Classical and Quantum Cryptanalysis for Euclidean Lattices and Subset Sums

Yixin Shen

11 May, 2021

Hard Problems in Public Key Cryptography

Hard Problems in Public Key Cryptography

Hard Problems in Public Key Cryptography

lattices, codes, ...

Hard Problems in Public Key Cryptography

lattices, codes, ...

NIST round 3 candidates:

- encryption: 3 out of 4 candidates based on lattices
- signatures: 2 out of 3 candidates based on lattices

Publications and Outline

Yoshinori Aono, Phong Q. Nguyen, and Y. S.
Quantum lattice enumeration and tweaking discrete pruning.
In ASIACRYPT 2018.
Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Y. S. Improved (provable) algorithms for the shortest vector problem via bounded distance decoding.

In STACS 2021.

Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Y. S.
Improved classical and quantum algorithms for subset-sum.
In ASIACRYPT 2020.
国 Klevickis, Krisjanis Prusis, Y. S, Juris Smotrovs, and Jevgenijs Vihrovs. Quantum lower and upper bounds for 2D-grid and Dyck language.
In MFCS 2020.

What is a (Euclidean) lattice?

Definition

$\mathcal{L}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)=\left\{\sum_{i=1}^{n} x_{i} \boldsymbol{b}_{i}: x_{i} \in \mathbb{Z}\right\}$ where $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ is a basis of \mathbb{R}^{n}.

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

The Shortest Vector Problem

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L}, find a shortest nonzero lattice vector. $\lambda_{1}(\mathcal{L})=$ length of such a vector.

The Shortest Vector Problem

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L}, find a shortest nonzero lattice vector. $\lambda_{1}(\mathcal{L})=$ length of such a vector.
γ-approx-SVP $(\gamma>1)$:
Given a basis of \mathcal{L}, find a nonzero lattice vector of length at most $\gamma \cdot \lambda_{1}(\mathcal{L})$.
γ is approximation factor.

The Shortest Vector Problem

Depending on the dimension n :

- NP-Hardness (randomized reduction)

Approx factor:

- $O(1)$

The Shortest Vector Problem

Depending on the dimension n :

- NP-Hardness (randomized reduction)
- NP \cap co-NP

Approx factor:

- $O(1)$
- \sqrt{n}

The Shortest Vector Problem

Depending on the dimension n :

- NP-Hardness (randomized reduction)
- NP \cap co-NP
- Subexponential-time algorithms

Approx factor:

- $O(1)$
- \sqrt{n}
- $2^{\sqrt{n}}$

The Shortest Vector Problem

Depending on the dimension n :

- NP-Hardness (randomized reduction)
- NP \cap co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Approx factor:

- $O(1)$
- \sqrt{n}
- $2^{\sqrt{n}}$
- $2^{\frac{n \log \log n}{\log n}}$

The Shortest Vector Problem

Depending on the dimension n :

- NP-Hardness (randomized reduction)
- NP \cap co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Approx factor:

- $O(1)$
- \sqrt{n}
- $2^{\sqrt{n}}$
- $2^{\frac{n \log \log n}{\log n}}$

Main approaches for SVP:

- Enumeration: $2^{O(n \log (n))}$ time and poly(n) space
- Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

The Shortest Vector Problem

Depending on the dimension n :

- NP-Hardness (randomized reduction)
- NP \cap co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Approx factor:

- $O(1)$
- \sqrt{n}
- $2^{\sqrt{n}}$
- $2^{\frac{n \log \log n}{\log n}}$

Main approaches for SVP:

- Enumeration: $2^{O(n \log (n))}$ time and poly (n) space
- Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

BKZ with block size k solves $O\left(k^{n / k}\right)$-approx-SVP using a SVP oracle in dimension k :

- Enumeration: time $2^{O(k \log (k))}$ poly (n) and space poly (n)
- Sieving: time $2^{O(k)}$ poly (n) time and space $2^{O(k)}$ poly (n)

Enumeration

Enumeration Algorithm

Search for all vectors $X=x_{1} b_{1}+\cdots+x_{n} b_{n}$ in $B(R)=$ ball of radius R

Given $x_{n}, \ldots, x_{i+1},\left\|\pi_{i}(x)\right\| \leqslant R$, \Rightarrow the integer x_{i} belongs to an interval of small length
π_{i} : orthogonal projection on $\operatorname{span}\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}$

Cylinder Pruning [GNR10]

Each level remplace $\left\|\pi_{i}(x)\right\| \leqslant R$ by $\left\|\pi_{i}(x)\right\| \leqslant R_{i} R$ where $0<R_{i} \leqslant 1$

Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]

- blackbox access to a tree with marked nodes:
- can only query the local structure of the tree
- tree of size T, depth n, constant max degree
$\Rightarrow O^{*}(\sqrt{T})$ queries to find a marked node

Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]

- blackbox access to a tree with marked nodes:
- can only query the local structure of the tree
- tree of size T, depth n, constant max degree
$\Rightarrow O^{*}(\sqrt{T})$ queries to find a marked node
Application to the previous enumeration algorithm (Quantum Lattice Enumeration):
Remark: LLL-reduced basis $\sim \max$ degree can be $2^{\Omega(n)}$
Algorithm: transform the tree into a binary one + dichotomy
$\Rightarrow O^{*}(\sqrt{T})$ time to find one vector in $L \cap S(R)$
$\Rightarrow O^{*}(\#(L \cap S(R)) \cdot \sqrt{T})$ time to find all vectors.

Discrete Pruning [AN17]

Step 0: partition space into cells

- 1 cell $\leftrightarrow 1$ lattice vector
- cell $C(\boldsymbol{t})$ identified by tag $\boldsymbol{t} \in \mathbb{Z}^{n}$
- Babai's partition:

- natural partition:

Discrete Pruning [AN17]

Step 0: partition space into cells

- 1 cell $\leftrightarrow 1$ lattice vector
- cell $C(\boldsymbol{t})$ identified by $\operatorname{tag} \boldsymbol{t} \in \mathbb{Z}^{n}$

Step 1: find the pruning set

- Find $\approx M$ best cells minimizing $g(\boldsymbol{t})=\sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(\frac{t_{i}^{2}}{4}+\frac{t_{i}}{4}+\frac{1}{12}\right)$ Roughly, the smaller $g(t)$, the smaller the vector inside $C(\boldsymbol{t})$
- Equivalent to finding R such that \#solutions of $g(\boldsymbol{t}) \leqslant R$ is $\approx M$
- Babai's partition:

- natural partition:

Discrete Pruning [AN17]

Step 0: partition space into cells

- 1 cell $\leftrightarrow 1$ lattice vector
- cell $C(\boldsymbol{t})$ identified by $\operatorname{tag} \boldsymbol{t} \in \mathbb{Z}^{n}$

Step 1: find the pruning set

- Find $\approx M$ best cells minimizing $g(\boldsymbol{t})=\sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(\frac{t_{i}^{2}}{4}+\frac{t_{i}}{4}+\frac{1}{12}\right)$ Roughly, the smaller $g(t)$, the smaller the vector inside $C(\boldsymbol{t})$
- Equivalent to finding R such that \#solutions of $g(t) \leqslant R$ is $\approx M$

Step 2: find the shortest vector

- consider enumeration tree above obtained by backtracking
- Babai's partition:

- natural partition:

-

Quantum speed-up for discrete pruning

Step 1: find R such that \#solutions of $g(\boldsymbol{t}) \leqslant R$ is $\approx M$ by dichotomy

- Quantum tree size estimation [AK17] to estimate \#nodes
- Tweak cost function:

$$
g(\boldsymbol{t})=\sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(\frac{t_{i}^{2}}{4}+\frac{t_{i}}{4}+\frac{1}{12}\right) \leadsto \sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(t_{i}^{2}+t_{i}\right)
$$

Linear relation between \#nodes and \#solutions

Quantum speed-up for discrete pruning

Step 1: find R such that \#solutions of $g(\boldsymbol{t}) \leqslant R$ is $\approx M$ by dichotomy

- Quantum tree size estimation [AK17] to estimate \#nodes
- Tweak cost function:

$$
g(\boldsymbol{t})=\sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(\frac{t_{i}^{2}}{4}+\frac{t_{i}}{4}+\frac{1}{12}\right) \leadsto \sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(t_{i}^{2}+t_{i}\right)
$$

Linear relation between \#nodes and \#solutions

Step 2: find shortest among cells satisfying $g(\boldsymbol{t}) \leqslant R$

- dichotomy on length + mark nodes
- Quantum backtracking + binary tree transformation

Quantum speed-up for discrete pruning

Step 1: find R such that \#solutions of $g(\boldsymbol{t}) \leqslant R$ is $\approx M$ by dichotomy

- Quantum tree size estimation [AK17] to estimate \#nodes
- Tweak cost function:

$$
g(\boldsymbol{t})=\sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(\frac{t_{i}^{2}}{4}+\frac{t_{i}}{4}+\frac{1}{12}\right) \leadsto \sum_{i=1}^{n}\left\|b_{i}^{*}\right\|^{2}\left(t_{i}^{2}+t_{i}\right)
$$

Linear relation between \#nodes and \#solutions

Step 2: find shortest among cells satisfying $g(\boldsymbol{t}) \leqslant R$

- dichotomy on length + mark nodes
- Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

Extreme Pruning

Repeat pruning with many basis:

- classical: $\sum T_{i}$
- naive quantum: $\sum \sqrt{ } T_{i}$

Extreme Pruning

Repeat pruning with many basis:

- classical: $\sum T_{i}$
- naive quantum: $\sum \sqrt{ } T_{i}$
- this thesis: $\sqrt{\sum T_{i}}$ can be much better than the naive quantum depending on the distribution of T_{i}.

Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving

Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving
\leadsto crossover point between sieving and enumeration is different in the quantum setting

Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving
\sim crossover point between sieving and enumeration is different in the quantum setting
[ABLR20] estimates the new crossover point for BKZ using enumeration/sieving achieving the same quality (RHF) at $k=547$.

Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving
\sim crossover point between sieving and enumeration is different in the quantum setting
[ABLR20] estimates the new crossover point for BKZ using enumeration/sieving achieving the same quality (RHF) at $k=547$.

Open problems:

- Study of the polynomial factors for sieving and enumeration are needed for a better comparison
- More studies on discrete pruning are needed

Sieving

- Heuristic algorithms: fastest in practice
- Provable algorithms: important for theory \rightarrow this thesis

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference
$n^{\frac{n}{2 e}+o(n)}$	poly (n)	$[$ Kan87,HS07]
$2^{n+o(n)}$	$2^{n+o(n)}$	$[$ ADRS15]
$2^{2.05 n+o(n)}$	$2^{0.5 n+o(n)}$	$[$ CCL18]
$2^{1.7397 n+o(n)}$	$2^{0.5 n+o(n)}$	This thesis

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference
$n^{\frac{n}{2 e}+o(n)}$	poly (n)	$[$ Kan87,HS07]
$2^{n+o(n)}$	$2^{n+o(n)}$	$[$ ADRS15]
$2^{2.05 n+o(n)}$	$2^{0.5 n+o(n)}$	$[$ CCL18]
$2^{1.7397 n+o(n)}$	$2^{0.5 n+o(n)}$	This thesis

This thesis: first provable smooth time/space trade-off for SVP
time $q^{13 n+o(n)} \quad$ space $\operatorname{poly}(n) \cdot q^{\frac{16 n}{q^{2}}} \quad q \in[4, \sqrt{n}]$

- $q=\sqrt{n}$: time $n^{O(n)}$ and space poly(n, not as good as [Kan87].
- $q=4$: time $2^{O(n)}$ and space $2^{O(n)}$, not as good as [ADRS15].

Interlude: quantum memory models

classical access

quantum access

Assumption: $O(1)$ time cost

Interlude: quantum memory models

classical access

quantum access

Assumption: $O(1)$ time cost

Interlude: quantum memory models

classical access

quantum access

potentially strong assumption

Assumption: $O(1)$ time cost

Interlude: quantum memory models

classical access

quantum access

potentially strong assumption

Assumption: $O(1)$ time cost

Results in the Quantum Setting

Provable quantum algorithms for SVP:

Time Complexity	Space Complexity			Reference
	Classical	Qubits	Model	
$2^{1.799 n+o(n)}$	$2^{1.286 n+o(n)}$	poly (n)	QRACM	$[$ LMP15]
$2^{1.2553 n+o(n)}$	$2^{0.5 n+o(n)}$	poly (n)	plain	$[$ CCL18]
$2^{0.9535 n+o(n)}$	$2^{0.5 n+o(n)}$	poly (n)	plain	This thesis

Remark on quantum heuristic algorithms:

- better complexity: $2^{0.265 n+o(n)}$ [Laarhoven15]
- requires QRACM (strong assumption)

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieve:
Input: many vectors of length $\leqslant \ell$ Output: many vectors of length $\leqslant \frac{\ell}{2}$
Combine pairs of vectors to produce shorter vectors

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Idea: LLL reduced \leadsto length $\ell \leqslant 2^{O(n)} \lambda_{1}$, sieve $O(n)$, solve SVP

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieve:
Input: many vectors of length $\leqslant \ell$ Output: many vectors of length $\leqslant \frac{\ell}{2}$
Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \sim length $\ell \leqslant 2^{O(n)} \lambda_{1}$, sieve $O(n)$, solve SVP
Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieve:
Input: many vectors of length $\leqslant \ell$ Output: many vectors of length $\leqslant \frac{\ell}{2}$
Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \sim length $\ell \leqslant 2^{O(n)} \lambda_{1}$, sieve $O(n)$, solve SVP
Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.
[ADRS15]'s new idea: control distribution instead of length of vectors

Discrete Gaussian Sampling

$$
\rho_{s}(\boldsymbol{x})=\exp \left(-\pi \frac{\|\boldsymbol{x}\|^{2}}{s^{2}}\right), \quad D_{L, s}(\boldsymbol{x})=\frac{\rho_{s}(\boldsymbol{x})}{\rho_{s}(L)}, \quad \boldsymbol{x} \in \mathbb{R}^{n}, s>0
$$

Definition (Discrete Gaussian Distribution)

On lattice L with parameter s : probability of $\boldsymbol{x} \in L$ is $D_{L, s}(\boldsymbol{x})$.

$$
L=\mathbb{Z}, s=7
$$

$$
L=\mathbb{Z}^{2}, s=7
$$

$$
L=\mathbb{Z} \times 4 \mathbb{Z}, s=7
$$

Discrete Gaussian Sampling (DGS)

- input: L and s
- output: random $\boldsymbol{x} \in L$ according to $D_{L, s}$.

DGS, BDD and SVP

[ADRS15]

DGS, BDD and SVP

[ADRS15]

Bounded Distance Decoding ($\alpha-$ BDD):
Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^{n}$

DGS, BDD and SVP

[ADRS15]

Bounded Distance Decoding (α-BDD):
Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^{n}$ with distance to lattice $\leq \alpha \cdot \lambda_{1}(\mathcal{L})$

The two reductions use completely different DGS parameter regimes!

DGS, BDD and SVP

[ADRS15]

Bounded Distance Decoding ($\alpha-$ BDD):
Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^{n}$ with distance to lattice $\leq \alpha \cdot \lambda_{1}(\mathcal{L})$, find the closest vector $y \in \mathcal{L}$.

- α is decoding distance/radius
- $\alpha<\frac{1}{2}$ for unique solution

The two reductions use completely different DGS parameter regimes!

Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of $D_{\mathcal{L}, s}$:

- hard to sample
- easy to sample
- SVP

Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of $D_{\mathcal{L}, s}$:

Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of $D_{\mathcal{L}, s}$:

- hard to sample
- SVP
smoothing
parameter
- Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s=\eta_{\varepsilon}(\mathcal{L})$
- No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$

Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of $D_{\mathcal{L}, s}$:

- hard to sample
- SVP
smoothing parameter
- Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s=\eta_{\varepsilon}(\mathcal{L})$
- No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$
- easy to sample

DGS time/space trade-off

Idea: if $X_{1}, \ldots, X_{k} \sim D_{\mathcal{L}, s}$ and $\sum_{i} X_{i} \in q \mathcal{L}$ then $\left(\sum_{i} X_{i}\right) / q \approx D_{\mathcal{L}, s \sqrt{k} / q}$ \leadsto progress when $k<q^{2}$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

DGS time/space trade-off

Idea: if $X_{1}, \ldots, X_{k} \sim D_{\mathcal{L}, s}$ and $\sum_{i} X_{i} \in q \mathcal{L}$ then $\left(\sum_{i} X_{i}\right) / q \approx D_{\mathcal{L}, s \sqrt{k} / q}$ \leadsto progress when $k<q^{2}$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of N vectors in \mathcal{L}, find $k=q^{2}-1$ of them such that their sum $\in q \mathcal{L}$, then repeat (q is a parameter)

DGS time/space trade-off

Idea: if $X_{1}, \ldots, X_{k} \sim D_{\mathcal{L}, s}$ and $\sum_{i} X_{i} \in q \mathcal{L}$ then $\left(\sum_{i} X_{i}\right) / q \approx D_{\mathcal{L}, s \sqrt{k} / q}$ \sim progress when $k<q^{2}$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$
Algorithm: given a list of N vectors in \mathcal{L}, find $k=q^{2}-1$ of them such that their sum $\in q \mathcal{L}$, then repeat (q is a parameter)

- Space: need $N \gtrsim q^{n / q^{2}}$ to be successful
- Time: q^{n} to produce one vector
decrease with q increase with q

DGS time/space trade-off

Idea: if $X_{1}, \ldots, X_{k} \sim D_{\mathcal{L}, s}$ and $\sum_{i} X_{i} \in q \mathcal{L}$ then $\left(\sum_{i} X_{i}\right) / q \approx D_{\mathcal{L}, s \sqrt{k} / q}$
\leadsto progress when $k<q^{2}$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$
Algorithm: given a list of N vectors in \mathcal{L}, find $k=q^{2}-1$ of them such that their sum $\in q \mathcal{L}$, then repeat (q is a parameter)

- Space: need $N \gtrsim q^{n / q^{2}}$ to be successful
- Time: q^{n} to produce one vector
decrease with q increase with q

Difficulties:

- independence of samples
- errors in distributions

Theorem (Simplified)

For $q \in[4, \sqrt{n}]$, there is an algorithm that produces $q^{16 n / q^{2}}$ vectors from $D_{\mathcal{L}, s}$ with $s \geqslant \eta_{\varepsilon}(\mathcal{L})$ in time $q^{13 n}$ and space $q^{16 n / q^{2}}$.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a $\alpha-B D D$ oracle and p an integer, one can enumerate all lattice points in a ball of radius $p \alpha \lambda_{1}$ using p^{n} queries to the oracle.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a $\alpha-B D D$ oracle and p an integer, one can enumerate all lattice points in a ball of radius $p \alpha \lambda_{1}$ using p^{n} queries to the oracle.

Solve SVP by using a α-BDD oracle:

- Set $p=\left\lceil\frac{1}{\alpha}\right\rceil$.
- Enumerate all points in a ball of radius $>\lambda_{1}$.

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a $\alpha-B D D$ oracle and p an integer, one can enumerate all lattice points in a ball of radius $p \alpha \lambda_{1}$ using p^{n} queries to the oracle.

Solve SVP by using a α-BDD oracle:

- Set $p=\left\lceil\frac{1}{\alpha}\right\rceil$.
- Enumerate all points in a ball of radius $>\lambda_{1}$.

The reduction is space efficient
But $\alpha<\frac{1}{2} \Longrightarrow p \geq 3 \Longrightarrow$ at least 3^{n} queries

Quantum SVP

Classical SVP to BDD: do 3^{n} queries to $1 / 3-$ BDD and keep minimum

Quantum SVP

Classical SVP to BDD: do 3^{n} queries to $1 / 3$-BDD and keep minimum

Theorem

There is a quantum algorithm that solves SVP in time $2^{0.9529 n+o(n)}$, classical space $2^{0.5 n+o(n)}$ and poly (n) qubits.

Quantum SVP

Classical SVP to BDD: do 3^{n} queries to $1 / 3-$ BDD and keep minimum

Theorem

There is a quantum algorithm that solves SVP in time $2^{0.9529 n+o(n)}$, classical space $2^{0.5 n+o(n)}$ and poly (n) qubits.

Future work: use QRACM to speed-up the query time of the $1 / 3-B D D$.
\sim time $2^{0.869 n+o(n)} ?$

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_{1}(\mathcal{L})$ by balls of radius $2 \alpha \lambda_{1}(\mathcal{L})$:

Use $2^{n} \alpha$-BDD queries to enumerate points in balls of radius $2 \alpha \lambda_{1}$

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_{1}(\mathcal{L})$ by balls of radius $2 \alpha \lambda_{1}(\mathcal{L})$:

Use $2^{n} \alpha$-BDD queries to enumerate points in balls of radius $2 \alpha \lambda_{1}$

Each ball covers a spherical cap.

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_{1}(\mathcal{L})$ by balls of radius $2 \alpha \lambda_{1}(\mathcal{L})$:

Use $2^{n} \alpha$-BDD queries to enumerate points in balls of radius $2 \alpha \lambda_{1}$

Each ball covers a spherical cap.

Smaller α :

- More balls
- Less expensive BDD
$~$ Trade-off

Improved classical SVP

Improved SVP to BDD: do 2^{n} queries to 0.4103 -BDD

Theorem

There is a classical algorithm that solves SVP in time $2^{1.7397 n+o(n)}$, classical space $2^{0.5 n+o(n)}$.

Improved classical SVP

Improved SVP to BDD: do 2^{n} queries to $0.4103-$ BDD

SVP		0.4103-BDD		DGS	[ADRS15] + new lemma
	new reduction		[DSR14]		
quantu	minimum	quantum	circuit	c	sical

Theorem

There is a classical algorithm that solves SVP in time $2^{1.7397 n+o(n)}$, classical space $2^{0.5 n+o(n)}$.

Theorem

There is a quantum algorithm that solves SVP in time $2^{1.051 n+o(n)}$, classical space $2^{0.5 n+o(n)}$ and poly(n) qubits.

Not as good as our previous $2^{0.9529 n+o(n)}$ algorithm but the story does not stop here...

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)} r^{n}$ $\beta(\mathcal{L})=$ smallest c that works for all r

- Upper bound: $\beta(\mathcal{L}) \leqslant 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)} r^{n}$

$$
\beta(\mathcal{L})=\text { smallest } c \text { that works for all } r
$$

- Upper bound: $\beta(\mathcal{L}) \leqslant 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Best known relations between α and ε depends on $\beta(\mathcal{L})$:
small $\beta(\mathcal{L}) \sim$ bigger α for fixed $\varepsilon \sim$ less expensive BDD

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)} r^{n}$
$\beta(\mathcal{L})=$ smallest c that works for all r

- Upper bound: $\beta(\mathcal{L}) \leqslant 2^{0.401}[\mathrm{KL78}]$
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is $\leqslant c^{n+o(n)} r^{n}$
$\beta(\mathcal{L})=$ smallest c that works for all r

- Upper bound: $\beta(\mathcal{L}) \leqslant 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Summary on sieving

Provable SVP:

- classical: time $2^{1.7397 n+o(n)}$, space $2^{0.5 n+o(n)}$
- quantum: $2^{0.9529 n+o(n)}$, space $2^{0.5 n+o(n)}$ and poly (n) qubits
- first time/space tradeoff: time $q^{13 n}$, space $q^{16 n / q^{2}}$ for $q \in[4, \sqrt{n}]$
- studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Summary on sieving

Provable SVP:

- classical: time $2^{1.7397 n+o(n)}$, space $2^{0.5 n+o(n)}$
- quantum: $2^{0.9529 n+o(n)}$, space $2^{0.5 n+o(n)}$ and poly (n) qubits
- first time/space tradeoff: time $q^{13 n}$, space $q^{16 n / q^{2}}$ for $q \in[4, \sqrt{n}]$
- studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Open problems:

- Show that random lattices satisfy $\beta(\mathcal{L}) \approx 1$?
- Fill the gap between provable and heuristic algorithms for sieving?
- Exploit the subexponential space regime in our trade-off for SVP?
- $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for DGS at smoothing parameter?

Subset-Sum

The Subset-Sum Problem

Problem

Given: $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ a vector of integers, and a target S, find $I \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in I} a_{i}=S$

- The decision version is NP-complete

The Subset-Sum Problem

Problem

Given: $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ a vector of integers, and a target S, find $I \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in I} a_{i}=S \bmod 2^{\ell}$

- The decision version is NP-complete

The Subset-Sum Problem

Problem

Given: $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ a vector of integers, and a target S, find $I \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in I} a_{i}=S \bmod 2^{\ell}$ where a and S are chosen uniformly at random.

- The decision version is NP-complete
- Both cases $\ell \gg \mathbf{n}$ and $\ell \ll \mathbf{n}$ are solvable efficiently
- The case $\ell \simeq \mathrm{n}$ is hard

The Subset-Sum Problem

Problem

Given: $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ a vector of integers, and a target S, find $I \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in I} a_{i}=S$ mod 2^{ℓ} where a and S are chosen uniformly at random.

For $\ell=n$ (hard case):

- Classical and quantum algorithms run in time $\widetilde{\mathcal{O}}\left(2^{\gamma n}\right)$
- Used as a hard problem for post-quantum cryptography [Lyu10]
- Similar techniques also apply to other problems (syndrome decoding problem) [KT17]
- Solving subset-sums is also useful in quantum hidden shift algorithms [Bon19]

Result in the Classical Setting

The time is $\widetilde{\mathcal{O}}\left(2^{\gamma n}\right)$.

γ	Ref.
0.5	$[H S 74]$
0.5	[SS81]
0.3370	[HGJ10]
0.2909	[BCJ11]
0.283	This thesis

Results in the Quantum Setting

The time is $\widetilde{\mathcal{O}}\left(2^{\gamma n}\right)$.

γ	Ref.	Model
0.3334	[BHT98]	QRACM
0.3	[BJLM13]	QRAQM
0.241	[BJLM13]	QRAQM + conj.
0.2356	This thesis	QRACM
0.226	[HM18]	QRAQM + conj.

Results in the Quantum Setting

The time is $\widetilde{\mathcal{O}}\left(2^{\gamma n}\right)$.

γ	Ref.	Model
0.3334	[BHT98]	QRACM
0.3	[BJLM13]	QRAQM
0.241	[BJLM13]	QRAQM + conj.
0.2356	This thesis	QRACM
0.226	[HM18]	QRAQM + conj.
0.2182	This thesis	QRAQM
0.2156	This thesis	QRAQM + conj.

Results in the Quantum Setting

The time is $\widetilde{\mathcal{O}}\left(2^{\gamma n}\right)$.

γ	Ref.	Model
0.3334	[BHT98]	QRACM
0.3	[BJLM13]	QRAQM
0.241	[BJLM13]	QRAQM + conj.
0.2356	This thesis	QRACM
0.226	[HM18]	QRAQM + conj.
0.2182	This thesis	QRAQM
0.2156	This thesis	QRAQM + conj.

Open problems:

- Remove conjecture
- How far can we push the representation method?

Conclusion and Future Work

- quantum quadratic speedup of enumeration
- provable time/space trade-off for SVP
- improved algorithms for provable sieving
- improved algorithms for subset-sum

Open problems:

- Can we show that random lattices satisfy $\beta(\mathcal{L}) \approx 1$?
- Fill the gap between provable and heuristic algorithms for sieving
- Exploit the subexponential space regime in our trade-off for SVP?
- $2^{O(n)}$ time $2^{o(n)}$ space algorithm for DGS at smoothing parameter
- Study polynomial factors for sieving and enumeration
- More studies on discrete pruning are needed
- Remove conjecture in subset-sum quantum walk

