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1 Transition systems

are couples
A = (S, ∆)

where
S— a finite set of states,
C— a set of colors,
∆ ⊂ S × C × S — a finite set of actions .

For each action
e = (s, c, t) ∈ ∆

s = source(e) — the source,
t = target(e) — the target,
c = γC(e) — the colour of e.

∆(s) = {e ∈ ∆ | source(e) = s}

the set of actions available at s.
A play is an infinite path in A:

p = e1e2e3 . . . ∀i ≥ 0, ei ∈ ∆ and target(ei) = source(ei+1).
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2 Arenas

are tuples
A = (S, ∆, π)

where

• (S, ∆) – a transition system without sink states , i.e. ∆(s) 6= ∅ for all s ∈ S,

• π : S → {Min, Max} is a mapping designating for each state s ∈ S the player π(s)
controlling s.

3 Outcomes

An outcome of an infinite play p is

γC(p) = γC(e1e2 . . .) = γC(e1)γC(e2) . . . .

The set of outcomes
O(C) =

⋃

B⊂C
B finite nonempty

Bω.

4 Preference relation

A preference relation is a binary relation w over the set O(C) of outcomes which is

• reflexive, i.e. u w u, for all u ∈ O(C),

• transitive, i.e. u w v and v w w imply u w w, for u, v, w ∈ O(C) and

• total, either u w v or v w u, for all u, v ∈ O(C).

A preference relation = a total preorder relation over the set O(C) of outcomes.
If

u w v, u, v ∈ O(C).

then u is no worse than v.
The player strictly prefers u to v, u A v, if u w v but not v w u.
If u w v and v w u then the player is indifferent between u and v.
v — the inverse of w.

5 Two-person strictly antagonistic game

is a couple
(A,w),

where A is an arena and w is a preference relation for Max. The preference relation for
player Min is v.

The obvious aim of each player is to obtain the most advantageous outcome with respect
to his preference relation.
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6 Preferences versus payoff mappings

Payoff mapping
f : O(C) → R ∪ {−∞, +∞}

induces preference wf ,
u wf v if f(u) ≥ f(v).

7 Strategies and equilibria

A = (S, ∆, π) – an arena.

SMax = {s ∈ S | π(s) = Max}

states controlled by player Max
SMin = S \ SMax

states controlled by player Min.
P(A) – the set of finite paths in A (including for each state s the empty path λs with

the source and target s).
A strategy for player µ ∈ {Max, Min} is a mapping

σµ : {p ∈ P(A) | target(p) ∈ Sµ} → ∆,

such that σµ(p) ∈ ∆(s), where s = target(p).

8 Plays consistent with a strategy

A (finite or infinite) play p = e0e1e2 . . . is consistent with player µ’s strategy σµ if, for each
factorization p = p′p′′, such that

• p′′ is nonempty

• and target(p′) = source(p′′) is controlled by player µ,

σµ(p′) is the first action in p′′.

Positional strategies. A positional (or memoryless) strategy for player µ

σµ : Sµ → ∆

such that, for all s ∈ Sµ,
σµ(s) ∈ ∆(s)

A strategy profile is a pair (σ, τ) of strategies, where σ is a strategy for player Max and
τ is a strategy for player Min.

pA,s(σ, τ)

is the unique play with source s consistent with σ and τ .
A strategy profile (σ#, τ#) is an equilibrium if for all states s ∈ S and all strategies σ

and τ ,
γC(pA,s(σ

#, τ)) w γC(pA,s(σ
#, τ#)) w γC(pA,s(σ, τ#)) .

An equilibrium (σ#, τ#) is said to be positional if the strategies σ# and τ# are posi-
tional.
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9 Examples

Mean-payoff games.
C = R × R+

(r1, t1)(r2, t2)(r3, t3) . . . w (r′1, t
′

1)(r
′

2, t
′

2)(r
′

3, t
′

3) . . .

if

lim sup
n

r1t1 + r2t2 + · · · + rntn

t1 + t2 + · · · + tn
≥ lim sup

n

r′1t
′
1 + r′2t

′
2 + · · · + r′nt

′
n

t′1 + t′2 + · · · + t′n

But then
1000, 1000, ..., 1000, 0ω ≈ 0ω

Overtaking.
(r1, t1)(r2, t2)(r3, t3) . . . w (r′1, t

′

1)(r
′

2, t
′

2)(r
′

3, t
′

3) . . .

if

∃k, ∀n > k,
r1t1 + r2t2 + · · · + rntn

t1 + t2 + · · · + tn
≥

r′1t
′
1 + r′2t

′
2 + · · · + r′nt

′
n

t′1 + t′2 + · · · + t′n

Weighted limits.
C = R, α ∈ [0, 1]

fα(r1r2r3 . . .) = α · lim sup
i

ri + (1 − α) · lim inf
i

ri

10 Extended preference relation and �- equilibria

The extended preference relation � is defined as follows:

for x, y ∈ O(C), x � y if ∀u ∈ C∗, ux w uy.

Obviously, if x � y then x w y.

� is transitive and reflexive, but can be not total.
A strategy profile (σ#, τ#) is a �-equilibrium if for all strategies σ, τ

γC(pA,s(σ
#, τ)) � γC(pA,s(σ

#, τ#)) � γC(pA,s(σ, τ#)) .

11 Adherence operator

J K : 2C∗

→ 2Cω

For L ⊆ C∗,
JLK = {u ∈ Cω | Pref(u) ⊂ Pref(L)} .

Example Ja∗bK = {aω}
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12 Why adherence?

A = (S, ∆) an arena. Then Lω
s (A) = JLs(A)K where Lω

s (A) the set of infinite words
labelling infinite paths starting at s, Ls(A) the set of finite words labelling finite paths
starting at s.

If L ∈ Rec(C∗) then Lω
s (A) = JLK for some arena A.

13 Conditions for positional equilibria

Let u ∈ O(C) and X ⊂ O(C).
Notation.

u � X

if, for all x ∈ X, u � x.

Ultimately periodic infinite words Let u, w ∈ C∗ and v ∈ C+.
An infinite word of the form

uvω,

is called ultimately periodic.

Simple periodic languages Languages of the form uv∗, here u ∈ C∗ and v ∈ C+. Note

Juv∗K = {uvω}

Union selection. � satisfies union selection condition if, for all ultimately periodic
words u1u

ω
2 and v1v

ω
2 , either

u1u
ω
2 � v1v

ω
2

or
v1v

ω
2 � u1u

ω
2
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We can rewrite this condition as

∃x ∈ {u1u
ω
2 , v1v

ω
2 }, x � Ju1u

∗

2 ∪ v1v
∗

2K .

Product selection. We say that � satisfies product selection condition for player Max
if, for all u, v, w, z ∈ C∗ such that |v| > 0 and |w| > 0,

∃x ∈ {uvω, uwzω}, x � Juv∗wz∗K .

Note that
{uvω, uwzω} ⊂ uvω ∪ uv∗wzω = Juv∗wz∗K .

Star selection. � satisfies star selection condition for player Max if for each nonempty
language L ∈ Rec(C+)

∃x ∈ JLK ∪ {uω | u ∈ L}, x � JL∗K .

Note
JLK ∪ {uω | u ∈ L} ⊂ L∗ JLK ∪ Lω = JL∗K

14 One player Max games

� satisfies all three selection conditions
if and only if

one-player Max games have optimal positional strategies for player Max.

Dual conditions.
� ↔ � .

15 Main result

The following result is a reformulation of [4] to appear in [5]

Theorem 1 (Gimbert, WZ). Let w be a preference relation over O(C) and let � be the
corresponding extended preference relation. The following conditions are equivalent:

(1) There exist positional equilibria for all games (A,w) over finite arenas.

(2) There exist positional �-equilibria for all games (A,w) over finite arenas.

(3) � satisfies union selection, product selection and star selection conditions for player
Max and player Min.

(4) For all one-player games (A,w) the player controlling the arena A has an optimal
positional strategy.

(5) For all one-player games (A,w) the player controlling the arena A has a �-optimal
positional strategy.
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16 Games on infinite graphs

No restriction on the number of states and transitions.

W ⊂ Cω winning outcomes

W prefix independent (aW = W for each a ∈ C)

u wW v

if u ∈ W or v 6∈ W .
Both players have optimal positional strategies in all games (A,wW ) iff W described

by a parity condition (Colcombet, Niwiński [1]).

If the set of states infinite but for each state the set of available transitions finite then
there are positional games generalizing parity games (Grädel, Walukiewicz [6]).

17 Half-positional games

Finite graphs :

• the game has a value,

• player Max has an optimal positional strategy.

Some sufficient conditions (E. Kopczyński [7, 8]).
Remark: We lack concrete examples of such games.

18 Stochastic perfect information games

Finite number of states and actions.
Payoff mapping:

f : O(C) → R

Theorem 2 (H. Gimbert, WZ [2, 9]). The following conditions are equivalent:

• For each game (A, f) with A finite there exists an equilibrium profile (σ#, τ#) with
σ# and τ# pure positional,

• For each one player game (A, f) with A finite the unique player has an optimal pure
positional strategy.

19 One player perfect information games (MDP)

Theorem 3 (H. Gimbert [2, 3]). Let

f : O(C) → R

prefix independent and such that for all u, v ∈ O(C)

f(w) ≤ max{f(u), f(v)}

where w is the shuffle of u and v. Then player Max has an optimal pure positional strategy
for all one player stochastic perfect information games (Markov Decision Processes) (A, f)
for A finite.
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