Quantum algorithms for lattice problems

Yixin Shen

King's College London

October 16, 2023

Outline

🚺 SVP

- Enumeration
- Sieving

3 LWE

- Primal attacks
- Dual attacks

What is a (Euclidean) lattice?

Definition

 $\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$ where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Shortest Vector Problem (SVP)

 Shortest Vector Problem (SVP): given a basis of a lattice, find a shortest nonzero vector.

Shortest Vector Problem (SVP)

- Shortest Vector Problem (SVP):
- given a basis of a lattice, find a shortest nonzero vector.

Two main approaches:

Approach: enumeration

- Choose a radius R
- enumerate all vectors of length smaller than R
- keep the shortest one

Shortest Vector Problem (SVP)

Approach:	enumeration
-----------	-------------

- Choose a radius R
- enumerate all vectors of length smaller than R
 - keep the shortest one

Approach: sieving

- generate a lot of random vectors
- combine them recursively to reduce their length

Enumeration = tree exploration

Enumerate all $X = x_1 b_1 + \cdots + x_n b_n$ such that $||X|| \leq R$:

(*,...,*,*) $\left(\begin{array}{c} \downarrow \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ (*, \ldots, *, x_n) \end{array} \right) \text{ choice of } x_n$

Enumeration = tree exploration

Enumerate all $X = x_1 b_1 + \cdots + x_n b_n$ such that $||X|| \leq R$:

Enumeration = tree exploration

Enumerate all $X = x_1 b_1 + \cdots + x_n b_n$ such that $||X|| \leq R$:

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:

- cylindrical pruning [GNR10]
- discrete pruning [AN17]
- extreme pruning [GNR10]

 \rightsquigarrow can all be seen as searching for marked nodes in a tree

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:

- cylindrical pruning [GNR10]
- discrete pruning [AN17]
- extreme pruning [GNR10]
- \sim can all be seen as searching for marked nodes in a tree

Quantum backtracking [wionianaro15]

Assume black-box access to tree nodes

• requests give the local tree structure only

 $\tilde{O}(\sqrt{T})$ requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:

- cylindrical pruning [GNR10]
- discrete pruning [AN17]
- extreme pruning [GNR10]
- \sim can all be seen as searching for marked nodes in a tree

Quantum backtracking [wientenero 15]

Assume black-box access to tree nodes

• requests give the local tree structure only

 $\tilde{O}(\sqrt{T})$ requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration [ANS18]

Quadratic quantum speed-up on all variants of enumeration

Complexity: super-exponential time but polynomial number of qubits

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve (parameter $\gamma < 1$):

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \gamma \ell$

Combine pairs of vectors to produce shorter vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve (parameter $\gamma < 1$):

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \gamma \ell$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced $\rightsquigarrow \ell \leq 2^{O(n)}\lambda_1$, sieve $O(n \log \frac{1}{\gamma})$ times, solve SVP

Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve (parameter $\gamma < 1$):

Input: many vectors of length $\leq \ell$ **Output:** many vectors of length $\leq \gamma \ell$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced $\rightsquigarrow \ell \leq 2^{O(n)}\lambda_1$, sieve $O(n \log \frac{1}{\gamma})$ times, solve SVP Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:

- partition vectors into "buckets" (e.g. quarters, cones)
- two vectors in the same bucket are more likely to be "close"
- quantum: use Grover in each bucket [Laarhoven16]

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Extensively studied in the classical case.

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

We can view sieving as finding pairs of vectors with common attributes \sim collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $n \le m \le 2n$, find 2^k collision pairs, where $k \le 2n - m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

Classical framework

- Setup a starting arbitrary vertex (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find a marked vertex in time:

where

- ϵ : proportion of marked vertices
- δ: spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

MNRS framework

- Setup creates a superposition over all vertices (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find a marked vertex in quantum time:

$$S + \underbrace{\sqrt{\frac{1}{\epsilon}}}_{Walk \ steps} \left(\underbrace{\sqrt{\frac{1}{\delta}}}_{Mixing \ time} U + C \right)$$

where

- ϵ : proportion of marked vertices
- δ: spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

/!\Requires a QRAQM (strongest quantum RAM model)

MNRS framework

- Setup creates a superposition over all vertices (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find *k* marked vertex in quantum time[CL21]:

where

- ϵ : proportion of marked vertices
- δ: spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

Requires a QRAQM (strongest quantum RAM model)

MNRS framework

- Setup creates a superposition over all vertices (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find *k* marked vertex in quantum time[BCS**S**23]:

$$S + \frac{k}{\sqrt{\frac{1}{\epsilon}}} \qquad \left(\begin{array}{c} \sqrt{\frac{1}{\delta}} & U + C \right)$$

Walk steps Mixing time

where

- ϵ : proportion of marked vertices
- δ: spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

Requires a QRAQM (strongest quantum RAM model)

Definition (Johnson graph)

- Nodes are sets of k elements among n (k « n)
- N_1 and N_2 are adjacents if $|N_1 \cap N_2| = k 1$
- $\frac{1}{\delta} = \frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

k = 2, n = 5

Definition (Johnson graph)

- Nodes are sets of k elements among n (k « n)
- N_1 and N_2 are adjacents if $|N_1 \cap N_2| = k 1$
- $\frac{1}{\delta} = \frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size $k = 2^r$
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Definition (Johnson graph)

- Nodes are sets of k elements among n (k « n)
- N_1 and N_2 are adjacents if $|N_1 \cap N_2| = k 1$
- $\frac{1}{\delta} = \frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size $k = 2^r$
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Classical complexity

$$2^r + \frac{1}{2^{2r-m}}(2^r \times 1 + 1) \approx \max(2^r, 2^{m-r}) \quad \rightsquigarrow \quad \text{optimal for } r = m/2$$

Definition (Johnson graph)

- Nodes are sets of k elements among n (k « n)
- N_1 and N_2 are adjacents if $|N_1 \cap N_2| = k 1$
- $\frac{1}{\delta} = \frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size $k = 2^r$
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Quantum complexity

$$2^r + \sqrt{rac{1}{2^{2r-m}} \left(\sqrt{2^r imes 1} + 1
ight)} pprox \max(2^r, 2^{(m-r)/2}) \rightsquigarrow ext{ optimal for } r = m/3$$

Locality sensitive filtering + quantum collision finding
 Exponential time and size QRACM (Grover)/QRAQM (walks)
- Locality sensitive filtering + quantum collision finding
 Exponential time and size QRACM (Grover)/QRAQM (walks)
- Tuple sieve [BLS16,HK17,HKL18,KMPR19,CL23]

Sieve k vectors instead of pairs, look for "configurations" satisfying certain properties Use quantum amplitude amplification to find tuples that satisfy the configuration.

12/21

Lattice reduction algorithms

good basis: short and orthogonal*ish* vectors, makes problem easy
bad basis: long and parallel*ish* vectors, makes problem hard

Lattice reduction algorithms

• good basis: short and orthogonal ish vectors, makes problem easy

• bad basis: long and parallelish vectors, makes problem hard

Basis reduction: transform a bad basis into a good one Algorithms: LLL, BKZ and its variants

block size $\beta = 5$ **b**₁ **b**₂ **b**₃ **b**₄ **b**₅ **b**₆ **b**₇ ... **x** \leftarrow SVP(**b**₁,...,**b**₅)

solve SVP for the block

 $block \text{ size } \beta = 5$ $b_1' \quad b_2' \quad b_3' \quad b_4' \quad b_5' \quad b_6 \quad b_7 \quad \cdots$ $x \leftarrow \text{SVP}(b_1, \dots, b_5)$ $(b_1', \dots, b_5') \leftarrow \text{LLL}(b_1, \dots, b_5, x)$

- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis

block size $\beta = 5$

$$\mathbf{b}'_1 = \pi_1(\mathbf{b}'_2) \ \pi_1(\mathbf{b}'_3) \ \pi_1(\mathbf{b}'_4) \ \pi_1(\mathbf{b}'_5) \ \pi_1(\mathbf{b}'_6) = \mathbf{b}_7 \qquad \cdots$$

 $\pi_i(\mathbf{v})$: project **v** orthogonally to $\mathbf{b}_1, \ldots, \mathbf{b}_i$

For each block:

- project block
- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis

block size $\beta = 5$

$$\mathbf{b}'_1 = \pi_1(\mathbf{b}'_2) \ \pi_1(\mathbf{b}'_3) \ \pi_1(\mathbf{b}'_4) \ \pi_1(\mathbf{b}'_5) \ \pi_1(\mathbf{b}'_6) = \mathbf{b}_7$$

 $\pi_i(\mathbf{v})$: project **v** orthogonally to $\mathbf{b}_1, \ldots, \mathbf{b}_i$

For each block:

- project block
- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis
- Repeat until basis is reduced

. . .

block size $\beta = 5$

$$\mathbf{b}'_1 = \pi_1(\mathbf{b}'_2) \ \pi_1(\mathbf{b}'_3) \ \pi_1(\mathbf{b}'_4) \ \pi_1(\mathbf{b}'_5) \ \pi_1(\mathbf{b}'_6) = \mathbf{b}_7 \qquad \cdots$$

 $\pi_i(\mathbf{v})$: project \mathbf{v} orthogonally to $\mathbf{b}_1, \ldots, \mathbf{b}_i$

For each block:

- project block
- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis
- Repeat until basis is reduced

Key elements:

- bigger β → more expensive, better reduction, smaller b₁
- very complex behaviour
- quantum BKZ: use a quantum SVP oracle

Let n = 4, m = 6 and q = 17.

secret

Given A and b, find s

Let n = 4, m = 6 and q = 17.

Given A and b, find s

 \rightsquigarrow Very easy (e.g. Gaussian elimination) and in polynomial time

Let n = 4, m = 6 and q = 17.

Let n = 4, m = 6 and q = 17.

Given A and b, find s assuming e is small

 \sim Suspected hard problem, even for quantum algorithms Can always assume that *s* is small (same hardness)

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST selected PQC algorithms rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST selected PQC algorithms rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

Two types of attacks:

- Primal attack:
 - more efficient in most cases
 - no quantum speed-up known (besides BKZ)
- Dual attack:
 - originally less efficient, now catching up
 - some controversies about recent advanced dual attacks[DP23]
 - has quantum speed-up (besides BKZ) [AS22,PS23]

Primal attack

We can formulate $b - A \cdot s \equiv e \pmod{q}$ as $\begin{pmatrix} q\mathbf{I} & -A \\ 0 & \mathbf{I} \end{pmatrix} \begin{pmatrix} * \\ s \end{pmatrix} + \begin{pmatrix} b \\ 0 \end{pmatrix} = \begin{pmatrix} e \\ s \end{pmatrix}.$

Primal attack

We can formulate $b - A \cdot s \equiv e \pmod{q}$ as

$$\begin{pmatrix} q\mathbf{I} & -A \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} * \\ s \end{pmatrix} + \begin{pmatrix} b \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} e \\ s \end{pmatrix}.$$

And make it homogenous with

$$\mathbf{M} := \begin{pmatrix} q\mathbf{I} & -A & b \\ 0 & \mathbf{I} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{M} \begin{pmatrix} * \\ s \\ 1 \end{pmatrix} = \begin{pmatrix} e \\ s \\ 1 \end{pmatrix}$$

Primal attack

We can formulate $b - A \cdot s \equiv e \pmod{q}$ as

$$\begin{pmatrix} q\mathbf{I} & -A \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} * \\ s \end{pmatrix} + \begin{pmatrix} b \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} e \\ s \end{pmatrix}.$$

And make it homogenous with

$$\mathbf{M} := \begin{pmatrix} q\mathbf{I} & -A & b \\ 0 & \mathbf{I} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{M} \begin{pmatrix} * \\ s \\ 1 \end{pmatrix} = \begin{pmatrix} e \\ s \\ 1 \end{pmatrix}$$

The lattice spanned by ${\bf M}$ has an "unusually" small vector \sim unique shortest vector.

Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce the basis and find the unusually short vector

quantum speed-up: quantum BKZ/SVP

Dual attack

Given $b = A \cdot s + e$, split into two parts:

$$A = \begin{pmatrix} A_{guess} & A_{dual} \end{pmatrix}, \qquad S = \begin{pmatrix} S_{guess} \\ S_{dual} \end{pmatrix}$$

Consider dual lattice

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{\text{dual}}} : \mathbf{x}^T A_{\text{dual}} = 0 \text{ mod } q \}$$

Dual attack

Given $b = A \cdot s + e$, split into two parts:

$$A = \begin{pmatrix} A_{guess} & A_{dual} \end{pmatrix}, \qquad S = \begin{pmatrix} S_{guess} \\ S_{dual} \end{pmatrix}$$

Consider dual lattice

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{\text{dual}}} : \mathbf{x}^T \mathcal{A}_{\text{dual}} = 0 \mod q \}$$

• Find (exponentially) many short vectors $x_1, \ldots, x_N \in L$, define

$$g(t) = \sum_{i=1}^{N} \cos(2\pi \langle \mathbf{x}_i, \mathbf{t} \rangle)$$

Dual attack

Given $b = A \cdot s + e$, split into two parts:

$$A = \begin{pmatrix} A_{guess} & A_{dual} \end{pmatrix}, \qquad S = \begin{pmatrix} S_{guess} \\ S_{dual} \end{pmatrix}$$

Consider dual lattice

$$L = \{ \mathbf{x} \in \mathbb{Z}^{n_{\text{dual}}} : \mathbf{x}^T \mathcal{A}_{\text{dual}} = 0 \text{ mod } \mathbf{q} \}$$

• Find (exponentially) many short vectors $x_1, \ldots, x_N \in L$, define

$$g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

$$\tilde{s}_{\text{guess}} = \arg\max_{t \in \mathbb{Z}_q^{n_{\text{guess}}}} g(b - A_{\text{guess}}t)$$

Claim: $\tilde{s}_{guess} = s_{guess}$ with high probability (for N sufficiently large)

Quantum dual attack

- Find many short vectors x_1, \ldots, x_N in L
 - can use BKZ many times \sim quantum BKZ
 - can use discrete Gaussian sampling \rightsquigarrow quantum BKZ + PTIME Klein sampler

Quantum dual attack

• Find many short vectors x_1, \ldots, x_N in L

- can use BKZ many times → quantum BKZ
- can use discrete Gaussian sampling \rightsquigarrow quantum BKZ + PTIME Klein sampler

2 Compute

$$\tilde{s}_{\text{guess}} = \underset{t \in \mathbb{Z}_q^{n_{\text{guess}}}}{\arg \max} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

. .

can be done efficiently by discrete Fourier transform (DFT)
 classical only, can do quantum Fourier transform (QFT) but does not give a speed-up

Quantum dual attack

• Find many short vectors x_1, \ldots, x_N in L

- can use BKZ many times → quantum BKZ
- can use discrete Gaussian sampling \rightsquigarrow quantum BKZ + PTIME Klein sampler

Ompute

$$\tilde{s}_{\text{guess}} = \arg\max_{t \in \mathbb{Z}_q^{n_{\text{guess}}}} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^N \cos(2\pi \langle x_i, t \rangle)$$

. .

- can be done efficiently by discrete Fourier transform (DFT)
 classical only, can do quantum Fourier transform (QFT) but does not give a speed-up
- quantum: Grover search on t + quantum amplitude estimation to approximate g(t) + QRACM

$$\tilde{s}_{\text{guess}} = \arg\max_{t \in \mathbb{Z}_q^{n_{\text{guess}}}} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^N \cos(2\pi \langle x_i, t \rangle)$$

$$\tilde{s}_{\text{guess}} = \underset{t \in \mathbb{Z}_q^{n_{\text{guess}}}}{\arg \max} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Failed approach:

Create superposition of short vectors^a

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|x_i\rangle$$

. .

^aRequires a QRACM if samples are sampled classically.

^bIf both x_i and $-x_i$ are in the list, the QFT has real amplitudes.

$$\tilde{s}_{\text{guess}} = \underset{t \in \mathbb{Z}_q^{n_{\text{guess}}}}{\arg \max} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$
ailed approach:

Create superposition of short vectors^a

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|x_i\rangle$$

. .

F

$$rac{1}{\sqrt{\textit{Nq}^{\textit{n}_{
m guess}}}} \sum_{t \in \mathbb{Z}_q^{\textit{n}_{
m guess}}} g(t) \ket{t}$$

^aRequires a QRACM if samples are sampled classically. ^bIf both x_i and $-x_i$ are in the list, the QFT has real amplitudes.

$$\tilde{s}_{guess} = \underset{t \in \mathbb{Z}_q^{n_{guess}}}{\arg \max} g(b - A_{guess}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Failed approach:

Create superposition of short vectors^a

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|x_i\rangle$$

$$rac{1}{\sqrt{Nq^{n_{ extrm{guess}}}}}\sum_{t\in\mathbb{Z}_q^{n_{ extrm{guess}}}}g(t)\ket{t}$$

Extract vector with highest amplitude:

No known efficient algorithm, but interesting problem!

^aRequires a QRACM if samples are sampled classically.

^bIf both x_i and $-x_i$ are in the list, the QFT has real amplitudes.

$$\tilde{s}_{guess} = \underset{t \in \mathbb{Z}_q^{n_{guess}}}{\arg \max} g(b - A_{guess}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Alternative approach:

• For each *t* construct $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |t\rangle |0\rangle |0\rangle$

$$\tilde{S}_{guess} = \underset{t \in \mathbb{Z}_q^{n_{guess}}}{\arg \max} g(b - A_{guess}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Alternative approach:

• For each *t* construct $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |t\rangle |0\rangle |0\rangle$ $\frac{\text{Cosine Inner}}{\text{Product Oracle}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |t\rangle |\cos(2\pi \langle x_i, t\rangle)\rangle |0\rangle$

$$\tilde{s}_{guess} = \underset{t \in \mathbb{Z}_q^{n_{guess}}}{\arg \max} g(b - A_{guess}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Alternative approach:

• For each *t* construct $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |t\rangle |0\rangle |0\rangle$ $\frac{\text{Cosine Inner}}{\text{Product Oracle}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |t\rangle |\cos(2\pi\langle x_i, t\rangle)\rangle |0\rangle$ $\frac{\text{Controlled}}{\text{Rotation}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |x_i\rangle |t\rangle |\cos(2\pi\langle x_i, t\rangle)\rangle \left(\frac{\sqrt{1 - \cos(2\pi\langle x_i, t\rangle)} |0\rangle}{+\sqrt{\cos(2\pi\langle x_i, t\rangle)} |1\rangle} \right)$

$$\tilde{s}_{guess} = \underset{t \in \mathbb{Z}_q^{n_{guess}}}{\arg \max} g(b - A_{guess}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Alternative approach:

For each *t* construct $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} |\mathbf{x}_{i}\rangle |t\rangle |0\rangle |0\rangle$ $\xrightarrow{\text{Cosine Inner}}_{\text{Product Oracle}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |\mathbf{x}_{i}\rangle |t\rangle |\cos(2\pi\langle \mathbf{x}_{i}, t\rangle)\rangle |0\rangle$ $\xrightarrow{\text{Controlled}}_{\text{Rotation}} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |\mathbf{x}_{i}\rangle |t\rangle |\cos(2\pi\langle \mathbf{x}_{i}, t\rangle)\rangle \left(\begin{pmatrix} \sqrt{1 - \cos(2\pi\langle \mathbf{x}_{i}, t\rangle)} |0\rangle \\ + \sqrt{\cos(2\pi\langle \mathbf{x}_{i}, t\rangle)} |1\rangle \end{pmatrix} \right)$ $= \sqrt{\frac{1}{N}g(t)} |\phi_{0}\rangle |1\rangle + \sqrt{1 - \frac{1}{N}g(t)} |\phi_{1}\rangle |0\rangle$

$$\begin{split} \tilde{s}_{\text{guess}} &= \arg\max_{t \in \mathbb{Z}_q^{n_{\text{guess}}}} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^N \cos(2\pi \langle x_i, t \rangle) \\ \text{Alternative approach:} \end{split}$$

• For each *t* construct

$$\ket{\psi_t} = \sqrt{rac{1}{N}g(t)}\ket{\phi_0}\ket{0} + \sqrt{1-rac{1}{N}g(t)}\ket{\phi_1}\ket{1}$$

$$\tilde{s}_{\text{guess}} = \underset{t \in \mathbb{Z}_q^{n_{\text{guess}}}}{\arg \max} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^{N} \cos(2\pi \langle x_i, t \rangle)$$

Alternative approach:

For each *t* construct $|\psi_t\rangle = \sqrt{\frac{1}{N}g(t)} |\phi_0\rangle |0\rangle + \sqrt{1 - \frac{1}{N}g(t)} |\phi_1\rangle |1\rangle$ Use amplitude estimation to approximate *g(t)*

$$\begin{split} \tilde{s}_{\text{guess}} &= \arg\max_{t \in \mathbb{Z}_q^{n_{\text{guess}}}} g(b - A_{\text{guess}}t), \qquad g(t) = \sum_{i=1}^N \cos(2\pi \langle x_i, t \rangle) \\ \text{Alternative approach:} \end{split}$$

. .

• For each *t* construct $|\psi_t\rangle = \sqrt{\frac{1}{N}g(t)} |\phi_0\rangle |0\rangle + \sqrt{1 - \frac{1}{N}g(t)} |\phi_1\rangle |1\rangle$

2 Use amplitude estimation to approximate g(t)

Use quantum maximum finding to find best t

Some other nice papers

• [GK17] LWE is easy with quantum samples of the form

$$rac{1}{q^n}\sum_{oldsymbol{a}\in\mathbb{Z}_q^n}\ket{a}{a\cdot s}+e_a mod q$$

• [CLZ21]:

$$\mathsf{C} \ket{\mathsf{LWE}} : \sum_{\boldsymbol{s} \in \mathbb{Z}_q^n} \bigotimes_{i=1}^m (\sum_{\boldsymbol{e}_i \in \mathbb{Z}_q} f(\boldsymbol{e}_i) \ket{\boldsymbol{a}_i \cdot \boldsymbol{s} + \boldsymbol{e}_i modes q})$$

and

$$\mathsf{S}\ket{\mathsf{LWE}}:(a_i,\sum_{oldsymbol{e}_i\in\mathbb{Z}_q}f(oldsymbol{e}_i)\ket{a_i\cdot s+e_i mmod q})$$

can be constructed in polynomial time in certain regimes, and used to solve the Short Integer Solution problem SIS^{∞} .