
Classical and Quantum Cryptanalysis for
Euclidean Lattices and Subset Sums

Yixin Shen

11 May, 2021

1 / 35



Hard Problems in Public Key Cryptography

Alice

SK

PK

PK

Bob

SK

PK

PK

Eve

Listen Modify

PK PK

insecure channel of communication

factorisation, discrete logarithm

lattices, codes, ...

NIST round 3 candidates:
I encryption: 3 out of 4 candidates based on lattices
I signatures: 2 out of 3 candidates based on lattices

2 / 35



Hard Problems in Public Key Cryptography

Alice

SK

PK

PK

Bob

SK

PK

PK

Eve

Listen Modify

PK PK

insecure channel of communication

factorisation, discrete logarithm

lattices, codes, ...

NIST round 3 candidates:
I encryption: 3 out of 4 candidates based on lattices
I signatures: 2 out of 3 candidates based on lattices

2 / 35



Hard Problems in Public Key Cryptography

Alice

SK

PK

PK

Bob

SK

PK

PK

Eve

Listen Modify

PK PK

insecure channel of communication

factorisation, discrete logarithm

lattices, codes, ...

NIST round 3 candidates:
I encryption: 3 out of 4 candidates based on lattices
I signatures: 2 out of 3 candidates based on lattices

2 / 35



Hard Problems in Public Key Cryptography

Alice

SK

PK

PK

Bob

SK

PK

PK

Eve

Listen Modify

PK PK

insecure channel of communication

factorisation, discrete logarithm

lattices, codes, ...

NIST round 3 candidates:
I encryption: 3 out of 4 candidates based on lattices
I signatures: 2 out of 3 candidates based on lattices

2 / 35



Publications and Outline

Yoshinori Aono, Phong Q. Nguyen, and Y. S.
Quantum lattice enumeration and tweaking discrete pruning.
In ASIACRYPT 2018.

Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Y. S.
Improved (provable) algorithms for the shortest vector problem via
bounded distance decoding.
In STACS 2021.

Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Y. S.
Improved classical and quantum algorithms for subset-sum.
In ASIACRYPT 2020.

Andris Ambainis, Kaspars Balodis, Janis Iraids, Kamil Khadiev, Vladislavs
Klevickis, Krisjanis Prusis, Y. S, Juris Smotrovs, and Jevgenijs Vihrovs.
Quantum lower and upper bounds for 2D-grid and Dyck language.
In MFCS 2020.

3 / 35



What is a (Euclidean) lattice?

Definition
L(b1, . . . ,bn) =

{∑n
i=1 xibi : xi ∈ Z

}
where b1, . . . ,bn is a basis of Rn.

b1

b2

O

4 / 35



Lattice-based cryptography: fundamental idea

O

I good basis: private information, makes problem easy
I bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one
Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

5 / 35



Lattice-based cryptography: fundamental idea

O

I good basis: private information, makes problem easy
I bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one
Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.
5 / 35



The Shortest Vector Problem

O

Shortest Vector Problem (SVP):
Given a basis for the lattice L, find
a shortest nonzero lattice vector.
λ1(L) = length of such a vector.

O

γ-approx-SVP (γ > 1):
Given a basis of L, find a nonzero
lattice vector of length at most
γ · λ1(L).
γ is approximation factor.

6 / 35



The Shortest Vector Problem

O

Shortest Vector Problem (SVP):
Given a basis for the lattice L, find
a shortest nonzero lattice vector.
λ1(L) = length of such a vector.

O

γ-approx-SVP (γ > 1):
Given a basis of L, find a nonzero
lattice vector of length at most
γ · λ1(L).
γ is approximation factor.

6 / 35



The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)

I NP ∩ co-NP
I Subexponential-time algorithms
I Poly-time algorithms

Approx factor:
I O(1)

I
√

n
I 2

√
n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)

7 / 35



The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)
I NP ∩ co-NP

I Subexponential-time algorithms
I Poly-time algorithms

Approx factor:
I O(1)
I
√

n

I 2
√

n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)

7 / 35



The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)
I NP ∩ co-NP
I Subexponential-time algorithms

I Poly-time algorithms

Approx factor:
I O(1)
I
√

n
I 2

√
n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)

7 / 35



The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)
I NP ∩ co-NP
I Subexponential-time algorithms
I Poly-time algorithms

Approx factor:
I O(1)
I
√

n
I 2

√
n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)

7 / 35



The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)
I NP ∩ co-NP
I Subexponential-time algorithms
I Poly-time algorithms

Approx factor:
I O(1)
I
√

n
I 2

√
n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)

7 / 35



The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)
I NP ∩ co-NP
I Subexponential-time algorithms
I Poly-time algorithms

Approx factor:
I O(1)
I
√

n
I 2

√
n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)

7 / 35



Enumeration

8 / 35



Enumeration Algorithm
(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn)

x1=...

(x1,...,xn)

x1=...

(x1,...,xn)

x1=...

xn−1=−...

(∗,...,xn−1,xn)

xn−1=0

(∗,...,xn−1,xn)

...

xn−2=...

... (∗,...,xn−2,...)

...

xn−2=...

xn−1=...

xn=−R/‖b∗n ‖

...

xn=0

(∗,...,∗,xn)

...

xn−1=...

(∗,...,xn−1,xn)

...

xn−1=...

xn=R/‖b∗n ‖

Search for all vectors
X = x1b1 + · · ·+ xnbn
in B(R) = ball of radius R

Given xn, . . . , xi+1, ‖πi(x)‖ 6 R,
⇒ the integer xi belongs to an
interval of small length

πi : orthogonal projection on
span(b1, . . . ,bi−1)

⊥

b∗1, . . . ,b
∗
n : Gram-Schmidt

orthogonalalization of b1, . . . ,bn

9 / 35



Cylinder Pruning [GNR10]
(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn)

x1=...

(x1,...,xn)

x1=0

(x1,...,xn)

x1=...

xn−1=−...

(∗,...,xn−1,xn)

xn−1=0

(∗,...,xn−1,xn)

...

xn−2=...

... (∗,...,xn−2,...)

...

xn−2=...

xn−1=...

xn=−R/‖b∗n ‖

...

xn=0

(∗,...,∗,xn)

...

xn−1=...

(∗,...,xn−1,xn)

...

xn−1=...

xn=R/‖b∗n ‖

Each level remplace ‖πi(x)‖ 6 R by ‖πi(x)‖ 6 RiR where 0 < Ri 6 1
10 / 35



Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]
I blackbox access to a tree with marked nodes:

I can only query the local structure of the tree
I tree of size T , depth n, constant max degree
⇒ O∗(

√
T ) queries to find a marked node

Application to the previous enumeration algorithm (Quantum Lattice
Enumeration):
Remark: LLL-reduced basis ; max degree can be 2Ω(n)

Algorithm: transform the tree into a binary one + dichotomy

⇒ O∗(
√

T ) time to find one vector in L ∩ S(R)
⇒ O∗(#(L ∩ S(R)) ·

√
T ) time to find all vectors.

11 / 35



Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]
I blackbox access to a tree with marked nodes:

I can only query the local structure of the tree
I tree of size T , depth n, constant max degree
⇒ O∗(

√
T ) queries to find a marked node

Application to the previous enumeration algorithm (Quantum Lattice
Enumeration):
Remark: LLL-reduced basis ; max degree can be 2Ω(n)

Algorithm: transform the tree into a binary one + dichotomy

⇒ O∗(
√

T ) time to find one vector in L ∩ S(R)
⇒ O∗(#(L ∩ S(R)) ·

√
T ) time to find all vectors.

11 / 35



Discrete Pruning [AN17]

Step 0: partition space into cells
I 1 cell↔ 1 lattice vector
I cell C(t) identified by tag t ∈ Zn

Step 1: find the pruning set
I Find ≈ M best cells minimizing

g(t) =
∑n

i=1 ‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
Roughly, the smaller g(t), the
smaller the vector inside C(t)

I Equivalent to finding R such that
#solutions of g(t) 6 R is ≈ M

Step 2: find the shortest vector
I consider enumeration tree above

obtained by backtracking

I Babai’s partition:

b1

b2 O

I natural partition:

b1

b2 O

12 / 35



Discrete Pruning [AN17]

Step 0: partition space into cells
I 1 cell↔ 1 lattice vector
I cell C(t) identified by tag t ∈ Zn

Step 1: find the pruning set
I Find ≈ M best cells minimizing

g(t) =
∑n

i=1 ‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
Roughly, the smaller g(t), the
smaller the vector inside C(t)

I Equivalent to finding R such that
#solutions of g(t) 6 R is ≈ M

Step 2: find the shortest vector
I consider enumeration tree above

obtained by backtracking

I Babai’s partition:

b1

b2 O

I natural partition:

b1

b2 O

12 / 35



Discrete Pruning [AN17]

Step 0: partition space into cells
I 1 cell↔ 1 lattice vector
I cell C(t) identified by tag t ∈ Zn

Step 1: find the pruning set
I Find ≈ M best cells minimizing

g(t) =
∑n

i=1 ‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
Roughly, the smaller g(t), the
smaller the vector inside C(t)

I Equivalent to finding R such that
#solutions of g(t) 6 R is ≈ M

Step 2: find the shortest vector
I consider enumeration tree above

obtained by backtracking

I Babai’s partition:

b1

b2 O

I natural partition:

b1

b2 O

12 / 35



Quantum speed-up for discrete pruning

Step 1: find R such that #solutions of g(t) 6 R is ≈ M by dichotomy
I Quantum tree size estimation [AK17] to estimate #nodes
I Tweak cost function:

g(t) =
n∑

i=1

‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
;

n∑
i=1

‖b∗i ‖2
(

t2
i + ti

)
Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying g(t) 6 R
I dichotomy on length + mark nodes
I Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

13 / 35



Quantum speed-up for discrete pruning

Step 1: find R such that #solutions of g(t) 6 R is ≈ M by dichotomy
I Quantum tree size estimation [AK17] to estimate #nodes
I Tweak cost function:

g(t) =
n∑

i=1

‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
;

n∑
i=1

‖b∗i ‖2
(

t2
i + ti

)
Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying g(t) 6 R
I dichotomy on length + mark nodes
I Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

13 / 35



Quantum speed-up for discrete pruning

Step 1: find R such that #solutions of g(t) 6 R is ≈ M by dichotomy
I Quantum tree size estimation [AK17] to estimate #nodes
I Tweak cost function:

g(t) =
n∑

i=1

‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
;

n∑
i=1

‖b∗i ‖2
(

t2
i + ti

)
Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying g(t) 6 R
I dichotomy on length + mark nodes
I Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

13 / 35



Extreme Pruning

Repeat pruning with many basis:

T1

T2
T3

Tm−1

Tm
. . .

I classical:
∑

Ti

I naive quantum:
∑√

Ti

I this thesis:
√∑

Ti can be much better than the naive quantum
depending on the distribution of Ti .

14 / 35



Extreme Pruning

Repeat pruning with many basis:

T1

T2
T3

Tm−1

Tm
. . .

I classical:
∑

Ti

I naive quantum:
∑√

Ti

I this thesis:
√∑

Ti can be much better than the naive quantum
depending on the distribution of Ti .

14 / 35



Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:
I applies to cylinder, discrete and extreme pruning
I no known quadratic speedup for sieving

; crossover point between sieving and enumeration is different in the
quantum setting

[ABLR20] estimates the new crossover point for BKZ using
enumeration/sieving achieving the same quality (RHF) at k = 547.

Open problems:
I Study of the polynomial factors for sieving and enumeration are

needed for a better comparison
I More studies on discrete pruning are needed

15 / 35



Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:
I applies to cylinder, discrete and extreme pruning
I no known quadratic speedup for sieving

; crossover point between sieving and enumeration is different in the
quantum setting

[ABLR20] estimates the new crossover point for BKZ using
enumeration/sieving achieving the same quality (RHF) at k = 547.

Open problems:
I Study of the polynomial factors for sieving and enumeration are

needed for a better comparison
I More studies on discrete pruning are needed

15 / 35



Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:
I applies to cylinder, discrete and extreme pruning
I no known quadratic speedup for sieving

; crossover point between sieving and enumeration is different in the
quantum setting

[ABLR20] estimates the new crossover point for BKZ using
enumeration/sieving achieving the same quality (RHF) at k = 547.

Open problems:
I Study of the polynomial factors for sieving and enumeration are

needed for a better comparison
I More studies on discrete pruning are needed

15 / 35



Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:
I applies to cylinder, discrete and extreme pruning
I no known quadratic speedup for sieving

; crossover point between sieving and enumeration is different in the
quantum setting

[ABLR20] estimates the new crossover point for BKZ using
enumeration/sieving achieving the same quality (RHF) at k = 547.

Open problems:
I Study of the polynomial factors for sieving and enumeration are

needed for a better comparison
I More studies on discrete pruning are needed

15 / 35



Sieving

I Heuristic algorithms: fastest in practice
I Provable algorithms: important for theory→ this thesis

16 / 35



Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity Space Complexity Reference

n
n

2e +o(n) poly(n) [Kan87,HS07]

2n+o(n) 2n+o(n) [ADRS15]

22.05n+o(n) 20.5n+o(n) [CCL18]

21.7397n+o(n) 20.5n+o(n) This thesis

This thesis: first provable smooth time/space trade-off for SVP

time q13n+o(n) space poly(n) · q
16n
q2 q ∈ [4,

√
n]

I q =
√

n: time nO(n) and space poly(n), not as good as [Kan87].
I q = 4: time 2O(n) and space 2O(n), not as good as [ADRS15].

17 / 35



Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity Space Complexity Reference

n
n

2e +o(n) poly(n) [Kan87,HS07]

2n+o(n) 2n+o(n) [ADRS15]

22.05n+o(n) 20.5n+o(n) [CCL18]

21.7397n+o(n) 20.5n+o(n) This thesis

This thesis: first provable smooth time/space trade-off for SVP

time q13n+o(n) space poly(n) · q
16n
q2 q ∈ [4,

√
n]

I q =
√

n: time nO(n) and space poly(n), not as good as [Kan87].
I q = 4: time 2O(n) and space 2O(n), not as good as [ADRS15].

17 / 35



Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i〉
|y〉
xn

...

x1

|y ⊕ xi〉
|i〉

potentially strong assumption

plain

i
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉

standard

QRAQM

|i〉
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉
|i〉

strong assumption

Assumption: O(1) time cost
18 / 35



Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i〉
|y〉
xn

...

x1

|y ⊕ xi〉
|i〉

potentially strong assumption

plain

i
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉

standard

QRAQM

|i〉
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉
|i〉

strong assumption

Assumption: O(1) time cost
18 / 35



Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i〉
|y〉
xn

...

x1

|y ⊕ xi〉
|i〉

potentially strong assumption

plain

i
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉

standard

QRAQM

|i〉
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉
|i〉

strong assumption

Assumption: O(1) time cost
18 / 35



Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i〉
|y〉
xn

...

x1

|y ⊕ xi〉
|i〉

potentially strong assumption

plain

i
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉

standard

QRAQM

|i〉
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉
|i〉

strong assumption

Assumption: O(1) time cost
18 / 35



Results in the Quantum Setting

Provable quantum algorithms for SVP:

Time Space Complexity
Reference

Complexity Classical Qubits Model

21.799n+o(n) 21.286n+o(n) poly(n) QRACM [LMP15]

21.2553n+o(n) 20.5n+o(n) poly(n) plain [CCL18]

20.9535n+o(n) 20.5n+o(n) poly(n) plain This thesis

Remark on quantum heuristic algorithms:
I better complexity: 20.265n+o(n) [Laarhoven15]
I requires QRACM (strong assumption)

19 / 35



Sieving Algorithms

Original idea [AKS01]:
I Reduce basis
I Generate random vectors
I Repeat many times:

I Sieve vectors

Sieve:
Input: many vectors of length 6 `
Output: many vectors of length 6 `

2

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; length ` 6 2O(n)λ1, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...
All control the length of the vectors.

[ADRS15]’s new idea: control distribution instead of length of vectors

20 / 35



Sieving Algorithms

Original idea [AKS01]:
I Reduce basis
I Generate random vectors
I Repeat many times:

I Sieve vectors

Sieve:
Input: many vectors of length 6 `
Output: many vectors of length 6 `

2

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; length ` 6 2O(n)λ1, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...
All control the length of the vectors.

[ADRS15]’s new idea: control distribution instead of length of vectors

20 / 35



Sieving Algorithms

Original idea [AKS01]:
I Reduce basis
I Generate random vectors
I Repeat many times:

I Sieve vectors

Sieve:
Input: many vectors of length 6 `
Output: many vectors of length 6 `

2

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; length ` 6 2O(n)λ1, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...
All control the length of the vectors.

[ADRS15]’s new idea: control distribution instead of length of vectors

20 / 35



Sieving Algorithms

Original idea [AKS01]:
I Reduce basis
I Generate random vectors
I Repeat many times:

I Sieve vectors

Sieve:
Input: many vectors of length 6 `
Output: many vectors of length 6 `

2

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; length ` 6 2O(n)λ1, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...
All control the length of the vectors.

[ADRS15]’s new idea: control distribution instead of length of vectors

20 / 35



Sieving Algorithms

Original idea [AKS01]:
I Reduce basis
I Generate random vectors
I Repeat many times:

I Sieve vectors

Sieve:
Input: many vectors of length 6 `
Output: many vectors of length 6 `

2

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; length ` 6 2O(n)λ1, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...
All control the length of the vectors.

[ADRS15]’s new idea: control distribution instead of length of vectors

20 / 35



Discrete Gaussian Sampling

ρs(x) = exp

(
−π‖x‖

2

s2

)
, DL,s(x) =

ρs(x)
ρs(L)

, x ∈ Rn, s > 0.

Definition (Discrete Gaussian Distribution)

On lattice L with parameter s: probability of x ∈ L is DL,s(x).

L = Z, s = 7 L = Z2, s = 7 L = Z× 4Z, s = 7

Discrete Gaussian Sampling (DGS)
I input: L and s
I output: random x ∈ L according to DL,s.

21 / 35



DGS, BDD and SVP

SVP DGS

[ADRS15]

BDD
[CCL18] [DSR14]

y

t

Bounded Distance Decoding (α−BDD):
Given a lattice L and a target vector t ∈ Rn

with distance to lattice ≤ α · λ1(L) , find the
closest vector y ∈ L.

I α is decoding distance/radius
I α < 1

2 for unique solution

The two reductions use completely different DGS parameter regimes!

22 / 35



DGS, BDD and SVP

SVP DGS

[ADRS15]

BDD
[CCL18] [DSR14]

y

t

Bounded Distance Decoding (α−BDD):
Given a lattice L and a target vector t ∈ Rn

with distance to lattice ≤ α · λ1(L) , find the
closest vector y ∈ L.

I α is decoding distance/radius
I α < 1

2 for unique solution

The two reductions use completely different DGS parameter regimes!

22 / 35



DGS, BDD and SVP

SVP DGS

[ADRS15]

BDD
[CCL18] [DSR14]

y

t

Bounded Distance Decoding (α−BDD):
Given a lattice L and a target vector t ∈ Rn

with distance to lattice ≤ α · λ1(L)

, find the
closest vector y ∈ L.

I α is decoding distance/radius
I α < 1

2 for unique solution

The two reductions use completely different DGS parameter regimes!
22 / 35



DGS, BDD and SVP

SVP DGS

[ADRS15]

BDD
[CCL18] [DSR14]

y
t

Bounded Distance Decoding (α−BDD):
Given a lattice L and a target vector t ∈ Rn

with distance to lattice ≤ α · λ1(L) , find the
closest vector y ∈ L.

I α is decoding distance/radius
I α < 1

2 for unique solution

The two reductions use completely different DGS parameter regimes!
22 / 35



Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of DL,s:

s
largesmall

I easy to sampleI hard to sample
I SVP

ηε(L)

smoothing
parameter

I Open problem: 2O(n) time, 2o(n) space algorithm for s = ηε(L)
I No known time/space trade-off for s � ηε(L)

SVP BDD DGS

[CCL18][CCL18]

new
provable

time/space
trade-off

[DSR14]

; first provable time/space trade-off for SVP

23 / 35



Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of DL,s:

s
largesmall

I easy to sampleI hard to sample
I SVP

ηε(L)

smoothing
parameter

I Open problem: 2O(n) time, 2o(n) space algorithm for s = ηε(L)
I No known time/space trade-off for s � ηε(L)

SVP BDD DGS

[CCL18][CCL18]

new
provable

time/space
trade-off

[DSR14]

; first provable time/space trade-off for SVP

23 / 35



Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of DL,s:

s
largesmall

I easy to sampleI hard to sample
I SVP

ηε(L)

smoothing
parameter

I Open problem: 2O(n) time, 2o(n) space algorithm for s = ηε(L)
I No known time/space trade-off for s � ηε(L)

SVP BDD DGS
[CCL18]

[CCL18]

new
provable

time/space
trade-off

[DSR14]

; first provable time/space trade-off for SVP

23 / 35



Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of DL,s:

s
largesmall

I easy to sampleI hard to sample
I SVP

ηε(L)

smoothing
parameter

I Open problem: 2O(n) time, 2o(n) space algorithm for s = ηε(L)
I No known time/space trade-off for s � ηε(L)

SVP BDD DGS

[CCL18]

[CCL18]

new
provable

time/space
trade-off

[DSR14]

; first provable time/space trade-off for SVP
23 / 35



DGS time/space trade-off

Idea: if X1, . . . ,Xk ∼ DL,s and
∑

i Xi ∈ q L then (
∑

i Xi)/q ≈ DL,s
√

k/q

; progress when k < q2, repeat many times to reach ηε(L)

Algorithm: given a list of N vectors in L, find k = q2 − 1 of them such
that their sum ∈ q L, then repeat (q is a parameter)

I Space: need N & qn/q2
to be successful decrease with q

I Time: qn to produce one vector increase with q

Difficulties:
I independence of samples
I errors in distributions

Theorem (Simplified)

For q ∈ [4,
√

n], there is an algorithm that produces q16n/q2
vectors

from DL,s with s > ηε(L) in time q13n and space q16n/q2
.

24 / 35



DGS time/space trade-off

Idea: if X1, . . . ,Xk ∼ DL,s and
∑

i Xi ∈ q L then (
∑

i Xi)/q ≈ DL,s
√

k/q

; progress when k < q2, repeat many times to reach ηε(L)

Algorithm: given a list of N vectors in L, find k = q2 − 1 of them such
that their sum ∈ q L, then repeat (q is a parameter)

I Space: need N & qn/q2
to be successful decrease with q

I Time: qn to produce one vector increase with q

Difficulties:
I independence of samples
I errors in distributions

Theorem (Simplified)

For q ∈ [4,
√

n], there is an algorithm that produces q16n/q2
vectors

from DL,s with s > ηε(L) in time q13n and space q16n/q2
.

24 / 35



DGS time/space trade-off

Idea: if X1, . . . ,Xk ∼ DL,s and
∑

i Xi ∈ q L then (
∑

i Xi)/q ≈ DL,s
√

k/q

; progress when k < q2, repeat many times to reach ηε(L)

Algorithm: given a list of N vectors in L, find k = q2 − 1 of them such
that their sum ∈ q L, then repeat (q is a parameter)

I Space: need N & qn/q2
to be successful decrease with q

I Time: qn to produce one vector increase with q

Difficulties:
I independence of samples
I errors in distributions

Theorem (Simplified)

For q ∈ [4,
√

n], there is an algorithm that produces q16n/q2
vectors

from DL,s with s > ηε(L) in time q13n and space q16n/q2
.

24 / 35



DGS time/space trade-off

Idea: if X1, . . . ,Xk ∼ DL,s and
∑

i Xi ∈ q L then (
∑

i Xi)/q ≈ DL,s
√

k/q

; progress when k < q2, repeat many times to reach ηε(L)

Algorithm: given a list of N vectors in L, find k = q2 − 1 of them such
that their sum ∈ q L, then repeat (q is a parameter)

I Space: need N & qn/q2
to be successful decrease with q

I Time: qn to produce one vector increase with q

Difficulties:
I independence of samples
I errors in distributions

Theorem (Simplified)

For q ∈ [4,
√

n], there is an algorithm that produces q16n/q2
vectors

from DL,s with s > ηε(L) in time q13n and space q16n/q2
.

24 / 35



SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α-BDD oracle and p an integer, one can enumerate all lattice
points in a ball of radius pαλ1 using pn queries to the oracle.

Solve SVP by using a α-BDD oracle:
I Set p = d 1

αe.
I Enumerate all points in a ball of radius > λ1.

The reduction is space efficient

But α < 1
2 =⇒ p ≥ 3 =⇒ at least 3n queries

25 / 35



SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α-BDD oracle and p an integer, one can enumerate all lattice
points in a ball of radius pαλ1 using pn queries to the oracle.

Solve SVP by using a α-BDD oracle:
I Set p = d 1

αe.
I Enumerate all points in a ball of radius > λ1.

The reduction is space efficient

But α < 1
2 =⇒ p ≥ 3 =⇒ at least 3n queries

25 / 35



SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α-BDD oracle and p an integer, one can enumerate all lattice
points in a ball of radius pαλ1 using pn queries to the oracle.

Solve SVP by using a α-BDD oracle:
I Set p = d 1

αe.
I Enumerate all points in a ball of radius > λ1.

The reduction is space efficient

But α < 1
2 =⇒ p ≥ 3 =⇒ at least 3n queries

25 / 35



Quantum SVP

Classical SVP to BDD: do 3n queries to 1/3-BDD and keep minimum

SVP 1/3-BDD DGS
[CCL18]

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical
preprocessing

hardcode samplesQRACM

Theorem
There is a quantum algorithm that solves SVP in time 20.9529n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Future work: use QRACM to speed-up the query time of the 1/3-BDD.
; time 20.869n+o(n) ?

26 / 35



Quantum SVP

Classical SVP to BDD: do 3n queries to 1/3-BDD and keep minimum

SVP 1/3-BDD DGS
[CCL18]

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical
preprocessing

hardcode samples

QRACM

Theorem
There is a quantum algorithm that solves SVP in time 20.9529n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Future work: use QRACM to speed-up the query time of the 1/3-BDD.
; time 20.869n+o(n) ?

26 / 35



Quantum SVP

Classical SVP to BDD: do 3n queries to 1/3-BDD and keep minimum

SVP 1/3-BDD DGS
[CCL18]

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical
preprocessing

hardcode samples

QRACM

Theorem
There is a quantum algorithm that solves SVP in time 20.9529n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Future work: use QRACM to speed-up the query time of the 1/3-BDD.
; time 20.869n+o(n) ?

26 / 35



Faster SVP to BDD reduction

Cover the sphere of radius λ1(L) by balls of radius 2αλ1(L):

λ1

r
2αλ1

r

Use 2n α−BDD queries to
enumerate points in balls of
radius 2αλ1

Each ball covers a spherical
cap.

Smaller α:
I More balls
I Less expensive BDD

; Trade-off

27 / 35



Faster SVP to BDD reduction

Cover the sphere of radius λ1(L) by balls of radius 2αλ1(L):

λ1

r
2αλ1

r

Use 2n α−BDD queries to
enumerate points in balls of
radius 2αλ1

Each ball covers a spherical
cap.

Smaller α:
I More balls
I Less expensive BDD

; Trade-off

27 / 35



Faster SVP to BDD reduction

Cover the sphere of radius λ1(L) by balls of radius 2αλ1(L):

λ1

r
2αλ1

r

Use 2n α−BDD queries to
enumerate points in balls of
radius 2αλ1

Each ball covers a spherical
cap.

Smaller α:
I More balls
I Less expensive BDD

; Trade-off

27 / 35



Improved classical SVP

Improved SVP to BDD: do 2n queries to 0.4103-BDD

SVP 0.4103-BDD DGSnew
reduction

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical

Theorem
There is a classical algorithm that solves SVP in time 21.7397n+o(n),
classical space 20.5n+o(n).

Theorem
There is a quantum algorithm that solves SVP in time 21.051n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Not as good as our previous 20.9529n+o(n) algorithm but the story does
not stop here...

28 / 35



Improved classical SVP

Improved SVP to BDD: do 2n queries to 0.4103-BDD

SVP 0.4103-BDD DGSnew
reduction

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical

Theorem
There is a classical algorithm that solves SVP in time 21.7397n+o(n),
classical space 20.5n+o(n).

Theorem
There is a quantum algorithm that solves SVP in time 21.051n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Not as good as our previous 20.9529n+o(n) algorithm but the story does
not stop here... 28 / 35



SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is 6 cn+o(n)rn

β(L) = smallest c that works for all r

I Upper bound: β(L) 6 20.401 [KL78]
I Conjectured to be β(L) ≈ 1 for most lattices

29 / 35



SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is 6 cn+o(n)rn

β(L) = smallest c that works for all r

I Upper bound: β(L) 6 20.401 [KL78]
I Conjectured to be β(L) ≈ 1 for most lattices

α−BDD DGSηε
reduce

Best known relations between α and ε depends on β(L):
small β(L) ; bigger α for fixed ε ; less expensive BDD

29 / 35



SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is 6 cn+o(n)rn

β(L) = smallest c that works for all r

I Upper bound: β(L) 6 20.401 [KL78]
I Conjectured to be β(L) ≈ 1 for most lattices

0 0.1 0.2 0.3 0.4

1.3

1.4

1.5

1.6

1.7

Complexity in
previous slides

log2 β(L)

co
m

pl
ex

ity
ex

po
ne

nt

Classical spherical capping
Classical BDD reduction

29 / 35



SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is 6 cn+o(n)rn

β(L) = smallest c that works for all r

I Upper bound: β(L) 6 20.401 [KL78]
I Conjectured to be β(L) ≈ 1 for most lattices

0 0.1 0.2 0.3 0.4

0.8

0.9

1

Complexities in
previous slides

log2 β(L)

co
m

pl
ex

ity
ex

po
ne

nt

Quantum spherical capping
Quantum BDD reduction

29 / 35



Summary on sieving

Provable SVP:
I classical: time 21.7397n+o(n), space 20.5n+o(n)

I quantum: 20.9529n+o(n), space 20.5n+o(n) and poly(n) qubits
I first time/space tradeoff: time q13n, space q16n/q2

for q ∈ [4,
√

n]
I studied dependency on β(L), generalized kissing number

Open problems:
I Show that random lattices satisfy β(L) ≈ 1?
I Fill the gap between provable and heuristic algorithms for sieving?
I Exploit the subexponential space regime in our trade-off for SVP?
I 2O(n) time, 2o(n) space algorithm for DGS at smoothing

parameter?

30 / 35



Summary on sieving

Provable SVP:
I classical: time 21.7397n+o(n), space 20.5n+o(n)

I quantum: 20.9529n+o(n), space 20.5n+o(n) and poly(n) qubits
I first time/space tradeoff: time q13n, space q16n/q2

for q ∈ [4,
√

n]
I studied dependency on β(L), generalized kissing number

Open problems:
I Show that random lattices satisfy β(L) ≈ 1?
I Fill the gap between provable and heuristic algorithms for sieving?
I Exploit the subexponential space regime in our trade-off for SVP?
I 2O(n) time, 2o(n) space algorithm for DGS at smoothing

parameter?

30 / 35



Subset-Sum

31 / 35



The Subset-Sum Problem

Problem
Given: a = (a1, . . . ,an) a vector of integers, and a target S, find
I ⊆ {1, . . . ,n} such that

∑
i∈I ai = S

where a and S are chosen
uniformly at random.

I The decision version is NP-complete

32 / 35



The Subset-Sum Problem

Problem
Given: a = (a1, . . . ,an) a vector of integers, and a target S, find
I ⊆ {1, . . . ,n} such that

∑
i∈I ai = S mod 2`

where a and S are
chosen uniformly at random.

I The decision version is NP-complete

32 / 35



The Subset-Sum Problem

Problem
Given: a = (a1, . . . ,an) a vector of integers, and a target S, find
I ⊆ {1, . . . ,n} such that

∑
i∈I ai = S mod 2` where a and S are

chosen uniformly at random.

I The decision version is NP-complete
I Both cases `� n and `� n are solvable efficiently
I The case ` ' n is hard

32 / 35



The Subset-Sum Problem

Problem
Given: a = (a1, . . . ,an) a vector of integers, and a target S, find
I ⊆ {1, . . . ,n} such that

∑
i∈I ai = S mod 2` where a and S are

chosen uniformly at random.

For ` = n (hard case):
I Classical and quantum algorithms run in time Õ (2γn)

I Used as a hard problem for post-quantum cryptography [Lyu10]
I Similar techniques also apply to other problems (syndrome

decoding problem) [KT17]
I Solving subset-sums is also useful in quantum hidden shift

algorithms [Bon19]

32 / 35



Result in the Classical Setting

The time is Õ (2γn).

γ Ref.
0.5 [HS74]
0.5 [SS81]
0.3370 [HGJ10]
0.2909 [BCJ11]
0.283 This thesis

33 / 35



Results in the Quantum Setting

The time is Õ (2γn).

γ Ref. Model
0.3334 [BHT98] QRACM
0.3 [BJLM13] QRAQM
0.241 [BJLM13] QRAQM + conj.
0.2356 This thesis QRACM
0.226 [HM18] QRAQM + conj.

0.2182 This thesis QRAQM
0.2156 This thesis QRAQM + conj.

Open problems:
I Remove conjecture
I How far can we push the representation method?

34 / 35



Results in the Quantum Setting

The time is Õ (2γn).

γ Ref. Model
0.3334 [BHT98] QRACM
0.3 [BJLM13] QRAQM
0.241 [BJLM13] QRAQM ����+ conj.
0.2356 This thesis QRACM
0.226 [HM18] QRAQM ����+ conj.
0.2182 This thesis QRAQM
0.2156 This thesis QRAQM + conj.

Open problems:
I Remove conjecture
I How far can we push the representation method?

34 / 35



Results in the Quantum Setting

The time is Õ (2γn).

γ Ref. Model
0.3334 [BHT98] QRACM
0.3 [BJLM13] QRAQM
0.241 [BJLM13] QRAQM ����+ conj.
0.2356 This thesis QRACM
0.226 [HM18] QRAQM ����+ conj.
0.2182 This thesis QRAQM
0.2156 This thesis QRAQM + conj.

Open problems:
I Remove conjecture
I How far can we push the representation method?

34 / 35



Conclusion and Future Work

I quantum quadratic speedup of enumeration
I provable time/space trade-off for SVP
I improved algorithms for provable sieving
I improved algorithms for subset-sum

Open problems:
I Can we show that random lattices satisfy β(L) ≈ 1 ?
I Fill the gap between provable and heuristic algorithms for sieving
I Exploit the subexponential space regime in our trade-off for SVP?
I 2O(n) time 2o(n) space algorithm for DGS at smoothing parameter
I Study polynomial factors for sieving and enumeration
I More studies on discrete pruning are needed
I Remove conjecture in subset-sum quantum walk

35 / 35


