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1 Remarks

A good comprehension of the definitions is sufficient to work out most of the exercises given
in the text. Thus even if the proofs given in these notes may seem challenging, with just
elementary knowledge of probability you can still try to do exercises. In most (all?) cases
mere intuition is largely sufficient. Some minimal experience with discrete Markov chains
may help but is not really necessary.

2 Perfect information stochastic games

A two player perfect information stochastic games is played by two players on an arena
consisting of finite set of states S partitioned into three sets :

• SMax the states controlled by player Max,

• SMin the states controlled by player Min,

• SNat the states controlled by the nature,

For each state s ∈ SMax ∪ SMin, suc(s) ⊂ S is a non-empty set of successor states.
For each state s ∈ SNat controlled by the nature there is a fixed probability distribution

p(· | s), where p(u | s) is the probability to go in one step from s to u. We define suc(s) =
{u ∈ S | p(u | s) > 0} to be the set of successor states of s ∈ SNat.

We assume that for each state s the set suc(s) is non-empty.
Max and Min play the following infinite. If the current state is s ∈ SMax then player

Max chooses a successor state s′ ∈ suc(s) and the game moves to s′. If the current state is
s ∈ SMin then player Min chooses a successor state s′ ∈ suc(s) and the game moves to s′. If
the current state s ∈ SNat is controlled by the nature then the game moves to a state s′ with
probability p(s′ | s).
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2.1 Plays and histories

A play of is an infinite sequence
ω = s1, s2, s3, . . .

of states such that si+1 ∈ suc(si). The set of all plays is denoted Ω.
A history is a finite sequence

h = s1, s2, s3, . . . , sn

The set of histories is denoted H.

2.2 Strategies

A strategy of player Max is a mapping σ from histories to states such that, for each history
h terminating in a state s controlled by Max,

σ(h) ∈ suc(s).

Strategies for player Min are defined in a similar way.
A pair (σ, τ) is a strategy profile if σ is a strategy of player Max and τ a strategy of Min.

2.3 Memoryless strategies

A selector for player Max is a mapping σ′ : SMax → S such that σ′(s) ∈ suc(s) for each
s ∈ SMax.

A strategy σ is memoryless if there exists a selector σ′ such that for each history h
terminating in a state s controlled by Max, σ(h) = σ′(s).

In the sequel we identify memoryless strategies with the corresponding selectors.

2.4 Probability

Let h ∈ H be a history. By h+ we denote the cylinder generated by h:

h+ = {ω ∈ Ω | h < ω},

where h < ω means that h is a prefix of ω.
Given a strategy profile (σ, τ), a history h = s1s2 . . . si and state si+1 we define the

probability pσ,τ (si+1 | s1s2 . . . si) to move to si+1 given h

pσ,τ (si+1 | s1s2 . . . si) =


p(si+1 | si) if si ∈ SNat,

1 if si ∈ SMax and σ(s1 . . . si) = si+1

1 if si ∈ SMin and τ(s1 . . . si) = si+1

0 otherwise
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And now, given a strategy profile (σ, τ) and an initial state s, we can define the probability
of cylinders :

for h = s1, s2, s3, . . . , sn ∈ H,

Pσ,τs (h+) =

{∏n−1
t=1 p

σ,τ (st+1|s1 . . . st) if s = s1,

0 if s 6= s1.

Pσ,τs extends in a unique way to a probability over the σ-algebra generated by cylinders.
We denote Eσ,τs the corresponding expectation.
We assume that there is a measurable payoff mapping φ : Ω→ R from the set of all plays

to real numbers. After an infinite play ω ∈ Ω player Max receives from player Min the payoff
φ(ω). The aim of player Max is to maximize his expected gain and the aim of Min is to
minimize his loss.

3 Qualitative analysis of perfect information stochastic

games

There are two directions in the study of stochastic games. The qualitative analysis tries just
to find the set of states where one player wins almost surely or the sets of states where he
wins with a positive probability without trying to find this probability.

For perfect information stochastic games the qualitative analysis is quite simple and we
propose some study it in a series of exercises.

Let T ⊆ S be a set of states. In the reachability game player Max wins (he has payoff 1)
if the play hits T at some moment.

In the exercises below we assume that the players play a perfect information stochastic
game with a finite number of states.

Exercise 1. Give a polynomial time algorithm that finds the set of states R such that player
Max has a strategy to hit T almost surely if the game starts in R. Find the corresponding
strategy of Max.

Find a strategy of Min on the complement of R such that when Min plays this strategy
then the probability to hit R is strictly smaller than 1.

Exercise 2. Give a polynomial algorithm that finds the set of states U such that player Max
has a strategy to hit T with a positive probability. Find the corresponding strategy of Max.
In the complement of U find the strategy of Min such that when Min plays this strategy then
T is never visited.

Recall that the Büchi game is the game where Max wins if the set T is visited infinitely
often.

Exercise 3. Give a polynomial time algorithm that finds the set of states R such that player
Max has a strategy to hit T almost surely infinitely often for the game starting in R. Find
the corresponding strategy of Max.

Find a strategy of Min on the complement of R such that when Min plays this strategy
then the probability to hit R infinitely often is strictly smaller than 1.
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Exercise 4. Give a polynomial algorithm that finds the set of states U such that player Max
has a strategy to hit T infinitely often with a positive probability. Find the corresponding
strategy of Max. In the complement of U find the strategy of Min such that when Min plays
this strategy then almost surely T is visited finitely many times.

Exercise 5. Suppose that the value of the reachability game is strictly positive for all states
(player Max has a strategy to hit R with a positive probability).

Is it possible in this case that some states have value smaller than 1? Justify you response
either by showing an example or by proving that if the value of all states is positive then in
fact this value is 1 for all states.

Exercise 6. Suppose that the value of the Büchi game is strictly positive for all states (player
Max has a strategy to hit R infinitely often with a positive probability).

Is it possible in this case that some states have value smaller than 1?
Justify you response either by showing an example or by proving that if the value of all

states is positive then in fact this value is 1 for all states.

4 Simple stochastic games

A simple stochastic game is a game where the is a fixed set T ⊂ S of terminal states and
the reward mapping r : TR+ from T to non-negative real numbers. We assume that each
terminal state s ∈ T is absorbing which means that suc(s) = {s}, i.e. once the game hits
such a state it remains there forever.

The payoff mapping is defined in the following way:

• for the plays that never hit T the payoff is 0,

• for plays that hit a terminal state s ∈ T the payoff is equal to the reward r(s).

We denote this payoff mapping φr.
We can always normalize r and assume that r(s) ≤ 1 for all states s ∈ T (just set

r′(s) = r(s)/M where M = maxs∈T r(s).

Exercise 7. Show that we can modify the simple stochastic game G with the reward r in
the interval [0, 1] for all states of T to obtain an equivalent simple stochastic game G′ with
terminal states T ′ and the reward mapping r′ and such that

• r′ takes only two values, 0 and 1, r′(s) ∈ {0, 1} for each state s ∈ T ′,

• for all non-terminal states Eσ,τs (φr) = Eσ′,τ ′
s (φr′), i.e. playing in G or in G′ we have the

same payoff.

In G′ we can add new terminal states and change transition probabilities.
This exercise shows that simple stochastic games an be transformed to reachability games.
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4.1 One-player simple stochastic games (with Min as the unique
player)

The aim of this section is to solve the simple stochastic game when the set SMax of states of
player Max empty.

Since player Max is absent instead of speaking about the payoff obtained by Max it is
more natural to speak about the loss of player Min.

Thus the loss of Min is 0 is the terminal states are never visited and it is r(s) if a terminal
state s ∈ T is visited at some moment.

We start by finding the set RT of states such that, whatever the strategy of player Min,
when the game starts in a state u ∈ RT then the game hits T with a strictly positive
probability.

To this end we calculate the increasing sequence R0, R1, R2, . . . of sets such that starting
in Ri the game hits T with a positive probability in at most i steps.

We initialize R0 := T since the game starting in T hits T in 0 steps.
Suppose that Ri is already known. We initialize Ri+1 = Ri and for each state s ∈ S \Ri :

1. if s ∈ SNat and p(s′ | s) > 0 for some s′ ∈ Ri then Ri+1 := Ri ∪ {s′},

2. if s ∈ SMin and for all s′ ∈ suc(s), s′ ∈ Ri then Ri+1 := Ri ∪ {s}.

At some moment k we obtain Rk = Rk+1 and then stop our algorithm and we set RT = Rk.
Clearly, from the construction it follows that whatever the strategy of player Min if the game
starts in RT then with a positive probability it hits T at the stage i ≤ k.

On the other hand, from the complement

Safe := S \RT

satisfies the following condition:

(a) if s ∈ Safe then there exists s′ ∈ suc(s) such that s′in Safe and

(b) if s ∈ Safe then, for all s′ ∈ suc(s), s′in Safe.

Thus for player Min it suffices to take in Safe the moves described in (a) and the game will
never leave Safe which ensures for player Min the minimal loss equal to 0.

For the states s ∈ T the game value is obviously r(t).
It remains to find out the optimal strategy of Min and the values in the states

R+
T := RT \ T

Lemma 1. (a) There is a positive constant c > 1 such that for each strategy of player Min
if the game starts in a state s ∈ RT then it hits T with a probability greater or equal to
c in at most n steps where n is the number of states in RT .

(b) For each strategy of player Min if the game starts in a state s ∈ RT then almost surely
the game hits at some moment the set T ∪ Safe.
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(c) For each strategy of Min almost surely for each play s1, s2, s3, . . . there exists k such that
either all states si for i ≥ k belong to T or all states si for i ≥ k belong to Safe.

Proof. Let
β = min{p(s′ | s) | s′ ∈ S, s ∈ SNat and p(s′ | s) > 0 }

be the minimal positive transition probability from the states of the nature.
Then from the states of R1 the game hits T with probability at least β in one step, from

the states of R2\R1 the game hits T with probability at least β2 in two steps, and, in general,
from the states of Ri \Ri−1 the game hits T with probability at least βi in i steps.

We can see that with probability at least βk the game hits T in at most k steps if the
starting state is in Rk = RT which proves (a) for c := βk.

Now note that the probability to not to hit T ∪ Safe in the first k steps is at most 1− βk.
But if after k steps the game is still in R+

T then the above reasoning applies again.
We deduce that the probability that the game does not hit T ∪ Safe in mk steps is at

most (1− βk)m and it tends to O as m increases.
Let X be the set of plays s1s2s3 . . . such that sk ∈ R+

T for infinitely many k. The aim is
to prove that the probability of X is equal to 0.

Suppose that X has measure > 0. Then with positive probability, for some i the set Ri

is visited infinitely often while Ri−1 is visited finitely often (Ri are the sets defined during
the construction of RT ). Thus some state s ∈ Ri is visited infinitely often with a positive
probability. However, from the definition of Ri,

• either s ∈ SMin and then all successors of s are in Ri−1 which implies that some state
of Ri−1 is visited infinitely often immediately after s or

• s ∈ SNat and there exists q ∈ Ri−1 such that p(q | s) > 0. But if s if such s is visited
infinitely often then the transition from s to q is selected infinitely often almost surely.
Thus again there exists a state of Si−1 visited infinitely often.

We have proved that it is impossible to visit R+
T infinitely often without hitting T .

Therefore the probability of X is equal to 0.

The following lemma shows that the values of all states in the one-player game and the
optimal strategy of Min can be obtained by solving a linear programming problem.

Lemma 2. The value of the states R+
T can be obtained by solving the following linear pro-

gramming problem:

max
∑
s∈S

xs

subject to

xs =0 for s ∈ Safe (1)

xs =r(s) for s ∈ T (2)

xs ≤xq for all s ∈ SMin ∩R+
T and all q ∈ suc(s) (3)

xs ≤
∑
q

p(q|s) · xq for s ∈ SNat ∩R+
T (4)
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Moreover,

(a) the solution vector (x?s) of the LP problem satisfies condition (4) with the equality,

(b) for each state s ∈ R+
T ∩ SMin there exist t ∈ suc(s) such that x?s = x?t and the optimal

strategy of Min in s is to move to such a state t.

Proof. Let us recall that a feasible solution of an LP problem is any vector (xs)s∈S satisfying
the constraints.

Now let us note that xs = 0 for s ∈ S \ T and xt = r(t) for t ∈ T satisfies all constraints
(1)-(4) proving that the set of feasible solutions is non-empty.

We will show that for each strategy τ of player Min and each feasible solution (xs), player’s
Min loss is greater or equal to xs for any game starting in state s ∈ R+

T .
Since the aim of Min is to minimize his loss we can assume that once the game is in Safe

then player Min plays in such a way that the game remains forever in Safe and then his loss
takes the minimal value 0.

First we show that all feasible solutions are bounded from above by the maximal reward
max{r(t) | t ∈ T}.

Indeed let (xs) be a feasible solution and let

M = max
q∈R+

T

xq (5)

the maximum of xs over the states of R+
T . If M ≤ max{r(t) | t ∈ T} then our claim is proved.

Suppose that
M > max{r(t) | t ∈ T} (6)

and let
SM = {s ∈ R+

T ∈| xs = M}
be the states of R+

T where (xs) attains the maximum. Let us look at the sets Ri constructed
when we calculated RT . For any state of s ∈ R1 \ T , the inequalities (3) and (4) and (6)
imply that xs should be strictly smaller than M since such a state has at least one successor
in T . By the same token, each state of s ∈ R2 \ R1 has at least one successor in R1 and
therefore xs is strictly smaller than M . We continue in this way for all Ri (induction) to
show that the elements of Ri \ Ri−1 have xs strictly smaller than M . But if this is true for
all Ri then in general all states in RT have xs strictly smaller than M , i.e. SM is empty.

But is the set of feasible solutions is non-empty and a bounded from above then the LP
problem has a solution.

Let si, i = 1, 2, . . . be discrete stochastic process such that si is the state visited at stage
i of the game. In particular, s1 = s as the game starts at stage 1 in state s ∈ R+

T .
For a given feasible solution (xs) we define the mapping x : S → R+ such that

x(s) = xs for all s ∈ S.

Thus x(s) and xs denote the same real number but this double notation will be useful
since it allows to avoid a cascade of indices.
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Let us consider the the expected value Eτs(x(si)), i.e. the expected value of the mapping
x at stage i. By definition of the expectation we have

Eτs(xsi) =
∑
q∈S

Pτs(si = q) · x(q),

where Pτs(si = q) is the probability that the game is in state q at stage i.
From (3) and (4) this expected value is non-decreasing at each stage (and in each state),

i.e.
Eτs(x(si)) ≤ Eτs(x(si+1))

for all i. But at the first stage the game is in state s1 = s so that Eτs(x(s1)) = x(s). We
conclude that

x(s) ≤ Eτs(x(si))

for all i.
But Eτs(x(si)) can be partitioned into three sums

Eτs(x(si)) =
∑
q∈T

x(q) · Pτs(si = q) +
∑
q∈Safe

x(q) · Pτs(si = q) +
∑
q∈R+

T

x(q) · Pτs(si = q). (7)

However, x(q) = 0 for q ∈ Safe, x(q) = r(q) for q ∈ T and∑
q∈R+

T

x(q) · Pτs(si = q) ≤M · Pτs(si ∈ R+
T ).

By Lemma 1, Pτs(si ∈ R+
T ) tends to 0 when i goes to infinity.

Therefore the limit of right-hand side of (7) is equal to the expected loss of player Min.
To conclude, we have established that for each strategy τ of Min, each feasible solution

(xs) of the LP problem, and each initial state s ∈ R+
T the loss incurred by player Min is not

smaller than x(s).
Thus the same holds for the maximal feasible solution, for the solution (x?s) of the LP

problem we have

x?s ≤ Eτs(φr).
It remains to show that with an appropriate strategy τ player Min can limit his loss to

x?s for the game starting at s.
First note that the solution (x?s) of the LP problem satisfies (3) and (4) with the equality

in place of ≤.
Indeed if in some state s ∈ R+

T either the inequality (3) or (4) is strict then we can
increase in this state the value of x?s until the equality is obtained and this would not violate
the constraints of the LP problem.

This increase of x?s would increase the objective of the LP problem contradicting the
optimality of (x?s).

Let us consider the following memoryless strategy τ ? of player Min:

• in states of Safe he chooses always a move which leads to another state of Safe so that
the game never leaves Safe and never hits T ,
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• in a state s ∈ R+
T he chooses a successor q ∈ suc(s) such that x?s = x?q. (As we have

just shown such a successor always exists.)

With this strategy the expected value of the mapping x? : S → R+, such that x?(s) = x?s
remains constant at each stage

Eτ?s (x?(si)) = Eτ?s (x?(si+1)

where, as previously, si is the state visited at stage i. Thus we have x?s = Eτ?s (x?(s1)) =
Eτ?s (x?(si)) for all i.

And again consider the partition of the expectation as in (7) (with x? replacing x and
τ ? replacing τ). As noted previously, the limit of (7) as i tends to infinity is equal to the
expected loss Eτ?s (φr) of player Min, i.e. if he plays τ ? his (expected) loss is x?s.

4.2 One-player simple stochastic games with Max as the unique
player

Suppose that we have simple stochastic games with the set SMin of states of Min player empty.
Can we solve such games by linear programming?

Exercise 8. Try to reformulate the LP problem in order to solve one-player games with Max
and Nat states.

How you will redefine the set Safe?

4.3 The Hoffman-Karp algorithm

The Hoffman-Karp algorithm solves two-player simple stochastic games using as a sub-
procedure the algorithm for one-player simple stochastic games developed in Section 4.1.

Let σ be a memoryless strategy of player Max. Suppose that we restrain the moves of
Max by leaving at each state s ∈ SMax just one successor : σ(s). Such a game will be noted
G[σ] and it can be seen as a one-player game since it is not important who controls the states
of SMax in G[σi] because there is no choice left in these states. The one-player game G[σ]
can be solved by the algorithm described in the preceding section which gives an optimal
strategy τ of player Min when he plays against σ (the best response of Min against σ).

The Hoffman-Karp algorithm

(1) We start with any memoryless strategy σ0 for Max. Fixing σ0 find the optimal mem-
oryless strategy of player Min in the game G[σ0] where player Max is forced to play
σ0.

(2) Set i = 0.

(3) For each state s, let vi(s) = Eσi,τis (φr) be the payoff obtained by Max when the players
play according to σi and τi respectively.
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Let
S+
i = {s ∈ SMax | vi(s) < max

q∈suc(s)
vi(q)}. (8)

the set of improvement states at stage i.

If S+
i = ∅ then the strategies σi, τi are optimal. Return (σi, τi, vi).

(4) Otherwise, if S+
i 6= ∅ then

(a) define a new memoryless strategy σi+1 for player Max: for each state s controlled by
Max,

σi+1(s) =

{
arg maxq∈suc(s) vi(q) if s ∈ S+

i

σ(s) otherwise,

where arg maxq∈suc(s) vi(q) is a successor of s maximizing vi.

(b) Given the strategy σi+1 solve the one-player game G[σi+1] where Max is constrained
to play σi+1. Let τi+1 be the optimal memoryless strategy of Min in the game G[σi+1].

(c) Set i = i+ 1. Jump to (3).

The mappings vi defined in the algorithm are called valuations.
Roughly speaking, while the set of improvement states is non-empty the Hoffman-Karp

algorithm tries to improve the strategy of Max in improvement states.
Let us note that it is crucial that the strategy of Max does not change in states that are

not improvement states.

Exercise 9. Let us modify the step (5a) of the algorithm in the following way:

σi+1(s) = arg max
q∈suc(s)

vi(q)

i.e. we allows to modify the strategy of Max also in states that are not improvement states.
Intuitively this means that if s ∈ SMax is not an improvement state then we are allowed
now to change the strategy in s of Max in s by choosing another successor state. The only
constraint is that q = σi+1(s) should maximize vi taken over all successors of s.

Show that such an algorithm may not converge.

Lemma 3. The valuations calculated by the Hoffman-Karp algorithm satisfy the following
conditions: for each state s,

• vi+1(s) ≥ vi(s) and

• vi+1(s) ≥ maxq∈suc(s) vi(q) > vi(s) for each state s ∈ S+
i .

Proof. Let us consider the situation when player Max plays according to strategy σi+1 while
player Min plays any strategy τ (not necessarily memoryless).

Let s1, s2, s3, . . . be an infinite sequence of visited states (formally, sk, k = 1, 2, . . . is the
stochastic process such that sk is the state visited at time k).

We examine how the real valued sequence vi(s1), vi(s2), vi(s3), . . . evolves in time (note
that the valuation vi is fixed and this the valuation from the stage i of the algorithm but
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player Max plays the strategy σi+1 obtained at stage i + 1. Player Min is supposed to play
any strategy τ).

We have the following cases:

1. if sk ∈ S+
i then, by definition of σi+1, player Max will select a successor state sk+1

maximizing vi, thus vi(sk) < vi(sk+1).

2. if sk ∈ SMax \ S+
i then, by definition of σi+1, σi+1(sk) = σi(sk) but such a move does

not change the value of vi, i.e. vi(sk) = vi(sk+1),

3. if sk ∈ SMin then player Min has no move that can decrease the value vi in the one-player
game G[σi]. Therefore whatever move player by Min we have always vi(sk) ≤ vi(sk+1).

4. if sk ∈ SNat then vi(sk) =
∑

q∈suc(sk) vi(q) · p(q | sk). Again this follows from the fact

that vi is the value mapping in the one-player game G[σi] and, as noted in Lemma 2(a),
the moves of the nature neither increase nor decrease the game value.

Thus the stochastic process vi(sk), k = 1, 2, 3, . . . does not decrease its value, in the probability
jargon, this process is a submartingale. Again in the probability this is noted as

Eσi+1,τ
s (vi(sk+1) | s1, . . . , sk) ≥ vi(sk)

which reads as ”the expected value of vi at stage k + 1 given s1, . . . , sk is not smaller than
the value vi(sk) at stage k”.

vi is bounded from above by maxt∈T r(t) and the standard fact in probability is that a
submartingale bounded from above converges almost surely1.

This means that for almost all infinite plays s1, s2, s3, . . . the real valued sequence vi(s1), vi(s2), vu(s3), . . .
converges.

However, there is only a finite number of states thus a finite number of different values
in the sequence vi(s1), vi(s2), vu(s3), . . .. Such a sequence can converge only if starting at
some moment all values are equal, i.e. there exists m (depending on the sequence) such that
vi(sl) = vi(sm) for all l ≥ m. This can happen in two ways. Either the play s1, s2, s3, . . . hits
at some moment T which implies that there exists t ∈ T and a moment m such that sk = t
for all k ≥ m.

The other possibility is that the play s1, s2, s3, . . . never hits T but starting from some
moment it visits only the states with the same value x of vi.

Let x ∈ R+ and let X be the set of plays consisting of all plays s1s2s3 . . . such that

• all states sk belong to S \ T and

• there exists k such that vi(sl) = x for all l ≥ k.

1This is Doob’s martingale convergence theorem that can be found in any decent probability book, for
example in Williams, Probability with Martingales, Cambridge University Press. In our setting
this can be proved from scratch but why to do it from scratch if a more general proof is simple and avoids
hand-waving.
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Suppose that X has a positive probability, Pσi+1τ
s (X) > 0.

SinceG[σi+1] is essentially a one-player game with the unique player Min Lemma 1 applies.
And this lemma stipulates that almost surely all plays either hit T or starting from some
moment they do not leave the set Safe = {s ∈ S \ T | vi(s) = 0}.

We conclude that Pσi+1τ
s (X) can only be positive for x = 0.

Therefore we have proved that if player Max plays using strategy σi+1 then almost surely
either the play hits T or the play from some moment on remains forever in the set {s ∈ S |
vi(s) = 0} of states with vi equal to 0.

Let
Ak = {sk ∈ T} (9)

be the set of plays that at time k are in T (and therefore they remain in T in the future as
the states of T are absorbing).

Let
Bk = {for all l ≥ k, vi(sl) = 0}

be the set of plays that at time k and at all subsequent moments are in the states having vi
equal to 0. Clearly the sets Ak and Bk form an increasing sequence, Ak ⊆ Ak+1, Bk ⊆ Bk+1.

Let

A =
∞⋃
k=1

Ak = {∃k, sk ∈ T}

be the set of plays that hit T at some moment and let

B =
∞⋃
k=1

Bk = {∃k,∀l ≥ k, vi(sl) = 0}

to be the set of plays that from some moment on remain forever in the states having vi = 0.
We have proved above that

Pσi+1,τ
s (A ∪B) = 1.

Thus for each ε > 0 there exists k such that

Pσi+1,τ
s (Ak ∪Bk) > 1− ε. (10)

Since the expectation on vi is non-decreasing at each step2 the expectation of vi at time
k is greater or equal to the value of vi in the initial state s:

v(s) = vi(s1) ≤ Eσi+1,τ
s1

(vi(sk)).

To estimate the expectation on the right-hand side we evaluate the expectation separately
on three disjoint sets: Ak, Bk and Ak ∪Bk = Ω \ (Ak ∪Bk):

Eσi+1,τ
s1

(vi(sk)) = Eσi+1,τ
s (vi(sk);Ak) + Eσi+1,τ

s (vi(sk);Bk) + Eσi+1,τ
s (vi(sk);Ak ∪Bk). (11)

However, for the terminal states of T vi is equal to the reward r, i.e. it is equal to the value
of the payoff φr

Eσi+1,τ
s (vi(sk);Ak) = Eσi+1,τ

s (φr;Ak).

2More precisely the process vi(sk), k = 1, 2, . . . is a submartingame.
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By definition, the value of vi(sk) = 0 on Bk,

Eσi+1,τ
s (vi(sk);Bk) = 0.

By (10), Pσi+1,τ
s (Ak ∪Bk) < ε implying

Eσi+1,τ
s (vi(sk);Ak ∪Bk) < Mε,

where M = maxq∈T r(q) = max{vi(q) | q ∈ S}. Therefore,

vi(s) < Eσi+1,τ
s (φr;Ak) +Mε ≤ Eσi+1,τ

s (φr) +Mε.

The last inequality holds for each ε > 0 we obtain

vi(s) ≤ Eσi+1,τ
s (φr).

However as this inequality holds for each strategy τ of Min it holds also for τi+1 thus vi(s) ≤
Eσi+1,τi+1
s (φr) = vi+1(s).

The second assertion of Lemma 3 follows from the fact that, by definition of σi+1, when
the game is in s ∈ S+

i then player Max moves in one step to the state q = arg maxz∈suc(s) vi(z).
But we have just proved that once in q using σi+1 he wins at least vi(q).

Corollary 4. The Hoffman-Karp algorithm terminates after a finite number of steps and
returns optimal strategies for both players.

Proof. Let us compare the strategies obtained in iterations i and i+1 of the algorithm. Note
that, for each state s, vi+1(s) is the minimal expected payoff that player Max obtains if he
plays according to strategy σi+1 against the best response τi+1 of player Min. By Lemma 3
there exist a state s such that vi+1(s) > vi(s) and for all states q, vi+1(s) ≥ vi(s). This means
that playing σi+1 player Max obtains the expected payoff not worse than when he plays σi,
and at least in one state his payoff is strictly better, in both cases he plays against the best
response of his adversary.

This implies strategies σi, i = 1, 2, . . . , k calculated by the Hoffman-Karp algorithm are
pairwise different. But there is only a finite number of memoryless strategies thus the algo-
rithm will stop at some moment.

Suppose that the algorithm stops at stage i and (σi, τi) are the strategies computed by
the algorithm. From the fact that τi is the best response of Min against σi it follows that
player Min loses vi(s) if the game starts at s and he cannot lose less when he plays against
σi.

For player Max the situation is less clear, can Max win more than vi(s) for the game
starting in s?

Suppose that Max plays a strategy σ (not necessarily memoryless) against τi. Then at
each step the expectation of vi cannot increase3.

The proof goes now in a similar way as in Lemma 3 but all inequalities are in the reverse
direction. In fact the situation is much more simpler, we do not even need to bother if the

3More exactly the stochastic process vi(s1), vi(s2), vi(s3), . . . is now a supermartingale, i.e. Eσ,τis (vi(sk+1) |
s1, . . . , sk) ≤ vi(sk).
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process vi(sk), k = 1, 2, 3, . . . converges4. This is due to the fact that for player Max it is
prejudicial to stay forever outside of T as in this case his payoff takes the minimal value 0.

Thus we have for each k,

vi(s) = vi(s1) ≥ Eσ,τis (vi(sk)) = Eσ,τis (vi(sk);Ak) + Eσ,τis (vi(sk);Ak) ≥ Eσ,τis (vi(sk);Ak),

where Ak are defined as in (9). But as noted previously, for plays in Ak we have vi(sk) = φr
thus

vi(s) ≥ Eσ,τis (φr;Ak).

Ak is an increasing sequence of sets with the limit A consisting of all plays that hit T at some
moment thus for each ε > 0 there exists k such that Pσ,τis (Ak) + ε ≥ Pσ,τis (A) and therefore

vi(s) ≥ Eσ,τis (φr;A)−Mε

where M is the maximum of vi which is the same as the maximal reward maxs r(s). Since
the last inequality holds for all ε we obtain vi(s) ≥ Eσ,τis (φr;A). But the payoff φr is equal to
0 for the plays in the complement of A thus vi(s) ≥ Eσ,τis (φr) and we can see that whatever
the strategy of player Max he cannot win more than vi(s) for the games starting in s when
he plays against τi.

5 Concurrent stochastic games

A concurrent stochastic game is a zero-sum game played by Max and Min. In each state
s player Max has a non-empty finite set of action A(s) and player Min has a finite non-
empty set of actions B(s). Player Max chooses and action a ∈ A(s), player Min chooses
independently and simultaneously an action b ∈ B(s) and the game moves to a new state s′

with the probability p(s′ | s, a, b).
We assume that these transition probabilities sum up to 1, i.e.

∑
s′∈S p(s

′ | s, a, b) = 1
for each triple (s, a, b).

A history is a finite sequence h = s1, (a1, b1), s2, (a2, b2), s3(a3, b3), . . . , sn alternating states
and pairs of actions and such that (ai, bi) ∈ A(si)×B(si) for all i < n.

For each finite set X by ∆(X) we denote the set of probability distributions on X. Thus
an element of ∆(X) is any mapping δ : X → [0, 1] such that

∑
x∈X δ(x) = 1.

A strategy of player Max is mapping σ such that for each history
h = s1, (a1, b1), s2, (a2, b2), s3, (a3, b3), . . . , sn, σ(h) ∈ ∆(A(sn)). Thus the strategy of Max
gives for each history h and each action a ∈ A(sn) the probability σ(h)(a) of plying a after
this history.

Strategies for the player Min are defined in a similar way.
Given history h and strategies σ, τ of both players, σ(h)(a) · τ(h)(b) is the probability

that the players will play the pair (a, b) of actions.
The probability of h+ - the cylinder generated5 by h, is defined inductively,

4But it converges almost surely since this is a supermartingale bounded from below.
5h+ is the set of infinite histories with prefix h.
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Pσ,τs (s+1 ) = 1 is s = s1 and 0 otherwise.
Suppose that hn−1 = s1, (a1, b1), s2, (a2, b2), s3, . . . , sn−1, hn = hn−1(an−1, bn−1), sn and

that Pσ,τs (h+n−1) is already defined.
Then

Pσ,τs (h+n ) = Pσ,τs (h+n−1) · σ(hn−1)(an−1) · τ(hn−1)(bn−1) · p(sn | sn−1, a, b).

The quantitative analysis of such games is difficult, optimal strategies may not exist6.
However the qualitative analysis of these games is elementary.

5.1 Reachability games

A reachability game is the game when the aim of one of the players, say player Max, is to
visit a fixed set T ⊆ S of states. We can assume that the states of T are absorbing i.e. for
t ∈ T p(t | t, a, b) = 1 for all actions a, b.

Sure winning.
Sure winning is not a probability notion. It is rather a notion of related to non-determinism.

Let SURE be the set of infinite histories h consisting of all infinite histories such that for
each finite prefix g of h, Pσ,τs (g+) > 0. Thus h ∈ SURE if all finite prefixes have positive
probability.

Strategy σ of Max is surely winning if each infinite history g ∈ SURE hits T at some
moment.

Almost sure winning. Let HIT be the set of infinite histories that hit T at some
moment.

Strategy σ of Max is almost surely winning if Pσ,τs (HIT) = 1.
A sure winning strategy is almost sure winning. The converse is not true. The inclusion

HIT ⊂ SURE can be strict but if the difference SURE \HIT has measure 0 then the strategy
σ is almost surely winning but not surely winning.

For example if we have two states x and y. The target set T = {y} and the game starts
in x. Each player has only one action in x, they have no choice. The pair of actions played
in x leads to y with probability 1/2 and with the same probability the game returns to x.

Almost surely the game terminates in y and is winning for Max.
However the infinite path xxxx . . . loops in x forever, each finite prefix has a positive

probability thus xxx . . . belongs to SURE. But this infinite pat is not winning for Max.
Thus Max does not win surely.

Limit winning.
Max wins at the limit if for each ε > 0 there exists a strategy σ such that for each strategy
τ of Min Pσ,τs (HIT ) ≥ 1− ε.

Again Max can win in the limit but not almost surely.

Exercise 10. Give an example of a reachability game where Max wins in the limit but not
almost surely.

6For reachability games player Max has only ε-optimal strategy, player Min has optimal strategy. Both
strategies are randomized. For general parity games both players have only ε-optimal strategies and such
strategies depend on the past, i.e. are not memoryless.
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Exercise 11. Give an algorithm that finds the set of states X such that Max wins surely if
the game starts in X.

Exercise 12. Give an algorithm that finds the set of states X such that Max wins almost
surely if the game starts in X.

Exercise 13. Give an algorithm that finds the set of states X such that Max wins in the
limit if the game starts in X.

(The last exercise is difficult, the first two are much easier.)
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