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What is a (Euclidean) lattice?

Definition

L(by,...,by) = {3, xibj: x; € Z} where by, ..., b, is a basis of R".
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Shortest Vector Problem (SVP)

given a basis of a lattice, find a
shortest nonzero vector.

’ « Shortest Vector Problem (SVP):
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Shortest Vector Problem (SVP)

« Shortest Vector Problem (SVP):
given a basis of a lattice, find a
shortest nonzero vector.

Approach: enumeration

Approach: sieving

@ choose aradius R @ generate a lot of random
© enumerate all vectors of vectors
length smaller than R © combine them recursively to

© keep the shortest one reduce their length




Enumeration = tree exploration

Enumerate all X = x1b1 + - - - + x»bp such that || X|| < A:
(*7"'7*7*)

/ J \ }choice of Xy

(%, wvy%,Xn) (%,..vy%,Xn)



Enumeration = tree exploration

Enumerate all X = x1b1 + - - - + x»bp such that || X|| < A:
(*7"'7*7*)

/ J \ }choice of Xy

(%, wvy%,Xn) (%,..vy%,Xn)

P T I i

(*7--~’Xn71:Xn) (*7"'7Xn71vxn) (*""7XI7717X’7) (*7"'7an17Xn)
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Enumeration = tree exploration

Enumerate all X = xyby + - -- + xpbs such that | X|| < R
(*7"'7*7*)
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no children (yoee st X0 (yone st X '
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@ cylindrical pruning [GNR10]
@ discrete pruning [AN17]
@ extreme pruning [GNR10]

~ can all be seen as searching for marked nodes in a tree
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Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
@ cylindrical pruning [GNR10]
@ discrete pruning [AN17]
@ extreme pruning [GNR10]

~ can all be seen as searching for marked nodes in a tree

Quantum backtracking [

Assume black-box access to tree nodes
@ requests give the local tree structure only
O(\/T) requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration [ ]
Quadratic quantum speed-up on all variants of enumeration

Complexity: super-exponential time but polynomial number of qubits
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@ Reduce basis

@ Generate random vectors
@ Repeat many times:
o Sieve vectors
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Sieving Algorithms

Original idea [AKSO01]: Sieve (parameter v < 1):
@ Reduce basis Input: many vectors of length < ¢

o Generate random vectors Output: many vectors of length < ¢

@ Repeat many times: Combine pairs of vectors to produce
e Sieve vectors shorter vectors

ldea: LLL reduced ~ £ < 29" )4, sieve O(nlog 1) times, solve SVP
Heuristic: at each stage, vectors are uniformly distributed of length ¢
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Sieving Algorithms

Original idea [AKSO01]: Sieve (parameter v < 1):
@ Reduce basis Input: many vectors of length < ¢

o Generate random vectors Output: many vectors of length < ¢

@ Repeat many times: Combine pairs of vectors to produce
e Sieve vectors shorter vectors

ldea: LLL reduced ~ £ < 29" )4, sieve O(nlog 1) times, solve SVP
Heuristic: at each stage, vectors are uniformly distributed of length ¢

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:
@ partition vectors into “buckets” (e.g. quarters, cones)
@ two vectors in the same bucket are more likely to be “close”
@ quantum: use Grover in each bucket [Laarhoven16]
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Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)
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Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where kK < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
@ graph: search space
@ marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex
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We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where kK < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
@ graph: search space
@ marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex
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Classical and quantum walks

Classical framework
@ Setup a starting arbitrary vertex (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find a marked vertex in time:

1 1
S+ - < 3 U+ C>
\6,/ ~—~
Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)
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Classical and quantum walks

MNRS framework
@ Setup creates a superposition over all vertices (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find a marked vertex in quantum time:

S+ 1 ( \f; U+C>
NG —~~

Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

ARequireS a QRAQM (strongest quantum RAM model)
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Classical and quantum walks

MNRS framework
@ Setup creates a superposition over all vertices (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find kK marked vertex in quantum time[BCSS23]:

S+ 1 ( \/T U—i—C)
€ 1)
~— ~—

Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

ARequireS a QRAQM (strongest quantum RAM model)
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Example: Walk-based collision finding

Definition (Johnson graph)

@ Nodes are sets of k elements among n (k < n)
@ Ny and N, are adjacents if [Ny N No| = k — 1

°ol= "(”—n"‘) ~ k (We need to replace all elements.)
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Example: Walk-based collision finding

Definition (Johnson graph)
@ Nodes are sets of k elements among n (k < n)

@ N; and N, are adjacents if [Ny N No| = k — 1

°ol= "(”7”‘") ~ k (We need to replace all elements.)

A

Collision finding with Johnson graph
@ Create a random list of elements of size k = 2"

@ Repeat until a collision is found:

e Walk 2" times
@ Check whether the node contains a collision

.

Classical complexity

(2" x1+1)~max(2",2™") ~ optimal for r = m/2
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Example: Walk-based collision finding

Definition (Johnson graph)
@ Nodes are sets of k elements among n (k < n)

@ N; and N, are adjacents if [Ny N No| = k — 1

i WG o (We need to replace all elements.)

® s n

A

Collision finding with Johnson graph
@ Create a random list of elements of size k = 2"

@ Repeat until a collision is found:

e Walk 2" times
@ Check whether the node contains a collision

.

Quantum complexity

1

r
2+ 22r—m

(W-F 1) ~ max(2",2(M=1/2) ~. optimal for r = m/3
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Back to sieving

@ Locality sensitive filtering + quantum collision finding
Exponential time and size QRACM (Grover)/QRAQM (walks)
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Back to sieving

@ Locality sensitive filtering + quantum collision finding
Exponential time and size QRACM (Grover)/QRAQM (walks)
@ Tuple sieve [BLS16,HK17,HKL18,KMPR19,CL23]

Sieve k vectors instead of pairs, look for “configurations” satisfying
certain properties

Use quantum amplitude amplification to find tuples that satisfy the
configuration.
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Lattice reduction algorithms

@ good basis: short and orthogonalish vectors, makes problem easy
@ bad basis: long and parallelish vectors, makes problem hard
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Lattice reduction algorithms

@ good basis: short and orthogonalish vectors, makes problem easy
@ bad basis: long and parallelish vectors, makes problem hard

Basis reduction: transform a bad basis into a good one
Algorithms: LLL, BKZ and its variants
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Strong lattice reduction: BKZ algorithm

block size 5 =5
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Strong lattice reduction: BKZ algorithm

block size 3 =5

x < SvP(bq,...,bs)

@ solve SVP for the block
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Strong lattice reduction: BKZ algorithm

block size 3 =5

b, b, b, b, b, bg by

+ svP(by,...,bs)
(by,...,b5) + LLL(by,...,bs,x)

e solve SVP for the block
e apply LLL to block + SVP
e replace by reduced basis
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Strong lattice reduction: BKZ algorithm

block size 3 =5

by mi(by) mi(bs) m(b}) m1(bg) mi(bg) by

7i(V): project v orthogonally to by, ..., b;

@ For each block:

project block

solve SVP for the block
apply LLL to block + SVP
replace by reduced basis
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by mi(by) mi(bs) m(b}) m1(bg) mi(bg) by

7i(V): project v orthogonally to by, ..., b;

@ For each block:

e project block

e solve SVP for the block

e apply LLL to block + SVP
e replace by reduced basis

@ Repeat until basis is reduced
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Strong lattice reduction: BKZ algorithm

block size 3 =5

b}  m(by) m(bg) m(b}) m1(bg) m1(bg) b7

7i(V): project v orthogonally to by, ..., b;

Key elements:
@ For each block: o bi _
e project block igger 5 ~ more expensive,

o solve SVP for the block better reduction, smaller b

o apply LLL to block + SVP @ very complex behaviour

e replace by reduced basis e quantum BKZ: use a

@ Repeat until basis is reduced guantum SVP oracle
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Learning with errors (LWE)
Leth=4, m=6and g=17.
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Learning with errors (LWE)
Leth=4, m=6and g=17.

eZ?X” ezg’
14]12] 2[5 11]
5(3[1]7] _ |5
14725 14
ololsla 6 |
8 [11] 5 [12 12]
5/1]3[14 13]

Given A and b, find

~ Very easy (e.g. Gaussian elimination) and in polynomial time

15/21



Learning with errors (LWE)

Leth=4, m=6and g=17.

random
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Learning with errors (LWE)
Leth=4, m=6and g=17.

random secret noise
€ Zg™*" €Zy ecly € Zg
14]12[ 2[5 11]
5/3[1]7 5
X - =
14| 7|25 14
olos]4 6
8 |11] 5 [12 12]
5(1]3][14 13|

Given / and ©, find s assuming e is small

~» Suspected hard problem, even for quantum algorithms
Can always assume that s is small (same hardness)
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LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
@ several lattice-based NIST selected PQC algorithms rely on LWE
@ extensive literature
@ all evidence points to resistance against quantum attacks
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LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
@ several lattice-based NIST selected PQC algorithms rely on LWE
@ extensive literature
@ all evidence points to resistance against quantum attacks

Two types of attacks:
@ Primal attack:
e more efficient in most cases
@ no quantum speed-up known (besides BKZ)
@ Dual attack:

e originally less efficient, now catching up
@ some controversies about recent advanced dual attacks[DP23]
e has quantum speed-up (besides BKZ) [AS22,PS23]
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Primal attack

We can formulate ©» —
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Primal attack

We can formulate © — =e (mod q) as

(£ )0-0-0)

And make it homogenous with

gl - * e
M=|0 I O0f, M =
0O 0 1 1 1

The lattice spanned by M has an “unusually” small vector
~ unique shortest vector.

Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce
the basis and find the unusually short vector

quantum speed-up: quantum BKZ/SVP
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Dual attack

Given b = /- 5 + e, split into two parts:

. ()

Consider dual lattice
L={xegzMua.xT =0 mod g}
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Given b = /- 5 + e, split into two parts:

. (]
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L={xegzMua.xT =0 mod g}

@ Find (exponentially) many short vectors x1,..., xy € L, define

N
9(1) = cos(2m(x;, 1))
i=1
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Dual attack

Given b = /- 5 + e, split into two parts:

. (]

Consider dual lattice
L={xegzMua.xT =0 mod g}

@ Find (exponentially) many short vectors x1,..., xy € L, define
N
g(1) =Y cos(2n(x;, 1))
i=1

@ Compute

= argmax g(> — )
eZZguess

Claim: = with high probability (for N sufficiently large)
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Quantum dual attack

@ Find many short vectors x4,...,xyin L

e can use BKZ many times ~ quantum BKZ
e can use discrete Gaussian sampling ~ quantum BKZ + PTIME
Klein sampler
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Quantum dual attack

@ Find many short vectors x4,...,xyin L
e can use BKZ many times ~ quantum BKZ
e can use discrete Gaussian sampling ~ quantum BKZ + PTIME
Klein sampler
@ Compute
N
=argmaxg(h— /. 0),  g() =D cos(2n(x; 1))
eZZguess -

e can be done efficiently by discrete Fourier transform (DFT)

A classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up
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Quantum dual attack

@ Find many short vectors x4,...,xyin L
e can use BKZ many times ~ quantum BKZ
e can use discrete Gaussian sampling ~ quantum BKZ + PTIME
Klein sampler

@ Compute

=argmaxg(> — )s 9(1) = Z:\; cos(2m(xj, 1))

Nguess
E€Z q

e can be done efficiently by discrete Fourier transform (DFT)

A classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up

e quantum: Grover search on / + quantum amplitude estimation to
approximate g(/) + QRACM
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,', >)

Nguess
€Zqg
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,'7 >)

Nguess
€Zqg

Failed approach:

@ Create superposition of short vectors?

N
’
ﬁzi:1 |x)

@Requires a QRACM if samples are sampled classically.
bt both x; and —x; are in the list, the QFT has real amplitudes.
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,'7 >)

Nguess
€Zqg

Failed approach:

@ Create superposition of short vectors?

N
]

UN Z,:1 |x7)
@ Apply QFT to get?

1
\/W Z ezgguess g( )’ >

@Requires a QRACM if samples are sampled classically.
bt both x; and —x; are in the list, the QFT has real amplitudes.
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Quantum amplitudes and why the QFT does not work

= arg max g( — )7 g( ) = Z:V:1 COS(27T<X,’7 >)

Nguess
€Zqg

Failed approach:

@ Create superposition of short vectors?

N
1

TR Dt D
@ Apply QFT to get?

]
\/W Z ezgguess g( )’ >
© Extract vector with highest amplitude:
A No known efficient algorithm, but interesting problem!

2Requires a QRACM if samples are sampled classically.
bt both x; and —x; are in the list, the QFT has real amplitudes.
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Quantum amplitudes and why the QFT does not work

=argmaxg(> —
eZ"guess
q

Alternative approach:

@ For each / construct
ZOBRILICTY

9(’)

le,\; cos(2m(x}, 1))
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,', >)

Nguess
€Zqg

Alternative approach:

@ For each / construct
S 111910y [0)
C
Soshelmer, 1S 1) |1 leos(@n (x;. 1)) [0)

Product Oracle

20/21



Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,'7 >)

eZgguess
Alternative approach:

@ For each / construct

\le 1|X |0 |0
e 7 Dy P 1) leos(2r (i, ) 0

Product Oracle

Controlled, \FZ ) cos(27(x;, 1)) (\/1 — cos(2m(xj, 1)) |0>)

Rotation C05(27T<Xia >) 1)
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,'7 >)

eZgguess
Alternative approach:

@ For each / construct

a2, 110010

Cosine Inner

Product Oracle le 1 ) leos(2m(xi, 1)) 10)

Controlled \/1 — cos(2m(x;, 1)) [0)
(2w (x;,

Rotation fz Heos(Bmixi >< ++y/cos(2m(x;, ) 1)

= /29 g0} |1) + /1 ) |#1) 10)
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,', >)

Nguess
€Zq

Alternative approach:

@ For each / construct

[¥) =/ n9() [¢0) [0) +4/1 = 7g()|o1) 1)
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,', >)

eZgguess
Alternative approach:

@ For each / construct

1) =1/ 59(1) |60} [0) + /1 )lo1) (1)

@ Use amplitude estimation to approximate g(
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Quantum amplitudes and why the QFT does not work

= arg max g( — ), g( ) = Z:V:1 COS(27T<X,', >)

Nguess
€Zq

Alternative approach:

@ For each / construct

1) =1/ 59(1) |60} [0) + /1 )lo1) (1)

@ Use amplitude estimation to approximate g(
© Use quantum maximum finding to find best
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Some other nice papers

o [GK17] LWE is easy with quantum samples of the form

> la)yla- s+ eamod q)

qn acly
e [CLZ21]:
m
CILWE) : Y~ QD f(e)|ai- s+ e mod q))
SE€Zg i=1 ei€lq
and

SILWE) : (a;, Y _ f(ej)|ai- s+ € mod q))
€i€Zq
can be constructed in polynomial time in certain regimes, and
used to solve the Short Integer Solution problem SIS*°.
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