Classical and Quantum Cryptanalysis for Euclidean Lattices and Subset Sums

Yixin Shen

11 May, 2021

NIST round 3 candidates:

- encryption: 3 out of 4 candidates based on lattices
- signatures: 2 out of 3 candidates based on lattices

Publications and Outline

- Yoshinori Aono, Phong Q. Nguyen, and Y. S. Quantum lattice enumeration and tweaking discrete pruning. In ASIACRYPT 2018.
- Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Y. S. Improved (provable) algorithms for the shortest vector problem via bounded distance decoding.

In <u>STACS 2021</u>.

- Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Y. S. Improved classical and quantum algorithms for subset-sum. In <u>ASIACRYPT 2020</u>.
- Andris Ambainis, Kaspars Balodis, Janis Iraids, Kamil Khadiev, Vladislavs Klevickis, Krisjanis Prusis, Y. S, Juris Smotrovs, and Jevgenijs Vihrovs. Quantum lower and upper bounds for 2D-grid and Dyck language. In <u>MFCS 2020</u>.

What is a (Euclidean) lattice?

Definition

 $\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$ where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector. $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find

a shortest nonzero lattice vector.

 $\lambda_1(\mathcal{L}) =$ length of such a vector.

γ -approx-SVP ($\gamma > 1$):

Given a basis of \mathcal{L} , find a nonzero lattice vector of length at most $\gamma \cdot \lambda_1(\mathcal{L})$. γ is approximation factor.

Depending on the dimension *n*:

NP-Hardness (randomized reduction)

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- $\blacktriangleright \mathsf{NP} \cap \mathsf{co-NP}$

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- ▶ NP \cap co-NP
- Subexponential-time algorithms

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- ▶ NP \cap co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- NP ∩ co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Main approaches for SVP:

- ► Enumeration: 2^{O(n log(n))} time and poly(n) space
- Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- NP ∩ co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Main approaches for SVP:

- ► Enumeration: 2^{O(n log(n))} time and poly(n) space
- Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

BKZ with block size k solves $O(k^{n/k})$ -approx-SVP using a SVP oracle in dimension k:

- ▶ Enumeration: time 2^{O(k log(k))} poly(n) and space poly(n)
- ► Sieving: time 2^{O(k)} poly(n) time and space 2^{O(k)} poly(n)

Enumeration

Enumeration Algorithm

Given $x_n, \ldots, x_{i+1}, ||\pi_i(x)|| \leq R$, \Rightarrow the integer x_i belongs to an interval of small length π_i : orthogonal projection on span $(b_1, \ldots, b_{i-1})^{\perp}$

Cylinder Pruning [GNR10]

Each level remplace $\|\pi_i(\mathbf{x})\| \leq R$ by $\|\pi_i(\mathbf{x})\| \leq R_i R$ where $0 < R_i \leq 1$

Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]

- blackbox access to a tree with marked nodes:
 - can only query the local structure of the tree
- tree of size T, depth n, constant max degree
- $\Rightarrow O^*(\sqrt{T})$ queries to find a marked node

Quantum Speed-up for Enumeration

Quantum backtracking [Montanaro15]

blackbox access to a tree with marked nodes:

- can only query the local structure of the tree
- tree of size T, depth n, constant max degree
- $\Rightarrow O^*(\sqrt{T})$ queries to find a marked node

Application to the previous enumeration algorithm (**Quantum Lattice Enumeration**): Remark: LLL-reduced basis \rightsquigarrow max degree can be $2^{\Omega(n)}$

Algorithm: transform the tree into a binary one + dichotomy

⇒ $O^*(\sqrt{T})$ time to find one vector in $L \cap S(R)$ ⇒ $O^*(\#(L \cap S(R)) \cdot \sqrt{T})$ time to find all vectors.

Discrete Pruning [AN17]

Step 0: partition space into cells

- I cell ↔ 1 lattice vector
- cell C(t) identified by tag $t \in \mathbb{Z}^n$

► Babai's partition:

natural partition:

Discrete Pruning [AN17]

Step 0: partition space into cells

- I cell ↔ 1 lattice vector
- ▶ cell C(t) identified by tag $t \in \mathbb{Z}^n$

Step 1: find the pruning set

- Find $\approx M$ best cells minimizing $g(t) = \sum_{i=1}^{n} \|b_i^*\|^2 \left(\frac{t_i^2}{4} + \frac{t_i}{4} + \frac{1}{12}\right)$ Roughly, the smaller g(t), the smaller the vector inside C(t)
- Equivalent to finding *R* such that #solutions of g(t) ≤ R is ≈ M

► Babai's partition:

Discrete Pruning [AN17]

Step 0: partition space into cells

- I cell ↔ 1 lattice vector
- cell C(t) identified by tag $t \in \mathbb{Z}^n$

Step 1: find the pruning set

- Find $\approx M$ best cells minimizing $g(t) = \sum_{i=1}^{n} \|b_i^*\|^2 \left(\frac{t_i^2}{4} + \frac{t_i}{4} + \frac{1}{12}\right)$ Roughly, the smaller g(t), the smaller the vector inside C(t)
- Equivalent to finding *R* such that #solutions of g(t) ≤ R is ≈ M

Step 2: find the shortest vector

 consider enumeration tree above obtained by backtracking Babai's partition:

Quantum speed-up for discrete pruning

Step 1: find *R* such that #solutions of $g(t) \leq R$ is $\approx M$ by **dichotomy**

- Quantum tree size estimation [AK17] to estimate #nodes
- Tweak cost function:

$$g(t) = \sum_{i=1}^{n} \|b_i^*\|^2 \left(\frac{t_i^2}{4} + \frac{t_i}{4} + \frac{1}{12}\right) \quad \rightsquigarrow \quad \sum_{i=1}^{n} \|b_i^*\|^2 \left(t_i^2 + t_i\right)$$

Linear relation between #nodes and #solutions

Quantum speed-up for discrete pruning

Step 1: find *R* such that #solutions of $g(t) \leq R$ is $\approx M$ by **dichotomy**

- Quantum tree size estimation [AK17] to estimate #nodes
- Tweak cost function:

$$g(t) = \sum_{i=1}^{n} \|b_i^*\|^2 \left(\frac{t_i^2}{4} + \frac{t_i}{4} + \frac{1}{12}\right) \quad \rightsquigarrow \quad \sum_{i=1}^{n} \|b_i^*\|^2 \left(t_i^2 + t_i\right)$$

Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying $g(t) \leq R$

- dichotomy on length + mark nodes
- Quantum backtracking + binary tree transformation

Quantum speed-up for discrete pruning

Step 1: find *R* such that #solutions of $g(t) \leq R$ is $\approx M$ by **dichotomy**

- Quantum tree size estimation [AK17] to estimate #nodes
- Tweak cost function:

$$g(t) = \sum_{i=1}^{n} \|b_{i}^{*}\|^{2} \left(\frac{t_{i}^{2}}{4} + \frac{t_{i}}{4} + \frac{1}{12}\right) \quad \rightsquigarrow \quad \sum_{i=1}^{n} \|b_{i}^{*}\|^{2} \left(t_{i}^{2} + t_{i}\right)$$

Linear relation between #nodes and #solutions

Step 2: find shortest among cells satisfying $g(t) \leq R$

- dichotomy on length + mark nodes
- Quantum backtracking + binary tree transformation

Asymptotic quadratic improvement over classical algorithm.

Extreme Pruning

Repeat pruning with many basis:

- classical: $\sum T_i$
- naive quantum: $\sum \sqrt{T_i}$

Extreme Pruning

Repeat pruning with many basis:

- classical: $\sum T_i$
- naive quantum: $\sum \sqrt{T_i}$
- ► this thesis: $\sqrt{\sum T_i}$ can be much better than the naive quantum depending on the distribution of T_i .

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving

 \rightsquigarrow crossover point between sieving and enumeration is different in the quantum setting

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving

 \rightsquigarrow crossover point between sieving and enumeration is different in the quantum setting

[ABLR20] estimates the new crossover point for BKZ using enumeration/sieving achieving the same quality (RHF) at k = 547.

Quantum Quadratic Speed-up for Enumeration Algorithms:

- applies to cylinder, discrete and extreme pruning
- no known quadratic speedup for sieving

 \rightsquigarrow crossover point between sieving and enumeration is different in the quantum setting

[ABLR20] estimates the new crossover point for BKZ using enumeration/sieving achieving the same quality (RHF) at k = 547.

Open problems:

- Study of the polynomial factors for sieving and enumeration are needed for a better comparison
- More studies on discrete pruning are needed

Sieving

- Heuristic algorithms: fastest in practice
- Provable algorithms: important for theory \rightarrow this thesis

Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference
$n^{\frac{n}{2e}+o(n)}$	poly(<i>n</i>)	[Kan87,HS07]
2 ^{<i>n</i>+<i>o</i>(<i>n</i>)}	2 ^{<i>n</i>+<i>o</i>(<i>n</i>)}	[ADRS15]
$2^{2.05n+o(n)}$	$2^{0.5n+o(n)}$	[CCL18]
2 ^{1.7397n+o(n)}	$2^{0.5n+o(n)}$	This thesis
Results in the Classical Setting

Provable algorithms for SVP:

Time Complexity	Space Complexity	Reference
$n^{\frac{n}{2e}+o(n)}$	poly(<i>n</i>)	[Kan87,HS07]
2 ^{<i>n</i>+<i>o</i>(<i>n</i>)}	2 ^{<i>n</i>+<i>o</i>(<i>n</i>)}	[ADRS15]
$2^{2.05n+o(n)}$	$2^{0.5n+o(n)}$	[CCL18]
2 ^{1.7397n+o(n)}	$2^{0.5n+o(n)}$	This thesis

This thesis: first provable smooth time/space trade-off for SVP

time
$$q^{13n+o(n)}$$
 space $\operatorname{poly}(n) \cdot q^{rac{16n}{q^2}}$ $q \in [4,\sqrt{n}]$

q = √*n*: time *n*^{O(n)} and space poly(*n*), not as good as [Kan87].
 q = 4: time 2^{O(n)} and space 2^{O(n)}, not as good as [ADRS15].

Provable quantum algorithms for SVP:

Time	Space Complexity			Reference
Complexity	Classical	Qubits	Model	neierence
2 ^{1.799n+o(n)}	2 ^{1.286n+o(n)}	poly(<i>n</i>)	QRACM	[LMP15]
2 ^{1.2553n+o(n)}	$2^{0.5n+o(n)}$	poly(<i>n</i>)	plain	[CCL18]
$2^{0.9535n+o(n)}$	$2^{0.5n+o(n)}$	poly(<i>n</i>)	plain	This thesis

Remark on quantum heuristic algorithms:

- ▶ better complexity: 2^{0.265n+o(n)} [Laarhoven15]
- requires QRACM (strong assumption)

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leq 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leq 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \rightsquigarrow length $\ell \leq 2^{O(n)}\lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ... All control the length of the vectors.

[ADRS15]'s new idea: control distribution instead of length of vectors

Discrete Gaussian Sampling

$$ho_{\boldsymbol{s}}(\boldsymbol{x}) = \exp\left(-\pi \frac{\|\boldsymbol{x}\|^2}{\boldsymbol{s}^2}
ight), \qquad \mathcal{D}_{L,\boldsymbol{s}}(\boldsymbol{x}) = \frac{
ho_{\boldsymbol{s}}(\boldsymbol{x})}{
ho_{\boldsymbol{s}}(L)}, \qquad \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{s} > \boldsymbol{0}.$$

Definition (Discrete Gaussian Distribution)

On lattice *L* with parameter *s*: probability of $\mathbf{x} \in L$ is $D_{L,s}(\mathbf{x})$.

Discrete Gaussian Sampling (DGS)

- input: L and s
- **output:** random $x \in L$ according to $D_{L,s}$.

Bounded Distance Decoding (α -BDD): Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$

Bounded Distance Decoding $(\alpha - BDD)$: Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$

The two reductions use completely different DGS parameter regimes!

Bounded Distance Decoding $(\alpha - BDD)$: Given a lattice \mathcal{L} and a target vector $t \in \mathbb{R}^n$ with distance to lattice $\leq \alpha \cdot \lambda_1(\mathcal{L})$, find the closest vector $\mathbf{y} \in \mathcal{L}$.

- α is decoding distance/radius
- $\alpha < \frac{1}{2}$ for unique solution

The two reductions use completely different DGS parameter regimes!

Parameter *s* (width/standard deviation) of $D_{\mathcal{L},s}$:

Parameter *s* (width/standard deviation) of $D_{\mathcal{L},s}$:

Parameter *s* (width/standard deviation) of $D_{\mathcal{L},s}$:

- Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$
- No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$

Parameter *s* (width/standard deviation) of $D_{\mathcal{L},s}$:

- Open problem: $2^{O(n)}$ time, $2^{o(n)}$ space algorithm for $s = \eta_{\varepsilon}(\mathcal{L})$
- No known time/space trade-off for $s \ll \eta_{\varepsilon}(\mathcal{L})$

 \rightsquigarrow first provable time/space trade-off for SVP

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of *N* vectors in \mathcal{L} , find $k = q^2 - 1$ of them such that their sum $\in q \mathcal{L}$, then repeat (*q* is a parameter)

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of *N* vectors in \mathcal{L} , find $k = q^2 - 1$ of them such that their sum $\in q \mathcal{L}$, then repeat (*q* is a parameter)

- Space: need $N \gtrsim q^{n/q^2}$ to be successful
- Time: qⁿ to produce one vector

decrease with *q* increase with *q*

Idea: if $X_1, \ldots, X_k \sim D_{\mathcal{L},s}$ and $\sum_i X_i \in q \mathcal{L}$ then $(\sum_i X_i)/q \approx D_{\mathcal{L},s\sqrt{k}/q}$ \sim progress when $k < q^2$, repeat many times to reach $\eta_{\varepsilon}(\mathcal{L})$

Algorithm: given a list of *N* vectors in \mathcal{L} , find $k = q^2 - 1$ of them such that their sum $\in q \mathcal{L}$, then repeat (*q* is a parameter)

- Space: need $N \gtrsim q^{n/q^2}$ to be successful
- Time: qⁿ to produce one vector

decrease with *q* increase with *q*

Difficulties:

- independence of samples
- errors in distributions

Theorem (Simplified)

For $q \in [4, \sqrt{n}]$, there is an algorithm that produces q^{16n/q^2} vectors from $D_{\mathcal{L},s}$ with $s \ge \eta_{\varepsilon}(\mathcal{L})$ in time q^{13n} and space q^{16n/q^2} .

SVP to BDD reduction [CCL18]

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Solve SVP by using a α -BDD oracle:

- Set $p = \lceil \frac{1}{\alpha} \rceil$.
- Enumerate all points in a ball of radius $> \lambda_1$.

Lemma (CCL18, simplified)

Given a α -BDD oracle and p an integer, one can enumerate all lattice points in a ball of radius $p\alpha\lambda_1$ using p^n queries to the oracle.

Solve SVP by using a α -BDD oracle:

• Set
$$p = \lceil \frac{1}{\alpha} \rceil$$
.

• Enumerate all points in a ball of radius $> \lambda_1$.

The reduction is space efficient

But $\alpha < \frac{1}{2} \implies p \ge 3 \implies$ at least 3^n queries

Quantum SVP

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

Quantum SVP

Classical SVP to BDD: do 3ⁿ queries to 1/3-BDD and keep minimum

Theorem

There is a quantum algorithm that solves SVP in time $2^{0.9529n+o(n)}$, classical space $2^{0.5n+o(n)}$ and poly(n) qubits.

Quantum SVP

Classical SVP to BDD: do 3^n queries to 1/3-BDD and keep minimum

Theorem

There is a quantum algorithm that solves SVP in time $2^{0.9529n+o(n)}$, classical space $2^{0.5n+o(n)}$ and poly(n) qubits.

Future work: use QRACM to speed-up the query time of the 1/3-BDD. \sim time 2^{0.869n+o(n)} ?

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Each ball covers a spherical cap.

Faster SVP to BDD reduction

Cover the sphere of radius $\lambda_1(\mathcal{L})$ by balls of radius $2\alpha\lambda_1(\mathcal{L})$:

Use $2^n \alpha$ -BDD queries to enumerate points in balls of radius $2\alpha\lambda_1$

Each ball covers a spherical cap.

Smaller α :

- More balls
- Less expensive BDD

 \sim Trade-off

Improved classical SVP

Improved SVP to BDD: do 2^n queries to 0.4103-BDD

Theorem

There is a classical algorithm that solves SVP in time $2^{1.7397n+o(n)}$, classical space $2^{0.5n+o(n)}$.

Improved classical SVP

Improved SVP to BDD: do 2ⁿ queries to 0.4103-BDD

Theorem

There is a classical algorithm that solves SVP in time $2^{1.7397n+o(n)}$, classical space $2^{0.5n+o(n)}$.

Theorem

There is a **quantum** algorithm that solves SVP in time $2^{1.051n+o(n)}$, classical space $2^{0.5n+o(n)}$ and poly(n) qubits.

Not as good as our previous $2^{0.9529n+o(n)}$ algorithm but the story does not stop here...

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius *r* is $\leq c^{n+o(n)}r^n$

 $\beta(\mathcal{L}) =$ smallest *c* that works for all *r*

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices
SVP and Generalized Kissing Number

Number of lattice points in a ball of radius *r* is $\leq c^{n+o(n)}r^n$

 $\beta(\mathcal{L}) =$ smallest *c* that works for all *r*

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Best known relations between α and ε depends on $\beta(\mathcal{L})$:

small $\beta(\mathcal{L}) \quad \sim \quad \text{bigger } \boldsymbol{\alpha} \text{ for fixed } \boldsymbol{\varepsilon} \quad \sim \quad \text{less expensive BDD}$

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius *r* is $\leq c^{n+o(n)}r^n$

 $\beta(\mathcal{L}) =$ smallest *c* that works for all *r*

- Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

SVP and Generalized Kissing Number

Number of lattice points in a ball of radius *r* is $\leq c^{n+o(n)}r^n$

 $\beta(\mathcal{L}) =$ smallest *c* that works for all *r*

- ▶ Upper bound: $\beta(\mathcal{L}) \leq 2^{0.401}$ [KL78]
- Conjectured to be $\beta(\mathcal{L}) \approx 1$ for most lattices

Summary on sieving

Provable SVP:

- classical: time $2^{1.7397n+o(n)}$, space $2^{0.5n+o(n)}$
- quantum: $2^{0.9529n+o(n)}$, space $2^{0.5n+o(n)}$ and poly(*n*) qubits
- ▶ first time/space tradeoff: time q^{13n} , space q^{16n/q^2} for $q \in [4, \sqrt{n}]$
- studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Summary on sieving

Provable SVP:

- classical: time $2^{1.7397n+o(n)}$, space $2^{0.5n+o(n)}$
- quantum: $2^{0.9529n+o(n)}$, space $2^{0.5n+o(n)}$ and poly(*n*) qubits
- ▶ first time/space tradeoff: time q^{13n} , space q^{16n/q^2} for $q \in [4, \sqrt{n}]$
- studied dependency on $\beta(\mathcal{L})$, generalized kissing number

Open problems:

- Show that random lattices satisfy $\beta(\mathcal{L}) \approx 1$?
- Fill the gap between provable and heuristic algorithms for sieving?
- Exploit the subexponential space regime in our trade-off for SVP?
- 2^{O(n)} time, 2^{o(n)} space algorithm for DGS at smoothing parameter?

Subset-Sum

Problem

Given: $\mathbf{a} = (a_1, \dots, a_n)$ a vector of integers, and a target *S*, find $I \subseteq \{1, \dots, n\}$ such that $\sum_{i \in I} a_i = S$

The decision version is NP-complete

Problem

Given: $\mathbf{a} = (a_1, \dots, a_n)$ a vector of integers, and a target *S*, find $I \subseteq \{1, \dots, n\}$ such that $\sum_{i \in I} a_i = S \mod 2^{\ell}$

The decision version is NP-complete

Problem

Given: $\mathbf{a} = (a_1, \ldots, a_n)$ a vector of integers, and a target *S*, find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} a_i = S \mod 2^{\ell}$ where a and *S* are chosen uniformly at random.

- The decision version is NP-complete
- ▶ Both cases $\ell \gg n$ and $\ell \ll n$ are solvable efficiently
- The case $\ell \simeq \mathbf{n}$ is hard

Problem

Given: $\mathbf{a} = (a_1, \ldots, a_n)$ a vector of integers, and a target *S*, find $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} a_i = S \mod 2^{\ell}$ where a and *S* are chosen uniformly at random.

For $\ell = n$ (hard case):

- Classical and quantum algorithms run in time $\widetilde{\mathcal{O}}(2^{\gamma n})$
- Used as a hard problem for post-quantum cryptography [Lyu10]
- Similar techniques also apply to other problems (syndrome decoding problem) [KT17]
- Solving subset-sums is also useful in quantum hidden shift algorithms [Bon19]

Result in the Classical Setting

The time is $\widetilde{\mathcal{O}}(2^{\gamma n})$.

γ	Ref.
0.5	[HS74]
0.5	[SS81]
0.3370	[HGJ10]
0.2909	[BCJ11]
0.283	This thesis

Results in the Quantum Setting

The time is $\widetilde{\mathcal{O}}(2^{\gamma n})$.

γ	Ref.	Model
0.3334	[BHT98]	QRACM
0.3	[BJLM13]	QRAQM
0.241	[BJLM13]	QRAQM + conj.
0.2356	This thesis	QRACM
0.226	[HM18]	QRAQM + conj.

Results in the Quantum Setting

The time is $\widetilde{\mathcal{O}}(2^{\gamma n})$.

γ	Ref.	Model
0.3334	[BHT98]	QRACM
0.3	[BJLM13]	QRAQM
0.241	[BJLM13]	QRAQM <u>+ conj.</u>
0.2356	This thesis	QRACM
0.226	[HM18]	QRAQM <u>+ conj.</u>
0.2182	This thesis	QRAQM
0.2156	This thesis	QRAQM + conj.

Results in the Quantum Setting

The time is $\widetilde{\mathcal{O}}(2^{\gamma n})$.

γ	Ref.	Model
0.3334	[BHT98]	QRACM
0.3	[BJLM13]	QRAQM
0.241	[BJLM13]	QRAQM <u>+ conj</u> .
0.2356	This thesis	QRACM
0.226	[HM18]	QRAQM <u>+ conj.</u>
0.2182	This thesis	QRAQM
0.2156	This thesis	QRAQM + conj.

Open problems:

- Remove conjecture
- How far can we push the representation method?

Conclusion and Future Work

- quantum quadratic speedup of enumeration
- provable time/space trade-off for SVP
- improved algorithms for provable sieving
- improved algorithms for subset-sum

Open problems:

- Can we show that random lattices satisfy $\beta(\mathcal{L}) \approx 1$?
- Fill the gap between provable and heuristic algorithms for sieving
- Exploit the subexponential space regime in our trade-off for SVP?
- > $2^{O(n)}$ time $2^{o(n)}$ space algorithm for DGS at smoothing parameter
- Study polynomial factors for sieving and enumeration
- More studies on discrete pruning are needed
- Remove conjecture in subset-sum quantum walk