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1 Perfect information games

A perfect information game in extensive form is composed of the following elements:

• a finite set N = {1, . . . , n} of players,

• a non-empty set V of positions with a partition V = V0 ∪ V1 ∪ . . . ∪ Vn ∪ T ,
where Vi, i ∈ N is the set of positions controlled by player i, V0 is the set of
chance positions and T is the set of terminal positions,

• for each non-terminal position v ∈ V \T a finite non-empty set A(v) of actions
available at v,

• a transition mapping δ which for each non-terminal position v ∈ V \ T and
each action a ∈ A(v) gives a position δ(v, a) ∈ V reachable from v upon the
execution of a,

• a mapping p which for each chance position v ∈ V0 gives a probability distri-
bution over the set A(v) of actions available at v. We write p(a|v) to denote
the probability of action a ∈ A(v) at v ∈ V0 and we add the requirement that
p(a|v) is always strictly greater than 0 for a ∈ A(v) (we can always remove
from A(v) the actions for which p(a|v) = 0).

Intuitively player 0 is the nature that chooses an action a ∈ A(v) with the
probability p(a|v).

• a family ui, i ∈ N of payoff or utility mappings, ui : T ∪ Pathsω −→ R, where
for each terminal position v ∈ T , ui(v) gives the payoff of player i if the game
terminates at v and for each infinite path q ∈ Pathsω, ui(q) is the payoff player
i receives for an infinite play q (Pathsω is the set of infinite paths starting at
the root, a path is a sequence q = v1a1v2a2v3 . . . such that for all i, vi ∈ V and
vi+1 = δ(vi, ai)).

We suppose that all this structure satisfies one additional condition. Let

E = {(v, w) ∈ V × V | v ∈ V \ T and w = δ(v, a) for an action a ∈ V (v)}
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then (V,E) is an oriented tree, the root of this tree is the initial game position and
terminal positions T are the leafs of the game tree.

Example 1. Figure 1 shows a two-player game tree with no chance positions. The
initial position is controlled by player 1 who can execute either action a or action b.
The execution of b leads to a terminal position with payoff 0 for player 1 and payoff
2 for player 2. The execution of action a leads to a position controlled by player 2,
where he can execute either action A or action B.

Figure 1: An extensive game two-player game. Vertices are labeled with players’
names.

A pure strategy σi for player i ∈ N is a mapping that for each position v ∈ Vi gives
an action σi(v) ∈ A(v) that player i executes at v.
A mixed strategy for player i ∈ N is a probability distribution over pure strategies
of player i.
The intuition behind mixed strategies is that player i uses randomization at the
beginning of the game to choose one of his pure strategies and subsequently he
plays using the chosen pure strategy.
However as we shall see mixed strategies are useless when we consider finite perfect
information games.
There is another type of strategies, so called behavioral strategies that we will study
in detail when we will examine game with imprefect information.
A play in the game is a path in the game tree from the root to a leaf, i.e. it is a
sequence v0a0v1a1 . . . vkakvk+1 such that v0 is the initial game position (the root of
the game tree), vk+1 is a terminal position (a leaf in the game tree) and for each l,
1 ≤ l ≤ k, vi+1 = δ(vi, ai).
If the set of positions V is finite then a given profile of pure strategies σ = (σ1, . . . , σn)
yields a probability distribution over terminal positions. Let t ∈ T be a terminal
position and r the initial position of the game. Let v0a0v1a1 . . . vkakvk+1, v0 = r,
vk+1 = t be the play from r to t. Then the probability P (t|σ) that t is reached under
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profile σ is equal to P (v0, a0) · P (v1, a1) · · ·P (vk, ak), where P (vi, ai) = p(ai|vi) if
vi ∈ V0 is a chance position and

P (vi, ai) =

{
1 if ai = σi(vi),

0 otherwise.

Thus P (t|σ) is the probability of the unique path from the root to t if the players
play using strategies of σ.
The payoff of player i ∈ N for a strategy profile σ = (σ1, . . . , σn) is defined as his
payoff expectation:

ui(σ) =
∑
t∈T

ui(t) · P (t|σ). (1)

Let us note that if the game tree has no chance positions then for a given strategy
profile there is exactly one terminal position reached with probability 1 and the
utility of this position gives the utility of each player for the strategy profile σ.
If we have payoffs for pure strategy profiles then, taking expectation, we can get
also the payoff for mixed strategy profiles.

Example 2. In the game on Figure 2 the initial game position is the unique chance
position. Player 1 has 8 pure strategies: ace, acf , ade, adf , bce, bcf , bde, bdf .

Figure 2: The unique chance position is x0 from which with probability 0.4 the game
moves to x1 and with probability 0.6 to x4.

Player 2 has 4 pure strategies: AC, AD, BC, BD (since in this game the actions
have unique names there is no need to specify the positions, for each action there is
a unique position where this action is available).
A possible mixed strategy for player 1 is 5

15
ace+ 3

15
adf+ 7

15
bde, where the coefficients

indicate the probabilities of playing one of the three pure strategies.
For a pure strategy profile σ = (acf, AD) the probabilities of terminal positions are
p(t1|σ) = 0, p(t2|σ) = 0.6, p(t3|σ) = p(t4|σ) = p(t5|σ) = p(t6|σ) = 0, p(t7|σ) = 0.4,
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1.1 Infinite perfect information games without chance po-
sitions

Let A be a finite alphabet, A∗ the set of all finite words over A, Aω the set of all
infinite words over A, i.e. the set of all infinite sequences a1a2a3 . . . with ai ∈ A.
We take A∗ as the set of positions of a two-player game. For each u ∈ A∗, executing
action a ∈ A takes us to a new position ua. The set of terminal nodes is empty.
We assume that player I controls positions

⋃
i=0A

2i of even length while player II
controls positions

⋃
i=0A

2i+1 of odd length. Thus starting at the position ε (the
empty word) the players choose actions alternately, player I chooses a1, player II a2,
player I a3 etc. Let W ⊂ Aω be the set of infinite paths (infinite words) winning for
player I, Aω \W are infinite paths winning for player II. Thus this is a 0-sum game
when player I receives payoff 1 if the resulting infinite path is in W and he receives
payoff −1 if the resulting infinite path is in Aω \W .
We can define a metric d on Aω, for two infinite words u = a1a2 . . ., v = b1b2 . . . we
set

d(u, v) =

{
0 if u = v,

2−n+1 if an 6= bn and ai = bi for all i < n

You can try to prove the following simple characterization of open sets: in the
topology induced by the metric d a set U is open if and only if there exists a set
X ⊆ A∗ of finite words such that U = XAω (i.e. u ∈ U iff u has a finite prefix
belonging to X).
We say that the game with the winning set W ⊂ Aω is determined if one of the
players has a winning strategy, i.e. either player I has a strategy that allows him
to wing against a the strategy that allows him to win against all strategies of the
adversary).

Theorem 1 (Gale and Stewart, 1953). If W is open or closed then the game is
determined.

Proof. If W is open then we can find the set of winning positions for player I using
the attractor strategy.
Without loss of generality we can assume that the open set W = XAω is the
winning set for player I and its complement is winning for player II. We assume that
A = {0, 1} contains only two letters (the proof is similar for any finite alphabet).
We define by induction the set Z ⊂ A∗ such that player I has a winning strategy σI
for the games starting at z ∈ Z (this means that if player I uses this strategy for
game starting at z then the resulting infinite word zw belongs to W whatever the
strategy of player II).
We begin by setting Z0 = XA∗. Certainly if we start from a position in Z0 then for
each possible strategy of player II the resulting infinite word will have a finite prefix
in X. In particular we can set σI(z) to be any letter (0 or 1) for z ∈ Z0.
Suppose that Zi is already defined and σI is defined for all even length words in Zi.
Then we set

Zi+1 = Zi ∪ {u ∈ A∗ \ Zi | u has odd length and both u0 and u1 belong to Zi}∪
{u ∈ A∗ \ Zi | u has even length and either u0 or u1 belongs to Zi}
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We define σI for even length words in Zi+1 \ Zi by setting

σI(u) =

{
u0 if u0 ∈ Zi,

u1 otherwise.

Finally we set Z =
⋃

i≥0 Zi. Clearly if we start at some word z ∈ Z then z ∈ Zi for
some i and if player I uses the strategy described above then in at most i steps we
will reach the set Z0 and the game will be winned by player I.
We should prove that player II has a winning strategy σII for all games starting at
A∗ \ Z.
Let u ∈ A∗ \Z be of odd length. Then either u0 or u1 does not belong to Z. Indeed
if both u0 and u1 belong to Z then there is i such that u0, u1 ∈ Zi but this would
imply that u ∈ Zi+1 ⊂ Z. We set σII(u) = u0 if u0 6∈ Z and σII(u) = u1 otherwise.
Let u ∈ A∗\Z be of even length. Then both u0 and u1 do not belong to Z (otherwise
both u0 and u1 belong to some Zi and then u would belong to Zi+1).
Thus using strategy σII and starting from any word u ∈ A∗ \ Z player II will avoid
Z forever and therefore he will avoid Z0 forever.
Since the initial game position is the empty word ε, depending on whether ε belongs
to Z or not we can see who wins from the initial position.

Le B be the family of Borel sets over Aω. This is the smallest family containing all
open sets and closed under countable unions, countable intersections and comple-
ment.
The followong theorem is one of the most powerful results of game theory.

Theorem 2 (Martin). If W ∈ B then the game is determined.

Note that not all games are determined:

Theorem 3 (Gale and Stewart). There exists W ⊂ Aω such that the game with the
winning set W is not determined.

The proof is inevitably non-constructive, because the sets that we can construct
explicitly are Borel whence determined.

2 Nash equlibria

Let N = {1, . . . , n} be a finite set of players. For each player i ∈ N let Σi be his set
of strategies. Fixing a strategy σi ∈ Σi for each player i we obtain a strategy profile
σ = (σ1, . . . , σn).
In the abstract setting each strategy profile gives rise to a payoff ui(σ) for each
player i. Intuitively, each strategy profile determines a unique outcome of the game
(or, more generally, a probability distribution over outcomes).
Each player has a utility (payoff mapping) ui from the set of outcomes to R. The
role of ui is to measure the preferences of the player i over outcomes, where for two
outcomes o, o′, player i prefers the outcome o to o′ if ui(o) ≥ ui(o

′).
In the abstract setting we forget the outcomes and we define the utility mapping ui
of each player directly as the mapping

ui : Σ× · · · × Σn → R
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from the set of strategy profiles to R.
The most popular solution concept for many player games is the notion of the Nash
equlibrium.
A strategy profile (σ1, . . . , σn) is a Nash equilibrium if for each player i ∈ N and
each strategy σ′i ∈ Σi we have

ui(σ1, . . . σi−1σi, σi+1, . . . σn) ≥ ui(σ1, . . . σi−1σ
′
i, σi+1, . . . σn)

which means that no player is better off if he changes his strategy unilaterally.

Exercise 1 (Ice cream vendors). On a sunny day n ice cream vendors choose their
positions on a beach. Each vendor attracts all clients that are closer to him than to
any of the fellow vendors. If k vendors choose the same point of the beach then they
would attract the same clients as one vendor situated at this point, however now
they should share these clients equitably. For which values of n there exist Nash
equilibria? Describe Nash equilibria in this game. (We are looking here for pure
strategy equilibria, thus a strategy of each vendor is to choose deterministically the
point x where he puts his stand. Note that there is an infinity of strategies now.)
To present the problem mathematically we suppose that the beach is represented by
an interval [0, a] of length a > 0. The (potential) clients are distributed uniformly on
the beach, i.e. the number of clients on the interval [c, d] ⊂ [0, a] is proportional to
(d− c)/a. Suppose that vendors are positioned at points xj, j ∈ N , where N the set
of vendors. Then for each j, 0 ≤ xj ≤ a. For the i-th vendor let li = max{0}∪ {xj |
j ∈ N and xj < xi} be the position of the closest vendor situated strictly on the left
to i (or 0 if the is no vendor left to i). Let ri = min{a} ∪ {xj | j ∈ N and xj > xi}
be the position of the closest vendor on the right side of i (or a if there is no vendor
on the right to i). Finally let ki = |{j ∈ N | xj = xi}| be the number of vendors
sharing exactly the same position as vendor i. Then vendor’s i market share is ri−li

2ki
.

Example 3. Figure 1 represents a perfect information extensive game with two
players 1 and 2. There are two (pure) Nash equilibria (b, B) and (a,A). However
equilibrium (b, B) does not look very convincing. Suppose that player 1 plays rather
a than b. When the play is at the position controlled by player 2 would he stick to
B or rather would he play A? The threat of playing B does not look credible.

This motivates the notion of the subgame perfect equlibrium introduced in the
following section.

2.1 Subgame perfect equilibria

This example motivates the following definition.
A subgame of a game is defined as the game starting from some non terminal position
x.

Definition 4. A strategy profile σ = (σ1, . . . , σn) is a subgame perfect equilibrium
in an extensive game Γ if σ is an equilibrium in each subgame of Γ.

Note that (b, B) is not a subgame perfect equilibrium in the game examined in
Example 3. In each subgame perfect equilibrium player 2 will play A from the
position that he controls.
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For finite perfect information games we can find subgame perfect equilibria in pure
strategies and payoffs of all players by backward induction. Initially the payoff is
defined only for terminal positions, for each terminal position x ∈ T we know that
the utility of player i is ui(x). At each step of the algorithm we extend the set
X of position where the payoff and the players’ strategies are known by adding to
X a new position v such that all positions δ(v, a), a ∈ A(v) are already in X. The
details are given below (argmax f(x) is defined as any x that maximizes a real valued
function f).

1: X := T , σi
2: while X 6= V do
3: take v ∈ V \X such that δ(v, a) ∈ X for all a ∈ A(v)
4: and set X := X ∪ {v}
5: if v ∈ Vi for some i ∈ N then
6: a := argmax{ui(δ(v, a′)) | a′ ∈ A(v)}
7: σi(v) := a
8: for all j ∈ N do
9: uj(v) := uj(δ(v, a))

10: end for
11: else if v ∈ V0 then
12: for all j ∈ N do
13: uj(v) :=

∑
a∈A(v) uj(δ(v, a)) · p(a|v)

14: end for
15: end if
16: end while

At each iteration of this algorithm we chose a position v which was not yet treated
(v ∈ V \X) but for which all descendants were already examined (δ(v, a) ∈ X for
all actions a available at v), line 3.
If v is controlled by player i then he will choose action a that leads to a successor
state v′ = δ(v, a) assuring him the greatest payoff ui(v

′), line 6. We assume that in
equlibrium player i will play this action a when the game is at v and we set σi(v) = a
where σi is the strategy of player i, lines 6 and 7. The payoffs of all players at v in
equilibrium are the same as their payoffs at v′, lines 8-1.
If v is controlled by the nature then we calculate the expected payoff of each player
at v using transition probabilities of all action available at v and the payoffs of all
players in successor positions, lines 12-14.
One step of this algorithm is illustrated in Figure 3. Let us note that using backward
induction we find subgame perfect equilibria in pure strategies. Since subgame
perfect equilibria are also Nash equilibria we can see that extensive games with
perfect information have Nash equilibria in pure strategies.
Subgame perfect equlibria seem to be intuitively more compelling than Nash equilib-
ria. Subgame perfect equilibria allow to select a subset of Nash equilibria, a subset
which seems to correspond better to our intuition of how rational players should
play. Let us however consider the following game.

Example 4. The centipede game (Rosenthal’s Centipede Game) is presented in
Figure 4. The game is played by Alice and Bob. At the beginning Alice and Bob
are endowed with the capital of 2$ each. At the first step Alice chooses between
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Figure 3: Suppose that x is a position controlled by player 1 in a perfect information
game played by three players. Suppose that we have found subgame perfect equi-
libria in the subgames starting at x1, x2, x3, x4 and x5 and that the three numbers
labeling each of these positions give the payoffs of all three players in equilibrium.
Clearly the optimal move of player 1 is to play either a1 or a3 or, more generally, he
can use any randomization αa1 +βa3, where α+β = 1 and α, β ≥ 0. In equilibrium
this will give him the payoff 5 while the actions a2 and a4 would give him only 4 and
2. If player 1 uses a strategy such that he plays a1 at x then then the equilibrium
payoff at x is the same as that at x1.

two actions S and C, S means that she steals all money from Bob and the game
terminates with Alice having 4$ (her own capital plus stolen money) and Bob having
0$. If Alice chooses C then the game continues and she is awarded with 1$ for her
honesty.
At the next step Bob chooses either S and he steals all the money from Alice, the
game ends with Bob having 5$ (2$ of his own capital plus 3$ stolen from Alice) and
Alice having 0$.
If Bob chooses C then for his honesty he obtains 1$.
And they alternate their moves choosing S or C.
The game ends when one of the participants stoles all the money of the other player
or when each player has the amount 100$ (when the generous donator awarding
each honest move has no more money to distribute).
The conditions of the game are perfectly known to Alice and Bob.
Figure 4 present the game tree of the centipede game.
What is the subgame perfect equilibrium in the centipede game? Does this equlib-
rium seem to be reasonable as the model of a selfish player who wants to maximize
his payoff?

Example 5. The bargaining game of alternating offers. Two players bargain over
the division of a pie of size π (we suppose that the pie is infinitely divisible). The
play has a potentially unbounded number of rounds.
At first round player A offers to player B a share 0 ≤ xB1 ≤ 1. If player B accepts
then player A receives the share xA1 = 1 − xB1 and player B receives the proposed
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Figure 4: Centipede game tree. Each nonterminal position is labelled with the name
of the player playing at this position and with a pair (a, b) where a is Alice’s capital
and b is Bob’s capital at this position. Each terminal position gives the utility for
both players.

share xB1 (the actual payoff is obtained by multiplying the share by the size π of the
pie).
If player B rejects then with probability 1−δB the game terminates with payoff 0 for
both players (the pie is declared improper for the consumption and thrown away).
With probability δB we pass to the next round where player B makes an offer of xA2
to player A. Either player A accepts and then he receives the proposed share xA2
while player B receives the remaining part xB2 = 1− xA2 or player B refuses.
If player A refuses then with probability 1 − δA the game terminates with payoffs
(0, 0) and with probability δA we pass to the next round where player A will make
an offer xB3 to player B. This game continues until either one of the players accepts
the offer or the game terminates by a chance move. Figure 5 presents first rounds
of the game. Note that at a1 we have in fact infinitely many available actions, one
action for each xB1 ∈ [0, 1]. The same remark holds for positions a2 and a3 etc.
We assume that 0 < δA, δB < 1.
For each x ∈ [0, 1] there is a Nash equilibrium with payoffs (xπ, (1 − x)π) for both
players. Indeed the pair of strategies where player A never offers more than 1 − x
and never accepts less then x while player B never offers more then x and never
accepts less than 1− x is a Nash equilibrium.
However, what we want it to find subgame perfect equilibria.

Assumption 1. We assume that at an equilibrium player A makes always the
same offer xB and player B always makes the same offer xA.

Assumption 2. Let us suppose also that the payoff of player A for the games
starting at positions a1, a3, a5, . . ., i.e. starting at positions where he makes an offer
is u∗Aπ. Thus the payoff of player B for the games starting at these positions is at
most π − u∗Aπ. Symmetrically, let us suppose that the payoff of player B for the
games starting at a2, a4, a6, . . ., i.e. starting at positions where he makes an offer
is u∗Bπ. Thus the payoff of player A for the games starting at these positions is at
most π − u∗Bπ, 0 ≤ u∗A, u

∗
B ≤ 1.
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Figure 5: A part of the game tree in the bargaining game

Assumption 3 Finally we assume that at the player making the decision to accept
or reject will always accept if accepting or rejecting gives him the same payoff1.

Let us consider the moment when player B makes the offer xA (for example at
position a2).
If the offer is accepted then the players obtain respectively (xAπ, (1− xA)π).
If the offer is rejected by player A then we go to a position ci, i = 2, 4, 6 . . ., where the
nature stops the game with probability 1− δA and payoff (0, 0) and with probability
δA we go to a position where player A will make an offer and by Assumption 2 the
payoff obtained from this position is (u∗Aπ, π − u∗Aπ). Thus the payoff at position
ci, i = 2, 4, 6 . . . is (δAu

∗
Aπ, δAπ(1− u∗A)).

The are three possibilities concerning the amount of the offer xA:

(1) xA = δAu
∗
A, then by Assumption 3 player A will accept and players get the

1Of course if accepting gives him a strictly better payoff than rejecting then he will accept and
similarly if rejecting gives him a better payoff than accepting then he will reject. This follows
directly from the definition of subgame perfect equilibria. However the definition does not say
which action to take when both accept and reject yield the same payoff.
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payoff (xAπ, (1− xA)π) = (δAu
∗
Aπ, (1− δAu∗A)π).

(2) xA > δAu
∗
A, then player A will accept since this will give him a better payoff

then reject. However as we have seen, player A will accept also a smaller offer
equal to δAu

∗
A. And smaller offer is better for player B since this leaves a greater

part of the pie for him. Thus in subgame perfect equilibrium player B will never
make such an offer.

(3) xA < δAu
∗
A, then player B will reject since this gives him a strictly greater

payoff than accept. And as we have seem before rejecting yields the payoff
(δAu

∗
Aπ, δAπ(1− u∗A)). If we compare the payoff of player B in cases (1) and (3)

then we can see that this payoff is strictly greater in case (1), since (1−δAu∗A)π) >
δAπ(1− u∗A) for 0 < δA < 1.

Thus in a subgame perfect equilibrium player B will never give an offer smaller
than δAu

∗
A.

In conclusion only case (1) can hold, i.e. player B makes an offer

xA = δAu
∗
A (2)

and this offer is immediately accepted by playerA. This gives the payoffs (δAu
∗
Aπ, (1−

δAu
∗
A)π) at each position a2i where player B makes an offer. By Assumption 2,

(1− δAu∗A)π = u∗Bπ.

A symmetric reasoning yields

xB = δBu
∗
B and (1− δBu∗B)π = u∗Aπ. (3)

Solving this system of equation we obtain

u∗A =
1− δA

1− δAδB
, u∗B =

1− δB
1− δAδB

and by (2) and (3)

xA = δA
1− δA

1− δAδB
, xB = δB

1− δB
1− δAδB

(4)

In the equilibrium players make offers xA and xB respectively given by (4) and player
A accepts any offer greater equal xA while player B accepts any offer greater equal
xB. All smaller offers are rejected.
Let us note that we rather guessed that these strategies form a subgame perfect
equilibrium. It is better to verify this fact formally.
Let (σA, σB) be the strategy profile described above.
Suppose that player B changed his strategy, i.e. he uses some another strategy σ′B
while player A uses σA.
Suppose that at some stage player B accepts an offer of player A or player A accepts
an offer of player B. Then by backward induction we can show2 for all previous
stages

2Try to do it yourself.
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• player B cannot win more than u∗Bπ for the games starting at positions where
he makes an offer,

• he cannot win more than π(1−u∗A) for games starting at positions where player
A makes an offer.

Suppose that from some moment onward both players always refuse. Then from
this point onward player B’s payoff is 0.
Thus we can see that changing the strategy is not profitable for player B. The
reasoning for player A is symmetrical.
Instead of supposing that the game ends with probability 1−δ (we assume here that
δ = δA = δB) at the end of each round in the case of refusal we can assume that the
pie shrinks by factor δ at the beginning of each round, i.e. at the first round the
players have a pie of size π, at the second round a pie of size δπ, at the third round
a pie of size δ2π etc. and after each refusal we pass directly to the next round, there
is no chance move that can stop the game. The game analysis and the result are
the same for this variant of the game3.

Exercise 2 (From Herbert Gintis, Game theory evolving). Miss Muffet is eating an
ice cream and is confronted with a wasp which apparently likes to take its share.
Miss Muffet proposes the following bargaining game. She proposes a certain share
x. If the wasp accepts the offer then each player goes away with her/its share. If
the offer is rejected then in the next round the wasp makes a counter offer under the
same conditions as above. However the day is hot, by the time the second offer is
accepted or rejected the ice have melted down to the half of the original size. Both
Miss Muffet and the wasp know perfectly all these conditions, are fully rational and
they refuse the offer only if they can gain something in this way. We assume that
after the second rejection Miss Muffet and the wasp get 0 and there is no third round
in this game, by this time the ice cream will melt down completely.
How much Miss Muffet offers at the first round? Is this offer accepted?

For the sequel suppose that the whole ice cream is of size 1.
Consider the case where there are even number n of rounds, Miss Muffet and the
wasp make the offers alternately, with Miss Muffet making the first offer, and after
each refusal the ice cream shrinks by 1

n
, i.e. after k refusal the size of the ice cream

at the beginning of the (k + 1)st round is n−k
n

(in particular after n refusals the ice
cream melts down completely). Show that Miss Muffet will offer 1

2
of the ice cream

and this offer will be immediately accepted.
Now suppose that with the same conditions as above the number of rounds n is odd.
Show that Miss Muffet will offer 1

2
− 1

2n
and this offer will be accepted.

Exercise 3. Warning: This is a rather difficult exercise, still you should try to solve
it. Jacques, Pierre and Magali want to split a pie. They proceed as in Example 5, i.e.
at first round Jacques proposes to split the pie giving p to Pierre, m to Magali and
keeping j to himself. If Pierre and Magali accept then the pie is shared as proposed.
If either Pierre or Magali refuse then with probability 1 − δ the game stops and
with probability δ we pass to the next round where Pierre makes a proposal. If

3Since the chance cannot stop this variant of the bargaining game there exist strategy profiles
with infinite plays, for such plays we assume the payoffs (0, 0).
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this proposal is rejected either by Magali or by Jacques then in the next round it
is Magali’s turn to make a proposal. The players turn this way unless the game
is stopped by the nature or a proposal of one player is accepted by the other two
players. Show that there is a unique symmetric and stationary4 subgame perfect
equilibrium.
There exist also non symmetric subgame perfect equilibria, but they are difficult to
find and to describe.

4Symmetric stationary means that all players make the same offer at each round.
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