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Abstract— The behavior of a given wireless device may affect
the communication capabilities of a neighboring device, notably
because the radio communication channel is usually shared in
wireless networks. In this tutorial, we carefully explain how
situations of this kind can be modelled by making use of game
theory. By leveraging on four simple running examples, we
introduce the most fundamental concepts of non-cooperative
game theory. This approach should help students and scholars
to quickly master this fascinating analytical tool without having
to read the existing lengthy, economics-oriented books. It should
also assist them in modelling problems of their own.

1 INTRODUCTION
Game theory [6, 7, 13] is a discipline aimed at modelling

situations in which decision makers have to make specific
actions that have mutual, possibly conflicting, consequences.
It has been used primarily in economics, in order to model
competition between companies: for example, should a given
company enter a new market, considering that its competitors
could make similar (or different) moves? Game theory has also
been applied to other areas, including politics and biology.1

The first textbook in this area was written by von Neumann
and Morgenstern, in 1944 [19]. A few years later, John Nash
made a number of additional contributions [11, 12], the cor-
nerstone of which is the famous Nash equilibrium. Since then,
many other researchers have contributed to the field, and in a
few decades game theory has become a very active discipline;
it is routinely taught in economics curricula. An amazingly
large number of game theory textbooks have been produced,
but almost all of them consider economics as the premier
application area (and all their concrete examples are inspired
by that field). Our tutorial is inspired by three basic textbooks
and we mention them in the ascending order of complexity.
Gibbons [7] provides a very nice, easy-to-read introduction
to non-cooperative game theory with many examples using
economics. Osborne and Rubinstein [13] introduce the game-
theoretic concepts very precisely, although this book is more
difficult to read because of the more formal development. This
is the only book out of the three that covers cooperative game
theory as well. Finally, Fudenberg and Tirole’s [6] book covers
many advanced topics, in addition to the basic concepts.

Not surprisingly, game theory has also been applied to net-
working, in most cases to solve routing and resource allocation

1The name itself of “game theory” can be slightly misleading, as it could be
associated with parlor games such as chess and checkers. Yet, this connection
is not completely erroneous, as parlor games do have the notion of players,
payoffs, and strategies - concepts that we will introduce shortly.

problems in a competitive environment. The references are so
numerous that we cannot list them due to space constraints. A
subset of these papers is included in [1]. Recently, game theory
was also applied to wireless communication: the decision mak-
ers in the game are devices willing to transmit or receive data
(e.g., packets). They have to cope with a limited transmission
resource (i.e., the radio spectrum) that imposes a conflict of
interests. In an attempt to resolve this conflict, they can make
certain moves such as transmitting now or later, changing their
transmission channel, or adapting their transmission rate.

There is a significant amount of work in wired and wireless
networking that make use of game theory. Oddly enough, there
exists no comprehensive tutorial specifically written for wire-
less networkers2. We believe this situation to be unfortunate,
and this tutorial has been written with the hope of contributing
to fill this void. As game theory is still rarely taught in
engineering and computer science curricula, we assume that
the reader has no (or very little) background in this field;
therefore, we take a basic and intuitive approach. Because
in most of the strategic situations in wireless networking the
players have to agree on sharing or providing a common
resource in a distributed way, our approach focuses on the
theory of non-cooperative games. Cooperative games require
additional signalization or agreements between the decision
makers and hence a solution based on them might be more
difficult to realize.

In a non-cooperative game, there exist a number of deci-
sion makers, called players, who have potentially conflicting
interests. In the wireless networking context, the players are
the users controlling their devices. As we assume that the
devices are bound to their users, we will refer to devices as
players and we use the two terms interchangeably throughout
the paper. In compliance with the practice of game theory, we
assume that the players are rational, which means that they
try to maximize their payoff or alternatively to minimize their
costs3. This assumption of rationality is often questionable,
given, for example, the altruistic behavior of some animals.
Herbert A. Simon was the first one was to question this
assumption and introduced the notion of bounded rationality

2To the best of our knowledge, there exist only two references: a monograph
[10] that provides a synthesis of lectures on the topic, and a survey [1] that
focuses mostly on wired networks.

3In game theory one usually uses the concept of payoff maximization,
whereas cost minimization comes from the optimal control theory community.
As it is more appropriate for this tutorial, we use the payoff maximization
objective.
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Figure 1. The network scenario in the Forwarder’s Dilemma game.

[18]. But, we believe that in computer networks, most of the
interactions can be captured using the concept of rationality,
with the appropriate adjustment of the payoff function. In order
to maximize their payoff, the players act according to their
strategies. The strategy of a player can be a single move (as
we will see in Section 2) or a set of moves during the game
(as we present in Section 4).

In this tutorial, we devote particular attention to the selection
of the examples so that they match our focus on wireless
networks. For the sake of clarity, and similarly to classic
examples, we define these examples for two decision makers,
hence the corresponding games are two-player games. Note
that the application of game theory extends far beyond two-
person games. Indeed, in most networking problems, there are
several participants.

We take an intuitive top-down approach in the protocol stack
to select the examples in wireless networking as follows. Let
us first assume that the time is split into time slots and each
device can make one move in each time slot.

1) In the first game called the Forwarder’s Dilemma4, we
assume that there exist two devices as players, p1 and
p2. Each of them wants to send a packet to his re-
ceiver, r1 and r2 respectively, in each time slot using
the other player as a forwarder. We assume that the
communication between a player and his receiver is
possible only if the other player forwards the packet.
We show the Forwarder’s Dilemma scenario in Figure 1.
If player p1 forwards the packet of p2, it costs player
p1 a fixed cost 0 < c << 1, which represents the
energy and computation spent for the forwarding action.
By doing so, he enables the communication between p2

and r2, which gives p2 a reward of 1. The payoff is the
difference of the reward and the cost. We assume that
the game is symmetric and the same reasoning applies to
the forwarding move of player p2. The dilemma is the
following: Each player is tempted to drop the packet he
should forward, as this would save some of his resources;
but if the other player reasons in the same way, then
the packet that the first player wanted to be relayed will
be dropped. They could, however, do better by mutually
relaying each other’s packet. Hence the dilemma.

2) In the second example, we present a scenario, in which a
sender se wants to send a packet to his receiver r in each
time slot. To this end, he needs both devices p1 and p2 to
forward for him. Thus, we call this game the Joint Packet
Forwarding Game. Similarly to the previous example,
there is a forwarding cost 0 < c << 1 if a player forwards

4We have chosen this name as a tribute to the famous Prisoner’s Dilemma
game in the classic literature [2, 7, 6, 13].
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Figure 2. The Joint Packet Forwarding Game.

the packet of the sender. If both players forward, then
they each receive a reward of 1 (e.g., from the sender or
the receiver). We show this packet forwarding scenario
in Figure 2.

3) The third example, called Multiple Access Game5, intro-
duces the problem of medium access. Assume that there
are two players p1 and p2 who want to send some packets
to their receivers r1 and r2 using a shared medium.
We assume that the players have a packet to send in
each time slot and they can decide to transmit it or
not. Suppose furthermore that p1, p2, r1 and r2 are in
the power range of each other, hence their transmissions
mutually interfere. If player p1 transmits his packet, it
incurs a transmission cost of 0 < c << 1, similarly to the
previous examples. The packet transmission is successful
if p2 does not transmit (stays quiet) in that given time
slot, otherwise there is a collision. If there is no collision,
player p1 gets a reward of 1 from the successful packet
transmission.

4) In the last example, we assume that player p1 wants to
transmit a packet in each time slot to a receiver r1. In
this example, we assume that the wireless medium is
split into two channels ch1 and ch2 according to the
Frequency Division Multiple Access (FDMA) principle
[14, 16]. The objective of the malicious player p2 is
to prevent player p1 from a successful transmission by
transmitting on the same channel in the given time slot.
In wireless communication, this is called jamming, hence
we refer to this game as the Jamming Game6. Clearly, the
objective of p1 is to succeed in spite of the presence of
p2. Accordingly, he receives a payoff of 1 if the attacker
cannot jam his transmission and he receives a payoff of
−1 if the attacker jams his packet. The payoffs for the
attacker p2 are the opposite of those of player p1. We
assume that p1 and r1 are synchronized, which means that
r1 can always receive the packet, unless it is destroyed
by the malicious player p2. Note that we neglect the
transmission cost c, since it applies to each payoff (i.e.,
the payoffs would be 1 − c and −1 − c) and does not
change the conclusions drawn from this game.

We deliberately chose these examples to represent a wide
range of problems over different protocol layers (as shown in
Figure 3). There are indeed fundamental differences between
these games as follows. The Forwarder’s Dilemma is a sym-
metric nonzero-sum game, because the players can mutually
increase their payoffs by cooperating (i.e., from zero to 1−c).
The conflict of interest is that they have to provide the packet

5In the classic game theory textbooks, this type of game is referred to as
the “Hawk-Dove” game, or sometimes the “Chicken” game.

6In the classic game theory literature, this game corresponds to the game
of “Matching Pennies.”
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Figure 3. The classification of the examples according to protocol layers.

forwarding service for each other. Similarly, the players have
to establish the packet forwarding service in the Joint Packet
Forwarding Game, but they are not in a symmetric situation
anymore. The Multiple Access Game is also a nonzero-sum
game, but the players have to share a common resource,
the wireless medium, instead of providing it. Finally, the
Jamming Game is a zero-sum game because the reward of
one player represents the loss of the other player, meaning
that

∑
i∈N (rewardi − costi) = 0. These properties lead to

different games and hence to different strategic analyses, as
we will demonstrate in the next section.

2 STATIC GAMES
In this section, we assume that there exists only one time

slot, which means that the players have only one move as
a strategy. In the game-theoretic terms this is called a static
game. We will demonstrate how game theory can be used
to analyze the games introduced before and to identify the
possible outcomes of the strategic interactions of the players.

2.1 Static Games in Strategic Form
We define a game G = (P, S, U) in strategic form (or

normal form) by the following three elements. P is the set
of players. Note that in our paper we have two players,
p1, p2 ∈ P , but we present each definition such that it holds for
any number of players. For convenience, we will designate by
subscript −i all the players belonging to P except i himself.
These players are often designated as being the opponents of
i. In our games, player i has one opponent referred to as j.
Si corresponds to the pure strategy space of player i. This
means that the strategy assigns zero probability to all moves,
except one (i.e., it clearly determines the move to make). We
will see in Section 2.4, that the players can also use mixed
strategies, meaning that they choose different moves with
different probabilities. We designate the joint set of the strategy
spaces of all players as follows S = S1× · · · ×S|N |. We will
represent the pure strategy space of the opponents of player
i by S−i = S\Si. The set of chosen strategies constitutes a
strategy profile s = {s1, s2}. In this tutorial, we have the same
strategy space for both players, thus S1 = S2. Note that our
examples have two players and thus we refer to the strategy
profile of the opponents as s−i = sj ∈ S. The utility7 or payoff

7Note that there is a subtle difference between the concepts of utility and
payoff. Payoff is usually used for the outcome of a stage, i.e. stage payoff,
whereas utility denotes the objective of a player in the whole game. Hence, the
two notions are the same for static games, but different for dynamic games.

ui(s) expresses the benefit of player i given the strategy profile
s. In our examples, we have U = {u1(s), u2(s)}. Note that
the objectives (i.e., utility functions) might be different for the
two players, as for example in the Jamming Game.

At this point of the discussion, it is very important to
explicitly state that we consider the game to be with complete
information.

Definition 1 A game with complete information is a game in
which each player has full knowledge of all aspects of the
game.

In particular, complete information means that the players
know each element in the game definition: (i) who the other
players are, (ii) what their possible strategies are and (iii)
what payoff will result for each player for any combination
of moves. The concept of complete information should not
be confused with the concept of perfect information, another
concept we present in detail in Section 3.3.

Let us first study the Forwarder’s Dilemma in a static game.
As mentioned before, in the static game we have only one time
slot. The players can decide to forward (F ) the packet of the
other player or to drop it (D); this decision represents the
strategy of the player. As mentioned earlier, this is a nonzero-
sum game, because by helping each other to forward, they can
achieve an outcome that is better for both players than mutual
dropping.

Matrices provide a convenient representation of strategic-
form games with two players. We can represent the For-
warder’s Dilemma game as shown in Table I. In this table, p1

is the row player and p2 is the column player. Each cell of the
matrix corresponds to a possible combination of the strategies
of the players and contains a pair of values representing the
payoffs of players p1 and p2, respectively.

p1\p2 F D
F (1-c,1-c) (-c,1)
D (1,-c) (0,0)

Table I. The Forwarder’s Dilemma game in strategic form, where p1 is the
row player and p2 is the column player. Each of the players has two strategies:
to forward (F ) or to drop (D) the packet of the other player. In each cell,
the first value is the payoff of player p1, whereas the second is the payoff of
player p2.

2.2 Iterated Dominance
Once the game is expressed in strategic form, it is usually

interesting to solve it. Solving a game means predicting the
strategy of each player, considering the information the game
offers and assuming that the players are rational. There are
several possible ways to solve a game; the simplest one
consists in relying on strict dominance.

Definition 2 Strategy s
′
i of player i is said to be strictly

dominated by his strategy si if,

ui(s
′
i, s−i) < ui(si, s−i), ∀s−i ∈ S−i (1)

Coming back to the example of Table I, we solve the game
by iterated strict dominance (i.e., by iteratively eliminating
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strictly dominated strategies). If we consider the situation from
the point of view of player p1, then it appears that for him
the F strategy is strictly dominated by the D strategy. This
means that we can eliminate the first row of the matrix, since
a rational player p1 will never choose this strategy. A similar
reasoning, now from the point of view of player p2, leads to
the elimination of the first column of the matrix. As a result,
the solution of the game is (D, D) and the payoff is (0, 0).
This can seem quite paradoxical, as the pair (F , F ) would
have led to a better payoff for each of the players. It is the
lack of trust between the players that leads to this suboptimal
solution.8

The technique of iterated strict dominance cannot be used
to solve every game. Let us now study the Joint Packet
Forwarding Game. The two devices have to decide whether to
forward the packet simultaneously, before the source actually
sends it9. Table II shows the strategic form.

p1\p2 F D
F (1-c,1-c) (-c,0)
D (0,0) (0,0)

Table II. The Joint Packet Forwarding Game in strategic form. The players
have two strategies: to forward (F ) or to drop (D) the packet sent by the
sender. Both players p1 and p2 get a reward, but only if each of them forwards
the packet.

In the Joint Packet Forwarding Game, none of the strategies
of any player strictly dominates the other. If player p1 drops
the packet, then the move of player p2 is indifferent and thus
we cannot eliminate his strategy D based on strict dominance.
To overcome the requirements defined by strict dominance, we
define the concept of weak dominance.

Definition 3 Strategy s
′
i of player i is said to be weakly

dominated by his strategy si if,

ui(s
′
i, s−i) ≤ ui(si, s−i), ∀s−i ∈ S−i (2)

with strict inequality for at least one s−i ∈ S−i.

Using the concept of weak dominance, one can notice that
the strategy D of player p2 is weakly dominated by the strategy
F . One can perform an elimination based on iterated weak
dominance, which results in the strategy profile (F , F ). Note,
however, that the solution of the iterated strict dominance
technique is unique, whereas the solution of the iterated
weak dominance technique might depend on the sequence of
eliminating weakly dominated strategies, as explained at the
end of Section 2.3.

It is also important to emphasize that the iterated elimination
techniques are very useful, even if they do not result in a single
strategy profile. These techniques can be used to reduce the
size of the strategy space (i.e., the size of the strategic-form
matrix) and thus to ease the solution process.

8Unfortunately, we can find many examples of this situation in the history
of mankind, such as the arms race between countries.

9In Section 3, we will show that the game-theoretic model and its solution
changes if we consider a sequential move of the players (i.e., if player p2

knows the move of player p1 at the moment he makes a move).

2.3 Nash Equilibrium
In general, the majority of the games cannot be solved by the

iterated dominance techniques. As an example, let us consider
the Multiple Access Game introduced at the beginning. Each
of the players has two possible strategies: either transmit (T )
or not transmit (and thus to stay quiet) (Q). As the channel
is shared, a simultaneous transmission of both players leads
to a collision. The game is represented in strategic form in
Table III.

p1\p2 Q T

Q (0,0) (0,1-c)
T (1-c,0) (-c,-c)

Table III. The Multiple Access Game in strategic form. The two moves for
each player are: transmit (T ) or be quiet (Q).

It can immediately be seen that no strategy is dominated in
this game. To solve the game, let us introduce the concept of
best response. If player p1 transmits, then the best response of
player p2 is to be quiet. Conversely, if player p2 is quiet, then
p1 is better off transmitting a packet. We can write bi(s−i),
the best response of player i to an opponents’ strategy vector
s−i as follows.

Definition 4 The best response bi(s−i) of player i to the
profile of strategies s−i is a strategy si such that:

bi(s−i) = arg max
si∈Si

ui(si, s−i) (3)

One can see, that if two strategies are mutual best responses
to each other, then no player would have a reason to deviate
from the given strategy profile. In the Multiple Access Game,
two strategy profiles exist with the above property: (Q, T )
and (T , Q). To identify such strategy profiles in general, Nash
introduced the concept of Nash equilibrium in his seminal
paper [11]. We can formally define the concept of Nash
equilibrium (NE) as follows.

Definition 5 The pure strategy profile s∗ constitutes a Nash
equilibrium if, for each player i,

ui(s∗i , s
∗
−i) ≥ ui(si, s

∗
−i),∀si ∈ Si (4)

This means that in a Nash equilibrium, none of the users
can unilaterally change his strategy to increase his utility. Al-
ternatively, a Nash equilibrium is a strategy profile comprised
of mutual best responses of the players.

A Nash equilibrium is strict [8] if we have:

ui(s∗i , s
∗
−i) > ui(si, s

∗
−i),∀si ∈ Si (5)

It is easy to check that (D, D) is a Nash equilibrium
in the Forwarder’s Dilemma game represented in Table I.
This corresponds to the solution obtained by iterated strict
dominance. This result is true in general: Any solution derived
by iterated strict dominance is a Nash equilibrium. The proof
of this statement is presented in [6]. In the Multiple Access
Game, however, the iterated dominance techniques do not
help us derive the solutions. Fortunately, using the concept of
Nash equilibrium, we can identify the two pure-strategy Nash
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equilibria: (Q, T ) and (T , Q). Note that the best response
bi(s−i) is not necessarily unique. For example in the Joint
Packet Forwarding Game presented in Table II, player p2 has
two best responses (D or F) to the move D of player p1.
Multiple best responses are the reason that the solutions of
the iterated weak dominance technique in a given game might
depend on the order of elimination.

2.4 Mixed Strategies
In the examples so far, we have considered only pure

strategies, meaning that the players clearly decide on one
behavior or another. But in general, a player can decide to play
each of these pure strategies with some probabilities; in game-
theoretic terms such a behavior is called a mixed strategy.

Definition 6 The mixed strategy σi(si), or shortly σi, of
player i is a probability distribution over his pure strategies
si ∈ Si.

Accordingly, we will denote the mixed strategy space of
player i by Σi, where σi ∈ Σi. Hence, the notion of
profile, which we defined earlier for pure strategies, is now
characterized by the probability distribution assigned by each
player to his pure strategies: σ = σ1, ..., σ|P |, where |P | is
the cardinality of P . As in the case of pure strategies, we
denote the strategy profile of the opponents by σ−i. For a
finite strategy space, i.e. for so called finite games10 [6] for
each player, player i’s utility to profile σ is then given by:

ui(σ) =
∑

si∈Si

σi(si)ui(si, σ−i) (6)

Each of the concepts that we have considered so far for pure
strategies can be also defined for mixed strategies. As there is
no significant difference in these definitions, we refrain from
repeating them for mixed strategies.

Let us first study the Multiple Access Game. We call x the
probability with which player p1 decides to transmit, and y
the equivalent probability for p2 (this means that p1 and p2

stay quiet with probability 1− x and 1− y, respectively).
The payoff of player p1 is:

u1 = x(1− y)(1− c)− xyc = x(1− c− y) (7)

Likewise, we have:

u2 = y(1− c− x) (8)

As usual, the players want to maximize their utilities. Let
us first derive the best response of p2 for each strategy of
p1. In (8), if x < 1 − c, then (1 − c − x) is positive, and
u2 is maximized by setting y to the highest possible value,
namely y = 1. Conversely, if x > 1− c, u2 is maximized by
setting y = 0 (these two cases will bring us back to the two
pure-strategy Nash equilibria that we have already identified).
More interesting is the last case, namely x = 1 − c, because
here u2 does not depend on y anymore (and is always equal
to 0); hence, any strategy of p2 (meaning any value of y) is a

10The general formula for infinite strategy space is slightly more compli-
cated. The reader can find it in [6] or [13].
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Figure 4. Best response functions in the Multiple Access Game. The best
response function of player p1 (x as a function of y) is represented by the
dashed line; that of player p2 (y as a function of x) is represented by the solid
one. The two dots at the edges indicate the two pure-strategy Nash equilibria
and the one in the middle shows the mixed-strategy Nash equilibrium.

best response. The game being symmetric, reversing the roles
of the two players leads of course to the same result. This
means that (x = 1 − c, y = 1 − c) is a mixed-strategy Nash
equilibrium for the Multiple Access Game.

We can graphically represent the best responses of the two
players as shown in Figure 4. In the graphical representation,
we refer to the set of best response values as the best response
function11. Relying on the concept of mutual best responses,
one can identify the Nash equilibria as the crossing points of
these best response functions.

Note that the number of Nash equilibria varies from game
to game. There are games with no pure-strategy Nash equilib-
rium, such as the Jamming Game. We show the strategic form
of this game in Table IV.

p1 (sender) \ p2 (jammer) ch1 ch2

ch1 (-1,1) (1,-1)
ch2 (1,-1) (-1,1)

Table IV. The Jamming Game in strategic form.

The reader can easily verify that the Jamming Game cannot
be solved by iterated strict dominance. Moreover, this game
does not even admit a pure-strategy Nash equilibrium. In fact,
there exists only a mixed-strategy Nash equilibrium in this
game that dictates each player to play a uniformly random
distribution strategy (i.e., select one of the channels with
probability 0.5).

The importance of mixed strategies is further reinforced by
the following theorem of Nash [11, 12]. This theorem is a
crucial existence result in game theory. The proof uses the
Brouwer-Kakutani fixed-point theorem and is provided in [7].

Theorem 1 (Nash, 1950) Every finite strategic-form game
has a mixed-strategy Nash equilibrium.

2.5 Equilibrium Selection
As we have seen so far, the first step in solving a game

is to investigate the existence of Nash equilibria. Theorem 1

11Let us emphasize that, according to the classic definition of a function in
calculus, the set of best response values does not correspond to a function,
because there might be several best responses to a given opponent strategy
profile.
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states that in a broad class of games there always exists at
least a mixed-strategy Nash equilibrium. However, in some
cases, such as in the Jamming Game, there exists no pure-
strategy Nash equilibrium. Once we have verified that a Nash
equilibrium exists, we have to determine if it is a unique
equilibrium point. If there is a unique Nash equilibrium, then
we have to study its efficiency. Efficiency can also be used
to select the most appropriate solutions from several Nash
equilibria. Equilibrium selection means that the users have
identified the desired Nash equilibrium profiles, but they also
have to coordinate which one to choose. For example, in
the Multiple Access Game both players are aware that there
exist three Nash equilibria with different payoffs, but each of
them tries to be “the winner” by deciding to transmit (in the
expectation that the other player will be quiet). Hence, their
actions result in a profile that is not a Nash equilibrium. The
topic of equilibrium selection is one of the hot research fields
in game theory [5, 15].

2.6 Pareto-optimality
So far, we have seen how to identify Nash equilibria. We

have also seen that there might be several Nash equilibria, as in
the Joint Packet Forwarding Game. One method for identifying
the desired equilibrium point in a game is to compare strategy
profiles using the concept of Pareto-optimality. To introduce
this concept, let us first define Pareto-superiority.

Definition 7 The strategy profile s is Pareto-superior to the
strategy profile s

′
if for any player i ∈ N :

ui(si, s−i) ≥ ui(s
′
i, s

′
−i) (9)

with strict inequality for at least one player.

In other words, the strategy profile s is Pareto-superior
to the strategy profile s

′
, if the utility of a player i can be

increased by changing from s
′

to s without decreasing the
utility of other players. The strategy profile s

′
is defined as

Pareto-inferior to the strategy profile s. Note that the players
might need to change their strategies simultaneously to reach
the Pareto-superior strategy profile s.

Based on the concept of Pareto-superiority, we can identify
the most efficient strategy profile or profiles.

Definition 8 The strategy profile spo is Pareto-optimal if there
exists no other strategy profile that is Pareto-superior to spo.

In a Pareto-optimal strategy profile, on cannot increase the
utility of player i without decreasing the utility of at least
one other player. Using the concept of Pareto-optimality, we
can eliminate the Nash equilibria that can be improved by
changing to a more efficient (i.e. Pareto-superior) strategy
profile. Note that we cannot define spo as the strategy profile
that is Pareto-superior to all other strategy profiles, because a
game can have several Pareto-optimal strategy profiles. It is
important to stress that a Pareto-optimal strategy profile is not
necessarily a Nash equilibrium.

We can now use the concept of Pareto-optimality to study
the efficiency of pure-strategy Nash equilibria in our running
examples.

• In the Forwarder’s Dilemma game, the Nash equilibrium
(D, D) is not Pareto-optimal. The strategy profile (F , F )
is Pareto-optimal, but not a Nash equilibrium.

• In the Joint Packet Forwarding game, both strategy pro-
files (F , F ) and (D, D) are Nash equilibria, but only (F ,
F ) is Pareto-optimal.

• In the Multiple Access Game, both pure strategy profiles
(T , Q) and (Q, T ) are Nash equilibria and Pareto-optimal.

• In the Jamming game, there exists no pure-strategy Nash
equilibrium, and all pure strategy profiles are Pareto-
optimal.

We have seen that the Multiple Access Game has three
Nash equilibria. We can notice that the mixed-strategy Nash
equilibrium σ = (p = 1− c, q = 1− c) results in the expected
payoffs (0, 0). Hence, this mixed-strategy Nash equilibrium
is Pareto-inferior to the two pure-strategy Nash equilibria. In
fact, it can be shown in general that there exist no mixed
strategy profile that is Pareto-superior to all pure strategy
profiles, because any mixed strategy of a player i is a linear
combination of his pure-strategies with positive coefficients
that sum up to one.

3 DYNAMIC GAMES
In the strategic-form representation it is usually assumed

that the players make their moves simultaneously without
knowing what the other players do. This might be a reasonable
assumption in some problems, for example in the Multiple
Access Game. In most of the games, however, the players
might have a sequential interaction, meaning that the move
of one player is conditioned by the move of the other player
(i.e., the second mover knows the move of the first mover
before making his decision). These games are called dynamic
games [3] and we can represent them in an extensive form. We
refer to a game with perfect information, if the players have
a perfect knowledge of all previous moves in the game at any
moment they have to make a new move.

3.1 Extensive Form with Perfect Information
In the extensive form, the game is represented as a tree,

where the root of the tree is the start of the game and shown
with an empty circle. We refer to one level of the tree as
a stage. The nodes of a tree, denoted by a filled circle,
show the possible unfolding of the game, meaning that they
represent the sequence relation of the moves of the players.
This sequence of moves defines a path on the tree and is
referred to as the history h of the game. It is generally assumed
that a single player can move when the game is at a given
node.12 This player is represented as a label on the node. Note
that this is a tree, thus each node is a complete description of
the path preceding it (i.e., each node has a unique history). The
moves that lead to a given node are represented on each branch
of the tree. Each terminal node (i.e., leaf) of the tree defines a

12Osborne and Rubinstein [13] define a game where a set of players can
move in one node. Also, there exist specific examples in [6], in which different
players move in the same stage. For the clarity of presentation, we do not
discuss these specific examples in this tutorial.
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potential end of the game called outcome and it is assigned the
corresponding payoffs. In addition, we consider finite-horizon
games, which means that there exist a finite number of stages.

Note that the extensive form is a more convenient represen-
tation, but basically every extensive form can be transformed
to a strategic form and vice versa. However, extensive-form
games can be used to describe sequential interactions more
easily than strategic-form games. In extensive form, the strat-
egy of player i assigns a move mi(h) to every non-terminal
node in the game tree with the history h. For simplicity, we
use pure strategies in this section. The definition of Nash
equilibrium is basically the same as the one provided in
Definition 5.

To illustrate these concepts, let us consider the Sequential
Multiple Access Game. This is a modified version of the
Multiple Access Game supposing that the two transmitters p1

and p2 are not perfectly synchronized, which means that p1

always moves first (i.e., transmits or not) and p2 observes the
move of p1 before making his own move.13 We show this
extensive form game with perfect information in Figure 5.
In this game, the strategy of player p1 is to transmit (T ) or
to be quiet (Q). But the strategy of player p2 has to define
a move given the previous move for player p1. Thus, the
possible strategies of p2 are TT , TQ, QT and QQ, where for
example TQ means that player p2 transmits if p1 transmits
and he remains quiet if p1 is quiet. Thus, we can identify
the pure-strategy Nash equilibria in the Sequential Multiple
Access Game. It turns out that there exist three pure-strategy
Nash equilibria: (T , QT ), (T , QQ) and (Q, TT ).

p1

T

T

Q

Q

(-c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

Figure 5. The Sequential Multiple Access Game in extensive form.

Kuhn formulated a relevant existence theorem about Nash
equilibria in finite extensive-form games in [9]. The intuition
of the proof is provided in [6].

Theorem 2 (Kuhn, 1953) Every finite extensive-form game
of perfect information has a pure-strategy Nash equilibrium.

The proof relies on the concept of backward induction,
which we introduce in the following.

3.2 Backward Induction and Stackelberg Equi-
librium

We have seen that there exist three Nash equilibria in the
Sequential Multiple Access Game. For example, if player p2

13In fact, this is called the carrier sense and it is the basic technique in the
CSMA/CA protocols [14, 16].

plays the strategy TT , then the best response of player p1 is
to play Q. Let us notice, however, that the claim of player p2

to play TT is an incredible (or empty) threat. Indeed, TT is
not the best strategy of player p2 if player p1 chooses T in
the first round.

We can eliminate equilibria based on such incredible threats
using the technique of backward induction. Let us first solve
the Sequential Multiple Access Game presented in Figure 5
with the backward induction method as shown in Figure 6.

p1

T

T

Q

Q

(-c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

Figure 6. The backward induction solution of the Sequential Multiple Access
Game in extensive form.

The Sequential Multiple Access Game is a finite game with
complete information. Hence, player p2 knows that he is the
player that has the last move. For each possible history, he
predicts his best move. For example, if the history is h = T
in the game, then player p2 concludes that the move Q results
in the best payoff for him in the last stage. Similarly, player
p2 defines T as his best move following the move Q of player
p1. In Figure 6, similarly to the examples in [7], we represent
these best choices with thick solid lines in the last game row.
Given all the best moves of player p2 in the last stage, player
p1 calculates his best moves as well. In fact, each reasoning
step reduces the extensive form game by one stage. Following
this backward reasoning, we arrive at the beginning of the
game (the root of the extensive-form tree). The continuous
thick line from the root to one of the leaves in the tree gives
us the backward induction solution. In the Sequential Multiple
Access Game, we can identify the backward induction solution
as h = {T, Q}. Backward induction can be applied to any
finite game of perfect information. This technique assumes
that the players can reliably forecast the behavior of other
players and that they believe that the other can do the same.
Note, however, that this argument might be less compelling
for longer extensive-form games due to the complexity of
prediction.

Note that the technique of backward induction is analogous
to the technique of iterated strict dominance in strategic-form
games. It is an elimination method for reduceing the game.
Furthermore, the backward induction procedure is a technique
to identify Stackelberg equilibria in the extensive-form game.
Let us call the first mover the leader and the second mover
the follower.14 Then, we can define a Stackelberg equilibrium
as follows.

14Note that in the general description of the Stackelberg game, there might
be several followers, but there is always a single leader.
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Definition 9 The strategy profile s is a Stackelberg equi-
librium, with player p1 as the leader and player p2 as
the follower, if player p1 maximizes his payoff subject to
the constraint that player p2 chooses according to his best
response function.

Let us now derive the Stackelberg equilibrium in the Se-
quential Multiple Access Game by considering how the leader
p1 argues. If p1 chooses T , then the best response for p2 is
to play QQ or QT , which results in the payoff of 1 − c for
p1. However, if p1 chooses Q, then the best response of p2

is TQ or TT , which results in the payoff of zero for leader
p1. Hence, p1 will choose T and (T , QT ) or (T , QQ) are
the Stackelberg equilibria in the Sequential Multiple Access
Game. We can immediately establish the connection between
this reasoning and the backward induction procedure.

We have seen in the above example that the leader can
exploit his advantage if the two players have conflicting goals.
In this game, the leader can enforce the equilibrium beneficial
to himself.

Let us now briefly discuss the extensive form of the other
three wireless networking examples with sequential moves. In
the extensive-form version of the Forwarder’s Dilemma, the
conclusions do not change. Both players will drop each others’
packets. In the extensive form of the Joint Packet Forwarding
Game, if player p1 chooses D, then the move of player p2 is
irrelevant. Hence by induction, we deduce that the Stackelberg
equilibrium is (F , F ). Finally, in the Jamming Game, let us
assume that p1 is the leader and the jammer p2 is the follower.
In this case, the jammer can easily observe the move of p1

and jam. Hence, being the leader does not necessarily result
in an advantage. We leave the derivation of these claims to
the reader as an exercise.

3.3 Imperfect Information and Subgame Perfect
Equilibria

In this section, we will extend the notions of history and
information. As we have seen, in the game with perfect
information, the players always know the moves of all the
other players when they have to make their moves. However, in
the examples with simultaneous moves (e.g., the static games
in Section 2), the players have an imperfect information about
the unfolding of the game. To define perfect information more
precisely, let us first introduce the notion of information set
h(n), i.e. the amount of information the players have at the
moment they choose their moves in a given node n. The
information set h(n) is a partition of the nodes in the game
tree. The intuition of the information set is that a player
moving in n is uncertain if he is in node n or in some other
node n

′ ∈ h(n). We can now formally define the concept of
perfect information15.

15Note that two well-established textbooks on game theory, [6] and [13],
have different definitions of perfect information. We use the interpretation of
[6], which we believe is more intuitive. The authors of [13] define, in Chapter
6 of their book, a game with simultaneous moves also as a game with perfect
information, where the players are substituted with a set of players, who
make their moves. Indeed, there seems to be no consensus in the research
community either.

Definition 10 The players have a perfect information in the
game if every information set is a singleton (meaning that each
player always knows the previous moves of all players when
he has to make his move).

It is not a coincidence that we use the same notation for
the information set as for the history. In fact, the concept
of information set is a generalized version of the concept of
history.

To illustrate these concepts, let us first consider the extensive
form of the original Multiple Access Game shown in Figure 7.
Recall that this is a game with imperfect information. The
dashed line represents the information set of player p2 at the
time he has to make his move. The set of nodes in the game
tree circumvented by the dashed line means that player p2 does
not know whether player p1 is going to transmit or not at the
time he makes his own move, i.e. that they make simultaneous
moves.

p1

T

T

Q

Q

(-c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

Figure 7. The original Multiple Access Game in extensive form. It is a game
with imperfect information.

The strategy of player i assigns a move mi(h(n)) to every
non-terminal node n in the game tree with the information set
h(n). Again, we deliberately restrict the strategy space of the
players to pure strategies, but the reasoning holds for mixed
strategies as well [6, 13]. The possible strategies of each player
in the Multiple Access Game are to transmit (T ) or be quiet
(Q). As we have seen before, both (T , Q) and (Q, T ) are
pure-strategy Nash equilibria. Note that in this game, player
p2 cannot condition his move on the move of player p1.

As we have seen in Section 3.2, backward induction and the
concept of Stackelberg equilibrium can be used to eliminate
incredible threats. Unfortunately, the elimination technique
based on backward induction cannot always be used. To
illustrate this, let us construct the game called Multiple Access
Game with Retransmissions and solve it in the pure strategy
space. In this game, the players play the Sequential Multiple
Access Game, and they play the Multiple Access Game if
there is a collision (i.e., they both try to transmit). We show
the extensive form in Figure 8.

Note that the players have many more strategies than
before. Player p1 has four strategies, because there exist two
information sets, where he has to move; and he has two
possible moves at each of these information sets. For example,
the strategy s1 = TQ means that player p1 transmits at the
beginning and he does not in the second Multiple Access
Game. Similarly, player p2 has 23 = 8 strategies, but they
are less trivial to identify. For example, each move in the
strategy s2 = QTT means the following: (i) the first move
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p1

T

T

Q

Q

(1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

p1

T

T

Q

Q

(-2c,-2c)

(1-2c,-c)

(-c,1-2c)

T Q

(-c,-c)

p2 p2

Figure 8. The Multiple Access Game with Retransmissions in extensive
form. It is also a game with imperfect information.

means that player p2 stays quiet if player p1 transmitted, or
(ii) p2 transmits if p1 was quiet and (iii) p2 transmits in the
last stage if they both transmitted in the first two stages. This
example highlights an important point: The strategy defines the
moves for a player for every information set in the game, even
for those information sets that are not reached if the strategy
is played. The common interpretation of this property is that
the players may not be able to perfectly observe the moves of
each other and thus the game may evolve along a path that was
not expected. Alternatively, the players may have incomplete
information, meaning that they have certain beliefs about the
payoffs of other players and hence, they may try to solve the
game on this basis. These beliefs may not be precise and so
the unfolding of the game may be different from the predicted
unfolding. Game theory covers these concepts in the notion of
Bayesian games [6], but we do not present this topic in our
tutorial due to space constraints.

It is easy to see that the Multiple Access Game with
Retransmissions cannot be analyzed using backward induction,
because the Multiple Access Game in the second stage is
of imperfect information. To overcome this problem, Selten
suggested the concept called subgame perfection in [17, 8].
In Figure 8, the Multiple Access Game in the second stage
is a proper subgame of the Multiple Access Game with
Retransmissions. Let us now give the formal definition of a
proper subgame.

Definition 11 The game G
′

is a proper subgame of an
extensive-form game G if it consists of a single node in the
extensive-form tree and all of its successors down to the leaves.
Formally, if a node n ∈ G

′
and n

′ ∈ h(n), then n
′ ∈ G

′
. The

information sets and payoffs of the subgame G
′

are inherited
from the original game G: this means that n and n

′
are in the

same information set in G
′

if they are in the same information
set in G; and the payoff function of G

′
is the restriction of

the original payoff function to G
′
.

Now let us formally define the concept of subgame perfec-
tion. This definition reduces to backward induction in finite
games with perfect information.

Definition 12 The strategy profile s is a subgame-perfect
equilibrium of a finite extensive-form game G if it is a Nash
equilibrium of any proper subgame G

′
of the original game

G.

One can check the existence of subgame perfect equilibria
by applying the one-deviation property.

Definition 13 The one-deviation property requires that there
must not exist any information set, in which a player i can gain
by deviating from his subgame perfect equilibrium strategy and
conforming to it in other information sets.

A reader somewhat familiar with dynamic programming
may wonder about the analogy between the optimization in
game theory and in dynamic programming [4]. Indeed, the
one-deviation property corresponds to the principle of opti-
mality in dynamic programming, which is based on backward
induction. Hence, strategy profile s is a subgame-perfect
equilibrium of a finite extensive-form game G if the one-
deviation property holds.

Subgame perfection provides a method for solving the
Multiple Access Game with Retransmissions. We can simply
replace the Multiple Access Game subgame (the second one
with simultaneous moves) with one of his pure-strategy Nash
equilibria. Hence, we can obtain one of the game trees pre-
sented in Figure 9. Solving the reduced games with backward
induction, we can derive the following solutions. In the game
shown in Figure 9a, we have the subgame perfect equilibrium
(QQ, TTT ). In Figure 9b we obtain the subgame perfect
equilibria (TT , Q∗Q), where ∗ means any move from {T, Q}.

Because any game is a proper subgame of itself, a subgame-
perfect equilibrium is necessarily a Nash equilibrium, but there
might be Nash equilibria in G that are not subgame-perfect.
In fact, the concept of Nash equilibrium does not require that
the one-deviation property holds. We leave it to the reader as
an exercise to verify that there are more Nash equilibria than
subgame-perfect equilibria in the Multiple Access Game with
Retransmissions.

The concept of subgame perfection has often been criticized
with arguments based on equilibrium selection (recall the issue
from Section 2.5). Many researchers point out that the players
might not be able to determine how to play if several Nash
equilibria exist in a given subgame. As an example, they might
both play T in the Multiple Access Game with Retransmis-
sions in the second subgame as well. This disagreement can
result in an outcome that is not an equilibrium according to
the definitions considered so far.

4 REPEATED GAMES
So far, we have assumed that the players interact only once

and we modelled this interaction in a static game in strategic
form in Section 2 and partially in Section 3. Furthermore,
we have seen the Multiple Access Game with Retransmis-
sions, which was a first example to illustrate repeated games,
although the number of stages was quite limited. As we
have seen in Section 3, the extensive form provides a more
convenient representation for sequential interactions. In this
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p1

T

T

Q

Q

(-c,1-2c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

p1

T

T

Q

Q

(1-2c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

a) b)

Figure 9. Application of subgame perfection to the Multiple Access Game with Retransmissions. In a) the proper subgame is replaced by one of the Nash
equilibria of that game, namely (Q, T ). Solution b) represents the case, where the subgame is replaced by the other Nash equilibrium (T , Q). The thick lines
show the result of the backward induction procedure on the reduced game trees.

section, we assume that the players interact several times and
hence we model their interaction using a repeated game. The
analysis of repeated games in extensive form is basically the
same as presented in Section 3, hence we focus on the strategic
form in this section. To be more precise, we consider repeated
games with observable actions and perfect recall: this means
that each player knows all the moves of others, and that each
player knows his own previous moves at each stage in the
repeated game.

4.1 Basic Concepts
In repeated games, the players interact several times. Each

interaction is called a stage. Note that the concept of stage is
similar to the one in extensive form, but here we assume that
the players make their moves simultaneously in each stage.
The set of players is defined similarly to the static game
presented in Section 2.1.

As a running example, let us consider the Repeated For-
warder’s Dilemma, which consists of the repetition of the
Forwarder’s Dilemma stage game. In such a repeated game, all
past moves are common knowledge at each stage t. The set of
the past moves at stage t is commonly referred to as the history
h(t) of the game. We call it a history (and not an information
set), because it is uniquely defined at the beginning of each
stage. Let us denote the move of player i in stage t by mi(t).
We can formally write the history h(t) as follows:

h(t) = {(m1(t), . . . , m|N |(t)), . . . , (m1(0), . . . , m|N |(0))}
(10)

For example, at the beginning of the third stage of the Re-
peated Forwarder’s Dilemma, if both players always cooperate,
the history is h(2) = {(F, F ), (F, F )}.

The strategy si defines a move for player i in the next stage
t + 1 for each history h(t) of the game16.

mi(t + 1) = si(h(t)) (11)

Note that the initial history h(0) is an empty set. The strategy
si of player i must define a move mi(0) for the initially
empty history, which is called the initial move. For a moment,
suppose that the Repeated Forwarder’s Dilemma has two

16Recall that in the static game, the strategy was a single move.

stages. Then one example strategy of each player is FFFFF ,
where the entries of the strategy define the forwarding behavior
for the following cases: (i) in the first stage, i.e. as an initial
move, (ii) if the history was h(1) = {(F, F )}, (iii) if the
history was h(1) = {(F, D)}, etc. As we can notice, the
strategy space grows very quickly as the number of stages
increases: In the two-stage Repeated Forwarder’s Dilemma,
we have |S| = 25 = 32 strategies for each player. Hence in
repeated games, it is typically infeasible to make an exhaustive
search for the best strategy and hence for Nash equilibria.

The utility in the repeated game might change as well. In
repeated games, the users typically want to maximize their
utility for the whole duration T of the game. Hence, they
maximize:

ui =
T∑

t=0

ui(t, s) (12)

In some cases, the objective of the players in the repeated
game can be to maximize their payoffs only for the next stage
(i.e., as if they played a static game). We refer to these games
as myopic games as the players are short-sighted optimizers.
If the players maximize their total utility during the game, we
call it a long-sighted game.

Recall that we refer to a finite-horizon game if the number
of stages T is finite. Otherwise, we refer to an infinite-horizon
game. We will see in Section 4.3 that we can also model finite-
horizon games with an unpredictable end as an infinite-horizon
game with specific conditions.

4.2 Nash Equilibria in Finite-horizon Games
Let us first solve the finite Repeated Forwarder’s Dilemma

using the concept of Nash equilibrium. Assume that the
players are long-sighted and want to maximize their total
utility (the outcome of the game). As we have seen, it is
computationally infeasible to calculate the Nash equilibria
based on strategies that are mutual best responses to each
other as the number of stages increases. Nevertheless, we can
apply the concept of backward induction we have learned in
Section 3.2. Because the game is of complete information,
the players know the end of it. Now, in the last stage game,
they both conclude that their dominant strategy is to drop the
opponent’s packet (i.e., to play D). Given this argument, their
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best strategy is to play D in the penultimate stage. Following
the same argument, this technique of backward induction
dictates that the players should choose a strategy that plays
D in every stage. Note that many strategies exist with this
property.

In repeated games in general, it is computationally infeasible
to consider all possible strategies for every possibly history,
because the strategy space increases exponentially with the
length of the game. Hence, one usually restricts the strategy
space to a reasonable subset. One widely-used family of
strategies is the strategies of history-1. These strategies take
only the moves of the opponents in the previous stage into
account (meaning that they are “forgetful” strategies, because
they “forget” the past behavior of the opponent). In the games
we have considered thus far, we have two players and hence
the history-1 strategy of player i in the repeated game can be
expressed by the initial move mi(0) and the following strategy
function:

mi(t + 1) = si(mj(t)) (13)

Accordingly, we can define the strategies in the Repeated
Forwarder’s Dilemma as detailed in Table V. Note that these
strategies might enable a feasible analysis in general, i.e., if
there exists a large number of stages.

We can observe that in the case of some strategies, such
as All-D or All-C, the players do not condition their next
move on the previous move of the opponents. One refers to
these strategies as non-reactive strategies. Analogously, the
strategies that take the opponents’ behavior into account are
called reactive strategies (for example, TFT or STFT).

Let us now analyze the Repeated Forwarder’s Dilemma
assuming that the players use the history-1 strategies. We can
conclude the same result as with the previous analysis.

Theorem 3 In the Repeated Forwarder’s Dilemma, the strat-
egy profile (All-D, All-D) is a Nash equilibrium.

Although not proven formally, the justification of the above
theorem is provided in [2].

4.3 Infinite-horizon Games with Discounting
In the game theory literature, infinite-horizon games with

discounting are used to model a finite-horizon game in which
the players are not aware of the duration of the game. Clearly,
this is often the case in strategic interactions, in particular in
networking operations. In order to model the unpredictable
end of the game, one decreases the value of future stage
payoffs. This technique is called discounting. In such a game,
the players maximize their discounted total utility:

ui =
∞∑

t=0

ui(t, s) · δt (14)

where δ denotes the discounting factor. The discounting factor
δ determines the decrease of the value for future payoffs,
where 0 < δ < 1 (although in general, we can assume that δ

is close to one). The discounted total utility expressed in (14)
is often normalized, and thus we call it the normalized utility:

ui = (1− δ) ·
∞∑

t=0

ui(t, s)δt (15)

The role of the factor 1 − δ is to let the stage payoff of
the repeated game be expressed in the same unit as the static
(stage) game. Indeed, with this definition, if the stage payoff
ui(t, s) = 1 for all t = 0, 1, ..., then the normalized utility is
equal to 1, because

∑∞
t=0 δt = 1

1−δ .
We have seen that the Nash equilibrium in the finite Re-

peated Forwarder’s Dilemma was a non-cooperative one. Yet,
this rather negative conclusion should not affect our morale:
in most networking problems, it is reasonable to assume that
the number of iterations (e.g., of packet transmissions) is
very large and a priori unknown to the players. Therefore,
as discussed above, games are usually assumed to have an
infinite number of repetitions. And, as we will see, infinitely
repeated games can lead to more cooperative behavior.

Consider the history-1 strategies All-C and All-D for the
players in the Repeated Forwarder’s Dilemma. Thanks to the
normalization in (15), the corresponding normalized utilities
are exactly those presented in Table I. A conclusion similar to
the one we drew in Section 4.2 can be directly derived at this
time. The strategy profile (All-D, All-D) is a Nash equilibrium:
If the opponent always defects, the best response is All-D. A
sketch of proof is provided (for the Prisoner’s Dilemma) in
[6].

To show other Nash equilibria, let us first define the Trigger
strategy. If a player i plays Trigger, then he forwards in the
first stage and continues to forward as long as the other player
j does not drop. As soon as the opponent j drops his packet,
player i drops all packets for the rest of the game. Note that
Trigger is not a history-1 strategy. The Trigger strategy applies
the general technique of punishments.

If no players drops a packet, the payoffs corresponds to (F ,
F ) in Table I, meaning that it is equal to 1−c for each player.
If a player i plays mi(t) = D at stage t, his payoff will be
higher at this stage (because he will not have to face the cost
of forwarding), but it will be zero for all the subsequent stages,
as player j will then always drop. The normalized utility of
player i will be equal to:

(1−δ)
[
(1 + δ + ... + δt−1)(1− c) + δt · 1]

= 1−c+δt(c−δ)
(16)

As c < δ (remember that, in general, c is very close to
zero, whereas δ is very close to one), the last term is negative
and the payoff is therefore smaller than 1− c. In other words,
even a single defection leads to a payoff that is smaller than
the one provided by All-C. Hence, a player is better off always
forwarding in this infinite-horizon game, in spite of the fact
that, as we have seen, the stage game only has (D, D) as
an equilibrium point. It can be easily proven that (Trigger,
Trigger) is a Nash equilibrium and that it is also Pareto-optimal
(the intuition for the latter is the following: there is no way for
a player to go above his normalized payoff of 1 − c without
hurting his opponent’s payoff). Note that by similar arguments,
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initial move, m1(0) m1(t)|m2(t) = F m1(t)|m2(t) = D strategy function s1 name of the strategy
D D D m1(t + 1) = D Always Defect (All-D)
D F D m1(t + 1) = m2(t) Suspicious Tit-For-Tat (STFT)
D D F m1(t + 1) = m2(t) Suspicious Anti Tit-For-Tat (SATFT)
D F F m1(t + 1) = F Suspicious Always Cooperate (S-All-C)
F D D m1(t + 1) = D Nice Always Defect (Nice-All-D)
F F D m1(t + 1) = m2(t) Tit-For-Tat (TFT)
F D F m1(t + 1) = m2(t) Anti Tit-For-Tat (ATFT)
F F F m1(t + 1) = F Always Cooperate (All-C)

Table V. History-1 strategies of player 1 in the Repeated Forwarder’s Dilemma. The entries in the first three columns represent: the initial move of player
p1, a move of player p1 to a previous move m2(t) = F of player p2, and the move of p1 as a response to m2(t) = D. The bar represents the alternative
move (e.g., F = D). As an example, let us highlight the TFT strategy, which begins the game with forwarding (i.e., cooperation) and then copies the behavior
of the opponent in the previous stage.

one can show that (TFT, TFT) is also a Pareto-optimal Nash
equilibrium, because it results in the payoff 1− c for each of
the players.

It is important to mention that the players cannot predict
the end of the game and hence they cannot exploit this
information. As mentioned in [6], reducing the information
or the strategic options (i.e., decreasing his own payoff) of
a player might lead to a better outcome in the game. This
uncertainty is the real reason the cooperative equilibrium
appears in the repeated version of the Forwarder’s Dilemma
game.

4.4 The Folk Theorem
We will now explore further the mutual influence of the

players’ strategies on their payoffs. We will start by defining
the notion of minmax value (sometimes called the reservation
utility). The minmax value is the lowest stage payoff that
the opponents of player i can force him to obtain with
punishments, provided that i plays the best response against
them. More formally, it is defined as follows:

ui = min
s−i

[
max

si

ui(si, s−i)
]

(17)

This is the lowest stage payoff that the opponents can
enforce on player i. Let us denote by smin = {si,min, s−i,min}
the strategy profile for which the minimum is reached in (17).
We call the s−i,min the minmax profile against player i within
the stage game.

It is easy to see that player pi can obtain at least his
minmax value ui in any stage and hence we call feasible
payoffs the payoffs higher than the minmax payoff. In the
Repeated Forwarder’s Dilemma, the feasible payoffs for any
player p1 are higher than 0. Indeed, by playing s1=All-D, he
is assured to obtain at least that value, no matter what the
strategy of p2 can be. Similar argument applies to player p2.
Let us graphically represent the feasible payoffs in Figure 10.
We highlight the convex hull of payoffs that are strictly non-
negative for both players as the set of feasible payoffs.

The notion of minmax that we have just defined refers to
the stage game, but it has a very interesting application in the
repeated game, as the following theorem shows.

Theorem 4 Player i’s normalized payoff is at least equal
to ui in any equilibrium of the infinitely repeated game,
regardless of the level of the discount factor.

u2

(1-c,1-c)

u1

1

1

(1,-c)

(-c,1)

(0,0)

feasible payoffs

Figure 10. The feasible payoffs in the Repeated Forwarder’s Dilemma.

The intuition can be obtained again from the Repeated
Forwarder’s Dilemma: a player playing All-D will obtain a
(normalized) payoff of at least 0. The theorem is proven in
[6].

We are now in a position to introduce a fundamental
result, which is of high relevance to our framework: the Folk
Theorem17.

Theorem 5 (Folk Theorem) For every feasible payoff vector
u = {ui}i with ui > ui, there exists a discounting factor δ < 1
such that for all δ ∈ (δ, 1) there is a Nash equilibrium with
payoffs u.

The intuition is that if the game is long enough (meaning
that δ is sufficiently close to 1), the gain obtained by a player
by deviating once is outweighed by the loss in every subse-
quent period, when loss is due to the punishment (minmax)
strategy of the other players.

We have seen the application of this theorem in the in-
finite Repeated Forwarder’s Dilemma. A player is deterred
from deviating, because the short term gain obtained by the
deviation (1 instead of 1 − c) is outweighed by the risk of
being minmaxed (for example using the Trigger strategy) by
the other player (provided that c < δ).

17This denomination of “folk” stems from the fact that this theorem was
part of the oral tradition of game theorists, before it was formalized. Strictly
speaking, we present the folk theorem for the discounting criterion. There exist
different versions of the folk theorem, each of them is proved by different
authors (as they are listed in [13] at end of Chapter 8).
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5 DISCUSSION

One of the criticisms of game theory, as applied to the
modelling of human decisions, is that human beings are,
in practice, rarely fully rational. Therefore, modelling the
decision process by means of a few equations and parameters
is questionable. In wireless networks, the users do not interact
with each other on such a fine-grained basis as forwarding
one packet or access the channel once. Typically, they (or the
device manufacturer, or the network operator, if any) program
their devices to follow a protocol (i.e., a strategy) and it is
reasonable to assume that they rarely reprogram their devices.
Hence, such a device can be modelled as a rational decision
maker. Yet, there are several reasons the application of game
theory to wireless networks can be criticized. We detail them
here, as they are usually never mentioned (for understandable
reasons...) in research papers.

• Utility function and cost
The first issue is the notion of utility function: How
important is it for a given user that a given packet is
properly sent or received? This very much depends on
the situation: the packet can be a crucial message, or
could just convey a tiny portion of a figure appearing in
a game. Likewise, the sensitivity to delay can also vary
dramatically from situation to situation.
Similarly, the definition of cost might be a complex issue
as well. In our examples (and in the state of the art in
the application of game theory to wireless networks), the
cost represents the energy consumption of the devices.
In some cases, however, a device can be power-plugged,
thus its “cost” could be neglected. Likewise, a device
whose battery is almost depleted probably has a different
evaluation of cost than when his battery is full. Further-
more, cost can include other considerations than energy,
such as the previously mentioned delay or the consumed
bandwidth. Expressing this diversity properly in the game
models is still an open research issue.

• Pricing and mechanism design
Mechanism design is concerned with the question of
how to lead the players to a desirable equilibrium by
changing (designing) some parameters of the game. In
particular, pricing is considered to be a good technique
for regulating the usage of a scarce resource by adjusting
the costs of the players. Many network researchers have
contributed to this field. These contributions provide a
better understanding of specific networking mechanisms.
Yet it is not clear today, even for wired networks how
relevant these contributions are going to be in practice.
Usually the pricing schemes used in reality by operators
are very coarse-grained, because operators tend to charge
based on investment and personnel costs and on the
pricing strategy of their competitors, and not on the
instantaneous congestion of the network. If a part of the
network is frequently congested, they will increase the
capacity (deploy more base stations, more optical fibers,
more switches) rather than throttle the user consumption
by pricing.
Hence, the only area where pricing has practical relevance

is probably for service provisioning among operators
(e.g., renting transmission capacity); but very little has
been published so far on this topic.

• Infinite-horizon games
As mentioned, games in networking are usually assumed
to be of infinite horizon, in order to capture the idea that
a given player does not know when the interaction with
another player will stop. This is, however, not perfectly
true. For example, a given player could “know” that
he is about to be turned off and moved away (e.g., its
owner is about to finish a given session for which the
player has been attached at a given access point). Yet we
believe this not to be a real problem: indeed, the required
“knowledge” is clearly related to the application layer,
whereas the games we are considering involve networking
mechanisms (and thus are typically related to the MAC
and network layers).

• Discounting factor
As we have seen, in the case of infinitely repeated games,
it is common practice to make use of the discounting
factor. This notion comes from the application of game
theory to economics: a given capital at time t0 has
“more value” than the same amount at a later time t1
because, between t0 and t1, this capital can generate some
(hopefully positive) interest. At first sight, transposing
this notion into the realm of networking makes sense:
a user wants to send (or to receive) information as soon
as he expresses the wish to do so.
But this may be a very rough approximation, and the
comment we made about the utility function can be
applied here as well: The willingness to wait before
transmitting a packet heavily depends on the current
situation of the user and on the content of the packet.
In addition, in some applications such as audio or video
streaming, the network can forecast how the demand will
evolve.
A more satisfactory interpretation of the discounting
factor in our framework is related to the uncertainty that
there will be a subsequent iteration of the stage game,
for example, connectivity to an access point can be lost.
With this interpretation in mind, the discounting factor
represents the probability that the current round is not
the last one.
It is important to emphasize that the average discounted
payoff is not the only way to express the payoff in an
infinitely repeated game. Osborne and Rubinstein [13]
discuss other techniques, such as “Limit of Means” and
“Overtaking”. But, none of them captures the notion of
users’ impatience, and hence we believe that they are
therefore less appropriate for our purpose.

• Reputation
In some cases, a player can include the reputation of
another player in order to anticipate his moves. For exam-
ple, a player observed to be non-cooperative frequently
in the past is likely to continue to be so in the future.
If the game models individual packet transmissions, this
attitude would correspond to the suspicion that another
player has been programmed in a highly “selfish” way.
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These issues go beyond the scope of this tutorial. For a
discussion of these aspects, the reader is referred to [6],
Chapter 9.

• Cooperative vs. non-cooperative players
In this tutorial, we assume that each player is a selfish
individual, who is engaged in a non-cooperative game
with other players. We do not cover the concept of coop-
erative games, where the players might have an agreement
on how to play the game. Cooperative games include the
issues of bargaining and coalition formation. These topics
are very interesting and some of our problems could be
modelled using these concepts. Due to space limitation,
the reader interested in cooperative games is referred to
[13].

• Information
In this paper, we study games with complete information.
This means that each player knows the identity of other
players, their strategy functions and the resulting payoffs
or outcomes. In addition, we consider games with observ-
able actions and perfect recall. In wireless networking,
these assumptions might not hold: For example, due to
the unexpected changes of the radio channel, a given
player may erroneously reach the conclusion that another
player is behaving selfishly. This can trigger a punishment
(assuming there is one), leading to the risk of further
retaliation, and so on. This means that, for any design of
a self-enforcement protocol, special care must be devoted
to the assessment of the amount and accuracy of the
information that each player can obtain. The application
of games with incomplete and imperfect information is
an emerging field in wireless networking, with very few
papers published so far.

6 CONCLUSION

In this tutorial, we have demonstrated how the non-
cooperative game theory can be applied to wireless net-
working. Using four simple examples, we have shown how
to capture wireless networking problems in a corresponding
game, and we have analyzed them to predict the behavior of
players. We have deliberately focused on the basic notions
of non-cooperative game theory and have studied games with
complete information. We have modelled devices as players,
but there can be problems where the players are other partici-
pants, e.g. network operators. In addition, there exists another
branch of game theory, namely cooperative game theory.
We believe that, due to the distributed nature of wireless
networking, this is a less appealing modelling tool in this
context. Furthermore, we did not discuss the advanced topic
of games with incomplete information, which are definitely
a very compelling part of game theory. The purpose of this
tutorial is rather to guide the interested readers familiar with
computer science through the basics of non-cooperative game
theory and to help them to bootstrap their own studies using
this fascinating tool.

7 ACKNOWLEDGEMENTS
We would like to thank Tansu Alpcan, Mario Čagalj, Daniel
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