Quantum algorithms for lattice problems

Yixin Shen

King’s College London

October 16, 2023

ING'S
College

LONDON

1/21

Outline

Q svp

@ Enumeration
@ Sieving

© Bkz
© e

@ Primal attacks
@ Dual attacks

@ Final words

What is a (Euclidean) lattice?

Definition

L(by,...,by) = {3, xibj: x; € Z} where by, ..., b, is a basis of R".

3/21

Quantum memory models

classical access quantum access
(@)
o X{1 —
& .
= . [N X
S Xn— RAM i
a i —
Q9
Q

standard

e}
C
Q
=1
c
3
o
QO
Q

Assumption: O(1) time cost

4/21

Quantum memory models

classical access quantum access

g’—, X1 —
7 :
g- Xy — RAM — X
o i —
o
Q

standard
o X)) — — |x1)
© . :
-] : . N
= |xn) —{ plain — |xn)
3 y) — — |y ©x)
g i
Q

standard

Assumption: O(1) time cost

4/21

Quantum memory models

classical access quantum access
X

g—,){1 —> .1 7
S Xy — RAM — X Xn —1 QRACM
S y) — — |y ©Xi)
g i) — — i)
Q . .

standard potentially strong assumption
o X)) — — [x1)
© . .
> : . N
= |xn) —{ plain — |xn)
3 y)— — [y @ x)
g i
QO

standard

Assumption: O(1) time cost

4/21

Quantum memory models

classical access

g’—, X1 —
A :
&—,- Xy — RAM — X
a i —
o
Q

standard
o X)) — — [Xy)
S . .
> : . N
= |xn) —{ plain — |xn)
3 y) — — |y @ x)
g i
Q

standard

Assumption: O(1) time cost

quantum access

X1 —
Xn —
) —

i) —

QRACM

— |y @ X))
— 1)

potentially strong assumption

|X1) —

|Xn) —

) —

i) —

QRAQM

— |X1)

> |Xn)
— |y ® X;)
— i)

strong assumption

4/21

Shortest Vector Problem (SVP)

given a basis of a lattice, find a
shortest nonzero vector.

’ « Shortest Vector Problem (SVP):

5/21

Shortest Vector Problem (SVP)

° b [] ° . o
® e _ -~ T T~ b °
. AR AN * « Shortest Vector Problem (SVP):
b 7/ []
. R’ o T * e , given a basis of a lattice, find a
° ; PRt e
LA \‘ * ., shortest nonzero vector.
°* o . \‘ . . ! °
® . N s ® o
° \ ° “e” ! ® .
[° N \ [° //.
» , .
* . N o -l * * « Two main approaches:
® . . -7 % o .

Approach: enumeration

@ choose a radius R

@ enumerate all vectors of
length smaller than R

© keep the shortest one

Shortest Vector Problem (SVP)

« Shortest Vector Problem (SVP):
given a basis of a lattice, find a
shortest nonzero vector.

Approach: enumeration

Approach: sieving

@ choose aradius R @ generate a lot of random
© enumerate all vectors of vectors
length smaller than R © combine them recursively to

© keep the shortest one reduce their length

Enumeration = tree exploration

Enumerate all X = x1b1 + - - - + x»bp such that || X|| < A:
(*7"'7*7*)

/ J \ }choice of Xy

(%, wvy%,Xn) (%,..vy%,Xn)

Enumeration = tree exploration

Enumerate all X = x1b1 + - - - + x»bp such that || X|| < A:
(*7"'7*7*)

/ J \ }choice of Xy

(%, wvy%,Xn) (%,..vy%,Xn)

P T I i

(*7--~’Xn71:Xn) (*7"'7Xn71vxn) (*""7XI7717X’7) (*7"'7an17Xn)

6/21

Enumeration = tree exploration

Enumerate all X = xyby + - -- + xpbs such that | X|| < R
(*7"'7*7*)

Somes nodes have / J \ }ChOiCG of xp

no children (yoee st X0 (yone st X '
} choice
PERN [N
(*7---7Xn 1:Xn)(*v"'7xn—1yxn) (*7"'7Xn717Xn) (*,...,an,Xn)
%)
l The structure of each branch
(*,X2,+,Xn) depends on the choice of the
/ l \ previous x;, of the basis by, ..., by
and the radius R.
(X1,-.-sXn) (X1 yeeeyXn) (X1 5e--yXn)

~ 1t 7

| solution nodes |

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
@ cylindrical pruning [GNR10]
@ discrete pruning [AN17]
@ extreme pruning [GNR10]

~ can all be seen as searching for marked nodes in a tree

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
@ cylindrical pruning [GNR10]
@ discrete pruning [AN17]
@ extreme pruning [GNR10]

~ can all be seen as searching for marked nodes in a tree

Quantum backtracking [

Assume black-box access to tree nodes
@ requests give the local tree structure only
O(\/T) requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Enumeration and quantum

Many variants of enumeration to reduce the size of the tree:
@ cylindrical pruning [GNR10]
@ discrete pruning [AN17]
@ extreme pruning [GNR10]

~ can all be seen as searching for marked nodes in a tree

Quantum backtracking [

Assume black-box access to tree nodes
@ requests give the local tree structure only
O(\/T) requests to find a solution node (tree with T nodes)

Can also estimate the size of a tree with a quadratic speed-up [AK17]

Quantum acceleration []
Quadratic quantum speed-up on all variants of enumeration

Complexity: super-exponential time but polynomial number of qubits

7/21

Sieving Algorithms

Original idea [AKSO01]:
@ Reduce basis

@ Generate random vectors
@ Repeat many times:
o Sieve vectors

Sieving Algorithms

Original idea [AKSO01]:
@ Reduce basis

@ Generate random vectors
@ Repeat many times:
o Sieve vectors

Sieve (parameter v < 1):
Input: many vectors of length < ¢

Output: many vectors of length < ¢

Combine pairs of vectors to produce

shorter vectors

Sieving Algorithms

Original idea [AKSO01]: Sieve (parameter v < 1):
@ Reduce basis Input: many vectors of length < ¢

o Generate random vectors Output: many vectors of length < ¢

@ Repeat many times: Combine pairs of vectors to produce
e Sieve vectors shorter vectors

ldea: LLL reduced ~ £ < 29")4, sieve O(nlog 1) times, solve SVP
Heuristic: at each stage, vectors are uniformly distributed of length ¢

21

Sieving Algorithms

Original idea [AKSO01]: Sieve (parameter v < 1):
@ Reduce basis Input: many vectors of length < ¢

o Generate random vectors Output: many vectors of length < ¢

@ Repeat many times: Combine pairs of vectors to produce
e Sieve vectors shorter vectors

ldea: LLL reduced ~ £ < 29")4, sieve O(nlog 1) times, solve SVP
Heuristic: at each stage, vectors are uniformly distributed of length ¢

Avoid testing all pairs of vectors: locality sensitive filtering [BDGL15]:
@ partition vectors into “buckets” (e.g. quarters, cones)
@ two vectors in the same bucket are more likely to be “close”
@ quantum: use Grover in each bucket [Laarhoven16]

21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where k < 2n— m.

Extensively studied in the classical case.

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where k < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where kK < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
@ graph: search space
@ marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9/21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where kK < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
@ graph: search space
@ marked nodes: solutions

() Start anywhere, move to random
neighbors until we find a marked vertex

9/21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where kK < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
@ graph: search space
@ marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9/21

Collision Finding

We can view sieving as finding pairs of vectors with common attributes
~ collision finding (e.g. find two vectors in the same bucket)

Collision Finding

Given random f : {0,1}" — {0,1}™, n < m < 2n, find 2k collision pairs,
where kK < 2n— m.

Extensively studied in the classical case. Several quantum algorithms:
@ BHT algorithm based on Grover search (+QRACM)
@ Algorithms based on quantum walks [Ambainis03] [BCSS23]

Classical walk:
@ graph: search space
@ marked nodes: solutions

Start anywhere, move to random
neighbors until we find a marked vertex

9/21

Classical and quantum walks

Classical framework
@ Setup a starting arbitrary vertex (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find a marked vertex in time:

1 1
S+ - < 3 U+ C>
\6,/ ~—~
Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

10/21

Classical and quantum walks

MNRS framework
@ Setup creates a superposition over all vertices (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find a marked vertex in quantum time:

S+ 1 (\f; U+C>
NG —~~

Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

ARequireS a QRAQM (strongest quantum RAM model)

10/21

Classical and quantum walks

MNRS framework
@ Setup creates a superposition over all vertices (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find kK marked vertex in quantum time[CL21]:

1 1
S+ - < 3 U+ C)
NG ~—
Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

ARequireS a QRAQM (strongest quantum RAM model)

10/21

Classical and quantum walks

MNRS framework
@ Setup creates a superposition over all vertices (S)
@ Move from one vertex to one of its neighbors (U)
@ Check if a vertex is marked (C)

We will find kK marked vertex in quantum time[BCSS23]:

S+ 1 (\/T U—i—C)
€ 1)
~— ~—

Walk steps Mixing time

where
@ ¢: proportion of marked vertices

@ J: spectral gap of the graph (number of updates before we reach a
new uniformly random vertex)

ARequireS a QRAQM (strongest quantum RAM model)

10/21

Example: Walk-based collision finding

Definition (Johnson graph)

@ Nodes are sets of k elements among n (k < n)
@ Ny and N, are adjacents if [Ny N No| = k — 1

°ol= "(”—n"‘) ~ k (We need to replace all elements.)

11/21

Example: Walk-based collision finding

Definition (Johnson graph)
@ Nodes are sets of k elements among n (k < n)
@ N; and N, are adjacents if [Ny N No| = k — 1

°ol= "(”—n"‘) ~ k (We need to replace all elements.)

.

Collision finding with Johnson graph

@ Create a random list of elements of size k = 2"
@ Repeat until a collision is found:

o Walk 2" times
@ Check whether the node contains a collision

.

11/21

Example: Walk-based collision finding

Definition (Johnson graph)
@ Nodes are sets of k elements among n (k < n)

@ N; and N, are adjacents if [Ny N No| = k — 1

°ol= "(”7”‘") ~ k (We need to replace all elements.)

A

Collision finding with Johnson graph
@ Create a random list of elements of size k = 2"

@ Repeat until a collision is found:

e Walk 2" times
@ Check whether the node contains a collision

.

Classical complexity

(2" x1+1)~max(2",2™") ~ optimal for r = m/2

11/21

Example: Walk-based collision finding

Definition (Johnson graph)
@ Nodes are sets of k elements among n (k < n)

@ N; and N, are adjacents if [Ny N No| = k — 1

i WG o (We need to replace all elements.)

® s n

A

Collision finding with Johnson graph
@ Create a random list of elements of size k = 2"

@ Repeat until a collision is found:

e Walk 2" times
@ Check whether the node contains a collision

.

Quantum complexity

1

r
2+ 22r—m

(W-F 1) ~ max(2",2(M=1/2) ~. optimal for r = m/3

11/21

Back to sieving

@ Locality sensitive filtering + quantum collision finding
Exponential time and size QRACM (Grover)/QRAQM (walks)

12/21

Back to sieving

@ Locality sensitive filtering + quantum collision finding
Exponential time and size QRACM (Grover)/QRAQM (walks)
@ Tuple sieve [BLS16,HK17,HKL18,KMPR19,CL23]

Sieve k vectors instead of pairs, look for “configurations” satisfying
certain properties

Use quantum amplitude amplification to find tuples that satisfy the
configuration.

12/21

Lattice reduction algorithms

@ good basis: short and orthogonalish vectors, makes problem easy
@ bad basis: long and parallelish vectors, makes problem hard

13/21

Lattice reduction algorithms

@ good basis: short and orthogonalish vectors, makes problem easy
@ bad basis: long and parallelish vectors, makes problem hard

Basis reduction: transform a bad basis into a good one
Algorithms: LLL, BKZ and its variants

13/21

Strong lattice reduction: BKZ algorithm

block size 5 =5

14/21

Strong lattice reduction: BKZ algorithm

block size 3 =5

x < SvP(bq,...,bs)

@ solve SVP for the block

14/21

Strong lattice reduction: BKZ algorithm

block size 3 =5

b, b, b, b, b, bg by

+ svP(by,...,bs)
(by,...,b5) + LLL(by,...,bs,x)

e solve SVP for the block
e apply LLL to block + SVP
e replace by reduced basis

14/21

Strong lattice reduction: BKZ algorithm

block size 3 =5

by mi(by) mi(bs) m(b}) m1(bg) mi(bg) by

7i(V): project v orthogonally to by, ..., b;

@ For each block:

project block

solve SVP for the block
apply LLL to block + SVP
replace by reduced basis

14/21

Strong lattice reduction: BKZ algorithm

block size 3 =5

by mi(by) mi(bs) m(b}) m1(bg) mi(bg) by

7i(V): project v orthogonally to by, ..., b;

@ For each block:

e project block

e solve SVP for the block

e apply LLL to block + SVP
e replace by reduced basis

@ Repeat until basis is reduced

14/21

Strong lattice reduction: BKZ algorithm

block size 3 =5

b} m(by) m(bg) m(b}) m1(bg) m1(bg) b7

7i(V): project v orthogonally to by, ..., b;

Key elements:
@ For each block: o bi _
e project block igger 5 ~ more expensive,

o solve SVP for the block better reduction, smaller b

o apply LLL to block + SVP @ very complex behaviour

e replace by reduced basis e quantum BKZ: use a

@ Repeat until basis is reduced guantum SVP oracle

14/21

Learning with errors (LWE)
Leth=4, m=6and g=17.

secret

€ Z?X” ezl

14]12] 2
53
14| 7
0|9
8 11
5 1

Wi =

Given A and b, find

m
N

Q3

—] — — —
HNEINEIE

15/21

Learning with errors (LWE)
Leth=4, m=6and g=17.

eZ?X” ezg’
14]12] 2[5 11]
5(3[1]7] _ |5
14725 14
ololsla 6 |
8 [11] 5 [12 12]
5/1]3[14 13]

Given A and b, find

~ Very easy (e.g. Gaussian elimination) and in polynomial time

15/21

Learning with errors (LWE)

Leth=4, m=6and g=17.

random

mxn
€ Lyqg

14

12

2

3

14

7

9

11

1

Wi =

secret

n
€ Lyqg

noise

m
€€ Lyg

m
N
<3

—] — — —
HNEINEIE

15/21

Learning with errors (LWE)
Leth=4, m=6and g=17.

random secret noise
€ Zg™*" €Zy ecly € Zg
14]12[2[5 11]
5/3[1]7 5
X - =
14| 7|25 14
olos]4 6
8 |11] 5 [12 12]
5(1]3][14 13|

Given / and ©, find s assuming e is small

~» Suspected hard problem, even for quantum algorithms
Can always assume that s is small (same hardness)

15/21

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
@ several lattice-based NIST selected PQC algorithms rely on LWE
@ extensive literature
@ all evidence points to resistance against quantum attacks

16/21

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:
@ several lattice-based NIST selected PQC algorithms rely on LWE
@ extensive literature
@ all evidence points to resistance against quantum attacks

Two types of attacks:
@ Primal attack:
e more efficient in most cases
@ no quantum speed-up known (besides BKZ)
@ Dual attack:

e originally less efficient, now catching up
@ some controversies about recent advanced dual attacks[DP23]
e has quantum speed-up (besides BKZ) [AS22,PS23]

16/21

Primal attack

We can formulate ©» —

17/21

Primal attack

We can formulate © — /- s = e (mod q) as

@)) ()

And make it homogenous with

ql — *

17/21

Primal attack

We can formulate © — =e (mod q) as

(£)0-0-0)

And make it homogenous with

gl - * e
M=|0 I O0f, M =
0O 0 1 1 1

The lattice spanned by M has an “unusually” small vector
~ unique shortest vector.

Reduction to uSVP, use BKZ (or more advanced algorithms) to reduce
the basis and find the unusually short vector

quantum speed-up: quantum BKZ/SVP

17/21

Dual attack

Given b = /- 5 + e, split into two parts:

. ()

Consider dual lattice
L={xegzMua.xT =0 mod g}

18/21

Dual attack

Given b = /- 5 + e, split into two parts:

. (]

Consider dual lattice
L={xegzMua.xT =0 mod g}

@ Find (exponentially) many short vectors x1,..., xy € L, define

N
9(1) = cos(2m(x;, 1))
i=1

18/21

Dual attack

Given b = /- 5 + e, split into two parts:

. (]

Consider dual lattice
L={xegzMua.xT =0 mod g}

@ Find (exponentially) many short vectors x1,..., xy € L, define
N
g(1) =Y cos(2n(x;, 1))
i=1

@ Compute

= argmax g(> —)
eZZguess

Claim: = with high probability (for N sufficiently large)

18/21

Quantum dual attack

@ Find many short vectors x4,...,xyin L

e can use BKZ many times ~ quantum BKZ
e can use discrete Gaussian sampling ~ quantum BKZ + PTIME
Klein sampler

19/21

Quantum dual attack

@ Find many short vectors x4,...,xyin L
e can use BKZ many times ~ quantum BKZ
e can use discrete Gaussian sampling ~ quantum BKZ + PTIME
Klein sampler
@ Compute
N
=argmaxg(h— /. 0), g() =D cos(2n(x; 1))
eZZguess -

e can be done efficiently by discrete Fourier transform (DFT)

A classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up

19/21

Quantum dual attack

@ Find many short vectors x4,...,xyin L
e can use BKZ many times ~ quantum BKZ
e can use discrete Gaussian sampling ~ quantum BKZ + PTIME
Klein sampler

@ Compute

=argmaxg(> —)s 9(1) = Z:\; cos(2m(xj, 1))

Nguess
E€Z q

e can be done efficiently by discrete Fourier transform (DFT)

A classical only, can do quantum Fourier transform (QFT) but
does not give a speed-up

e quantum: Grover search on / + quantum amplitude estimation to
approximate g(/) + QRACM

19/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,', >)

Nguess
€Zqg

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,'7 >)

Nguess
€Zqg

Failed approach:

@ Create superposition of short vectors?

N
’
ﬁzi:1 |x)

@Requires a QRACM if samples are sampled classically.
bt both x; and —x; are in the list, the QFT has real amplitudes.
20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,'7 >)

Nguess
€Zqg

Failed approach:

@ Create superposition of short vectors?

N
]

UN Z,:1 |x7)
@ Apply QFT to get?

1
\/W Z ezgguess g()’ >

@Requires a QRACM if samples are sampled classically.
bt both x; and —x; are in the list, the QFT has real amplitudes.
20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—)7 g() = Z:V:1 COS(27T<X,’7 >)

Nguess
€Zqg

Failed approach:

@ Create superposition of short vectors?

N
1

TR Dt D
@ Apply QFT to get?

]
\/W Z ezgguess g()’ >
© Extract vector with highest amplitude:
A No known efficient algorithm, but interesting problem!

2Requires a QRACM if samples are sampled classically.
bt both x; and —x; are in the list, the QFT has real amplitudes.
20/21

Quantum amplitudes and why the QFT does not work

=argmaxg(> —
eZ"guess
q

Alternative approach:

@ For each / construct
ZOBRILICTY

9(’)

le,\; cos(2m(x}, 1))

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,', >)

Nguess
€Zqg

Alternative approach:

@ For each / construct
S 111910y [0)
C
Soshelmer, 1S 1) |1 leos(@n (x;. 1)) [0)

Product Oracle

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,'7 >)

eZgguess
Alternative approach:

@ For each / construct

\le 1|X |0 |0
e 7 Dy P 1) leos(2r (i,) 0

Product Oracle

Controlled, \FZ) cos(27(x;, 1)) (\/1 — cos(2m(xj, 1)) |0>)

Rotation C05(27T<Xia >) 1)

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,'7 >)

eZgguess
Alternative approach:

@ For each / construct

a2, 110010

Cosine Inner

Product Oracle le 1) leos(2m(xi, 1)) 10)

Controlled \/1 — cos(2m(x;, 1)) [0)
(2w (x;,

Rotation fz Heos(Bmixi >< ++y/cos(2m(x;,) 1)

= /29 g0} |1) + /1) |#1) 10)

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,', >)

Nguess
€Zq

Alternative approach:

@ For each / construct

[¥) =/ n9() [¢0) [0) +4/1 = 7g()|o1) 1)

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,', >)

eZgguess
Alternative approach:

@ For each / construct

1) =1/ 59(1) |60} [0) + /1)lo1) (1)

@ Use amplitude estimation to approximate g(

20/21

Quantum amplitudes and why the QFT does not work

= arg max g(—), g() = Z:V:1 COS(27T<X,', >)

Nguess
€Zq

Alternative approach:

@ For each / construct

1) =1/ 59(1) |60} [0) + /1)lo1) (1)

@ Use amplitude estimation to approximate g(
© Use quantum maximum finding to find best

20/21

Some other nice papers

o [GK17] LWE is easy with quantum samples of the form

> la)yla- s+ eamod q)

qn acly
e [CLZ21]:
m
CILWE) : Y~ QD f(e)|ai- s+ e mod q))
SE€Zg i=1 ei€lq
and

SILWE) : (a;, Y _ f(ej)|ai- s+ € mod q))
€i€Zq
can be constructed in polynomial time in certain regimes, and
used to solve the Short Integer Solution problem SIS*°.

21/21

	SVP
	Enumeration
	Sieving

	BKZ
	LWE
	Primal attacks
	Dual attacks

	Final words

