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1 Games in Strategic Form

Let O be a non-empty set of outcomes. A preference relation over O is a binary relation
4 over O which reflexive (a 4 a for all a ∈ O), transitive (a 4 b and b 4 c imply a 4 c)
and total (for all a, b ∈ O, either a 4 b or b 4 a). We write a ≺ b if a 4 b but not b 4 a.
Intuitively, a ≺ b means that outcome b is preferable to a.
Suppose that N is a finite non-empty set of players. Each player i has a non-empty set Ai
of strategies or actions. The elements of A =

∏
i∈N Ai are called action profiles (or strategy

profiles).
Let us suppose that there is a mapping g : A −→ O from the set of action profiles to a set O
of outcomes each player i has his preference relation 4i over the set of outcomes. The game
is played in the following way: the players choose simultaneously and independently actions
ai, i ∈ N , which yields an outcome g(a1, . . . , an).
We assume that the whole structure of the game, i.e. the set of outcomes, the players’
preference relations are known to all players, the only uncertainty concerns the actions chosen
by the players.
In fact we can omit the outcomes from this description and assume that 4i are preference
relations over the set A of action profiles.
The triple (N, (Ai)i∈N , (4i)i∈N) is a strategic-form game.
Suppose that players can quantitatively measure their preferences, i.e. each player has a
payoff or utility mapping ui : O−→R such that, for all outcomes a, b ∈ O, a 4i b iff ui(a) ≤
ui(b). In this case we get rid of outcomes as well and assume that ui map directly the set A
of action profiles into R.
If we use payoff mappings rather than preference relations then strategic-form game is a
triple (N, (Ai)i∈N , (ui)i∈N), where Ai are sets of actions/strategies and ui : A −→ R payoff
mappings.

Notation. Let (Xi)i∈N be any family of sets indexed by elements of N (by players). Then,
for each player i ∈ N , X−i =

∏
j∈N\{i}Xj denotes the product of all Xj except Xi. By

the same token, x−i = (x1, . . . , xi−1, xi+1, . . . , xn) will denote an element of X−i and, for
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any x′i ∈ Xi, (x−i, x
′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) is an element of X =

∏
j∈N Xj. This

notation is standard in game theory.

1.1 Nash equilibria

Let Γ = (N, (Ai), (4i)) be a strategic game.

For i ∈ N and a−i ∈ A−i we define the set Bi(a−i) of best responses of player i given a−i to
be

Bi(a−i) = {ai ∈ Ai | (a−i, a′i) 4i (a−i, ai) for all a′i ∈ Ai}.

A Nash equilibrium is an action profile a∗ ∈ A such that, for each player i ∈ N , a∗i ∈ Bi(a
∗
−i),

i.e. no player can do better by changing unilaterally his action at a∗.

1.2 Examples

Battle of the sexes. John and Mary wish to go out together. Their priority is to be
together but John prefers to go to a concert (he likes classic music) and Mary prefers to go
to a football match.
This situation is modeled by the following game where John chooses the line and Mary
chooses the column. The entries inside show John’s and Mary’s payoffs.
Intuitively they both want to coordinate their actions but have conflicting interests.

concert match
concert 2, 1 0, 0
match 0, 0 1, 2

There are two equilibria (concert, concert) and (match,match).

Coordination game. Now John and Mary both prefer the concert:
concert match

concert 2, 2 0, 0
match 0, 0 1, 1

Note that there still two equilibria, in particular (match,match) is a Nash equilibrium even
if both players would prefer the outcome (concert, concert).

The prisoners’ dilemma. Two gang members are interrogated by prosecutors (the in-
terrogation takes place in separate rooms). The thugs are suspected of committing together
two crimes, one minor and one serious. The proofs for the minor crime are sufficient to
convict both gangsters. However for the serious crime the proofs are weak and without the
confession of at least one of the gangsters the prosecutors will not be able to convince the
jury. If both gangsters confess their serious crime then each gets 9 years of prison. If one
gangster confesses and cooperates with the prosecutors while the other refuses to cooperate
then the cooperating gangster will get only 1 year of prison while his accomplice will spend
11 years in jail. If both gangsters do not confess then they will spend 2 years in jail for the
minor crime.

don’t confess confess
don’t confess −2,−2 −11,−1

confess −1,−11 −9,−9
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Note that the only equilibrium is (confess, confess) even if both players would certainly prefer
the outcome resulting from (don’t confess, don’t confess).

Matching pennies. Two players show coins. If both show the same face then one of
them wins 1 euro, if both show different faces then the other wins 1 euros. This is a strictly
antagonistic game, what one player wins the other loses.

head tail
head 1,−1 −1, 1

tail −1, 1 1,−1

No Nash equilibrium.

1.3 Existence of Nash equilibria

A game in strategic form Γ = (N, (Ai), (ui)) is said to be finite if actions sets Ai are finite.
Let ∆(Ai) be the set of probability distributions (measures) over Ai, i.e. the elements of
∆(Ai) are mappings σi : Ai −→ [0, 1] such that

∑
ai∈Ai

σi(ai) = 1.
A mixed strategy of player i is an element of ∆(Ai). In this setting a pure strategy is a
strategy that assigns probability 1 to one of the actions (and 0 to all the other actions).
We extend payoff mapping from pure strategy profiles to mixed strategy profiles by taking
the expectation. Thus if σ = (σ1, . . . , σn) ∈

∏
i∈N ∆(Ai) is a mixed strategy profile then the

payoff of player i is

ui(σ) =
∑
a1∈A1

. . .
∑
an∈An

σ1(a1) · · ·σn(an)ui(a1, . . . , an).

The notion of Nash equilibria transfers to mixed strategies in the obvious way. A mixed
strategy profile σ∗ = (σ∗1, . . . , σ

∗
n) is a Nash equilibrium if for each player i ∈ N and each

mixed strategy σi ∈ ∆(Ai), ui(σ
∗) ≥ ui(σ

∗
−i, σi).

Abusing the notation, for ai ∈ Ai, we shall note in the sequel by ai the strategy of ∆(Ai)
that assigns the probability 1 to ai and probability 0 to all actions of Ai \ {ai}

Theorem 1 (Nash). Finite games have Nash equilibria in mixed strategies.

For bimatrix games1 we can calculate Nash equilibria using the Lemke-Howson algorithm.
The problem of finding Nash equilibria in bimatrix games is PPAD complete (a complexity
class), hence probably no polynomial algorithm exists.
For three players the situation is even worse. There exist finite strategic games for three play-
ers such that the payoffs are rational for pure strategy profiles, but for each Nash equilibrium
σ, for each player i and each action ai ∈ Ai, σi(ai) is either 0 or irrational.

Let σi ∈ ∆(Ai) be a mixed strategy. The support of σi is the set {ai ∈ Ai | σi(ai) > 0} of
actions that have positive probability under σi.
A trivial but very important observation concerning Nash equilibria is given in the following
lemma:

Lemma 2. Let σ∗ = (σ∗1, . . . , σ
∗
n) be a Nash equilibrium of a finite strategic game Γ =

(N, (Ai), (ui)). Then

1Two-player finite strategic games.
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(i) for each player i ∈ N and each action ai ∈ Ai, ui(σ∗−i, ai) ≤ ui(σ
∗
−i, σ

∗
i ) = ui(σ

∗).

(ii) moreover, for each ai ∈ Ai belonging to the support of σi, ui(σ
∗
−i, ai) = ui(σ

∗
−i, σi) =

ui(σ
∗).

Proof. (i) follows directly from the definition of a Nash equilibrium.
Indeed if ui(σ

∗
−i, ai) > ui(σ

∗
−i, σ

∗
i ) then player i would win strictly more by deviating and

playing ai with probability 1 instead of σ∗i .
(ii) Let supp(σ∗i ) be the support of σ∗i . Let bi ∈ supp(σ∗i ) be such that for all ai ∈
supp(σ∗i ), ui(σ

∗
−i, ai) ≤ ui(σ

∗
−i, bi), i.e. bi is an action of supp(σ∗i ) maximizing the utility

of player i against the profile σ∗−i of his adversaries. Then

ui(σ
∗) = ui(σ

∗
−i,

∑
ai∈Ai

σ∗i (ai)ai) =
∑
ai∈Ai

σ∗i (ai) · ui(σ∗−i, ai) =∑
ai∈supp(σ∗

i )

σ∗i (ai) · ui(σ∗−i, ai) ≤ ui(σ
∗
−i, bi) · (

∑
ai∈supp(σ∗

i )

σ∗i (ai)) = ui(σ
∗
−i, bi).

If the inequality above were strict then player i would profit from changing his strategy from
σ∗i to the pure strategy bi and σ∗ would not be in equilibrium. Thus in equilibrium the last
inequality is an equality which proves (ii).

1.4 Computing Nash equilibria of bimatrix games – an example

Lemma 2 can be used to calculate equilibria of two-person games.
Consider the game

L M R
T 7, 2 2, 7 3, 6
B 2, 7 7, 2 4, 5

Easy case analysis allows to exclude the existence of equilibria where both players use pure
(non randomized) strategies.

If player 1 uses pure strategy T then the best response of player 2 is strategy M. Similarly
if player 1 plays B then the best response of player 2 is L. Since we have already excluded
pure equilibria we can see that in any equilibrium player 1 should choose both T and B with
positive probabilities.
Similarly if player 2 chooses one of the strategies L,M,B with probability 1 then the best
response of player 1 is a non randomized strategy.
Thus in any equilibrium (σ, τ), supp(σ) = {T,B} and supp(τ) contains at least two elements.

Let us check whether there exists an equilibrium (σ, τ) such that supp(σ) = {T,B} and
supp(τ) = {L,M,R}.
By Lemma 2 we should have u1(T, τ) = u1(B, τ) and u2(σ, L) = u2(σ,M) = u2(σ,R), which
yields

7τ(L) + 2τ(M) + 3τ(R) = 2τ(L) + 7τ(M) + 4τ(R)
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and
2σ(T ) + 7σ(B) = 7σ(T ) + 2σ(B) = 6σ(T ) + 5σ(B)

with two probability equations σ(T ) + σ(B) = 1 and τ(L) + τ(R) + τ(M) = 1.
2σ(T ) + 7σ(B) = 7σ(T ) + 2σ(B) yields σ(T ) = σ(B), whence σ(T ) = σ(B) = 1

2
. This

contradict however 7σ(T ) + 2σ(B) = 6σ(T ) + 5σ(B).

Our next guess is supp(σ) = {T,B} and supp(τ) = {M,R}. This yields the equation
u1(T, τ) = u1(B, τ), i.e.

2τ(M) + 3τ(R) = 7τ(M) + 4τ(R)

with τ(M) + τ(R) = 1 and u2(σ,M) = u2(σ,R), i.e.

7σ(T ) + 2σ(B) = 6σ(T ) + 5σ(B)

with σ(T ) + σ(B) = 1.
The equations with τ have a unique solution with τ(M) = −1

4
. Thus our guess was again

incorrect, no equilibrium with the supports prescribed above.

Let us try supp(σ) = {T,B} and supp(τ) = {L,M}. We get u1(T, τ) = u1(B, τ), i.e.

7τ(L) + 2τ(M) = 2τ(L) + 7τ(M)

with τ(L) + τ(M) = 1 and u2(σ, L) = u2(σ,M), i.e.

7σ(T ) + 2σ(B) = 7σ(T ) + 2σ(B)

with σ(T ) + σ(B) = 1. The unique solution is σ(T ) = σ(B) = 1
2

and τ(L) = σ(M) = 1
2
. Is

this an equilibrium? Note that u2(σ, τ) = 9
2
, while u2(σ,R) = 11

2
, i.e. if player 1 plays σ then

player 2 would be better playing R rather than τ , (σ, τ) is not an equilibrium.

The last guess, supp(σ) = {T,B} and supp(τ) = {L,R} is left as an exercise (since we know
that there must exist a Nash equilibrium we should obtain one in this case).

Exercise 1. In the middle of the night n persons are waked up by a noise coming from the
street. Looking through the window each of them can see a burglar entering a shop through
a broken window. (And they see also the lights in other windows thus each of them knows
who is waked up – this is the common knowledge shared by all of them.)
All n persons are good citizens so they prefer to see the burglar arrested than to be left free.
It is sufficient that at least one person calls the police to be sure that the burglar is arrested.
If nobody calls the police then the burglar will get free for sure.
Calling the police is however a nuisance (the caller should testify in the court which will take
his/her precious time and already dealing with the police is maybe not a pleasure even if we
are just witnesses).
Each person should choose one of the two actions: either C - call the police or I - ignore the
incident and go to sleep pretending not to see anything.
We assume that for each person P the payoff (measuring the satisfaction) is as follows:

• 0 – if nobody calls the police and the burglar goes free,
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• 50 – if the burglar is arrested because somebody calls the police but the action chosen
by P is I (P is satisfied because the burglar is arrested and he/she does not suffer from
the inconveniences of dealing with the police),

• 45 if P called the police (the burglar is arrested but P ’s satisfaction is diminished by
the trouble that P has because of his/her call). This payoff is the same even if there
were other persons that called the police.

All n person should choose between actions C and I simultaneously (this is a game in strategic
form).
Find Nash symmetric2 equilibria.
Hint. Use Lemma 2.

Exercise 2 (Ice cream vendors). On a sunny day n ice cream vendors choose their positions
on a beach. Each vendor attracts all clients that are closer to him than to any of the fellow
vendors. If k vendors choose the same point of the beach then they would attract the same
clients as one vendor situated at this point, however now they should share these clients
equitably. For which values of n there exist Nash equilibria? Describe Nash equilibria in this
game. (We are looking here for pure strategy equilibria, thus a strategy of each vendor is to
choose deterministically the point x where he puts his stand. Note that there is an infinity
of strategies now.)
To present the problem mathematically we suppose that the beach is represented by an
interval [0, a] of length a > 0. The (potential) clients are distributed uniformly on the beach,
i.e. the number of clients on the interval [c, d] ⊂ [0, a] is proportional to (d− c)/a. Suppose
that vendors are positioned at points xj, j ∈ N , where N the set of vendors. Then for each j,
0 ≤ xj ≤ a. For the i-th vendor let li = max{0} ∪ {xj | j ∈ N and xj < xi} be the position
of the closest vendor situated strictly on the left to i (or 0 if the is no vendor left to i). Let
ri = min{a} ∪ {xj | j ∈ N and xj > xi} be the position of the closest vendor on the right
side of i (or a if there is no vendor on the right to i). Finally let ki = |{j ∈ N | xj = xi}|
be the number of vendors sharing exactly the same position as vendor i. Then vendor’s i
market share is ri−li

2ki
.

Exercise 3. Army A has a single plane with which it can attack one of three possible targets.
Army B has one anti-aircraft gun that can be assigned to defend one of the three targets.
The value of target i is vi with v1 > v2 > v3 > 0 for each army. The attack of army A is
successful only if the attacked target is not defended. Army A wishes to maximize expected
damages while army B wishes to minimize expected damages. What are mixed strategy Nash
equilibria?

1.5 Final remarks

A game can have many Nash equilibria, some of them seem intuitively to be more plausible
than others. For this reason different refinements of Nash equilibria were proposed. Such
refinements tend to be more selective and to choose only some of Nash equilibria. All these
refinement concepts have their proper drawbacks and we do not consider them here.

2Symmetric means that each person uses the same randomized strategy p× C + (1− p)× I.
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One can wonder also if rational players always will play a Nash equilibrium. Consider the
game Γ

L R
U 2, 2 4, 1
D 4, 1 3, 3

This game has only one Nash equilibrium when player 1 plays σ∗ = 2/3U+1/3D while player
2 plays τ ∗ = 1/3L + 2/3R. This equilibrium yields the payoffs 10/3 to player 1 and 5/3 to
player 2, u1(σ∗, τ ∗) = 10/3 and u2(σ∗, τ ∗) = 5/3.
Note however that 10/3 is only the expected payoff of player 1 if player 2 plays τ ∗. However
if player 2 plays τ ∗ then he can play L with a positive probability and then player 1 receives
only u1(σ∗, L) = 8/3 < 10/3. Of course, if player 2 plays τ ∗ then he can play also R and then
player 1 would receive u1(σ∗, R) = 11/8 > 10/8. Thus if player 1 plays σ∗ while player 2
plays τ ∗ then there is some risk for player 1 to get less than 10/3 but also there is some chance
to gain more than 10/3. However, this is only the case when player 2 plays the randomized
strategy τ ∗.
Consider however the worst case scenario, player 2 instead of playing τ ∗ plays another strat-
egy, in fact consider the case when player 2 plays the strategy which is the worst possible
from the point of view of player 1.
How much player 1 can assure himself against any possible strategy of player 2? This can be
seen by solving the zero-sum game Γ′

L R
U 2,−2 4,−4
D 4,−4 3,−3

where player 2 is replaced by a player which is the the most hostile against 1 (i.e. with
payoffs which are the exact inverse of payoffs of player 1).
The equilibrium of this games is achieved when player 1 plays the strategy σ = 1/3U + 2/3D
(the strategy of player 2 in Γ′ has no interest for our problem but you can compute it if you
are interested). With this strategy player 1 wins in the original game Γ (as well as in the
modified game Γ′) u1(σ, L) = 10/3 and u1(σ,R) = 10/3, i.e. he always guarantees the payoff
10/3 against all possible (deterministic or mixed) strategies of player 2.
If you are player 1 what would you prefer to play in game Γ, σ∗ or σ? Strategy σ∗ assures
for player 1 that he wins 10/3 but only if player 2 plays τ ∗, strategy σ assures for him to win
10/3 against all strategies of player 2.
A similar reasoning applies to player 2.

Exercise 4. Find the best strategy τ for player 2 against any, even the most hostile strategy
of player 1. Which payment can player 2 guarantee for himself with this strategy τ?

2 Zero-sum games

A zero-sum game is a two player game such that for each pair a1 ∈ A1 and a2 ∈ A2,
u1(a1, a2) = −u2(a1, a2).
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Thus the players have here exactly opposite objectives, what one player wins the other one
loses.
In the sequel we denote by u the payoff mapping of player 1. Thus the objective of player 1
is to maximize u while player 2 wants to minimize u.
Suppose for a moment that the sets A1, A2 of strategies are finite.
Suppose that player 1 chooses a strategy a1 ∈ A1. Then he is sure to win at least mina2∈A2 u(a1, a2)
(consider the move of player 2 that is the worst possible from the point of view of player 1).
If player 1 is cautious then he will choose a strategy maximizing this expression and choosing
such a strategy he is sure to win at least

v = max
a1∈A1

min
a2∈A2

u(a1, a2).

We call this quantity the lower value of the game.
By the symmetric reasoning, by choosing an appropriate strategy, player 2 can limit his losses
to

v = min
a2∈A2

max
a1∈A1

u(a1, a2).

This is the upper value of the game.
Note that always

v = max
a1∈A1

min
a2∈A2

u(a1, a2) ≤ min
a2∈A2

max
a1∈A1

u(a1, a2) = v.

If the sets A1, A2 of strategies are infinite then we should replace min and max by inf and
sup but we still have the inequality

v = sup
a1∈A1

inf
a2∈A2

u(a1, a2) ≤ inf
a2∈A2

sup
a1∈A1

u(a1, a2) = v.

If v = v then we say that the game has the value

v = sup
a1∈A1

inf
a2∈A2

u(a1, a2) = inf
a2∈A2

sup
a1∈A1

u(a1, a2).

If the game has a value v then a strategy a1 ∈ A1 of player 1 is said to be optimal if for each
strategy a2 ∈ A2 of player 2 we have u(a1, a2) ≥ v. Thus player 1 obtains at least v against
any strategy of player 2.
Similarly a strategy a2 ∈ A2 of player 2 is said to be optimal if for each strategy a1 ∈ A1 of
player 1 we have u(a1, a2) ≤ v. Thus player 2 loses at most v against any strategy of player
1.
Note that strategies a1 ∈ A1, a2 ∈ A2 are optimal for a zero sum game if and only if (a1, a2)
is a Nash equilibrium.
Let us return to the case where A1 and A2 are finite. Matching pennies game shows that
for such games the lower and the upper value can be different when players use only pure
strategies.
What happens if players use mixed strategies, i.e. the set of strategies of player i is ∆(Ai)?
Our aim is to find the lower value v of such a game.
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First of all note that, by the same argument as in the proof of Lemma 2, for each mixed
strategy σ1 ∈ ∆(A1),

v = min
σ2∈∆(A2)

∑
a1∈A1

∑
a2∈A2

σ2(a2)σ1(a1)u(a1, a2) = min
a2∈A2

∑
a1∈A1

σ1(a1)u(a1, a2)

implying

v = max
σ1∈∆(A1)

min
σ2∈∆(A2)

∑
a1∈A1

∑
a2∈A2

σ2(a2)σ1(a1)u(a1, a2) = max
σ1∈∆(A1)

min
a2∈A2

∑
a1∈A1

σ1(a1)u(a1, a2).

(1)
Without loss of generality we can assume that A1 = {1, . . . , k}, A2 = {1, . . . ,m}. e set
u(i, j) = uij, 1 ≤ i ≤ k, 1 ≤ j ≤ m. Then U = (uij) is the payoff matrix.
A mixed strategy of player 1 is represented by a vector x = (x1, . . . , xk) such that xi ≥ 0
and

∑k
i=1 xi = 1 and a mixed strategy of player 2 is a vector y = (y1, . . . , ym) such that∑m

i=1 yi = 1 (xi, yj give the probabilities of choosing pure strategies i and j). In this notation
the payoff received by player 1 is players use strategies x and y is xUyT , where yT is the
column vector — the transpose of y. Then (1) takes the form

v = max
x∈∆k

min
j∈{1,...,m}

k∑
i=1

xiuij

where ∆k = {(x1, . . . , xk) |
∑

i xi = 1, all xi ≥ 0}.
In other words the aim of player 1 is to choose a strategy x = (x1, . . . , xk) ∈ ∆k such that

min
j∈{1,...,m}

k∑
i=1

xiuij

has the greatest possible value.
This amounts to solving the following linear programming problem:

maximize v

subject to

k∑
i=1

xiuij ≥ v, ∀j, 1 ≤ j ≤ m

k∑
i=1

xi = 1

xi ≥ 0, ∀1 ≤ i ≤ k

where v and xi are unknown and uij are fixed constants given by the payoff mapping.
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Calculating the upper value v leads to the dual linear programming problem:

minimize v

subject to
m∑
j=1

uijyj ≤ v, ∀i, 1 ≤ i ≤ k

m∑
j=1

yj = 1

yj ≥ 0, ∀1 ≤ i ≤ m

where v and yj are unknown.
Since the direct and the dual problems have the same optimal solution we deduce that v = v
i.e. the value exists for finite games if players can use mixed strategies. This result was
first proved by John von Neumann. Note that solving the corresponding linear programming
problems we obtain also the optimal strategies for both players.
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