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What is a (Euclidean) lattice?

Definition
L(b1, . . . ,bn) =

{∑n
i=1 xibi : xi ∈ Z

}
where b1, . . . ,bn is a basis of Rn.

b1

b2

O
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Lattice-based cryptography: fundamental idea

O

I good basis: private information, makes problem easy
I bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one
Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.
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The Shortest Vector Problem

O

Shortest Vector Problem (SVP):
Given a basis for the lattice L, find
a shortest nonzero lattice vector.
λ1(L) = length of such a vector.

O

γ-approx-SVP (γ > 1):
Given a basis of L, find a nonzero
lattice vector of length at most
γ · λ1(L).
γ is approximation factor.
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The Shortest Vector Problem

Depending on the dimension n:
I NP-Hardness (randomized reduction)

I NP ∩ co-NP
I Subexponential-time algorithms
I Poly-time algorithms

Approx factor:
I O(1)

I
√

n
I 2

√
n

I 2
n log log n

log n

Main approaches for SVP:
I Enumeration: 2O(n log(n)) time and poly(n) space
I Sieving: 2O(n) time and 2O(n) space

BKZ with block size k solves O(kn/k )-approx-SVP using a SVP oracle
in dimension k :

I Enumeration: time 2O(k log(k)) poly(n) and space poly(n)
I Sieving: time 2O(k) poly(n) time and space 2O(k) poly(n)
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Enumeration
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Enumeration Algorithm
(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn)

x1=...

(x1,...,xn)

x1=...

(x1,...,xn)

x1=...

xn−1=−...

(∗,...,xn−1,xn)

xn−1=0

(∗,...,xn−1,xn)

...

xn−2=...

... (∗,...,xn−2,...)

...

xn−2=...

xn−1=...

xn=−R/‖b∗n ‖

...

xn=0

(∗,...,∗,xn)

...

xn−1=...

(∗,...,xn−1,xn)

...

xn−1=...

xn=R/‖b∗n ‖

Search for all vectors
X = x1b1 + · · ·+ xnbn
in B(R) = ball of radius R

Given xn, . . . , xi+1, ‖πi(x)‖ 6 R,
⇒ the integer xi belongs to an
interval of small length

πi : orthogonal projection on
span(b1, . . . ,bi−1)

⊥

b∗1, . . . ,b
∗
n : Gram-Schmidt

orthogonalalization of b1, . . . ,bn
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Cylinder Pruning [GNR10]
(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn)

x1=...

(x1,...,xn)

x1=0

(x1,...,xn)

x1=...

xn−1=−...

(∗,...,xn−1,xn)

xn−1=0

(∗,...,xn−1,xn)

...

xn−2=...

... (∗,...,xn−2,...)

...

xn−2=...

xn−1=...

xn=−R/‖b∗n ‖

...

xn=0

(∗,...,∗,xn)

...

xn−1=...

(∗,...,xn−1,xn)

...

xn−1=...

xn=R/‖b∗n ‖

Each level remplace ‖πi(x)‖ 6 R by ‖πi(x)‖ 6 RiR where 0 < Ri 6 1
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Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]
I blackbox access to a tree with marked nodes:

I can only query the local structure of the tree
I tree of size T , depth n, constant max degree
⇒ O∗(

√
T ) queries to find a marked node

Application to the previous enumeration algorithm (Quantum Lattice
Enumeration):
Remark: LLL-reduced basis ; max degree can be 2Ω(n)

Algorithm: transform the tree into a binary one + dichotomy

⇒ O∗(
√

T ) time to find one vector in L ∩ S(R)
⇒ O∗(#(L ∩ S(R)) ·

√
T ) time to find all vectors.
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Discrete Pruning [AN17]

Step 0: partition space into cells
I 1 cell↔ 1 lattice vector
I cell C(t) identified by tag t ∈ Zn

Step 1: find the pruning set
I Find ≈ M best cells minimizing

g(t) =
∑n

i=1 ‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
Roughly, the smaller g(t), the
smaller the vector inside C(t)

I Equivalent to finding R such that
#solutions of g(t) 6 R is ≈ M

Step 2: find the shortest vector
I consider enumeration tree above

obtained by backtracking

I Babai’s partition:

b1

b2 O

I natural partition:

b1

b2 O
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Quantum speed-up for discrete pruning

Step 1: find R such that #solutions of g(t) 6 R is ≈ M by dichotomy
I Quantum tree size estimation [AK17] to estimate #nodes
I Tweak cost function:

g(t) =
n∑

i=1

‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
;

n∑
i=1

‖b∗i ‖2
(

t2
i + ti

)
Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying g(t) 6 R
I dichotomy on length + mark nodes
I Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

13 / 35



Quantum speed-up for discrete pruning

Step 1: find R such that #solutions of g(t) 6 R is ≈ M by dichotomy
I Quantum tree size estimation [AK17] to estimate #nodes
I Tweak cost function:

g(t) =
n∑

i=1

‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
;

n∑
i=1

‖b∗i ‖2
(

t2
i + ti

)
Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying g(t) 6 R
I dichotomy on length + mark nodes
I Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

13 / 35



Quantum speed-up for discrete pruning

Step 1: find R such that #solutions of g(t) 6 R is ≈ M by dichotomy
I Quantum tree size estimation [AK17] to estimate #nodes
I Tweak cost function:

g(t) =
n∑

i=1

‖b∗i ‖2
(

t2
i
4 + ti

4 + 1
12

)
;

n∑
i=1

‖b∗i ‖2
(

t2
i + ti

)
Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying g(t) 6 R
I dichotomy on length + mark nodes
I Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

13 / 35



Extreme Pruning

Repeat pruning with many basis:

T1

T2
T3

Tm−1

Tm
. . .

I classical:
∑

Ti

I naive quantum:
∑√

Ti

I this thesis:
√∑

Ti can be much better than the naive quantum
depending on the distribution of Ti .
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Summary on quantum enumeration

Quantum Quadratic Speed-up for Enumeration Algorithms:
I applies to cylinder, discrete and extreme pruning
I no known quadratic speedup for sieving

; crossover point between sieving and enumeration is different in the
quantum setting

[ABLR20] estimates the new crossover point for BKZ using
enumeration/sieving achieving the same quality (RHF) at k = 547.

Open problems:
I Study of the polynomial factors for sieving and enumeration are

needed for a better comparison
I More studies on discrete pruning are needed
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Sieving

I Heuristic algorithms: fastest in practice
I Provable algorithms: important for theory→ this thesis

16 / 35



Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity Space Complexity Reference

n
n

2e +o(n) poly(n) [Kan87,HS07]

2n+o(n) 2n+o(n) [ADRS15]

22.05n+o(n) 20.5n+o(n) [CCL18]

21.7397n+o(n) 20.5n+o(n) This thesis

This thesis: first provable smooth time/space trade-off for SVP

time q13n+o(n) space poly(n) · q
16n
q2 q ∈ [4,

√
n]

I q =
√

n: time nO(n) and space poly(n), not as good as [Kan87].
I q = 4: time 2O(n) and space 2O(n), not as good as [ADRS15].
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Interlude: quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i〉
|y〉
xn

...

x1

|y ⊕ xi〉
|i〉

potentially strong assumption

plain

i
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉

standard

QRAQM

|i〉
|y〉
|xn〉
...

|x1〉

|xn〉
...

|x1〉

|y ⊕ xi〉
|i〉

strong assumption

Assumption: O(1) time cost
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Results in the Quantum Setting

Provable quantum algorithms for SVP:

Time Space Complexity
Reference

Complexity Classical Qubits Model

21.799n+o(n) 21.286n+o(n) poly(n) QRACM [LMP15]

21.2553n+o(n) 20.5n+o(n) poly(n) plain [CCL18]

20.9535n+o(n) 20.5n+o(n) poly(n) plain This thesis

Remark on quantum heuristic algorithms:
I better complexity: 20.265n+o(n) [Laarhoven15]
I requires QRACM (strong assumption)

19 / 35



Sieving Algorithms

Original idea [AKS01]:
I Reduce basis
I Generate random vectors
I Repeat many times:

I Sieve vectors

Sieve:
Input: many vectors of length 6 `
Output: many vectors of length 6 `

2

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; length ` 6 2O(n)λ1, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...
All control the length of the vectors.

[ADRS15]’s new idea: control distribution instead of length of vectors

20 / 35
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Discrete Gaussian Sampling

ρs(x) = exp

(
−π‖x‖

2

s2

)
, DL,s(x) =

ρs(x)
ρs(L)

, x ∈ Rn, s > 0.

Definition (Discrete Gaussian Distribution)

On lattice L with parameter s: probability of x ∈ L is DL,s(x).

L = Z, s = 7 L = Z2, s = 7 L = Z× 4Z, s = 7

Discrete Gaussian Sampling (DGS)
I input: L and s
I output: random x ∈ L according to DL,s.
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DGS, BDD and SVP

SVP DGS

[ADRS15]

BDD
[CCL18] [DSR14]

y

t

Bounded Distance Decoding (α−BDD):
Given a lattice L and a target vector t ∈ Rn

with distance to lattice ≤ α · λ1(L) , find the
closest vector y ∈ L.

I α is decoding distance/radius
I α < 1

2 for unique solution

The two reductions use completely different DGS parameter regimes!
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Hardness of Discrete Gaussian Sampling

Parameter s (width/standard deviation) of DL,s:

s
largesmall

I easy to sampleI hard to sample
I SVP

ηε(L)

smoothing
parameter

I Open problem: 2O(n) time, 2o(n) space algorithm for s = ηε(L)
I No known time/space trade-off for s � ηε(L)

SVP BDD DGS

[CCL18][CCL18]

new
provable

time/space
trade-off

[DSR14]

; first provable time/space trade-off for SVP
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DGS time/space trade-off

Idea: if X1, . . . ,Xk ∼ DL,s and
∑

i Xi ∈ q L then (
∑

i Xi)/q ≈ DL,s
√

k/q

; progress when k < q2, repeat many times to reach ηε(L)

Algorithm: given a list of N vectors in L, find k = q2 − 1 of them such
that their sum ∈ q L, then repeat (q is a parameter)

I Space: need N & qn/q2
to be successful decrease with q

I Time: qn to produce one vector increase with q

Difficulties:
I independence of samples
I errors in distributions

Theorem (Simplified)

For q ∈ [4,
√

n], there is an algorithm that produces q16n/q2
vectors

from DL,s with s > ηε(L) in time q13n and space q16n/q2
.
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SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α-BDD oracle and p an integer, one can enumerate all lattice
points in a ball of radius pαλ1 using pn queries to the oracle.

Solve SVP by using a α-BDD oracle:
I Set p = d 1

αe.
I Enumerate all points in a ball of radius > λ1.

The reduction is space efficient

But α < 1
2 =⇒ p ≥ 3 =⇒ at least 3n queries
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Quantum SVP

Classical SVP to BDD: do 3n queries to 1/3-BDD and keep minimum

SVP 1/3-BDD DGS
[CCL18]

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical
preprocessing

hardcode samplesQRACM

Theorem
There is a quantum algorithm that solves SVP in time 20.9529n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Future work: use QRACM to speed-up the query time of the 1/3-BDD.
; time 20.869n+o(n) ?
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Faster SVP to BDD reduction

Cover the sphere of radius λ1(L) by balls of radius 2αλ1(L):

λ1

r
2αλ1

r

Use 2n α−BDD queries to
enumerate points in balls of
radius 2αλ1

Each ball covers a spherical
cap.

Smaller α:
I More balls
I Less expensive BDD

; Trade-off
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Improved classical SVP

Improved SVP to BDD: do 2n queries to 0.4103-BDD

SVP 0.4103-BDD DGSnew
reduction

[ADRS15]
+ new
lemma[DSR14]

quantum minimum quantum circuit classical

Theorem
There is a classical algorithm that solves SVP in time 21.7397n+o(n),
classical space 20.5n+o(n).

Theorem
There is a quantum algorithm that solves SVP in time 21.051n+o(n),
classical space 20.5n+o(n) and poly(n) qubits.

Not as good as our previous 20.9529n+o(n) algorithm but the story does
not stop here...
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SVP and Generalized Kissing Number

Number of lattice points in a ball of radius r is 6 cn+o(n)rn

β(L) = smallest c that works for all r

I Upper bound: β(L) 6 20.401 [KL78]
I Conjectured to be β(L) ≈ 1 for most lattices
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Number of lattice points in a ball of radius r is 6 cn+o(n)rn

β(L) = smallest c that works for all r

I Upper bound: β(L) 6 20.401 [KL78]
I Conjectured to be β(L) ≈ 1 for most lattices

α−BDD DGSηε
reduce

Best known relations between α and ε depends on β(L):
small β(L) ; bigger α for fixed ε ; less expensive BDD
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Summary on sieving

Provable SVP:
I classical: time 21.7397n+o(n), space 20.5n+o(n)

I quantum: 20.9529n+o(n), space 20.5n+o(n) and poly(n) qubits
I first time/space tradeoff: time q13n, space q16n/q2

for q ∈ [4,
√

n]
I studied dependency on β(L), generalized kissing number

Open problems:
I Show that random lattices satisfy β(L) ≈ 1?
I Fill the gap between provable and heuristic algorithms for sieving?
I Exploit the subexponential space regime in our trade-off for SVP?
I 2O(n) time, 2o(n) space algorithm for DGS at smoothing

parameter?
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Subset-Sum
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The Subset-Sum Problem

Problem
Given: a = (a1, . . . ,an) a vector of integers, and a target S, find
I ⊆ {1, . . . ,n} such that

∑
i∈I ai = S

where a and S are chosen
uniformly at random.

I The decision version is NP-complete
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I The decision version is NP-complete
I Both cases `� n and `� n are solvable efficiently
I The case ` ' n is hard
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The Subset-Sum Problem

Problem
Given: a = (a1, . . . ,an) a vector of integers, and a target S, find
I ⊆ {1, . . . ,n} such that

∑
i∈I ai = S mod 2` where a and S are

chosen uniformly at random.

For ` = n (hard case):
I Classical and quantum algorithms run in time Õ (2γn)

I Used as a hard problem for post-quantum cryptography [Lyu10]
I Similar techniques also apply to other problems (syndrome

decoding problem) [KT17]
I Solving subset-sums is also useful in quantum hidden shift

algorithms [Bon19]
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Result in the Classical Setting

The time is Õ (2γn).

γ Ref.
0.5 [HS74]
0.5 [SS81]
0.3370 [HGJ10]
0.2909 [BCJ11]
0.283 This thesis

33 / 35



Results in the Quantum Setting

The time is Õ (2γn).

γ Ref. Model
0.3334 [BHT98] QRACM
0.3 [BJLM13] QRAQM
0.241 [BJLM13] QRAQM + conj.
0.2356 This thesis QRACM
0.226 [HM18] QRAQM + conj.

0.2182 This thesis QRAQM
0.2156 This thesis QRAQM + conj.

Open problems:
I Remove conjecture
I How far can we push the representation method?
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Conclusion and Future Work

I quantum quadratic speedup of enumeration
I provable time/space trade-off for SVP
I improved algorithms for provable sieving
I improved algorithms for subset-sum

Open problems:
I Can we show that random lattices satisfy β(L) ≈ 1 ?
I Fill the gap between provable and heuristic algorithms for sieving
I Exploit the subexponential space regime in our trade-off for SVP?
I 2O(n) time 2o(n) space algorithm for DGS at smoothing parameter
I Study polynomial factors for sieving and enumeration
I More studies on discrete pruning are needed
I Remove conjecture in subset-sum quantum walk
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