise.
(R5) Every 3°-vertex gets 1—10 from each of its 3-neighbour which is adjacent to at least
one 6"-vertex.
(R6) Every pendant host gets % from its 4T-neighbour.

7.3.1 Find charges are nonnegative

In this subsection, we will show that w*(v) = 0 for each v € V(G). Notice that dg(v) > 2.

e di(v) = 2. Then w(v) = —2. By Claim 7.6, v is a special 2-vertex. Moreover, the
base vertex of v is of degree at least 8 by Corollary 7.2. So by (R1), we have that
w(v) =-2+ 2 =0.

e di(v) = 3. Then w(v) = —. If v is special, then similarly, by Corollary 7.2 and
(R1), we obtain that w*(v) = —é + % = 0. Now assume that v is not a special
vertex. Namely, it is not incident to any flags. Let v be a 3*-vertex.

— ¢ =0. By Claim 7.8, v has at least two heavy 3-neighbours. By definition,
these two heavy 3-neighbours both have at least one 6'-neighbour. So
w*(v) = -1 +2x & =0 by (R5).

— i = 1. Let v; be the unique 4" -neighbour of v. If dg(vy) € {4, 5}, then both
(R2) and (R3) guarantee that 7(v; — v) = $ and thus w*(v) = —f + 1 = 0.
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Otherwise, assume that dg(v1) = 6. If v is bad, namely, v has two 30-
neighbours, then by (R4.1.1) and (R5) we have that w*(v) > —t +2—-2x & =
0. If v is weak, namely, v has one 30 neighbour, then by (R4.1. 2) and (R5)
we have that w*(v) > —1 + & — ;5 = 0. Otherwise, one may easily deduce
that w*(v) > —% + 1 = 0 by (R4.1.3).

— i = 2. Let v1,v9,v3 denote all neighbours of v such that dg(v1),dg(ve)
If dc(v3) = 4, then w*(v) = —1 + 3 x & = & by (R2). Suppose dG(Ug)
If dg(v1),dg(v2) < 5, then similarly we deduce that w*(v) = 5 +2x 75 0
by (R2) or w*(v) = —% + % = 0 by (R3). Otherwise, by symmetry assume
that dg(v1) = 6. If v is a 3° —Vertex then v is weak, and thus 7'(111 — ) = é

& by (R5) Moreover, 7(v2 — v) = 15 by (R2)

+ L_ 1L _0 Or else, it is not difficult to
1
10

|| //\ \\/

and (R3). So w*(v) = —

1
1 5 10 10
deduce that w*(v) = -+

=0 by (R2), (R3) and (R4.2.2).

[
(%

G
*

°
&

w(v) = 3. By (R2), v sends each neighbour at most 3. Thus,
— 0.

Vol
(S -~

_4,

°
I

9
5. Then w(v) = 2. By (R3), we see that w*(v) > 2 — 5 x

v) = 6. Obviously, v € V(G*). If f(v) = 0, then w*(v) = dg(v)— 22— 2dg(v) =
de(v) — 2 > 2 by (R4) and (R6). Otherwise, by Claim 7.4, we have that
< f(v) < 5. At this point, one may obtain that f(v) + d*(v) = 6 by Claim 7.6.
This fact will be used later frequently without any special mention. Moreover, by
(R1), we observe that v sends a charge of 2 x % + % = ? to all special vertices
incident to the same flag. Since dg(v) = d*(v) + 3f(v), v has a charge of at least
d*(v) + 3f(v) — 16 13f( ) which equals d*(v) — % + %f(v) after transferring
charges to all its a,dJacent special vertices. For shortness, we define

ov) = d*(v) ~ 5 + 2 f(v).

(v)
(v)
a(v)
a(v) =

— e Q.

There are four cases that need to be handled.

— Assume f(v) = 1. If d*(v) = 6, then by (R4), we have that w*(v) >
o(v) — 2d*(v) = 2d*(v) — %4 > %. Otherwise, assume that d*(v) = 5. Then
o(v) = . By Claim 7.13 (1), we see that either n¥, (v) > 1 or n¥, (v) =0
and nk, (v) = 1. By (R4.2) and (R6), we know that at least one neighbour

in G* of v takes charge at most £ from v. Thus, w*(v) > 3 — 1 —4 x 2

— Assume f(v) = 2. If d*(v) > 5, then w*(v) > o(v)—2d*(v) = %d*( )—%2 >

by (R4). Otherwise, assume that d*(v) = 4. Then o(v) = 2. Similarly, by
Claim 7.13 (1), v is either adjacent to at least a 4-vertex or a 3% -vertex in
G*. Therefore, w*(v) > 8 — 1 =3 x 2 = 1 by (R4) and (R6).

(SN U'\I\D

= 5
— Assume f(v) = 3. If d*(v) > 4, then w*(v) 2 ( )—2d*(v) = 3d*(v) -2 > 2
by (R4). Otherwise, suppose that d*(v) = 3. Then o(v) = 1. If nj, (v) = 0,

then by (R4.2) we have that w*(v) > 1 — % X 3 2. Or else, suppose that



Chapter 7. An (Fy, Fy)-partition of graphs with low genus and girth at least 6 102

nii(v) = 1 On the one hand, by (R4.1), such a 3'-neighbour gets charge
at most 2 = from v. On the other hand, v is adjacent to at least one good
6+-vertex by Claim 7.11. By (R1)-(R6), this kind of good 6" -vertex does not
obtain any charges from v. Hence, w*(v) > 1 — Z X 2 = %

— Assume f(v) = 4. By (R4), w*(v) = o(v) — 2d*(v) = 2d*(v) — & > % if
d*(v) = 4 and w*(v) = o(v) — 2d*(v) = 2d*(v ) 8 > Lif d*(v) = 3. Now
consider the case that d*(v) = 2. By Claim 7.10, we are sure that v cannot
be adjacent to any pendant hosts or 3-vertices. Therefore, w*(v) = o(v) > 2.

— Assume fv) =5. If d*(v) = 3, by (R4), w*(v) = o(v) — 2d*(v) = %d*(v) -

8> 2. If d*(v) = 1, namely, v itself is a pendant host, then o(v) = —%. By
(R6), we see that w*(v) > —% + £ = 0. Now consider the final Case that
d*(v) = 2. Thena(v)=4 If n%;(v) < 1, then w* (v)>%—%—g—1by
(R4) and (R6). Otherwise, we deduce that w*(v) > % - 5 x 2 =0 by (R4.1).

S ||

7.3.2 Total charge
Now we are going to show that >} .y ) w*(v) = 2. First, we observe the following.

Observation 7.3. G contains at least one good 4 -vertex.

Proof. Let v e V(G). Clearly, dg(v) = 2. We note that all 2-vertices must be special
by Claim 7.6. So if v is a special 2- or 3-vertex, then it must be adjacent to a vertex,
say u, having degree at least 8 by Corollary 7.2. Actually, u is the base vertex of its
incident flag. If u is not a pendant host, then we are done. Otherwise, assume that
u is a pendant host having the unique neighbour v’ in G*. Note that dg(u’) = 4 by
Claim 7.6 and Claim 7.7. Moreover, v cannot be a pendant host since otherwise G*
contains a complete graph K, violating Claim 7.3. Therefore, v’ is a good 4™ -vertex.

Next suppose that v is a non-special 3-vertex. If v is a 31+—vertex, then its 47-
neighbour is just a good 47 -vertex by Claim 7.7, and thus we are done. Now assume
that v is a 3%-vertex. By Claim 7.8, we are sure that v has at least two heavy neighbours
each of which is adjacent to a good 6"-vertex.

Finally suppose that v is a 4T-vertex. If v is a pendant host, then its unique neighbour
in G*, denoted by u, must be a 4-vertex by Claim 7.6 and Claim 7.7, and it cannot be
a pendant host by Claim 7.3, and therefore we are done. ]

We have to present following two more useful lemmas.

Lemma 7.1. If v is a 4" -vertex in G, then w*(v) > & except in the following three

(A1) 'd(;(v) =4 and n3(v) + ph(v) = 4;

(A2) dg(v) =6, f(v) =5 and d*(v) = 1;

(A3) dg(v) = 6, f(v) =5 and d*(v) = nk (v
4.

)
Proof. Let v be a k-vertex with k > 4. If K = 4 and n3(v)+ph(v) # 4, then it follows from
(R2) and (R6) that w*(v )>4—%—3x% % If £ = 5, then w*(v )>5———5><7:%
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by (R3) and (R6). Now suppose that & > 6. By the discussion of Section 3.3.1, one may
conclude that w*(v) > 1§ if f(v) <4, or f(v) =5 and d*(v) > 3, or f(v) =5, d*(v) =2
and nj; (v) < 1. O

Lemma 7.2. Let v e V(G) be a 6 -vertex. Then w*(v) > 2 except in the following four
cases:

(B1) f(v) =2 and d*(v) = 4;

(B2) f(v) =3, d*(v) = 3 and nj; (v) = 1;
(B3) f(v) =4 and d*(v) = 3;

(B4) f(v) =5 and d*(v) € {1,2}

Proof. Tt is trivial by the discharging argument of 6" -vertices in Subsection 7.3.1. [

In what follows, let z € V(G) be a good 41-vertex by Claim 7.3. We have three cases
in view of dg(z).

Case I: dg(z) =5.

Then w*(z) >5— 18 -5 x § = % by (R3) and (R6), and hence }, ¢y (g w*(v) =
w*(2) = 1.
Case II: dg(z) = 6.

Let 21,22,...,24%(») denote all neighbours of z in G*. Next, in order to show that
2wev(cy W (v) = 2, by Lemma 7.2, we have to deal with four cases below:

Case (B1). f(z) = 2 and d*(z) = 4. Then o(z) = 3. By Lemma 7.1, we assert that
w*(z) = % Moreover, by Claim 7.13 (1) we know that v has at least either

. + .
one 4 -neighbour or one 32" -neighbour, say 2.

e First suppose that z; is a 4™-neighbour. Clearly, z; cannot satisfy
(A1) and (A3). If (A2) occurs, then z; is a pendant host, contradicting
Claim 7.12. So by Lemma 7.1 we ensure that w*(z1) > £ and hence
Yev(ey W) = wH(2) +wH (1) = 5 + 5 = £

e Now suppose that z; is a 32" -neighbour. If ny,+ (v) = 2, then w*(z) =
8_2x1-2x2 = 2 by (R4), meaning that 2wev(c) W (v) = w*(2) = =3
So next, assume that z; is the unique 32+—neighbour of z. Denote
by x1,y1 two neighbours of z; distinct from z. By Claim 7.13 (2),
we see that z1 is adjacent to at least two good 6T -vertices, denoted
by wi,ws, where {wi,we} < {z1,y1,2}. It is obvious that wi,ws
cannot be vertices satisfying the cases of (A1)-(A3) of Lemma 7.1, and
thus w*(wy) > & and w*(wy) > &, implying that 2vev(cyw*(v) =
w*(w) + w*(ws) > 1 + £ = 2.
Case (B2). f(z) = 3, d*(z) = 3 and ni (z) = 1. By Lemma 7.1, we are sure that

w*(z) = % W.lo.g., assume that z; is a 3'-neighbour of z. It follows from
Claim 7.11 that z is adjacent to one good 6T -vertex, say zo. Clearly, 22
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cannot satisfy (Al) and (A2) since it is not a pendant host. Moreover,
(A3) will not occur because z is not a 3'-vertex. Hence, w*(z2) > % by
Lemma 7.1, and thus >} .y ¢ w*(v) = w*(2) + w*(22) = i+l=2

Case (B3). f(z) = 4 and d*(z) = 3. Then o(z) = {. By Lemma 7.1, we have that
w*(z) = %

e Ifny+(2) =1, say 21 is a 4T-neighbour of z, then z; cannot be the cases
of (A1) and (A3). If (A2) does not happen on z1, then by Lemma 7.1,
we obtain that w*(z1) > % and therefore 3, ¢y (g w*(v) = w*(2) +
w*(z1) = % + % = % Otherwise, assume that z; is a pendant host. By
(R6), it gets charge 1 from z, and thus w*(2) > I — 1 —2x 2 = 2,
implying that >} oy w*(v) = w*(z) = Z

o If n;‘2+ (z) = 1, then by (R4.2), this 32" -neighbour gets charge at

1 * 7 _ 1 2 _ 2 .
most ¢ from z, and hence w (2) = £ —r — 2 Xx £ = ¢, meaning that

Sevic) W) = wt(2) = 2.

e Now suppose that nj;(z) = 3. If none of 21,22 and 23 is bad, then
by (R4.1.2) and (R4.1.3) we affirm that z sends a charge of at most
3x 3 = 3 to all these 3-neighbours, and thus w*(z) > I — & =1 > 2.
It follows that 3 cy(qw*(v) = w*(z) > 2. Otherwise, suppose

w.l.o.g., that z; is bad. That is, z; is adjacent to exactly two 3°-

vertices, denoted by u; and uy. By Claim 7.8, each u; has two heavy
neighbours which are adjacent to 6 -vertices incident to at most four
flags. For simplicity, let w; and ws denote these two 6T -vertices.

Notice that some w; might be the same as z. But we can still ensure

that one of w; and wy which is distinct from z, say w;, cannot

satisfy (A1) to (A3). Thus, w*(w;) > % by Lemma 7.1 and, therefore,
2ev(c) W (V) = w*(2) + w*(wr) = i+i=2

Case (B4). f(z) = 5 and d*(2) € {1,2}. By assumption, z is not a pendant host,

meaning that d*(z) = 2, and then o(z) = 2. If each z gets a charge of

at most ¢ from z, then w*(z) > 2 —2 x & :5% and thus >,y w*(v) =
w*(z) = 2. Otherwise, by (R4.1.1) and (R4.1.2) we assume that each z;
is either weak or bad. So both z; and zs are 3!-vertices. Let z; and Yi
denote other two neighbours of z; distinct from z. By symmetry, assume
that each z; is a 3%vertex. By Claim 7.8, we know that for each i € {1,2},
at least two neighbours of z; are heavy. Namely, there exists at least one
6" -vertex, say w, such that f(w) < 4. Obviously, w # z due to the fact
that f(z) = 5. So by the discussion of (B1)-(B3), one may guarantee that

Srercy @ (0) > wH(w) > .
Case III: dg(z) = 4.

Then w(z) = %. Clearly, f(z) = 0 by Corollary 7.2. Let Ng(z) = {z1,...,24}. For
i€{l,...,4}, dg(z) # 1 and dg(z;) # 2 due to Claim 7.6. Moreover, if z; is a 5-vertex
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or a good 6T -vertex, then we may go back to previous Case I and Case II. So in what
follows, we assume that ng(z) + n4(2z) + ph(z) = 4. There are two cases as follows:

n3(z) + ph(z) < 3. Say z is a 4-vertex. Then w*(2) > 3 —3 x £ = £ by (R2)
and (R6). Similarly, w*(z1) > £. Therefore, Dwev(c) W (V) 2 w*(2) + w*(z1) =
1,1 _2
= _l’_ = = =,
57575

ns(z) + ph( ) = 4. If z is adjacent to at least two 32" -vertices, say z1 and zo,
then let z/, 2! denote other two neighbours of z; distinct to z for each i € {1,2}.
W.lo.g., assume that dg(z]) = 4 and dg(z5) = 4. Obviously, neither z{ nor
2}, can be a pendant host by Claim 7.7, and thus we can suppose that both 2}
and 24 are 4-vertices since otherwise we may reduce the argument to Case I and
Case II. Again, applying (R2) and (R6), w*(z) > 3 =2 x 55 —2x t = § and
w*(z]) > 2 —3x 1 — & = 5 for both i = 1,2. Therefore ZveV w*(v) =
w*(2) + w*(2]) + w*(z4) = £ + 2 x 15 = 2. Now suppose that z is adJacent to at
most one 3%-vertex. By Claim 7.14, G contains at least one good 5*-vertex, and
hence we can go back to Case I and Case II.

Therefore, we complete the proof of Theorem 7.1. O

7.4

Concluding remarks

We know that Borodin et al. [4] constructed a graph in Pg which has no (Fpy, Fy)-partition,
where d is a non-negative integer. Hence, this fact guarantees us that the subscript of Fy
in Corollary 7.1 cannot be further improved. Still, we suspect that the class of Fy can
be strengthened to F3. To conclude this chapter, we would like to propose the following
problem.

Question 7.1. Does every graph in Pg admit an (F}, F3)-partition?
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