
Quantum algorithms for lattice problems

Yixin Shen

King’s College London

October 16, 2023

1 / 21

Outline

1 SVP
Enumeration
Sieving

2 BKZ

3 LWE
Primal attacks
Dual attacks

4 Final words

2 / 21

What is a (Euclidean) lattice?

Definition
L(b1, . . . ,bn) =

{∑n
i=1 xibi : xi ∈ Z

}
where b1, . . . ,bn is a basis of Rn.

b1

b2

O

3 / 21

Quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
4 / 21

Quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
4 / 21

Quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
4 / 21

Quantum memory models

classical access quantum access

classicaldata
quantum

data

RAM

i
xn

...

x1

xi

standard

QRACM

|i⟩
|y⟩
xn

...

x1

|y ⊕ xi⟩
|i⟩

potentially strong assumption

plain

i
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩

standard

QRAQM

|i⟩
|y⟩
|xn⟩
...

|x1⟩

|xn⟩
...

|x1⟩

|y ⊕ xi⟩
|i⟩

strong assumption

Assumption: O(1) time cost
4 / 21

Shortest Vector Problem (SVP)

O

R

u

v

u + v

Shortest Vector Problem (SVP):
given a basis of a lattice, find a
shortest nonzero vector.

Two main approaches:

Approach: enumeration
1 choose a radius R
2 enumerate all vectors of

length smaller than R
3 keep the shortest one

Approach: sieving
1 generate a lot of random

vectors
2 combine them recursively to

reduce their length

5 / 21

Shortest Vector Problem (SVP)

O

R

u

v

u + v

Shortest Vector Problem (SVP):
given a basis of a lattice, find a
shortest nonzero vector.

Two main approaches:

Approach: enumeration
1 choose a radius R
2 enumerate all vectors of

length smaller than R
3 keep the shortest one

Approach: sieving
1 generate a lot of random

vectors
2 combine them recursively to

reduce their length

5 / 21

Shortest Vector Problem (SVP)

O

R

u

v

u + v
Shortest Vector Problem (SVP):
given a basis of a lattice, find a
shortest nonzero vector.

Two main approaches:

Approach: enumeration
1 choose a radius R
2 enumerate all vectors of

length smaller than R
3 keep the shortest one

Approach: sieving
1 generate a lot of random

vectors
2 combine them recursively to

reduce their length

5 / 21

Enumeration = tree exploration

Enumerate all X = x1b1 + · · ·+ xnbn such that ∥X∥ ⩽ R:

(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn) (x1,...,xn) (x1,...,xn)

(∗,...,xn−1,xn)

∅

(∗,...,xn−1,xn)

... (∗,...,∗,xn)

... (∗,...,xn−1,xn)

choice of xn

choice
of xn−1

Important
The structure of each branch
depends on the choice of the
previous xi , of the basis b1, . . . ,bn
and the radius R.

Somes nodes have
no children

solution nodes

6 / 21

Enumeration = tree exploration

Enumerate all X = x1b1 + · · ·+ xnbn such that ∥X∥ ⩽ R:

(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn) (x1,...,xn) (x1,...,xn)

(∗,...,xn−1,xn)

∅

(∗,...,xn−1,xn)

... (∗,...,∗,xn)

... (∗,...,xn−1,xn)

choice of xn

choice
of xn−1

Important
The structure of each branch
depends on the choice of the
previous xi , of the basis b1, . . . ,bn
and the radius R.

Somes nodes have
no children

solution nodes

6 / 21

Enumeration = tree exploration

Enumerate all X = x1b1 + · · ·+ xnbn such that ∥X∥ ⩽ R:

(∗,...,∗,∗)

(∗,...,∗,xn)

(∗,...,xn−1,xn)

. . .

(∗,x2,...,xn)

(x1,...,xn) (x1,...,xn) (x1,...,xn)

(∗,...,xn−1,xn)

∅

(∗,...,xn−1,xn)

... (∗,...,∗,xn)

... (∗,...,xn−1,xn)

choice of xn

choice
of xn−1

Important
The structure of each branch
depends on the choice of the
previous xi , of the basis b1, . . . ,bn
and the radius R.

Somes nodes have
no children

solution nodes
6 / 21

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
cylindrical pruning [GNR10]
discrete pruning [AN17]
extreme pruning [GNR10]

; can all be seen as searching for marked nodes in a tree

Quantum backtracking [Montanaro15]
Assume black-box access to tree nodes

requests give the local tree structure only
Õ(
√

T) requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration [ANS18]
Quadratic quantum speed-up on all variants of enumeration

Complexity: super-exponential time but polynomial number of qubits

7 / 21

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
cylindrical pruning [GNR10]
discrete pruning [AN17]
extreme pruning [GNR10]

; can all be seen as searching for marked nodes in a tree

Quantum backtracking [Montanaro15]
Assume black-box access to tree nodes

requests give the local tree structure only
Õ(
√

T) requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration [ANS18]
Quadratic quantum speed-up on all variants of enumeration

Complexity: super-exponential time but polynomial number of qubits

7 / 21

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
cylindrical pruning [GNR10]
discrete pruning [AN17]
extreme pruning [GNR10]

; can all be seen as searching for marked nodes in a tree

Quantum backtracking [Montanaro15]
Assume black-box access to tree nodes

requests give the local tree structure only
Õ(
√

T) requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration [ANS18]
Quadratic quantum speed-up on all variants of enumeration

Complexity: super-exponential time but polynomial number of qubits
7 / 21

Sieving Algorithms

Original idea [AKS01]:
Reduce basis
Generate random vectors
Repeat many times:

Sieve vectors

Sieve (parameter γ < 1):
Input: many vectors of length ⩽ ℓ
Output: many vectors of length ⩽ γℓ

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; ℓ ⩽ 2O(n)λ1, sieve O(n log 1
γ) times, solve SVP

Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:
partition vectors into “buckets” (e.g. quarters, cones)
two vectors in the same bucket are more likely to be “close”
quantum: use Grover in each bucket [Laarhoven16]

8 / 21

Sieving Algorithms

Original idea [AKS01]:
Reduce basis
Generate random vectors
Repeat many times:

Sieve vectors

Sieve (parameter γ < 1):
Input: many vectors of length ⩽ ℓ
Output: many vectors of length ⩽ γℓ

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; ℓ ⩽ 2O(n)λ1, sieve O(n log 1
γ) times, solve SVP

Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:
partition vectors into “buckets” (e.g. quarters, cones)
two vectors in the same bucket are more likely to be “close”
quantum: use Grover in each bucket [Laarhoven16]

8 / 21

Sieving Algorithms

Original idea [AKS01]:
Reduce basis
Generate random vectors
Repeat many times:

Sieve vectors

Sieve (parameter γ < 1):
Input: many vectors of length ⩽ ℓ
Output: many vectors of length ⩽ γℓ

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; ℓ ⩽ 2O(n)λ1, sieve O(n log 1
γ) times, solve SVP

Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:
partition vectors into “buckets” (e.g. quarters, cones)
two vectors in the same bucket are more likely to be “close”
quantum: use Grover in each bucket [Laarhoven16]

8 / 21

Sieving Algorithms

Original idea [AKS01]:
Reduce basis
Generate random vectors
Repeat many times:

Sieve vectors

Sieve (parameter γ < 1):
Input: many vectors of length ⩽ ℓ
Output: many vectors of length ⩽ γℓ

Combine pairs of vectors to produce
shorter vectors

Idea: LLL reduced ; ℓ ⩽ 2O(n)λ1, sieve O(n log 1
γ) times, solve SVP

Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:
partition vectors into “buckets” (e.g. quarters, cones)
two vectors in the same bucket are more likely to be “close”
quantum: use Grover in each bucket [Laarhoven16]

8 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case. Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case.

Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case. Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case. Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case. Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case. Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
; collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}n → {0,1}m,n ≤ m ≤ 2n, find 2k collision pairs,
where k ≤ 2n −m.

Extensively studied in the classical case. Several quantum algorithms:
BHT algorithm based on Grover search (+QRACM)
Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
graph: search space
marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9 / 21

Classical and quantum walks

Classical framework
Setup a starting arbitrary vertex (S)
Move from one vertex to one of its neighbors (U)
Check if a vertex is marked (C)

We will find a marked vertex in time:

S +
1
ϵ︸︷︷︸

Walk steps

(
1
δ︸︷︷︸

Mixing time

U + C
)

where
ϵ: proportion of marked vertices
δ: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

! Requires a QRAQM (strongest quantum RAM model)

10 / 21

Classical and quantum walks

MNRS framework
Setup creates a superposition over all vertices (S)
Move from one vertex to one of its neighbors (U)
Check if a vertex is marked (C)

We will find a marked vertex in quantum time:

S +

√
1
ϵ︸︷︷︸

Walk steps

(√
1
δ︸︷︷︸

Mixing time

U + C
)

where
ϵ: proportion of marked vertices
δ: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

! Requires a QRAQM (strongest quantum RAM model)
10 / 21

Classical and quantum walks

MNRS framework
Setup creates a superposition over all vertices (S)
Move from one vertex to one of its neighbors (U)
Check if a vertex is marked (C)

We will find k marked vertex in quantum time[CL21]:

k

S +

√
1
ϵ︸︷︷︸

Walk steps

(√
1
δ︸︷︷︸

Mixing time

U + C
)

where
ϵ: proportion of marked vertices
δ: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

! Requires a QRAQM (strongest quantum RAM model)
10 / 21

Classical and quantum walks

MNRS framework
Setup creates a superposition over all vertices (S)
Move from one vertex to one of its neighbors (U)
Check if a vertex is marked (C)

We will find k marked vertex in quantum time[BCSS23]:

S + k

√
1
ϵ︸︷︷︸

Walk steps

(√
1
δ︸︷︷︸

Mixing time

U + C
)

where
ϵ: proportion of marked vertices
δ: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

! Requires a QRAQM (strongest quantum RAM model)
10 / 21

Example: Walk-based collision finding

Definition (Johnson graph)
Nodes are sets of k elements among n (k ≪ n)
N1 and N2 are adjacents if |N1 ∩ N2| = k − 1
1
δ = k(n−k)

n ≃ k (We need to replace all elements.)

k = 2,n = 5
11 / 21

Example: Walk-based collision finding

Definition (Johnson graph)
Nodes are sets of k elements among n (k ≪ n)
N1 and N2 are adjacents if |N1 ∩ N2| = k − 1
1
δ = k(n−k)

n ≃ k (We need to replace all elements.)

Collision finding with Johnson graph
Create a random list of elements of size k = 2r

Repeat until a collision is found:
Walk 2r times
Check whether the node contains a collision

complexity

11 / 21

Example: Walk-based collision finding

Definition (Johnson graph)
Nodes are sets of k elements among n (k ≪ n)
N1 and N2 are adjacents if |N1 ∩ N2| = k − 1
1
δ = k(n−k)

n ≃ k (We need to replace all elements.)

Collision finding with Johnson graph
Create a random list of elements of size k = 2r

Repeat until a collision is found:
Walk 2r times
Check whether the node contains a collision

Classical complexity

2r +
1

22r−m (2r × 1 + 1) ≈ max(2r ,2m−r) ; optimal for r = m/2

11 / 21

Example: Walk-based collision finding

Definition (Johnson graph)
Nodes are sets of k elements among n (k ≪ n)
N1 and N2 are adjacents if |N1 ∩ N2| = k − 1
1
δ = k(n−k)

n ≃ k (We need to replace all elements.)

Collision finding with Johnson graph
Create a random list of elements of size k = 2r

Repeat until a collision is found:
Walk 2r times
Check whether the node contains a collision

Quantum complexity

2r+

√
1

22r−m

(√
2r × 1 + 1

)
≈ max(2r ,2(m−r)/2) ; optimal for r = m/3

11 / 21

Back to sieving

Locality sensitive filtering + quantum collision finding
Exponential time and size QRACM (Grover)/QRAQM (walks)

Tuple sieve [BLS16,HK17,HKL18,KMPR19,CL23]
Sieve k vectors instead of pairs, look for “configurations” satisfying
certain properties
Use quantum amplitude amplification to find tuples that satisfy the
configuration.

12 / 21

Back to sieving

Locality sensitive filtering + quantum collision finding
Exponential time and size QRACM (Grover)/QRAQM (walks)
Tuple sieve [BLS16,HK17,HKL18,KMPR19,CL23]
Sieve k vectors instead of pairs, look for “configurations” satisfying
certain properties
Use quantum amplitude amplification to find tuples that satisfy the
configuration.

12 / 21

Lattice reduction algorithms

O

good basis: short and orthogonalish vectors, makes problem easy
bad basis: long and parallelish vectors, makes problem hard

Basis reduction: transform a bad basis into a good one
Algorithms: LLL, BKZ and its variants

13 / 21

Lattice reduction algorithms

O

good basis: short and orthogonalish vectors, makes problem easy
bad basis: long and parallelish vectors, makes problem hard

Basis reduction: transform a bad basis into a good one
Algorithms: LLL, BKZ and its variants

13 / 21

Strong lattice reduction: BKZ algorithm

 b1 b2 b3 b4 b5 b6 b7 . . .



block size β = 5

x← SVP(b1, . . . ,b5)

(b1
′, . . . ,b′

5)← LLL(b1, . . . ,b5,x)

block size β = 5

πi(v): project v orthogonally to b1, . . . ,bi

For each block:

project block

solve SVP for the block

apply LLL to block + SVP
replace by reduced basis

Repeat until basis is reduced

Key elements:
bigger β ; more expensive,
better reduction, smaller b1

very complex behaviour

quantum BKZ: use a
quantum SVP oracle

14 / 21

Strong lattice reduction: BKZ algorithm

 b1 b2 b3 b4 b5 b6 b7 . . .



block size β = 5

x← SVP(b1, . . . ,b5)

(b1
′, . . . ,b′

5)← LLL(b1, . . . ,b5,x)

block size β = 5

πi(v): project v orthogonally to b1, . . . ,bi

For each block:
project block

solve SVP for the block

apply LLL to block + SVP
replace by reduced basis

Repeat until basis is reduced

Key elements:
bigger β ; more expensive,
better reduction, smaller b1

very complex behaviour

quantum BKZ: use a
quantum SVP oracle

14 / 21

Strong lattice reduction: BKZ algorithm

 b′
1 b′

2 b′
3 b′

4 b′
5 b6 b7 . . .



block size β = 5

x← SVP(b1, . . . ,b5)

(b1
′, . . . ,b′

5)← LLL(b1, . . . ,b5,x)

block size β = 5

πi(v): project v orthogonally to b1, . . . ,bi

For each block:
project block

solve SVP for the block
apply LLL to block + SVP
replace by reduced basis

Repeat until basis is reduced

Key elements:
bigger β ; more expensive,
better reduction, smaller b1

very complex behaviour

quantum BKZ: use a
quantum SVP oracle

14 / 21

Strong lattice reduction: BKZ algorithm

 b′
1 π1(b′

2) π1(b′
3) π1(b′

4) π1(b′
5) π1(b′

6) b7 . . .



block size β = 5

x← SVP(b1, . . . ,b5)

(b1
′, . . . ,b′

5)← LLL(b1, . . . ,b5,x)

block size β = 5

πi(v): project v orthogonally to b1, . . . ,bi

For each block:
project block
solve SVP for the block
apply LLL to block + SVP
replace by reduced basis

Repeat until basis is reduced

Key elements:
bigger β ; more expensive,
better reduction, smaller b1

very complex behaviour

quantum BKZ: use a
quantum SVP oracle

14 / 21

Strong lattice reduction: BKZ algorithm

 b′
1 π1(b′

2) π1(b′
3) π1(b′

4) π1(b′
5) π1(b′

6) b7 . . .



block size β = 5

x← SVP(b1, . . . ,b5)

(b1
′, . . . ,b′

5)← LLL(b1, . . . ,b5,x)

block size β = 5

πi(v): project v orthogonally to b1, . . . ,bi

For each block:
project block
solve SVP for the block
apply LLL to block + SVP
replace by reduced basis

Repeat until basis is reduced

Key elements:
bigger β ; more expensive,
better reduction, smaller b1

very complex behaviour

quantum BKZ: use a
quantum SVP oracle

14 / 21

Strong lattice reduction: BKZ algorithm

 b′
1 π1(b′

2) π1(b′
3) π1(b′

4) π1(b′
5) π1(b′

6) b7 . . .



block size β = 5

x← SVP(b1, . . . ,b5)

(b1
′, . . . ,b′

5)← LLL(b1, . . . ,b5,x)

block size β = 5

πi(v): project v orthogonally to b1, . . . ,bi

For each block:
project block
solve SVP for the block
apply LLL to block + SVP
replace by reduced basis

Repeat until basis is reduced

Key elements:
bigger β ; more expensive,
better reduction, smaller b1

very complex behaviour
quantum BKZ: use a
quantum SVP oracle

14 / 21

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

+

noise

e ∈ Zm
q

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s

assuming e is small

15 / 21

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

1

2

1
5

+

noise

e ∈ Zm
q

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s

assuming e is small

; Very easy (e.g. Gaussian elimination) and in polynomial time

15 / 21

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

random

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

1

2

1
5

+

noise

e ∈ Zm
q

-3

-1

2

-3

3

-1

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s

assuming e is small

15 / 21

Learning with errors (LWE)

Let n = 4, m = 6 and q = 17.

random

A ∈ Zm×n
q

14 12 2 5

5 3 1 7

14 7 2 5

0 9 8 4

8 11 5 12
5 1 3 14

×

secret

s ∈ Zn
q

+

noise

e ∈ Zm
q

=

b ∈ Zm
q

11
5

14

6

12

13

Given A and b, find s assuming e is small

; Suspected hard problem, even for quantum algorithms
Can always assume that s is small (same hardness)

15 / 21

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
several lattice-based NIST selected PQC algorithms rely on LWE
extensive literature
all evidence points to resistance against quantum attacks

Two types of attacks:
Primal attack:

more efficient in most cases
no quantum speed-up known (besides BKZ)

Dual attack:
originally less efficient, now catching up
some controversies about recent advanced dual attacks[DP23]
has quantum speed-up (besides BKZ) [AS22,PS23]

16 / 21

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
several lattice-based NIST selected PQC algorithms rely on LWE
extensive literature
all evidence points to resistance against quantum attacks

Two types of attacks:
Primal attack:

more efficient in most cases
no quantum speed-up known (besides BKZ)

Dual attack:
originally less efficient, now catching up
some controversies about recent advanced dual attacks[DP23]
has quantum speed-up (besides BKZ) [AS22,PS23]

16 / 21

Primal attack

We can formulate b − A · s ≡ e (mod q) as(
qI −A
0 I

)(
∗
s

)
+

(
b
0

)
=

(
e
s

)
.

And make it homogenous with

M :=

qI −A b
0 I 0
0 0 1

 , M

∗s
1

 =

e
s
1


The lattice spanned by M has an “unusually” small vector
; unique shortest vector.

Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce
the basis and find the unusually short vector

quantum speed-up: quantum BKZ/SVP

17 / 21

Primal attack

We can formulate b − A · s ≡ e (mod q) as(
qI −A
0 I

)(
∗
s

)
+

(
b
0

)
=

(
e
s

)
.

And make it homogenous with

M :=

qI −A b
0 I 0
0 0 1

 , M

∗s
1

 =

e
s
1



The lattice spanned by M has an “unusually” small vector
; unique shortest vector.

Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce
the basis and find the unusually short vector

quantum speed-up: quantum BKZ/SVP

17 / 21

Primal attack

We can formulate b − A · s ≡ e (mod q) as(
qI −A
0 I

)(
∗
s

)
+

(
b
0

)
=

(
e
s

)
.

And make it homogenous with

M :=

qI −A b
0 I 0
0 0 1

 , M

∗s
1

 =

e
s
1


The lattice spanned by M has an “unusually” small vector
; unique shortest vector.

Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce
the basis and find the unusually short vector

quantum speed-up: quantum BKZ/SVP

17 / 21

Dual attack

Given b = A · s + e, split into two parts:

A =
(

Aguess Adual

)
, s =

(
sguess

sdual

)
Consider dual lattice

L = {x ∈ Zndual : xT Adual = 0 mod q}

1 Find (exponentially) many short vectors x1, . . . , xN ∈ L, define

g(t) =
N∑

i=1

cos(2π⟨x i , t⟩)

2 Compute
s̃guess = argmax

t∈Znguess
q

g(b − Aguesst)

Claim: s̃guess = sguess with high probability (for N sufficiently large)

18 / 21

Dual attack

Given b = A · s + e, split into two parts:

A =
(

Aguess Adual

)
, s =

(
sguess

sdual

)
Consider dual lattice

L = {x ∈ Zndual : xT Adual = 0 mod q}

1 Find (exponentially) many short vectors x1, . . . , xN ∈ L, define

g(t) =
N∑

i=1

cos(2π⟨x i , t⟩)

2 Compute
s̃guess = argmax

t∈Znguess
q

g(b − Aguesst)

Claim: s̃guess = sguess with high probability (for N sufficiently large)

18 / 21

Dual attack

Given b = A · s + e, split into two parts:

A =
(

Aguess Adual

)
, s =

(
sguess

sdual

)
Consider dual lattice

L = {x ∈ Zndual : xT Adual = 0 mod q}

1 Find (exponentially) many short vectors x1, . . . , xN ∈ L, define

g(t) =
N∑

i=1

cos(2π⟨x i , t⟩)

2 Compute
s̃guess = argmax

t∈Znguess
q

g(b − Aguesst)

Claim: s̃guess = sguess with high probability (for N sufficiently large)
18 / 21

Quantum dual attack

1 Find many short vectors x1, . . . , xN in L
can use BKZ many times ; quantum BKZ
can use discrete Gaussian sampling ; quantum BKZ + PTIME
Klein sampler

2 Compute

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

can be done efficiently by discrete Fourier transform (DFT)

! classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up
quantum: Grover search on t + quantum amplitude estimation to
approximate g(t) + QRACM

19 / 21

Quantum dual attack

1 Find many short vectors x1, . . . , xN in L
can use BKZ many times ; quantum BKZ
can use discrete Gaussian sampling ; quantum BKZ + PTIME
Klein sampler

2 Compute

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

can be done efficiently by discrete Fourier transform (DFT)

! classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up

quantum: Grover search on t + quantum amplitude estimation to
approximate g(t) + QRACM

19 / 21

Quantum dual attack

1 Find many short vectors x1, . . . , xN in L
can use BKZ many times ; quantum BKZ
can use discrete Gaussian sampling ; quantum BKZ + PTIME
Klein sampler

2 Compute

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

can be done efficiently by discrete Fourier transform (DFT)

! classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up
quantum: Grover search on t + quantum amplitude estimation to
approximate g(t) + QRACM

19 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Failed approach:

1 Create superposition of short vectorsa

1√
N

∑N

i=1
|x i⟩

2 Apply QFT to getb

1√
Nqnguess

∑
t∈Znguess

q
g(t) |t⟩

3 Extract vector with highest amplitude:

! No known efficient algorithm, but interesting problem!

aRequires a QRACM if samples are sampled classically.
bIf both x i and −x i are in the list, the QFT has real amplitudes.

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Failed approach:

1 Create superposition of short vectorsa

1√
N

∑N

i=1
|x i⟩

2 Apply QFT to getb

1√
Nqnguess

∑
t∈Znguess

q
g(t) |t⟩

3 Extract vector with highest amplitude:

! No known efficient algorithm, but interesting problem!

aRequires a QRACM if samples are sampled classically.
bIf both x i and −x i are in the list, the QFT has real amplitudes.

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Failed approach:

1 Create superposition of short vectorsa

1√
N

∑N

i=1
|x i⟩

2 Apply QFT to getb

1√
Nqnguess

∑
t∈Znguess

q
g(t) |t⟩

3 Extract vector with highest amplitude:

! No known efficient algorithm, but interesting problem!
aRequires a QRACM if samples are sampled classically.
bIf both x i and −x i are in the list, the QFT has real amplitudes.

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct
1√
N

∑N

i=1
|x i⟩ |t⟩ |0⟩ |0⟩

Cosine Inner−−−−−−−−−→
Product Oracle

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩ |0⟩

Controlled−−−−−−→
Rotation

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩

(√
1− cos(2π⟨x i , t⟩) |0⟩
+
√

cos(2π⟨x i , t⟩) |1⟩

)
=
√

1
N g(t) |ϕ0⟩ |1⟩+

√
1− 1

N g(t) |ϕ1⟩ |0⟩

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct
1√
N

∑N

i=1
|x i⟩ |t⟩ |0⟩ |0⟩

Cosine Inner−−−−−−−−−→
Product Oracle

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩ |0⟩

Controlled−−−−−−→
Rotation

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩

(√
1− cos(2π⟨x i , t⟩) |0⟩
+
√

cos(2π⟨x i , t⟩) |1⟩

)
=
√

1
N g(t) |ϕ0⟩ |1⟩+

√
1− 1

N g(t) |ϕ1⟩ |0⟩

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct
1√
N

∑N

i=1
|x i⟩ |t⟩ |0⟩ |0⟩

Cosine Inner−−−−−−−−−→
Product Oracle

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩ |0⟩

Controlled−−−−−−→
Rotation

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩

(√
1− cos(2π⟨x i , t⟩) |0⟩
+
√
cos(2π⟨x i , t⟩) |1⟩

)

=
√

1
N g(t) |ϕ0⟩ |1⟩+

√
1− 1

N g(t) |ϕ1⟩ |0⟩

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct
1√
N

∑N

i=1
|x i⟩ |t⟩ |0⟩ |0⟩

Cosine Inner−−−−−−−−−→
Product Oracle

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩ |0⟩

Controlled−−−−−−→
Rotation

1√
N

∑N

i=1
|x i⟩ |t⟩ |cos(2π⟨x i , t⟩)⟩

(√
1− cos(2π⟨x i , t⟩) |0⟩
+
√
cos(2π⟨x i , t⟩) |1⟩

)
=
√

1
N g(t) |ϕ0⟩ |1⟩+

√
1− 1

N g(t) |ϕ1⟩ |0⟩

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct

|ψt⟩ =
√

1
N g(t) |ϕ0⟩ |0⟩+

√
1− 1

N g(t) |ϕ1⟩ |1⟩

2 Use amplitude estimation to approximate g(t)
3 Use quantum maximum finding to find best t

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct

|ψt⟩ =
√

1
N g(t) |ϕ0⟩ |0⟩+

√
1− 1

N g(t) |ϕ1⟩ |1⟩

2 Use amplitude estimation to approximate g(t)

3 Use quantum maximum finding to find best t

20 / 21

Quantum amplitudes and why the QFT does not work

s̃guess = argmax
t∈Znguess

q

g(b − Aguesst), g(t) =
∑N

i=1
cos(2π⟨x i , t⟩)

Alternative approach:

1 For each t construct

|ψt⟩ =
√

1
N g(t) |ϕ0⟩ |0⟩+

√
1− 1

N g(t) |ϕ1⟩ |1⟩

2 Use amplitude estimation to approximate g(t)
3 Use quantum maximum finding to find best t

20 / 21

Some other nice papers

[GK17] LWE is easy with quantum samples of the form
1
qn

∑
a∈Zn

q

|a⟩ |a · s + ea mod q⟩

[CLZ21]:

C |LWE⟩ :
∑
s∈Zn

q

m⊗
i=1

(
∑

ei∈Zq

f (ei) |ai · s + ei mod q⟩)

and
S |LWE⟩ : (ai ,

∑
ei∈Zq

f (ei) |ai · s + ei mod q⟩)

can be constructed in polynomial time in certain regimes, and
used to solve the Short Integer Solution problem SIS∞.

21 / 21

	SVP
	Enumeration
	Sieving

	BKZ
	LWE
	Primal attacks
	Dual attacks

	Final words

