Quantum algorithms for lattice problems

Yixin Shen

King's College London
October 16, 2023

Outline

(1) SVP

- Enumeration
- Sieving
(2) BKZ
(3) LWE
- Primal attacks
- Dual attacks

4 Final words

What is a (Euclidean) lattice?

Definition

$\mathcal{L}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)=\left\{\sum_{i=1}^{n} x_{i} \boldsymbol{b}_{i}: x_{i} \in \mathbb{Z}\right\}$ where $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ is a basis of \mathbb{R}^{n}.

Quantum memory models

classical access

еұер wnłuenb

Assumption: $O(1)$ time cost

Quantum memory models

classical access
quantum access

Assumption: $O(1)$ time cost

Quantum memory models

classical access

quantum access

potentially strong assumption

Assumption: $O(1)$ time cost

Quantum memory models

classical access

quantum access

potentially strong assumption

Assumption: $O(1)$ time cost

Shortest Vector Problem (SVP)

- - Shortest Vector Problem (SVP): given a basis of a lattice, find a shortest nonzero vector.

Shortest Vector Problem (SVP)

Approach: enumeration

(1) choose a radius R
(2) enumerate all vectors of length smaller than R
(3) keep the shortest one

Shortest Vector Problem (SVP)

Enumeration = tree exploration

Enumerate all $X=x_{1} b_{1}+\cdots+x_{n} b_{n}$ such that $\|X\| \leqslant R$:

Enumeration = tree exploration

Enumerate all $X=x_{1} b_{1}+\cdots+x_{n} b_{n}$ such that $\|X\| \leqslant R$:

Enumeration = tree exploration

Enumerate all $X=x_{1} b_{1}+\cdots+x_{n} b_{n}$ such that $\|X\| \leqslant R$:

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:

- cylindrical pruning [GNR10]
- discrete pruning [AN17]
- extreme pruning [GNR10]
\leadsto can all be seen as searching for marked nodes in a tree

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:

- cylindrical pruning [GNR10]
- discrete pruning [AN17]
- extreme pruning [GNR10]
\leadsto can all be seen as searching for marked nodes in a tree

Quantum backtracking [Montanaro15]

Assume black-box access to tree nodes

- requests give the local tree structure only
$\tilde{O}(\sqrt{T})$ requests to find a solution node (tree with T nodes)
Can also estimate the size of a tree with a quadratic speed-up [AK17]

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:

- cylindrical pruning [GNR10]
- discrete pruning [AN17]
- extreme pruning [GNR10]
\leadsto can all be seen as searching for marked nodes in a tree

Quantum backtracking [Montanaro15]

Assume black-box access to tree nodes

- requests give the local tree structure only
$\tilde{O}(\sqrt{T})$ requests to find a solution node (tree with T nodes)
Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration [ANS18]

Quadratic quantum speed-up on all variants of enumeration
Complexity: super-exponential time but polynomial number of qubits

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieve (parameter $\gamma<1$):
Input: many vectors of length $\leqslant \ell$
Output: many vectors of length $\leqslant \gamma \ell$
Combine pairs of vectors to produce
shorter vectors

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieve (parameter $\gamma<1$):
Input: many vectors of length $\leqslant \ell$ Output: many vectors of length $\leqslant \gamma \ell$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced $\sim \ell \leqslant 2^{O(n)} \lambda_{1}$, sieve $O\left(n \log \frac{1}{\gamma}\right)$ times, solve SVP Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Sieving Algorithms

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
- Sieve vectors

Sieve (parameter $\gamma<1$):
Input: many vectors of length $\leqslant \ell$ Output: many vectors of length $\leqslant \gamma \ell$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced $\sim \ell \leqslant 2^{O(n)} \lambda_{1}$, sieve $O\left(n \log \frac{1}{\gamma}\right)$ times, solve SVP Heuristic: at each stage, vectors are uniformly distributed of length ℓ

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:

- partition vectors into "buckets" (e.g. quarters, cones)
- two vectors in the same bucket are more likely to be "close"
- quantum: use Grover in each bucket [Laarhoven16]

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, n \leq m \leq 2 n$, find 2^{k} collision pairs, where $k \leq 2 n-m$.

Extensively studied in the classical case.

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, n \leq m \leq 2 n$, find 2^{k} collision pairs, where $k \leq 2 n-m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, n \leq m \leq 2 n$, find 2^{k} collision pairs, where $k \leq 2 n-m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

Start anywhere, move to random neighbors until we find a marked vertex

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, n \leq m \leq 2 n$, find 2^{k} collision pairs, where $k \leq 2 n-m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

Start anywhere, move to random neighbors until we find a marked vertex

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, n \leq m \leq 2 n$, find 2^{k} collision pairs, where $k \leq 2 n-m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

Start anywhere, move to random neighbors until we find a marked vertex

Collision Finding

We can view sieving as finding pairs of vectors with common attributes \leadsto collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, n \leq m \leq 2 n$, find 2^{k} collision pairs, where $k \leq 2 n-m$.

Extensively studied in the classical case. Several quantum algorithms:

- BHT algorithm based on Grover search (+QRACM)
- Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:

- graph: search space
- marked nodes: solutions

Start anywhere, move to random neighbors until we find a marked vertex

Classical and quantum walks

Classical framework

- Setup a starting arbitrary vertex (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find a marked vertex in time:

$$
\mathrm{S}+\underbrace{\frac{1}{\epsilon}}_{\text {Walk steps }}(\underbrace{\frac{1}{\delta}}_{\text {Mixing time }} \mathrm{U}+\mathrm{C})
$$

where

- ϵ : proportion of marked vertices
- δ : spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

Classical and quantum walks

MNRS framework

- Setup creates a superposition over all vertices (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find a marked vertex in quantum time:

$$
\mathrm{S}+\underbrace{\sqrt{\frac{1}{\epsilon}}}_{\text {Walk steps }}(\underbrace{\sqrt{\frac{1}{\delta}}}_{\text {Mixing time }} \mathrm{U}+\mathrm{C})
$$

where

- ϵ : proportion of marked vertices
- δ : spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

\triangle
Requires a QRAQM (strongest quantum RAM model)

Classical and quantum walks

MNRS framework

- Setup creates a superposition over all vertices (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find k marked vertex in quantum time[CL21]:

$$
k(S+\underbrace{\sqrt{\frac{1}{\epsilon}}}_{\text {Walk steps }}(\underbrace{\sqrt{\frac{1}{\delta}}}_{\text {Mixing time }} \mathrm{U}+\mathrm{C}))
$$

where

- ϵ : proportion of marked vertices
- δ : spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

Classical and quantum walks

MNRS framework

- Setup creates a superposition over all vertices (S)
- Move from one vertex to one of its neighbors (U)
- Check if a vertex is marked (C)

We will find k marked vertex in quantum time[BCSS23]:

$$
\mathrm{S}+k \underbrace{\sqrt{\frac{1}{\epsilon}}}_{\text {Walk steps }}(\underbrace{\sqrt{\frac{1}{\delta}}}_{\text {Mixing time }} \mathrm{U}+\mathrm{C})
$$

where

- ϵ : proportion of marked vertices
- δ : spectral gap of the graph (number of updates before we reach a new uniformly random vertex)

\triangle
Requires a QRAQM (strongest quantum RAM model)

Example: Walk-based collision finding

Definition (Johnson graph)

- Nodes are sets of k elements among $n(k \ll n)$
- N_{1} and N_{2} are adjacents if $\left|N_{1} \cap N_{2}\right|=k-1$
- $\frac{1}{\delta}=\frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

$$
k=2, n=5
$$

Example: Walk-based collision finding

Definition (Johnson graph)

- Nodes are sets of k elements among $n(k \ll n)$
- N_{1} and N_{2} are adjacents if $\left|N_{1} \cap N_{2}\right|=k-1$
- $\frac{1}{\delta}=\frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size $k=2^{r}$
- Repeat until a collision is found:
- Walk 2^{r} times
- Check whether the node contains a collision

Example: Walk-based collision finding

Definition (Johnson graph)

- Nodes are sets of k elements among $n(k \ll n)$
- N_{1} and N_{2} are adjacents if $\left|N_{1} \cap N_{2}\right|=k-1$
- $\frac{1}{\delta}=\frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size $k=2^{r}$
- Repeat until a collision is found:
- Walk 2^{r} times
- Check whether the node contains a collision

Classical complexity

$$
2^{r}+\frac{1}{2^{2 r-m}}\left(2^{r} \times 1+1\right) \approx \max \left(2^{r}, 2^{m-r}\right) \quad \leadsto \quad \text { optimal for } r=m / 2
$$

Example: Walk-based collision finding

Definition (Johnson graph)

- Nodes are sets of k elements among $n(k \ll n)$
- N_{1} and N_{2} are adjacents if $\left|N_{1} \cap N_{2}\right|=k-1$
- $\frac{1}{\delta}=\frac{k(n-k)}{n} \simeq k$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size $k=2^{r}$
- Repeat until a collision is found:
- Walk 2^{r} times
- Check whether the node contains a collision

Quantum complexity

$2^{r}+\sqrt{\frac{1}{2^{2 r-m}}}\left(\sqrt{2^{r} \times 1}+1\right) \approx \max \left(2^{r}, 2^{(m-r) / 2}\right) \leadsto$ optimal for $r=m / 3$

Back to sieving

- Locality sensitive filtering + quantum collision finding Exponential time and size QRACM (Grover)/QRAQM (walks)

Back to sieving

- Locality sensitive filtering + quantum collision finding

Exponential time and size QRACM (Grover)/QRAQM (walks)

- Tuple sieve [BLS16,HK17,HKL18,KMPR19,CL23]

Sieve k vectors instead of pairs, look for "configurations" satisfying certain properties
Use quantum amplitude amplification to find tuples that satisfy the configuration.

Lattice reduction algorithms

- good basis: short and orthogonalish vectors, makes problem easy
- bad basis: long and parallelish vectors, makes problem hard

Lattice reduction algorithms

- good basis: short and orthogonalish vectors, makes problem easy
- bad basis: long and parallelish vectors, makes problem hard

Basis reduction: transform a bad basis into a good one Algorithms: LLL, BKZ and its variants

Strong lattice reduction: BKZ algorithm

Strong lattice reduction: BKZ algorithm

- solve SVP for the block

Strong lattice reduction: BKZ algorithm

block size $\beta=5$
$\begin{array}{llllllll}\mathbf{b}_{1}^{\prime} & \mathbf{b}_{2}^{\prime} & \mathbf{b}_{3}^{\prime} & \mathbf{b}_{4}^{\prime} & \mathbf{b}_{5}^{\prime} & \mathbf{b}_{6} & \mathbf{b}_{7}\end{array}$
$\mathbf{x} \leftarrow \operatorname{SVP}\left(\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{5}\right)$
$\left(\mathbf{b}_{1}{ }^{\prime}, \ldots, \mathbf{b}_{5}^{\prime}\right) \leftarrow \operatorname{LLL}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{5}, \mathbf{x}\right)$

- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis

Strong lattice reduction: BKZ algorithm

block size $\beta=5$
$\mathbf{b}_{1}^{\prime} \quad \pi_{1}\left(\mathbf{b}_{2}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{3}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{4}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{5}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{6}^{\prime}\right) \quad \mathbf{b}_{7}$
$\pi_{i}(\mathbf{v})$: project \mathbf{v} orthogonally to $\mathbf{b}_{1}, \ldots, \mathbf{b}_{i}$

- For each block:
- project block
- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis

Strong lattice reduction: BKZ algorithm

block size $\beta=5$
$\mathbf{b}_{1}^{\prime} \quad \pi_{1}\left(\mathbf{b}_{2}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{3}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{4}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{5}^{\prime}\right) \pi_{1}\left(\mathbf{b}_{6}^{\prime}\right) \quad \mathbf{b}_{7}$
$\pi_{i}(\mathbf{v})$: project \mathbf{v} orthogonally to $\mathbf{b}_{1}, \ldots, \mathbf{b}_{i}$

- For each block:
- project block
- solve SVP for the block
- apply LLL to block + SVP
- replace by reduced basis
- Repeat until basis is reduced

Strong lattice reduction: BKZ algorithm

block size $\beta=5$

Key elements:

- bigger $\beta \sim$ more expensive, better reduction, smaller \mathbf{b}_{1}
- very complex behaviour
- quantum BKZ: use a quantum SVP oracle

Learning with errors (LWE)

Let $n=4, m=6$ and $q=17$.
secret

$A \in \mathbb{Z}_{q}^{m \times n}$			$s \in \mathbb{Z}_{q}^{n}$
14 12 2 5 5 3 1 7 14 7 2 5 0 9 8 4 8 11 5 12 5 1 3 14$\times$$\quad b \in \mathbb{Z}_{q}^{m}$			

Given A and b, find s

Learning with errors (LWE)

Let $n=4, m=6$ and $q=17$.

secret

$A \in \mathbb{Z}_{q}^{m \times n}$			$s \in \mathbb{Z}_{q}^{n}$
14 12 2 5 5 3 1 7 14 7 2 5 0 9 8 4 8 11 5 12 5 1 3 14\times1 2 1 5	$b \in \mathbb{Z}_{q}^{m}$		

Given A and b, find s
\sim Very easy (e.g. Gaussian elimination) and in polynomial time

Learning with errors (LWE)

Let $n=4, m=6$ and $q=17$.
random
$A \in \mathbb{Z}_{q}^{m \times n}$

14	12	2	5
5	3	1	7
14	7	2	5
0	9	8	4
8	11	5	12
5	1	3	14

secret noise

$$
s \in \mathbb{Z}_{q}^{n} \quad e \in \mathbb{Z}_{q}^{m} \quad b \in \mathbb{Z}_{q}^{m}
$$

1
2
1
5

-3
-1
2
-3
3
-1
:---:
5
14
6
12
13

Learning with errors (LWE)

Let $n=4, m=6$ and $q=17$.

$A \in \mathbb{Z}_{q}^{m \times n}$

14	12	2	5
5	3	1	7
14	7	2	5
0	9	8	4
8	11	5	12
5	1	3	14

secret noise

$$
s \in \mathbb{Z}_{q}^{n} \quad e \in \mathbb{Z}_{q}^{m} \quad b \in \mathbb{Z}_{q}^{m}
$$

$\square=$| |
| :---: |
| |
| |
| |
| |
| |
| 6 |
| 12 |
| 13 |

Given A and b, find s assuming e is small
\sim Suspected hard problem, even for quantum algorithms
Can always assume that s is small (same hardness)

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST selected PQC algorithms rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST selected PQC algorithms rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

Two types of attacks:

- Primal attack:
- more efficient in most cases
- no quantum speed-up known (besides BKZ)
- Dual attack:
- originally less efficient, now catching up
- some controversies about recent advanced dual attacks[DP23]
- has quantum speed-up (besides BKZ) [AS22,PS23]

Primal attack

We can formulate $b-A \cdot s \equiv e(\bmod q)$ as

$$
\left(\begin{array}{cc}
q \mathbf{l} & -A \\
0 & \mathbf{I}
\end{array}\right)\binom{*}{s}+\binom{b}{0}=\binom{e}{s}
$$

Primal attack

We can formulate $b-A \cdot s \equiv e(\bmod q)$ as

$$
\left(\begin{array}{cc}
q \mathbf{l} & -A \\
0 & \mathbf{I}
\end{array}\right)\binom{*}{s}+\binom{b}{0}=\binom{e}{s} .
$$

And make it homogenous with

$$
\mathbf{M}:=\left(\begin{array}{ccc}
q \mathbf{l} & -A & b \\
0 & \mathbf{I} & 0 \\
0 & 0 & 1
\end{array}\right), \quad \mathbf{M}\left(\begin{array}{l}
* \\
s \\
1
\end{array}\right)=\left(\begin{array}{l}
e \\
s \\
1
\end{array}\right)
$$

Primal attack

We can formulate $b-A \cdot s \equiv e(\bmod q)$ as

$$
\left(\begin{array}{cc}
q \mathbf{l} & -A \\
0 & \mathbf{I}
\end{array}\right)\binom{*}{s}+\binom{b}{0}=\binom{e}{s}
$$

And make it homogenous with

$$
\mathbf{M}:=\left(\begin{array}{ccc}
q \mathbf{l} & -A & b \\
0 & \mathbf{l} & 0 \\
0 & 0 & 1
\end{array}\right), \quad \mathbf{M}\left(\begin{array}{l}
* \\
s \\
1
\end{array}\right)=\left(\begin{array}{l}
e \\
s \\
1
\end{array}\right)
$$

The lattice spanned by \mathbf{M} has an "unusually" small vector
\sim unique shortest vector.
Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce the basis and find the unusually short vector quantum speed-up: quantum BKZ/SVP

Dual attack

Given $b=A \cdot s+e$, split into two parts:

$$
A=\left(\begin{array}{ll}
A_{\text {guess }} & A_{\text {dual }}
\end{array}\right), \quad s=\binom{S_{\text {guess }}}{S_{\text {dual }}}
$$

Consider dual lattice

$$
L=\left\{x \in \mathbb{Z}^{n_{\text {dual }}}: x^{\top} A_{\text {dual }}=0 \bmod q\right\}
$$

Dual attack

Given $b=A \cdot s+e$, split into two parts:

$$
A=\left(\begin{array}{ll}
A_{\text {guess }} & A_{\text {dual }}
\end{array}\right), \quad s=\binom{S_{\text {guess }}}{S_{\text {dual }}}
$$

Consider dual lattice

$$
L=\left\{x \in \mathbb{Z}^{n_{\text {dual }}}: x^{T} A_{\text {dual }}=0 \bmod q\right\}
$$

(1) Find (exponentially) many short vectors $x_{1}, \ldots, x_{N} \in L$, define

$$
g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Dual attack

Given $b=A \cdot s+e$, split into two parts:

$$
A=\left(\begin{array}{ll}
A_{\text {guess }} & A_{\text {dual }}
\end{array}\right), \quad s=\binom{S_{\text {guess }}}{S_{\text {dual }}}
$$

Consider dual lattice

$$
L=\left\{x \in \mathbb{Z}^{n_{\text {dual }}}: x^{\top} A_{\text {dual }}=0 \bmod q\right\}
$$

(1) Find (exponentially) many short vectors $x_{1}, \ldots, x_{N} \in L$, define

$$
g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

(2) Compute

$$
\tilde{S}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{n_{\text {nuess }}}}{\arg \max _{\text {ax }}} g\left(b-A_{\text {guess }} t\right)
$$

Claim: $\tilde{S}_{\text {guess }}=S_{\text {guess }}$ with high probability (for N sufficiently large)

Quantum dual attack

(1) Find many short vectors x_{1}, \ldots, x_{N} in L

- can use BKZ many times \sim quantum BKZ
- can use discrete Gaussian sampling \sim quantum BKZ + PTIME Klein sampler

Quantum dual attack

(1) Find many short vectors x_{1}, \ldots, x_{N} in L

- can use BKZ many times \sim quantum BKZ
- can use discrete Gaussian sampling \sim quantum BKZ + PTIME Klein sampler
(2) Compute

$$
\tilde{S}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{\text {nguess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

- can be done efficiently by discrete Fourier transform (DFT) \$ classical only, can do quantum Fourier transform (QFT) but does not give a speed-up

Quantum dual attack

(1) Find many short vectors x_{1}, \ldots, x_{N} in L

- can use BKZ many times \sim quantum BKZ
- can use discrete Gaussian sampling \sim quantum BKZ + PTIME Klein sampler
(2) Compute

$$
\tilde{S}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{\text {nguess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

- can be done efficiently by discrete Fourier transform (DFT) \. classical only, can do quantum Fourier transform (QFT) but does not give a speed-up
- quantum: Grover search on $t+$ quantum amplitude estimation to approximate $g(t)+$ QRACM

Quantum amplitudes and why the QFT does not work

$$
\tilde{S}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{\text {guess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Quantum amplitudes and why the QFT does not work

$$
\tilde{s}_{\text {guess }}=\underset{t \in \mathbb{Z}_{g}^{\text {geless }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Failed approach:
(1) Create superposition of short vectors ${ }^{a}$

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle
$$

[^0]
Quantum amplitudes and why the QFT does not work

$$
\tilde{S}_{\text {guess }}=\underset{t \in Z_{q}^{\text {teass }}}{\arg \max } g\left(b-A_{\text {gueses }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Failed approach:
(1) Create superposition of short vectors ${ }^{a}$

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle
$$

(2) Apply QFT to get ${ }^{b}$

$$
\frac{1}{\sqrt{N q^{n_{\text {gueses }}}}} \sum_{t \in \mathbb{Z}_{q}^{n_{\text {geess }}}} g(t)|t\rangle
$$

${ }^{a}$ Requires a QRACM if samples are sampled classically.
${ }^{b}$ If both x_{i} and $-x_{i}$ are in the list, the QFT has real amplitudes.

Quantum amplitudes and why the QFT does not work

$$
\tilde{s}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{\text {gguess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Failed approach:
(1) Create superposition of short vectors ${ }^{a}$

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle
$$

(2) Apply QFT to get ${ }^{b}$

$$
\frac{1}{\sqrt{N q^{n \text { guesess }}}} \sum_{t \in \mathbb{Z}_{q}^{n_{g \text { gess }}}} g(t)|t\rangle
$$

(3) Extract vector with highest amplitude:

No known efficient algorithm, but interesting problem!

[^1]
Quantum amplitudes and why the QFT does not work

$$
\tilde{S}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{\text {guess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct
$\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle|0\rangle|0\rangle$

Quantum amplitudes and why the QFT does not work

$$
\tilde{S}_{\text {guess }}=\underset{t \in 7^{n_{\text {guess }}}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct

$$
\begin{aligned}
& \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle|0\rangle|0\rangle \\
& \xrightarrow[\text { Product Oracle }]{\text { Cosine Inner }} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle\left|\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)\right\rangle|0\rangle
\end{aligned}
$$

Quantum amplitudes and why the QFT does not work

$$
\tilde{s}_{\text {guess }}=\underset{t \in 7^{\text {gyuess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct

$$
\begin{aligned}
& \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle|0\rangle|0\rangle \\
& \text { Cosine Inner } \\
& \text { Product Oracle }
\end{aligned} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle\left|\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)\right\rangle|0\rangle
$$

$$
\xrightarrow[\text { Rotation }]{\text { Contriled }} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle\left|\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)\right\rangle\binom{\sqrt{1-\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)}|0\rangle}{+\sqrt{\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)}|1\rangle}
$$

Quantum amplitudes and why the QFT does not work

$$
\tilde{s}_{\text {guess }}=\underset{t \in 7^{\text {gugues }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct

$$
\begin{aligned}
& \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle|0\rangle|0\rangle \\
& \underset{\text { Posoduct Oracle }}{\text { Cone }} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle\left|\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)\right\rangle|0\rangle
\end{aligned}
$$

$$
\xrightarrow[\text { Rotation }]{\text { Controlled }} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left|x_{i}\right\rangle|t\rangle\left|\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)\right\rangle\binom{\sqrt{1-\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)}|0\rangle}{+\sqrt{\cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)}|1\rangle}
$$

$$
=\sqrt{\frac{1}{N} g(t)}\left|\phi_{0}\right\rangle|1\rangle+\sqrt{1-\frac{1}{N} g(t)}\left|\phi_{1}\right\rangle|0\rangle
$$

Quantum amplitudes and why the QFT does not work

$$
\tilde{s}_{\text {guess }}=\underset{t \in \mathbb{Z}_{g}^{\text {ngess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct

$$
\left|\psi_{t}\right\rangle=\sqrt{\frac{1}{N} g(t)}\left|\phi_{0}\right\rangle|0\rangle+\sqrt{1-\frac{1}{N} g(t)}\left|\phi_{1}\right\rangle|1\rangle
$$

Quantum amplitudes and why the QFT does not work

$$
\tilde{S}_{\text {guess }}=\underset{t \in Z_{q}^{\eta_{q u e s}^{s e s}}}{\arg \max } g\left(b-A_{\text {gueses }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct

$$
\left|\psi_{t}\right\rangle=\sqrt{\frac{1}{N} g(t)}\left|\phi_{0}\right\rangle|0\rangle+\sqrt{1-\frac{1}{N} g(t)}\left|\phi_{1}\right\rangle|1\rangle
$$

(2) Use amplitude estimation to approximate $g(t)$

Quantum amplitudes and why the QFT does not work

$$
\tilde{s}_{\text {guess }}=\underset{t \in \mathbb{Z}_{q}^{\text {gguess }}}{\arg \max } g\left(b-A_{\text {guess }} t\right), \quad g(t)=\sum_{i=1}^{N} \cos \left(2 \pi\left\langle x_{i}, t\right\rangle\right)
$$

Alternative approach:
(1) For each t construct

$$
\left|\psi_{t}\right\rangle=\sqrt{\frac{1}{N} g(t)}\left|\phi_{0}\right\rangle|0\rangle+\sqrt{1-\frac{1}{N} g(t)}\left|\phi_{1}\right\rangle|1\rangle
$$

(2) Use amplitude estimation to approximate $g(t)$
(3) Use quantum maximum finding to find best t

Some other nice papers

- [GK17] LWE is easy with quantum samples of the form

$$
\frac{1}{q^{n}} \sum_{a \in \mathbb{Z}_{q}^{n}}|a\rangle\left|a \cdot s+e_{a} \bmod q\right\rangle
$$

-

\mathrm{C}|\mathrm{LWE}\rangle: \sum_{s \in \mathbb{Z}_{q}^{n}} \bigotimes_{i=1}^{m}\left(\sum_{e_{i} \in \mathbb{Z}_{q}} f\left(e_{i}\right)\left|a_{i} \cdot s+e_{i} \bmod q\right\rangle\right)
\]

and

$$
\mathrm{S}|\mathrm{LWE}\rangle:\left(a_{i}, \sum_{e_{i} \in \mathbb{Z}_{q}} f\left(e_{i}\right)\left|a_{i} \cdot s+e_{i} \bmod q\right\rangle\right)
$$

can be constructed in polynomial time in certain regimes, and used to solve the Short Integer Solution problem SIS^{∞}.

[^0]: ${ }^{a}$ Requires a QRACM if samples are sampled classically.
 ${ }^{b}$ If both x_{i} and $-x_{i}$ are in the list, the QFT has real amplitudes.

[^1]: ${ }^{\text {a }}$ Requires a QRACM if samples are sampled classically.
 ${ }^{\text {b }}$ If both x_{i} and $-x_{i}$ are in the list, the QFT has real amplitudes.

