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Abstract. We consider the LTL model-checking problem of concurrent
self modifying code, i.e., concurrent code that has the ability to modify
its own instructions during execution time. This style of code is fre-
quently utilized by malware developers to make their malicious code
hard to detect. To model such programs, we consider Self-Modifying
Dynamic Pushdown Networks (SM-DPN). A SM-DPN is a network of
Self-Modifying Pushdown processes, where each process has the ability
to modify its current set of rules and to spawn new processes during
execution time. We consider model checking SM-DPNs against single in-
dexed LTL formulas, i.e., conjunctions of separate LTL formulas on each
single process. This problem is non trivial since the number of spawned
processes in a given run can be infinite. Our approach is based on com-
puting finite automata representing the set of configurations from which
the SM-DPN has a run that satisfies the single-indexed LTL formula. We
implemented our techniques in a tool and obtained promising results. In
particular, our tool was able to detect concurrent, self-modifying mal-
ware.

1 Introduction

Most of programs implement concurrent routines for efficiency. However, analy-
sis of concurrent programs is a notoriously hard challenge. Therefore, significant
efforts were made in the direction of automatic verification of concurrent pro-
grams [8,13,17,19-21, 25].

On the other hand, self-modifying code is a code that modifies its own in-
structions during the execution time. This technique is widely used by packers
to decrease the size of a program and by malware developers to confuse anti-
virus software and make their malware hard to detect. The problem of analysing
self-modifying code was approached by more recent studies [7,9,19,26].

This paper focuses on analysing programs that are both concurrent and self-
modifying. Indeed, modern malware employs concurrency for parallel execution
of different tasks and contains self-modifying code to stay undetected for as long
as possible.

Self-modifying behaviour of a program is achieved by writing to the exe-
cutable region of the binary, which is an array of memory locations from where
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# Address Bytecode Assembly
0x04 0x31cO Xor eax, eax
0x06 0xb001 mov al, 1
0x08 0xbb80cd02b0 mov ebx, 0xb002cd80
0x0d 0x891d04000000 mov [0x04], ebx
0x13 Oxebe7 jmp 0x04

Listing 1.1. Binary code with a self-modifying instruction.

# Address Assembly

0x04 Xor eax, eax #- executing --> mov al, 0x2
# mov [0x04], ebx

0x06 mov al, 1 #- executing --> int 0x80
# mov [0x04], ebx

0x08 mov ebx, 0xb002cd80

0x0d mov  [0x04], ebx

0x13 jmp 0x04

Listing 1.2. Binary code after executing a self-modifying instruction.

a computer reads instructions to execute. Self-modification can be implemented
using different techniques. For example, let us consider a self-modifying concur-
rent binary code of a Linux program running on a CPU with x86 architecture.
Programs for this architecture mostly use mov instructions to write data into
memory, including the memory of executable instructions. A portion of the pro-
gram’s assembly is demonstrated in Listing 1.1. The first column denotes relative
addresses of instructions. The second column contains bytes stored at that ad-
dress, and the third column is the corresponding assembly code for the binary
code. eax and ebx are CPU registers, and al points to the lowest byte of eax.
Let us explain why this code is self-modifying and concurrent. First, a process
starts executing the program at the address 0x04 and reads bytes 0x31c0 stored
at this location. Bytecode 0x31c0 corresponds to the instruction xor eax, eax,
which means the process sets eax to 0. This instruction is two bytes long, so the
process reads the next instruction from the address 0x06. This address contains
bytes 0xb001, which is the bytecode of the instruction mov al, 0x1, which sets
the lowest byte of eax to Ox1. Then, the process executes the instruction mov
ebx, 0xb002cd80, which corresponds to the bytecode 0xbb80cd02b0 stored at
the address 0x08. This sets ebx to 0xb002cd80. Next, the process executes the
instruction stored at the address 0x0d. This instruction is mov [0x04], ebx and
it stores the value of ebx (previously set to 0xb002cd80) to the address 0x04.
This changes the instructions stored at address 0x04. Since 0xb002cd80 is the
binary code for instructions mov al, 0x2 and int, 0x80, the instructions at the
addresses 0x04 and 0x06 will be replaced by these two instructions. Therefore,
mov [0x04], ebx is a self-modifying instruction. The code of the program after
self-modification occurs is presented in Listing 1.2. The next instruction the
process reads will be jmp 0x04 (corresponding to the bytecode Oxebe7 contained
at the location 0x13), which will make the process jump to the address 0x04. As
explained, this address now contains a modified instruction with the bytecode
0xcd80. The new assembly is mov al, 0x2, which sets eax to 2 (remember that
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we set higher bytes of eax to 0 with xor eax, eax). Then, the process will
execute the modified instruction at the address 0x06 with the new bytecode
0xcd80, which corresponds to the assembly int, 0x80. This instruction tells
Linux kernel to execute a system function with the function code stored in eax.
The function code 0x2 corresponds to the kernel’s fork function, which spawns
a copy of the current process. Since the previous instruction sets eax to 0x2,
Linux kernel executes the fork function, making this program also concurrent.

R
[OXO4: Xor eax, eax j [OXO4: Xor eax, eax] [0}(()4: mov al, OX2)
!
[OXOG: mov al, Ox1 ) [OXOG: mov al, Oxl) [OXOS: int 0x80 )
7

p
[o;cos: mov ebx, 0xb002cd80j [0x08: mov ebx, 0xb002cd8oj

!

[Ode: mov [0x04], ebx j [OXOd: mov [0x04], ebx ]

!

[0x13: jmp 0x04 j [0x13: jmp 0x04 ]
%} L J
(a) Naive CFG (b) Accurate CFG

Fig. 1. Naive and accurate CFGs of code from Listing 1.1.

You can see that if we analyse this program blindly, using the instructions
of Listing 1.1, without taking into account the self-modifying nature of the in-
struction mov [0x04], ebx, then we will obtain the Control Flow Graph (CFG)
shown in Figure 1(a). However in reality, the program will spawn parallel pro-
cesses indefinitely. This is clear if we look at the more accurate CFG in Figure
1(b). This is one of the tecnhiques malware developers use to obscure the real
behaviour of the malware from antivirus software. Therefore, it is necessary to
take into account the self-modifying nature of the code for an accurate analysis.

The aim of this paper is to provide an efficient algorithm for model check-
ing such self-modifying and concurrent code. To analyse such kind of programs,
we need an abstract model suitable for both self-modifications and concurrency.
Pushdown System (PDS) was shown to be a natural abstraction for sequential
programs [14]. To deal with concurrency, Dynamic Pushdown Networks (DPNs)
were proposed to model how a program can spawn parallel processes [8]. A DPN
is a network of pushdown systems where each PDS is able to spawn new pro-
cesses controlled by other PDSs. On the other hand, to model programs with
self-modifying instructions, authors of [26] proposed Self-Modifying Pushdown
Systems (SM-PDS). Intuitively, SM-PDS is a PDS with the ability to modify
its set of rules during runtime. To model both concurrent and self-modifying
programs, a previous work [19] introduced Self-Modifying Dynamic Pushdown
Networks (SM-DPNs) as a network of self-modifying pushdown systems. [19] pro-
posed an efficient algorithm for reachability analysis of SM-DPNs. In this work,
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we go one step further and propose an efficient LTL model checking algorithm
for SM-DPNs.

Model checking concurrent programs imposes additional challenges. In fact,
model checking LTL formulas that reason about two concurrent processes is un-
decidable [16], even in the absence of thread creation. To overcome this problem,
we consider single-indexed LTL formulas of the form f = A, f;, such that f; is
an LTL formula over process i. This problem of single-indexed LTL model check-
ing of DPNs was tackled by [25], however, this work does not take into account
self-modification of programs.

In this paper, we go one step further and consider LTL model checking of
Self-Modifying Dynamic Pushdown Networks (SM-DPNs). Since SM-DPNs are
equivalent to standard DPNs, we could translate the SM-DPN into a DPN,
and then use the LTL model checking algorithm of [25]. But, as shown by our
experiments in Section 4, this approach is not efficient. Therefore, we propose
a direct and efficient model checking algorithm for SM-DPNs against single-
indexed LTL formulas. To this aim, we first construct an automaton A; for each
sequential process ¢, such that A; accepts a configuration of the process i if it has
a run that satisfies the corresponding LTL formula f;. During the construction of
A;, to tackle the self-modifying instructions, we keep track of the current phase
of the process i (the current set of the transitions of the process). A; also keeps
track of the spawned processes during the execution because we need to check
that every spawned process j satisfies the formula f; as well. Then, we use all
of the obtained automata to compute the largest set of processes Dy, such that
every process ¢ in Dy, satisfies the LTL formula f;, and does not spawn a process
Jj that violates the formula f; (j > 0). Then, we check that every initial process
satisfies the LTL formula and spawns only processes from Dy,. Our experiments
show that our direct approach is much more efficient than model checking an
equivalent DPN using the approach in [25]. Moreover, we show the applicability
of our approach for malware detection.

Related Works. Model checking of sequential binaries has been extensively
studied in [4,5,16,24]. However, these studies do not consider neither concurrency
of programs, nor self-modifying instructions.

To solve the problem of model checking concurrent programs, different models
were proposed. Some studies use Dynamic Pushdown Network (DPN) model
[8,20,25] and its extensions [13,19]. Other studies [17,21,22] performed model
checking on networks of pushdown systems. However, these works do not consider
self-modifying code.

To analyse self-modifying programs, several dynamic analysis approaches
were proposed [11,27], which imply executing the binary in a debugger and
observing the behaviour of the program. However, these techniques do not al-
low to analyse every possible behaviour of the program. Static analysis of self-
modifying code was proposed in, for example, [7,9,12]. However, [9] needs extra
invariant annotations, [12] can deal with only packing and unpacking of binaries.
As for [7], it proposes an abstract representation without a specific approach to
automated analysis. Another model to represent self-modifying code is State-
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Enhanced Control Flow Graph (SE-CFG) [3]. Reachability analysis of binaries
with self-modifying instructions was also proposed by [6]. However, both of these
studies [3, 6] do not take into account the stack of the program, and thus, do
not provide an accurate enough model of execution. Self-modifying pushdown
systems (SM-PDS) were successfully used for model checking self-modifying pro-
grams [26]. However, this work does not support concurrency.

As far as we know, the only work that considers both concurrent and self-
modifying programs is [19], where the SM-DPN model was proposed. But, [19]
considers only reachability analysis. In this paper, we go one step further and
propose an efficient LTL model checking of SM-DPNs. Moreover, we extend the
SM-DPN model to allow modelling programs when an instruction can modify
several instructions (not only one as in [19]).

Outline. Section 2 introduces our SM-DPN model. Section 3 describes the pro-
posed algorithm for efficient model checking SM-DPNs. Section 4 provides results
of practical experiments conducted using the proposed LTL model checking. The
appendix contains proofs of theorems and lemmas used in the paper.

2 Preliminaries

In this section, we introduce Self-Modifying Pushdown Networks (SM-DPNs).

2.1 Self-Modifying Pushdown Network

A Self-Modifying Dynamic Pushdown Network (SM-DPN) is an extension of
standard Pushdown Systems (PDS) that models programs that can spawn par-
allel processes and can change their instruction set in real-time. SM-DPN con-
sists of several Self-Modifying Dynamic Pushdown Systems (SM-DPDS) each
modelling a single sequential process. Formally:

Definition 1. A Self-Modifying Dynamic Pushdown Network (SM-DPN) is a
tuple M = (P1,Pa, ..., Pn), s.t. for everyi, 1 <i<n, P, = (P, I}, A;, AS) is a
Self-Modifying Dynamic Pushdown System (SM-DPDS), where P; is a finite set
of control locations (for every j # k, P; N\ P, =0), I; is the stack alphabet, A;
is a finite set of rules of the forms: (a) py — prw1 and (b) py < prwi > pawsbs,
such that p,p1 € P, v € I, w1 € I, pa € Pj, wy € I, 6 C A; UA], and

1
A¢ is a finite set of self-modifying rules of the form p ‘M p1, such that

p1;p2 € A; U AS. A Dynamic Pushdown System (DPDS) is a SM-DPDS, such
that AS = 0. A Dynamic Pushdown Network (DPN) is a SM-DPN, such that
for every 1 <i <mn, P; is a DPDS.

Counsider a SM-DPN M = (P1,Pa,...,Pn). A SM-DPDS P; = (B, I, A;, AS)
can be seen as a Pushdown System with the ability (1) to spawn a new process
and (2) to change its current set of rules during its execution. Because a process
modelled by a SM-DPDS can change its set of rules at runtime, we introudce
the notion of a phase. A phase § C A; UAS is the current set of rules that can be
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applied. 6 changes when a self-modifying rule of type p M p1 € 0 is applied.

Such rule denotes that if the process is at the control location p, it can transition
to the control location p; while removing rules in p; from 6 and adding rules
from py to 6. Note that unlike the definition of SM-DPN in [19], we
allow p; and ps to have different numbers of rules. The rules of type
py < prwi € 0 define that if the process is at the control location p and has
on the top of its stack, then it can pop 7 from the stack, push w; onto it, and go
to the control location p;. Similarly, the rules of type py — piwi > powabs € 0
describe the same behaviour as py — pyw; but additionally, the rule spawns
another process at the control location p,, with wy as content of the stack, and
phase 65. This new process will be executed by its corresponding SM-DPDS
Pj = (Pj,Fj,Aj,A;?) S M, such that py € Pj.

2.2 Configurations and DCLICs

A local configuration of a SM-DPDS P; is a tuple ({p;,w;),0;), where p; € P;
is the current state of the process, w; € I} is the current stack content, and
0; € A; U AS is the current phase. The set of all local configurations of a process
of P; is denoted as Conf;. A global configuration of a SM-DPN is a multi-set
over (JI_, Con f;.

When a process can spawn a new process starting at the local configuration
({pj,w;),0;), we say that p;w;8; is a Dynamically Created Local Initial Config-
uration (DCLIC). The finite set of all DCLICs created by a process of P; is
denoted as D; and is equal to {powsth € Pj x I} X 24i945 | Ip,p/ € P,y €
I,w' € IF py <= pw' b powabs € A}

For a SM-DPDS P; and a set of DCLICs D C D;, we define the successor op-
erator ==; on a pair of local configurations of P; as follows: ({p,w),6) L.,

((p',w’),0") means that a process at the configuration ({p,w),d) can transi-
tion into the configuration ({p’,w’),#’) by applying one of the rules in the cur-
rent phase 6 and the rule applied spawns processes with DCLICs D. Formally,

({p,w),0) L., ((p',w'),0") iff one of these conditions holds:

1. Iyeu,velf, st w=vyu ' =vu, 0 =60, D=0, and py — pv €0,
or

2. w=ru,w =vu, 6 =0, D = {pawabs}, and py — p'v > pawsbs € 0, or

3. w=u', D=®,p‘M>p’ €0,p1 C0,0 = (6\p1) U pa.

Intuitively, condition 1 specifies that if the process is at the local configuration
({p,yu),0), such that the rule py < p'v is in the current phase 6, then the
process can pop v from the stack, push v onto it, and transition to the state
p’ without spawning any new process, getting ((p’, vu),d). Condition 2 means
that if the process is at the local configuration ({p,yu), ), such that the current
phase 6 contains a rule py < p’v>powsba, then it can pop v from the top of the
stack, push v, go to p’, getting ((p’, vu),0), and also spawn a new process with
the DCLIC powsfs, i.e. starting at local configuration ((ps,ws),62). Condition
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3 defines that if the process is at the local configuration ({p,w),#), such that

the rule p M p’ is in the current phase 6, the process can remove all rules

r1 € pp from the phase 6 and add all rules ro € py to 6, changing the current
state to p’, getting ({p’,w), "), such that 6’ = (6\p1) U pa.
For local configurations ¢, ¢’ € Conf; and set of DCLICs D C D;, we define a

. - D
reflexive-transitive closure ¢ ==} ¢’ as follows, where ¢’ € Conf; and D', D" C
N : D’ / ' D won D«
Di: (1) c =F cand (2) if c =; ¢ and ¢ ==} ¢, then ¢ =} ¢, where
. - D
D = D'UD". We also define the non-reflexive transitive closure ¢ =7 ¢’ as
D . D'
follows: ¢ =} ¢ iff 3D’, D" C D;, such that D = D' U D", ¢ ==; ¢ and

o D"« ¢
=7 .
Consider an arbitrary set of pairs of local configurations and sets of DCLICs
D, D,

W C Conf; x 2Pi. Let pre : 200nfix27 _y 9Confix2™% 16 guch that pre(W) =
{(e, DUD"),c € Conf; | 3D C D;,(¢/,D') e W : ¢ éi c'}. Let pre™ and pre*
be the transitive and reflexive-transitive closures of pre, respectively. In other
words, pre takes a pair of a local configuration and a set of DCLICs, and returns
a set of predecessors of the given configurations paired with a superset of the
given DCLICs that will be generated by the predecessors.

A local run of P; is a possibly infinite sequence of local configurations coc; . . .,

st. Vg >0:3D C D¢ éi ¢j+1- A global run o starting from a global

configuration gg = cQcica...ch’, m > 0, is a (potentially infinite) set of local runs.
Initially, o contains local runs for m given processes, with each starting from
initial local configuration c for 0 < ¢ < m. Whenever a SM-DPDS responsible
for a local run spawns a new process with the DCLIC pyw26s, a local run starting
from ({pa,ws),02) is added to o. From now on, we will omit the index 4 for L.,

when it is understood from the context.

2.3 From SM-DPN to DPN

We show in this section that every SM-DPN model is equivalent to a non self-
modifying DPN. Since the number of phases is finite, we can show that encoding
every phase into the state set gives an equivalent DPN. Our translation follows
the logic of the translation given in [19].

Let M = (Py,P2,...,P,) be a SM-DPN for n € N, such that for i <
n, P, = (P, I}, A;, A?) is a SM-DPDS. We can construct an equivalent DPN
M = (P, Ps,...,Pl), where for i <n, P, = (P!, I;,A}) is a DPDS equivalent
to P;, such that P/ = P; x 241947 and A/ is computed as follows. Initially, A/ is
empty. For every r € A; U AS and for every phase 6 € 24iUAT such that r € 6:

1. if r = py < piwi, then add (p,0)y < (p1,0)wr € A;
2. if r = py < p1wi > pawsbs, then add (p, )y — (p1,0)w1 > (p2,O2)ws € Aj;
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3.ifr=p M p1 and p; C 6, then for every v € I', add (p,0)y —

(p1, (O\p1) U p2)y € Aj.

This algorithm terminates because we have a finite number of rules and hence,
a finite number of phases. We can show that:

Proposition 1. Let ((p,w),0) and ((p1,w1),01) be configurations of P;, and
D € D;. ({p,w),0) Z=m ({prwi), 01) iff (p,0),w) Z=aar ((p1,01), 1), such
that D' = {<p2792)w2 | p2w292 € D}

The proof can be found in Appendix A. Thus, we get:

Theorem 1. Let M = (P1,Pa,...,Pn) be a SM-DPN for n € N, such that for
i <mn, P = (P, 1}, Ay, AS) is a SM-DPDS. We can construct an equivalent DPN
M = (P{,Ph, ..., Pl), where for i < n, P, = (P!, I}, AL) such that O(|P!]) =

|P;| - 20UANHAID and O(|AL) = (|Ag] + | AS||T]) - 2004+ A7)

2.4 Modelling Self-Modifying Concurrent Code with SM-DPN

We give in this section a general process of converting a binary executable
containing self-modifying code and concurrency into a SM-DPN. We suppose
that we have an oracle that translates a binary program into a Control Flow
Graph (CFG), such that each CFG transition corresponds to one instruction.
One can obtain such an oracle using existing tools like Jakstab [18], IDA Pro [15],
Radare2 [2], or ANGR [23].

We use the translation of [24] that models non self-modifying sequential
instructions of the program by a standard PDS. We concentrate here on the
translation of self-modifying and spawning instructions. For more details on the
translation for sequential instructions, we refer the reader to [24].

If a CFG transition spawns a new thread, we add a rule py < p'w > pawsbs,
where ({pa,ws), ) is the initial configuration of the newly created process.

A self-modifying CFG transition that writes a binary value v to an address
d, where d is the destination address for an executable region and v is a new
value, is translated as follows: let p; be the set of SM-DPN rules obtained by our
translation from instructions at d before self-modification and let ps be the set
of SM-DPN rules obtained by our translation at d after the memory is modified.
Suppose the CFG transition starts at control location p and leads to a control

location p’. In this case, we add a rule p M p’ to the SM-DPN model.

2.5 LTL and Biichi Automata

In this section, we consider standard LTL formulas and Biichi Automata. Let
AP be a set of atomic propositions.

Definition 2. An LTL formula 1 is defined as follows (where a € AP):

Ypo=T Il Llal = [YAd | XY | Uy
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Let w = apaias... be an w-word over 24 and 1) be an LTL formula. Let
w' = a;41 ... be the subsequence of w starting from the i-th symbol, where
i > 0. The satisfiability w = ¢ is defined as follows: w = T; w = L; w = a iff
a € ap;wlE Y iff w Y, wE Y A iff wE Y and w | Po; w | X iff
wh = ; w = Uy iff there exists k > 0 such that for j < k, w’/ = 11, and
wk = 1p. We define the eventually operator as follows: Fi) = T U, which means
that ¢ will hold at some point of the run. The globally operator Gy = —F—-
means that 1 holds universally along the run.

Definition 3. A Biichi Automaton (BA) is a tuple B = (G, X, T, go, F), where
G is a finite set of states, T C G x X x G 1is the set of transitions, gy € G is the
initial state, and F' C G is the set of accepting states.

For an w-word w = agajas ..., such that o; € X, >0, a run on a BA B is an
infinite sequence r = gog192 . . ., such that (g;—1,;—1,9;) € T fori > 1. Arun r
is accepting if it visits some accepting states in F' infinitely often. B accepts an
infinite word iff there is an accepting run on B. It is well known that given an
LTL formula 1, we can construct a Biichi Automaton (BA) B, on words over
X = 24P that accepts all w-words that satisfy 1 [28].

2.6 Single-Indexed LTL for SM-DPNs

Let AP = AP, UAP, U ---U AP, be a set of atomic propositions, such that
AP; is the set of atomic propositions for process P;, 1 < i < n (for i # j,
AP; N APj = @)

Definition 4. A Single-indexed LTL formula is a formula of the form f =
N, fi, where f; is a standard LTL formula over AP;.

Let us consider a SM-DPN M = (P, Pa, ..., Py), where P; = (P;, I, 4;, A?),
1 <i < n, and a single-indexed LTL formula f = A", f; over AP, where f; is an
LTL formula over AP; for P;, and let \; be a labelling function \; : P; — 247,
For each control location p € (J;—; P, let m(p) be a function that maps p to the
index i of its corresponding SM-DPDS, i.e. w(p) = i if p € P;. For a local run
o = ({po,wo),00)({p1,w1),01) ..., let m(c) = 7(po). Let 7 = opoy ... be a global
run on M, where for j > 0, o; is a local run in 7. We define the satisfiability
condition for a global run 7 = ogoy... on SM-DPN M and a single-indexed
LTL formula f as follows:

Definition 5. For a local run of P; o = ({po,wo), 0o)({p1,w1),01) ..., we say
that o =p fi if the w-word w = X\;j(po)Ai(p1) - .. satisfies f; and o spawns new
processes with DCLICs D. For a local configuration ¢, ¢ =p fi if P; has a local
TUN 0. = CC2C3 ..., such that o. Ep f;.

For a global run T = 0¢o1 ..., we say that T |= f if for every local run oj € T,
where j > 0:

1. there exists D; = {p?w?@?,p}wjlﬂ}, ce }”w}-”%”}, such that o ':Dj Jr(o)s
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2. for every 0 < k < m there exists a local run Uf starting from ((p?,wf),&f),
such that of Ef.

In other words, a global run 7 = ggo ... satisfies a single-indexed LTL formula
[ if every local run o in 7 satisfies fr(s) and if for every local run af spawned
during o, a;? satisfies f.

3 LTL Model-Checking for SM-DPNs

From now on, we fix a SM-DPN M = (P, Pa,...,P,), wherefor 1 <i <n,P; =
(P, I}, A, AY) is a SM-DPDS, and a single-indexed LTL formula f = A, f;,
such that f; is an LTL formula over atomic propositions AP; corresponding to P;.
Let B; = (G;,247 T}, g9, F;) be a Biichi automaton for the corresponding LTL
formula f;. Model checking a global configuration G of M over f is not trivial for
two reasons. First, it is not enough to check every local run starting from local
configurations in G, because we also need to check spawned processes. Second,
model checking every possibly spawned process is too restrictive, because not all
processes are required to be spawned during an accepting run, so even if they
violate their LTL formulas, a global run would still be accepting if it does not
spawn such processes. Therefore, when model checking P; over f;, it is important
to remember which processes were spawned during the accepting run. We divide
the problem of checking whether a global run starting from G satisfies f into the
following steps:

1. We compute a Self-Modifying Biichi Dynamic Pushdown System BP; for
each pair of P; and B;, 1 < i < n, which corresponds to a kind of synchro-
nization between the SM-DPDS P; and the LTL formula f;.

2. For each BP;, we compute the set of pairs of local configurations and DCLICs
of the form (c, D), such that ¢ =p f;. For this, we need to be able to finitely
represent potentially infinite sets of such pairs. To this aim, we use a kind
of finite automata. Then, we perform a kind of reachability analysis on BP;
and construct a finite automaton A;, that accepts all pairs (c, D) for a
configuration ¢ and set of DCLICs D spawned during the run of P; from ¢
satisfying f;, i.e. ¢ =p fi.

3. Using the automata A;, we compute the maximal set of DCLICs Dy, such
that it contains only DCLICs for local configurations that satisfy their LTL
formulas, and that the accepting runs on that configurations spawn only
DCLICs in Dyp.

4. For every local configuration ((p,w),f) € G, we use the automaton A, to
check that there exists D' C Dy, such that ((p,w),0) Epr fr(p)-

These different steps are detailed in the following sections.

3.1 Self-Modifying Biichi Dynamic Pushdown Systems

We compute a Self-Modifying Biichi Dynamic Pushdown Systems (SM-BDPDS)
as a product of a SM-DPDS and a BA:
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Definition 6. A Self-Modifying Biichi Dynamic Pushdown System is a SM-
DPDS BP = (P, I, A, A¢, I, F) with extra elements I C P, which is a set of
initial states, and F' C P, which is a set of accepting states.

Let BP = (P, IA, A, I, F) be a SM-BDPDS, ¢y = ({po,wo),0p) be a local
configuration and D be a set of DCLICs. (cp, D) is accepted by BP iff py € T
and there is a local run 0 = ¢cgcics ... in BP, such that BP spawns new processes
with DCLICs D during o and there is an infinite subsequence of configurations
ChoChy - -+, Where ¢ = ((pr;,wk;),0k,) for j > 0 and pi, € F. We denote by
L(BP) the pairs of all configurations and DCLICs in the form (c7 D) accepted
by BP, where c is a configuration and D is a set of DCLICs.

For a SM-DPDS Pz = (Pi,Fi, AZ‘, AZC), a BA Bz = (G,2AP’3,T,go,F) that
corresponds to an LTL formula f;, and a labelling function A;, we can compute
a SM-BDPDS BP; = (P!, I, A, AS | T/, F!), where P/ = P; x G, I = P; x {go},
and F} = P; x F. Let p,p1,€ P;, g1,92 € Gi, y € I', w1 € I'*, p1,p2 € A; U A,
p2 € Pj,wy €17, 03 € 245947 et prodg, (0) be a set of rules of BP; obtained
by applying the following procedure, where § C A; U A§:

L. [p,g1]y = [p1, g2]w1 € prodg, (0) iff py — prwi € § and (g1, Ni(p), 92) € T,
2. [p, 1]y = [p1, g2]wi > pawebs € prodp, (6) iff py < prwi > pawebe € § and

(91, Xi(p), 92) € Ts,

(U 3,0 ) . ( 3 )
3. [p 1] —5 [p1, g2] € prode, (5) iff p =5 py € 6, (91, Mi(p),g2) € T

o1 = prodg, (p1), and o9 = prodg, (p2).

We construct rules for BP; as follows: A, = prods, (4;) and A = prodg, (AS).
Intuitively, BP; is a product of P; and the BA ;. The behavior of the con-
structed SM-BDPDS BP; is the same as of P; synchronized with B; for the
LTL formula f;. The intuition behind this construction is that if there is a
run on the SM-BDPDS ¢ = ({[po, gol,wo), 00)({[p1,91],w1),61) ..., then there
should be a valid run ¢” = ({pg,wo),00)((p1,w1),01)... spawning DCLICs
D on P; and a valid run ¢% = gog1... on B;. Therefore, 07 =p f; iff
(({[po, o], wo), fo), D) € LIBP;).

3.2 Characterizing £L(BP;) Using Reachability

We show in this sections how £(BP;) can be computed by performing a kind of
reachability analysis.

Theorem 2. For a SM-BDPDS BP; = (Pi’,Fi,Ag,Af/,Ii,Fi), a local configu-
ration ({p,w),0) and a set of DCLICs D, (({p,w),0),D) € L(BP;) iff p € I;
and 3Dy, Dy, D3 C D;, s.t. D = D1 U Dy U D3 and the following conditions hold:

o1 (), 0) 25* ((,70),0') for some pf € PL, 0,6/ C (A UA), v € T3,
w' er*, and

Q2 (<p/37>79/) D:2>+ (<gﬂu>70”) and (<gau>70”) D:3>* (<p/,’)/’l)>,9/) fOT’ some
gEF;, 0" C(ALUAY), uwe ™.
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Let us explain the intuition behind the theorem. The proof can be found in Ap-
pendix B. Since (((p,w>, 0), D) € L(BP;), there must be an infinite sequence of
local configurations with an accepting state g. This sequence is produced by an
mﬁnlte cycle starting from some ((p’,v), ¢’), visiting ({g, u), "), and then going

to ({p',~yv), ). Since rules of BP; only look at the top symbol of the stack con-
tent, BP; can apply the same rules on ({p/,yv),0") and end up at ({p',yvv),§’)
and so on. During this cycle, BP; spawns processes with DCLICs DU D3 (Ds to
reach ({(g,u),0") and Dj to go back). This is ensured by the condition a;. More-
over, the starting state ({p,w), #) must be backwards reachable from ((p’,v), ¢’),
which is ensured by the condition a;. Assume that BP; spawns processes with
DCLICs D; along the path from ({p,w), #) to ({p',~),0"). Therefore, BP; spawns
D1 U Dy U D3 during the accepting run and hence, (({(p,w),0), D) is accepted by
BP;.

Corollary 1. For a SM-BDPDS BP; = (P!, I}, AL, Afl, I;, F}), a local configu-
ration ({(p,w),d) and a set ofDCLIC’s D, (({(p,w),0),D) € LIBP;) iff p € I; and
3Dy, Dy C D;, 30’ € ALUAY, s.t. D = Dy U D}y and the following conditions
hold:

B (((p,w),0), Dr) € pre*({p'} x I3 x {0} x {0}), and
Bz (P, 9’ ), Db) € pret((Fyx I x 24 VAT % 9P Apre* ({p'} x v I x {0/}
{

(
01)-

The corollary is a rewording of Theorem 2 using pre notation instead of suc-
cessor relationship, and where D} equals to Dy U D3. Intuitively, for the con-

dition Bi, if ({p,w),0) ESEENG ((p',yw'),0"), then (((p,w),é)),Dl) € pre*({p'} x
~IF x {0’} x {0}). And for condition Bs, if ({g,u),0") Loy ((p,yv),0"), then
(g u),0”), Ds) € (Fy x I x 289047 5 2P0) pre*({p'} x 417 x {8} x {0}).

?

And since ((p/,7),0") 22+ ((g,u),0”), then (((p',7),0), D4) is in pret of all
such (((g,u),0"), D3), where D} = Dy U Ds.

Thus, computing L£(BP;) boils down to finding pre* of regular sets of pairs
of local configurations and DCLICs of a SM-DPDS.

3.3 Multi Automata

As explained previously, we need to compute pre* of regular sets of local configu-
rations and DCLICs. For this, we need to be able to finitely represent potentially
infinite sets of such pairs. Following [25], we use Multi Automata (MA) to rep-
resent sets of local configurations and DCLICs of SM-DPDS. Note that our
definition of MA extends the standard one introduced in [14] by encoding the
current phase into the state set, and labelling each transition with DCLICs to
track which processes were spawned.
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Definition 7. A Multi-Automaton is a tuple A; = (Q;, I, 6;, I;, Acc;), where Q;
is a finite set of states, I'; is the alphabet of P;, 0; C Q; x (I;U{e}) x 2P x Q; is
a set of transitions, I; = P; x 241947 C Q; is a set of initial states representing
the control point and the phase of the configuration, and Acc; C Q; is a set of

D
accepting states. Transition (q,7,D,q") € §; can be denoted as q l/—ﬂ q.

. e D s . 0
The reflexive-transitive closure g Lﬁ ¢ for transitions is defined as: (1) ¢ iﬁ

) D D’ DUD’
q, (2) if ¢ Ln q" and ¢" L)j q’, then ¢ W/—U%* q', where w € IF,

D' C D,. '
For a local configuration ({(p,w),#) and a set of DCLICs D, the MA accepts

tuples (((p,w), ), D) iff there is a path (p, 0) W/—Dﬁ gy for some gy € Acc;. From

now on, we will omit the index ¢ for —; when it is understood from the context.

Let L£(A;) be the set of configurations and DCLICs accepted by the MA A;.
We say that a set of configurations and DCLICs W is regular iff there exists a
MA A;, such that W = L(A;).

3.4 Algorithm for pre* Computation

We prove in this section that given a SM-DPDS P; and a regular set of pairs
of configurations and DCLICs W accepted by a MA A;, we can compute a new
MA A? "¢ that accepts pre* (W) using the following saturation procedure. Let
A; = (Qi, I; U{e}, 6;, I;, Ace;) be the original MA that accepts configurations of
a SM-DPDS ,Pl = (Pi7Fi7 Ai7 Alc)

Without loss of generality, we assume that the SM-DPDS has no rules that

(p1,p2)
remove themselves. L.e., there are no rules of type r = p PP p’ € A¢, such

that r € p;. This is not a restriction since we can substitute such rules with two

0.0 . , (p1.p2) ;. o
rules: r = p —— p" and r’ = p" ——— p’, where r’ is a new rule and p" is

a new state. Moreover, we assume w.l.o.g. that d; has no transitions into initial

r

D
states, i.e. there exists no transitions of the form ¢ L) (p,0) in 0;, for any
q€Qi,v €, DCDi, (p,0) € L.
Now, we can construct AY" = (Q;, [}, 6}, I;, Acc;). Initially, §; = §;. Then,
we apply the following saturation rules:

c D
p1 Ifr =py = p'w € A, then for every 6 € 24:Y4i st. 7 € § and (p/, 0) L*

q € 9}, add transition (p, 6) /b, q to d;

po if 7= py = pwsp’w’8’ € A;, then for every 8 € 24947 st. r € § and

(®',0) “/D, q € ¢, add transition (p,0) 2/POTTOT), q to dj;

us fr=p M p' € A%, then for every § € 24iY47 and v € T, s.t.

re®, pp CO and (,0) 22 ¢, then add (p,0) 222 ¢ to &, such that

0" = (60\p1) U p2.

This procedure terminates because there is a finite number of transitions we can
add, which is |(P; x 22:037) U Qi I'U {e} 2P
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Let us explain the intuition behind the saturation rules. Rule u; adds pre-
decessors obtained from standard pushdown rules. Consider a rule r=py —

p'w € A; and let us consider a path of Apre of the form (p’, 0) AN q WD

qr such that ¢ € Acc; and r € 6, which means (({(p/,ww’),6),D U D’) €
L(Afre*). Since the phase # contains 7, then ((p, yw'), #) is a direct predecessor
of ({p,ww’), ). Since r does not spawn new processes, there is no need to update

the DCLICs D. Therefore, we add the new transition (p, ) MIEEN q to AP so
that (((p,yw’),#), DUD’) will be accepted by the path (p,6) 2/B, q /—> qf
in AP

Similarly, rule ps adds predecessors that require a process to be spawned. In
this case, consider a rule r = py < p'w b p’w”0” € A; and let there be a path

of the form (p’, 9) w/—D>* q %* gr such that ¢y € Acc; and r € 6. Therefore,

(({(p',ww'),0), DUD") € E(.Afre*). Since the phase 6 contains 7, then ((p,yw'}, 0)

is a direct predecessor of ((p’,ww’),H). Since r spawns a new process with the
DCLIC p"w"6”, we add p”w”6” to the DCLICs D. Therefore, we add the new

) PO so that (((p, 4w, 6), DU D' U {p/w"0"}) will

be accepted by the path (p,6) v/ DUp” W07} ¢ /D’ ar.

The saturation rule pus adds the predecessors that are obtained by self-

modifying rules. Consider a rule r = p M p’ € AY and a path in Afm* of the

form (p’,0") W—D> q L qf, such that ¢y € Acc;, r € ¢, po C 0'. Therefore,

((p,w),0"),DUD’) € ,C(Ai-"e ). Since the phase 6" contains r and all rules in
p2, then ((p,yw), 0) is a direct predecessor of ({p',yw), "), where 6 = (6"\p2)Up;.
Since this transition does not spawn any new processes, there is no need to up-

transition (p, 0

date DCLICs D. Therefore, we add the new transition (p, ) 2/B, q to Afm*, S
that (((p,yw),#), DU D’) will be accepted by the path (p,0) RN q WD a5

in AT
We can show that the saturation algorithm described above computes MA
A" that accepts pre*(L(A;)).

Lemma 1. Given a reqular set of configurations and DCLICs W recognized by
MA a A; =(Q;, I, 64, I;, Acc;), we can eﬁectively compute the Multi- Automaton

Apre = (Qy, I, 0}, I;, Acc;), such that L'(Apre ) = pre*(W).
The proof can be found in Appendix C. Thus, we get:
Theorem 3. For a regular set of local configurations and DCLICs W C P; x

[ x 24940 9Pi  the set pre* (W) is also reqular and can be effectively computed.
3.5 Effective Algorithm for Model Checking SM-DPNs

Now, we are ready to tackle the main problem of this paper - effective LTL
model checking of SM-DPNs. Using Corollary 1 and our saturation procedure,
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we can compute L(BP;) for every i, 1 < i < n, by constructing a MA A;, such
that £(A;) = L(BP;). To construct A;, we iterate over possible p’ € P',y' €
I'yand 0 C AL U A‘;/. For every such triple, we construct the MA A}, s.t.
L(AY) = pre*({p'} x {0’} x ¥'T7 x {0}). Then, we compute the MA A?, s.t.
L(A?) = (F; x 9aiLAY o ¥ x 2P). We compute then the product A3, s.t.
L(A3) = L(A}) N L(A?). After that, we construct the pre™ of the intersection:
L(AY) = preT(L(A?), and test whether (((p',7'),0'), D}) € L(A?) for a set of
DCLICs Dj. If the A} automaton accepts (({p,7'),0'), D}), then we add the
transition (p’,6") RAE N qr to a MA A}, where ¢y is a final state. Next, we
compute pre* of Al to get the final automaton A;, s.t. L(A;) = pre*(L(A))).
From Corollary 1, this A; is such that if (¢, D) € L(A;), then ¢ Ep fi.

Now, we can use the constructed MAs A; to model check M. First, we need
to compute the largest set of DCLICs that have an accepting run and spawn
DCLICs that also have an accepting run. We call this set Dy,. This set contains
DCLICs that satisfy f. Let Dy = [J,_, Di be the set of all DCLICs spawned
in M. Let F : 2P1 — 2P1 be defined as F(D) = {pwd € D; | 3D’ C D :
(1 ,g?r(p)],w>,9),D’) € L(Az))}. Let DYD'D? ... be a sequence generated
by the recursive application of F, such that D° = Dy, and DI = F(D7~1!) for
j > 1. We can show that Dy, = ﬂj DJ and can be effectively computed by
finding the greatest fixpoint on F:

Theorem 4. We can effectively compute Dyp, s.t. for every DCLIC pwf €
UZ:l Dy, (<p,w>,9) = f iff pwo € Dyp.

The proof can be found in Appendix D. Intuitively, the function F' takes a set
of DCLICs D that hypothetically satisfy their corresponding LTL formulas. The
function returns a smaller set of DCLICs D’, where for every DCLIC p'w’0’ € D/,
there exists another set of DCLICs D" C D, such that ((p',w’),0") FEpr fr@p)-
Initially, DO is the set of all DCLICs D;. At the first step, we exclude DCLICs
that cannot satisfy f regardless of what DCLICs they generate. Then, every
next iteration excludes such DCLICs that spawn unsatisfiable DCLICs during
their accepting runs. At the end, the function should converge at a constant set
of DCLICs that satisfy f. In other words, we can compute the greatest fixpoint
Dy, on the recursion starting from D because this function reduces a countable
set of DCLICs for each step. Therefore, we can use Theorem 4 to find the set of
valid DCLICs for a single-indexed LTL formula.

Now, for a global configuration G = cgcycs...cp, and a single indexed formula
f = NAi_, fi, we can determine whether G satisfies f as follows: we check for
each local configuration ¢; = ({pj,wj;),0;), if there exists D C Dy, such that
¢j Ep frp,- 9 E f iff all configurations c; € G satisfy their corresponding
[r(p;) and spawn DCLICs D C Dy,,.
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Table 1. Performance comparison of proposed algorithm to the algorithm of [25] on
an equivalent DPN.

T. Touili and O. Zhangeldinov

Our approach

SM-DPN to DPN

|M]| [fil  |]Ai] +14%]] T, sec|/mem, KiB T, sec/mem, KiB
1 5 10 + 3 0.01 63.57 0.4 1153.93
1 6 10 + 3 3.98 236.29 292727 2 017.56
1 7 10 + 3 2.87 325.34 815.80| 1 232.78
1 8 10 + 3 5.29 674.29 8 894.93| 2 420.37
1 5 10 +1 0.30 63.57 7.23 134.47
1 6 10 +1 0.10 63.57 3.11 116.18
1 7 10+ 1 2.12 642.30 389.87| 1 045.70
2 1 12 + 2 1.24 71.24 21.76 561.31
2 1 22 + 2 1.53 78.41 39.49 706.41
2 1 32 + 2 10.04 179.01 1473.41| 1 542.21
2 12 32+ 2 114.78 1 433.08 timeout timeout
3 4 31 +3 29.19 483.58 3 586.07| 10 920.32
3 5 32+5 0.02 72.42 4.21| 41 818.15
3 5 42 4+ 5 1401.31 3 661.34 timeout timeout
2 7 32+ 4 253.80 1 347.30 timeout timeout
3 8 50 + 4 607.18 1717.22 timeout timeout
2 9 34 +5 904.25 2 924.89 timeout timeout
2 13 40 4+ 3 0.02 72.50 1.09] 5 212.05
4 1 22 + 2 31.92 476.02 4 644.77| 2 492.78
3 14 37+ 2 32.93 585.57 1 824.50| & 695.83
3 41 43 4 2 275.18 5 206.40 timeout timeout
4 1 52 + 2 47.35 919.43 timeout timeout
4 1 62 + 2 60.15 920.29 timeout timeout
5 1 12 + 2 5.03 167.78 232.47| 1 341.30
5 1 22 + 2 13.99 291.78 1 804.86| 2 088.73
5 2 102 + 2 151.66 587.85| 10 392.94| 3 288.55
2 2 28 + 3 18.21 246.90 866.46| 7 962.37
3 1 33+ 5 54.72 400.27| 14 310.20(23 819.53
2 1 48 4+ 4 251.91 560.40 timeout timeout
4 1 38+ 7 7 548.30| 12 901.00 OOM OOM
1 2 81 + 8 |56 501.63| 11 606.98 OOM OOM
2 2 134 +4 | 2 878.35 2 131.24 timeout timeout
4 2 42 +9 |26 804.35| 19 890.16 OOM OOM
1 3 59 + 4 184.98 545.51 timeout timeout
1 3 66 + 1 77.44| 1 325.73 1 442.53| 10 312.03
2 3 149 + 4 | 7467.28) 3 901.95 timeout timeout
3 1 129 + 2 769.27| 3 005.60(151 403.08|52 682.78
3 3 63 + 3 105.41 621.27| 81 637.13| 41 098.79
3 3 197 +1 | 1115.17| 6 529.34] 26 151.43| 55 853.34
3 3 127 + 4 | 8 154.62| 8 112.27 timeout timeout
4 3 134 + 3 | 4 002.69 9 294.60 timeout timeout
3 10 161 4 2 981.33| 4 854.11 timeout timeout
4 6 90 + 7 |14 090.17| 5 948.56 OOM OOM
4 11 20 + 7 2 436.91| 13 873.57 OOM OOM
3 21 34+ 5 343.70| 1 555.08 timeout timeout
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4 Experiments

4.1 Comparison with Model Checking DPNs

Since SM-DPNs are equivalent to normal DPNs, we compared our direct model
checking approach with the approach that consists of translating SM-DPN to
the equivalent DPN and applying the algorithm proposed by [25]. We imple-
mented both algorithms using Python and tested them on random SM-DPNs.
We summarized our results in Table 1. The column | M| specifies the number of
SM-DPDSs in a SM-DPN, |f;| is the number of transitions in a BA correspond-
ing to the i-th LTL formula, |4;| is the number of non self-modifying rules in
each SM-DPDS, |A¢| is the number of self-modifying rules in each SM-DPDS,
T is the time taken for the algorithm and mem is the amount of memory used
during the computation. We put timeout for executions longer than 10 hours,
and OOM (out-of-memory) if the computer ran out of memory resource for the
computations. The experiments were conducted on a laptop with a CPU AMD
Ryzen 7 8845HS and 10 GB of available memory (8 GB RAM and 2 GB swap
pages).

From Table 1, we can see that our algorithm performs consistently better in
terms of time and memory than translating SM-DPNs into standard DPNs and
applying the LTL algorithm for standard DPNs from [25]. We highlighted some
cases where our algorithm performed significantly better. For example, when a
SM-DPN contains 3 processes, 129 standard rules and 2 self-modifying rules, our
direct LTL model checking took 769.27 seconds (~13 minutes), while the naive
approach took almost 2 days. The DPN approach timed out and required too
much memory in a lot of cases, taking more than 10 hours to complete. Whereas
our approach could finish model checking in a few minutes for most cases.

4.2 Specifying Malicious Behaviour as Single-Indexed LTL Formulas

We evaluated the applicability of our approach for malware detection. We have
collected reported malware from malware databases, such as Virus Share [10]
and Malware Bazaar [1]. We consider a variant of Mirai malware and a variant
of Gozi malware that are both concurrent and self-modifying. We also considered
a self-modifying version of a concurrent generic backdoor.

In what follows, we describe the malicious behaviour of the mentioned mal-
ware as single-indexed LTL formulas of the form f = A, f;. For readability, we
write [f;]; to denote that f; describes the malicious behavior related to process
i.

Mirai malware is a botnet virus that targets [oT devices running on Linux.
It has two parallel processes. One process communicates with a Command and
Control (C2) server. The other process evades detection and maintains persis-
tence on the host machine. The single-indexed LTL formula for Mirai can be
described as:

fMirai = {F (accept A Ffork)} . A {F (setsz'd A Fk;ill)} )
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Intuitively, the first process waits for a command from the C2 server using the
accept syscall and then creates a parallel process to perform malicious activity
using the fork syscall. The second process disguises itself as a legitimate soft-
ware. First, it calls setsid to move itself to a new group of processes and kills
the parent process by calling kill to avoid detection.

Gozi malware is a Windows virus that targets banking field and steals creden-
tials to critical systems such as banking software. The first thread tries to hide
the presence of the malware by manipulating the filesystem. The second avoids
automatic detection by antivirus software and connects to the C2 server or ex-
ecutes an external program. The third thread steals credentials from browsers.
Here is the single-indexed formula for such behaviour:

Foromi = {F(Fmsz’rstFueW AF(DeleteFileW v SetFileAtmbutesW))} A
[F (Sleep A F(CreateProcessW V connect))} 2/\

[G(GetWindowTextW — FC'TeateFileW)]3

The first thread finds the file of itself using FindFirstFileWW and hides it
by either deleting it with DeleteFileW, or modifying it visibility with the
SetFileAttributesW syscall. The second thread waits until antivirus software
marks the program as safe by calling Sleep and then, establishes connection with
C2 using connect or calls another malicious process using CreateProcessW .
The third thread performs credential stealing by calling GetWindowT extW
on a browser, and saving the credentials into a new file created by the syscall
CreateFileW.

Generic Backdoor is a group of different malware that obtains a full access to
the infected machine. Its first thread modifies the system registry to execute the
malware at the startup of the system. The second thread establishes connection
with a C2 server. The third thread sends data to the C2. And the fourth thread
waits for commands from the C2. The behaviour is described using the following
formula:

fBackdoor = {F(GetModuleFileNameA A FRegSetValueEa:A))} 1/\

F(gethostbyname N Frecv)} , A {Fsend} ) A [GF(accept A FCreateThread)} y

The first thread gets its own filename using GetModuleFile NameA, and puts
it into registry for automatic execution on system startup using the system call
RegSetValueExzA. The second formula finds the C2 server using gethostbyname
and configures a socket to receive incoming messages with recv. The third thread
sends data using send syscall. And the fourth thread waits for incoming mes-
sages using accept and, on receiving the message, spawns a new thread using
CreateThread to perform malicious activities.
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4.3 Applying Our Approach for Malware Detection

We applied our tool to detect malicious behaviour of the malware mentioned
above. We translated the binary code of the malware into SM-DPNs using the
method described in Section 2.4. We obtained the CFGs of malware using the
ANGR analyzer [23]. We made use of its symbolic execution to resolve system
calls as control points, identify self-modifying instructions, and compute states
of spawned processes. Then, we model checked the obtained SM-DPNs against
single-indexed LTL formulas fasirai, faozi, and fpackdoor describing the mali-
cious behaviors. We used system calls as atomic propositions AP. Our labelling
function A is that if there is a system call x at a control point p, then A(p) = {x}
and otherwise, A(p) = 0.

Our tool successfully detected the malicious behaviours specified by the above
single-indexed LTL formulas, by checking that the corresponding SM-DPN of
each program satisfies the corresponding malicious single-indexed LTL formula.
Thus, our tool was able to check that these programs are malicious in a few
minutes (e.g., the analysis of the backdoor malware took only 2 minutes).

5 Conclusion

In this work, we tackle the problem of LTL model checking of concurrent self-
modifying code. We propose a direct and efficient algorithm for model checking
of SM-DPNs over single-indexed LTL formulas. First, we show an algorithm
for reducing model checking SM-DPDS to the reachability analysis of Self-
Modifying Biichi Dynamic Pushdown Systems using Multi-Automata. Then, we
give an algorithm for single-indexed LTL model checking by computing fixpoint
of DCLICs. During the experiments, we compared our algorithm with an ap-
proach of translating SM-DPN into standard DPN and performing LTL model
checking on DPN, and the results show the efficiency of our approach. Finally,
we show how our model checking approach can be applied for detecting self-
modifying and concurrent malware.
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A Proof of Proposition 1

Proof (Proof of Proposition 1). We prove in both directions.
( = ) There are three cases in which ((p,w),0) L v ({(p1,w1),01) might
hold:

1. There exists py < piv € 0, such that w = yu and w; = vu, D =
and @ = 6. In this case, we add (p,0)y — (p1,0)v € AS. Therefore,

[
<(p> 9)7 ’7’LL> =M <(p17 9), UU>.
2. There exists py < p1v > powsbls € 0, such that w = yu and w; = vu, D =
{paw202} and 6 = 6;. In this case, we add (p,8)y < (p1,60)v > (p2,b2)ws €

A€ Therefore, ((p, 0), yu) 22222220 00 9), vu).

3. There exists p M p1 € 0, such that w = w; = yu, D =0, p C 0, and
C/

p
61 = (0\{p1}) U p2. In this case, we add (p,0)y < (p1,0')y € AS, where
0" = (0\{p1}) U p2 = 0. Therefore, {(p,0),w) (2):>M/ ((p1,61),w).

( <= ) There are three cases in which ((p, 8),w) —2—>M/ ({p1,61),w1) might
hold:

1. There exists (p,0)y < (p1,0)v € AL, such that w = yu and w; = vu,
D = () and 6 = 0. If there is such rule, then this rule was added for some
r =py < prv € 0. Therefore, ({(p,yu),0) ®:>M ((p1,vu), ).

2. There exists (p,0)y — (p1,0)v > (p2,02)wy € Al such that w = ~yu
and w; = vu, D = {(p2,02)wa} and @ = 6;. If there is such rule, then

this rule was added for some r = py < piv > powsfy € 6. Therefore,
{pawaba}
({pyu), 0) 2225 00 (1, 0u), 0).

3. There exists (p,0)y — (p1,01)y € A, such that w = wy; = yu, D = (), and
dp1 C 0 and Jpy C by, s.t. 61 = (0\{p1}) U p2. If there is such rule, then this

rule was added for some p M p1 € AS, where 6" = (0\{p1}) U p2 = 6;.

Therefore, ((p,w),8) 2= aq ((p1,w), 61).

The construction of DPN does not create DPN rules for other cases. Thus, the
proposition holds.

B Proof of Theorem 2

Proof (Proof of Theorem 2). We prove in both directions
(=) Let ¢y = ({(p,w), ). Let 0 = cycica ... be an accepting run of BP;,
s.t. for i > 0, ¢; L ciy1 and D = |, I; is created during this run. D is finite

because D; is finite. Suppose ¢; = ({pj,w;),0;) for j > 0. Because the size of
stack content cannot be negative, we can construct a subsequence ¢y, cg, - - ., S.t.
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|wk, | = min{|w;| | j > 0} and for I > 1, |wy, | = min{|w,| | § > ki—1}, where wy,
is a stack content of ¢, for some m.

Hence, after ¢, is reached, if wg, = v, then, for every m > ki, wn, = wl,v,
where v € I, v,w), € I and |w),| > 1. Moreover, since the number of states,
phases, and transitions is finite, we can find a subsequence c;, cj, . .., s.t. pj, = po,
0;, = 6y, and w;, = ’yowg-l for every [ > 1, i.e. every configuration c;, has the
same control point, phase, and the topmost symbol on the stack. Therefore, the
run uses the following transitions:

co 2 o Bt e :>D5 *
0 J1 Chm
where Cqg = (<pg7wg> 0 )a Pg S Fi7 D4 = jl_ Iha D5 Uh g1 Ih7 D6 -

UJ’” I, and Vh > j,, : I, C D.
Let Ch = ((0',7'w’),8), then oy holds. Because ¢;, has the smallest stack for
the run, w’ never changes afterwards. Let u,v € I}, s.t. wy = ww’ and w;,, = vw'.

Therefore, ((p',7'),0') 2=+ ((pg,u),0,) 25+ (o', 7'v),0). Let Dy = Ds and

D3 = Dg. Thus, this direction holds.
(<= ) For v € I'*, suppose v° = ¢, v! = v, v = vv and so on. From ay, for
every k > 0, we can construct the following run:
D Ds
({po, 100*w"),00) ==+ ((pg, wv*w'), 05) == ((po, 7ov* '), w)

From oy we can get that there are p € I;, w € I'*, § C AL U A‘;, such that
({p,w),0) EEN ({po, 100°w’), 0p). Since (py,0,) € F; and p € I;, then the run is

accepting.

C Proof of Lemma 1

Proof (Proof of Lemma 1). We prove in both directions:

(pre*(W) C E(Afm*)): In other words, we need to prove that for every ¢ =
({p,w),0) € Conf; and D C D,, if ¢ L+ ¢y for some (co, Do) € W, then

w/ UD()

(p,0) ———"* g5 for some gy € Acc;. Let co = ((po,wo),bp) and ¢ i>;‘ q

be a path using transitions from §; after adding j new transitions for j > 0.
Intuitively, ¢ w/—D% ¢’ means that there is a path in §;. Since (co, Dy) € W,
then (co, Do) € L(A;) and thus, (pg, o) M)S qf, where ¢y € Acc;. Assume
¢ 2k co means that c reaches ¢ in k steps. We proceed with induction on k.

Basis k= 0. pg = p, g = 0, wg = w, D = (). This direction holds.

Step k > 1. Let ((p,w),8) 251 ((/,w),8) and ((pf,o'),0) Z=h-1
({po,wo),60), D = D’ U D”. From the induction hypothesis, there is a path
w,0r) L

cases holds:

qy¢. Since ((p,w), ) 2, ((p',w'),0"), one of the following
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1. ({p,w),0) D——,> ({p',w'),0") was caused by the rule r = py — p'v € 0.

Then, w = yu, W’ = vu, D' = (), and 0 = ¢, where v € I}, u,v € I'*.
Let (p/,0") ﬂf* q ﬂf* gy, such that Dy U Dy = D" U Dy. Then, the

D
saturation rule p; applies, and we add the transition (p, ) W—1> q'. Thus,

with the new transition, we get that (p, ) ﬂﬁ‘ q M* gs. As for the
DCLICs, Dy U Dy = D"UDy=D"UD'"UDy= DU D,.

2. ({p,w), ) 2—/—> ((p', "), 0") was caused by the rule r = py < p'vbpawqbs € 6.
Then, w = yu, w' = vu, D' = {pawsb2}, and § = ¢, where v € I}, u,v € T'*.
Let (pf,0) 2= ¢ /22

¢ ——" gy, such that D; U Dy = D" U Dy. Then, the

D 0
saturation rule ps applies, and we add the transition (p, 0) 2/ Dr0pawabal, q.
v/D1U{paw262} q/ u/Da

Thus, with the new transition, we get that (p, )
qf- As for the DCLICs, D, U Dy U {p2w292} = D" UDyU {p2w292} =D"U
D' UDy= DU Dy.

3. ({p,w), ) 2N ((p',w'),0") was caused by the rule r = p € 0.

Then, w=w’, D' =0, p1 C6, po CO, and § = (6\p1) U p2. Let w = yu for

~v € I'and w € T'*. Then, (p/,6") & q %* gy, such that D, U Dy =

D" U Dy. Then, the saturation rule ps applies, and we add the transition

(p,0") RIAEN q. 0" = (0"\p2) Upy = 0. Thus, with the new transition, we ge

that (p,0) L25%% ¢ “/P2% 4. As for the DCLICs, Dy U Dy = D" U Dy =

D"UD'UDy= DU D,.

(p1,p2) ’
C_) p

Thus, the induction hypothesis holds for all three cases during its step, and the
lemma holds for this direction.

(L’(Afre*) C pre*(W)): Let ¢ =7 ¢’ be a path using transitions from 4] after
adding j new transitions for j > 0. We prove by induction with the following
hypothesis:

D .
If there is a path (p,0) L)* q in AfTe , then there exists a configuration
({p',w'),0"), such that:

— ({p,w)0) 2 - ((p', w0, (p',0) ﬂﬁ; g, and D = D' U Dy, moreover,

— if ¢ is an initial state, then w’' = ¢, D' = (.
D
Let (p,0) i/—ﬁ'; q for some k. We proceed with the induction on k:
Basis k = 0. Then, p = p/’, § = ¢/, w = &', and D = D’ and therefore,
the first item holds. If ¢ is an initial state, considering also that we excluded

- . c e ]
transitions into initial states for A;, then ¢ = (p,d) and ¢ LN q.

Step k > 1. Let t = (p1,61) ﬂ> q1 be the k-th transition added to ;. Let

D
J be the number of times ¢ was used in the path (p, 6) Lz q. We proceed with

induction on j:
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Basis j = 0. Then, (p,0) w/—D>Z_1 q and therefore, the lemma holds by

applying the induction hypothesis on k£ — 1.
Step 7 > 1. Then, for w = wyv and D = Dy U Dy U D3, there exists the
following path:

U/D * 'Y/D v/D *
(p,0) ——75_1 (p1,61) — 1 —>7_1 ¢

We apply the induction hypothesis on (p, ) ﬂ),’;_l (p1,61) to obtain that

¢ 1" D//
there exist p” € P;, §” C 24:Y41 D" C D;, such that (p”,0") L% (p1,01).

Moreover, ({p,u),0) L2200 . ((p",w"),0"), and since (p1,61) is an initial state,

we apply the second part of the induction hypothesis to get that p; = p”, W’ =¢
and D" = (. Therefore, we get that:

((p,u),0) 22 ((p1,€),61)

.- D .
Now, we consider the transition (p1,6;) ’Y/—1> q1- Because it was added by
a saturation rule, one of these cases must hold:
Case p7: There exists a rule 7 = p1y — p
1"’ D
P, and w"” € I¥, and (p",61) w—/lﬁ;_l g1. The rule r allows the suc-

3

""" e 0y for some p”' €

cessor relation ((p1,7),61) L. ((P",w'"),01) to hold. Now, we can extend

this path backwards: ((p,u~),8) L2y ((p1,7),01) TN ((p",w"),07). Since

1t D D
(p",01) = /D 1@ o/ D5 q uses transition ¢ fewer times, we apply the induc-

tion hypothesis to obtain that there exists a configuration ((po, wo), fo), such that

({(p", "), 01) EEEE ({po,wo), o), (po,to) MS ¢, and Dy U D3 = Dy U Ds.

Now, we get that:

Dy

((p, unw™), 0) 22 ((p",w"),01) 2= ((po,wo)b0)

Let p’ = pg, W' = wq, 0 = Oy, then, D’ = Dy UD,. We check the sets of DCLICs:

D,UDy,UDs = Dy UDyUD3 = D. If ¢ is an initial state and there are no

transitions into initial states in .A;, that means ¢ = (pg, 6p), wo = €, and D5 = 0.

Thus, D = Dy U D,. Therefore, the induction hypothesis holds for this case.
Case jio: There exists a rule r = p1y <= p”’w"”’ > pawsbs € 01 for some p’”’ €

P;and W € 7, and (p”,6,) ——= /Ds %1 q1, such that Dy = DgU{pow262}. The

0
rule 7 allows the successor relation ((p1,7),01) Apaenba) (" ,w"),0:1) to hold.

Now, we can extend this path backwards: ({p, uy), ) LI ((p1,7),61) %

nr D D
((p"",w",01). Since (p",61) u—ﬁéz_l @ Y/Ds, g uses transition ¢ fewer

times, we apply the induction hypothesis to obtain that there exists a configura-

tion ({po,wo),0o), such that ({(p"’,w"’),0) Do ({po,wo), 00), (po,bo) Mé



LTL Model Checking of Concurrent Self Modifying Code 25
q, and Dg U D3 = D, U D5. We get the following:
0
(0, uyw™), 0) 20w (7 ), 61) 25 ((po, wo), o)

Let p' = pg, W' = wq, 0’ = 6, then, D’ = Dy U Dy. Now, we check the sets of
DCLICs: D2U{p2w292}uD4UD5 = D2U{p2w292}UD6UD3 = DyUD\UD3 = D.
If ¢ is an initial state and there are no transitions into initial states in A;, that
means ¢ = (po,0y), wo = €, and D5 = (. Thus, D = D U D,. Therefore, the
induction hypothesis holds for this case.

Case pus: There exists 0" C A; U A§, such that there is a rule r = p; M

p" € 0", ps C 0, such that (p”,0") ﬂ),ﬁ_l q1, and 6" = (01\p1) U p2 for

some p”’ € P;. According to the successor relation definition, for any w’’ €

Iy, ((p1,w™), 01) == ((0",w"),0"). Thus, ((p,uw"),0) 2+ ((p",w"),0™).

D .
Since (p",6") W—1>* QO Ds q uses t fewer times, we apply the induction

hypothesis to get that there exists a configuration ({pg,wo),8p), such that:
(1w, 1) 22 ((0",0"),0"") 25" (o, wo), 00)

Moreover, (pg, o) wo/i)a q, and D1 U D3 = Dy U D5. Then, Dy U D5 U Dy =

Dy UDs;UD3 = D. If g is an initial state and there are no transitions into initial
states in A;, that means ¢ = (pg,6p), wo = €, and D5 = 0. Thus, D = Dy U Dy.
Therefore, the induction hypothesis holds for this case.

Finally, by proving the induction, we can apply this hypothesis to any tran-
D
sition (p, d) L* qf, where g5 € Acc;, which means that (((p7 w)ﬂ),D) €

L(AP"). Thus, we get that there is ((p/,w’),#), such that ((p,w),0) 2

3

({(p',w'),0") and (p,8") ﬂ% qr and D = D’UDy. The path (p/, ") ﬂ)(ﬁ qf

means that (((p',w’),0'), Do) € L(A;), or (({p',w’),0"), Dg) € W. The successor
relation implies that (((p,w),8), D’ U Do) € pre*(W). Thus, any configuration
with a set of DCLICs accepted by AY " s a predecessor of some configuration
with DCLICs in W.

By proving these two directions, we get that the set of configurations and
DCLICs accepted by £(.A? 7'6*) is the same set as the set of predecessors of W.

D Proof of Theorem 4

Proof (Proof of Theorem /). We prove in both directions.
( = ): Let 7 be the accepting global run. For every local run o € 7, let
o start at ({p,w),0), i.e. ((p,w),0) = f. Let D’ be the j-th iteration of F. We
need to show that pwd € D7 for every j > 0. We proceed by induction on j:
Basis j = 0. D/ = Dy, therefore, pwf € D’ by the definition of D;.
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Step j > 1. Let D C Dy, s.t. ({p,w),0) Ep fr(p)- By applying the induction
hypothesis on D’~1, we get that for a DCLIC p'w'@’, if ((p’,w’),0) = f, then
p'w'@’ € DI~1. Therefore, there is such D C D71, so that it has only DCLICs
that satisfy f and ((p,w),0) Ep fr(p). From Corollary 1, if ({(p,w),0) Ep fr(p)
then (({[p, gg(p)],uJ),@), D) € Ay(). Therefore, pwé € D7.

(<=):Let ¢ = ({p,w), #) be a configuration, such that pwé € Dy,. Therefore,
there exists DCLIC D, C Dy, such that (c¢,D.) € L(Ax()), i.e. ¢ Ep, fr(e)-
We can construct an accepting global run 7 starting from c. For any local run
o spawned in 7, let o start with a configuration ¢ = ((pg,wg), 07) and spawn
DCLICs D?. We know that pgwg i must be in Dy, because some other local
run in Dy, spawned it. Therefore, for every such o in 7, there exists D7 C Dy,
s.t. ¢ Epe fr(pg) and thus, 7 = f.



