
Algorithmic Game Theory

Nguyen Kim Thang

LIAFA, 18/2/09

Game Theory + Algorithms

Game Theory + Algorithms
 Entities in society, each with its own information and

interests, behave in rational manners.

Game Theory + Algorithms
 Entities in society, each with its own information and

interests, behave in rational manners.

 Game theory is a deep theory studying such
interactions (in economics, political science, ... etc).

Game Theory + Algorithms
 Entities in society, each with its own information and

interests, behave in rational manners.

 Theoretical computer science studies optimization
problems, seeks to optimum, efficient computing,
impossibility results, ... etc

 Game theory is a deep theory studying such
interactions (in economics, political science, ... etc).

Algorithmic Game Theory

 Research field on the interface of game theory and
theoretical computer science (mostly algorithms)

 The field has phenomenally exploded with many
branches: computing Nash equilibrium, mechanism
design, inefficiency of equilibria, ... etc

 Formulating novel goals and problems, fresh looks on
different issues (inspired by Internet, ...).

Outline

 Existence and inefficiency of pure Nash equilibrium

 Online Algorithmic Mechanism Design

 Scheduling Games in the Dark

 Online Auction with single-minded customers

Nash Equilibrium

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Mixed equilibrium Pure equilibrium

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Mixed equilibrium Pure equilibrium
choose a distribution

over strategies

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Mixed equilibrium Pure equilibrium
choose a distribution

over strategies
deterministically
choose a strategy

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Mixed equilibrium Pure equilibrium

always exists (by Nash)

choose a distribution
over strategies

deterministically
choose a strategy

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Mixed equilibrium Pure equilibrium

always exists (by Nash)

choose a distribution
over strategies

deterministically
choose a strategy

does not necessarily exist

Nash Equilibrium
 Equilibrium: strategy profile that is resilient to

deviation of individual player.

Mixed equilibrium Pure equilibrium

always exists (by Nash)

choose a distribution
over strategies

deterministically
choose a strategy

does not necessarily exist

 Potential games: admit a function such that if a player
change her strategy to get a better utility then the
function strictly decreases.

Inefficiency of equilibria

the worst Nash
equilibrium price of anarchy

(PoA) = worst NE/OPT

price of stability (PoS)
= best NE/OPT

the best Nash
equilibrium

OPT

Good equilibria ?social objective function

Scheduling Game

Scheduling Game
 jobs (players) and machines: a job chooses a

machine to execute. The processing time of job on
machine is

n m
i

j pij

Scheduling Game
 jobs (players) and machines: a job chooses a

machine to execute. The processing time of job on
machine is

n m

 The cost of a job is its completion time.

i
j pij

ci i

Scheduling Game
 jobs (players) and machines: a job chooses a

machine to execute. The processing time of job on
machine is

n m

 The cost of a job is its completion time.

i
j pij

 The social cost is the makespan, i.e.

ci i

max
i

ci

Scheduling Game
 jobs (players) and machines: a job chooses a

machine to execute. The processing time of job on
machine is

 Each machine specifies a policy how jobs assigned to
the machine are to be scheduled.

n m

 The cost of a job is its completion time.

i
j pij

 The social cost is the makespan, i.e.

ci i

max
i

ci

Scheduling Game
 jobs (players) and machines: a job chooses a

machine to execute. The processing time of job on
machine is

 Each machine specifies a policy how jobs assigned to
the machine are to be scheduled.

 Eg: Shortest Processing Time First (SPT)

n m

 The cost of a job is its completion time.

i
j pij

 The social cost is the makespan, i.e.

ci i

machine 1
machine 2
machine 3

max
i

ci

Scheduling Game
 jobs (players) and machines: a job chooses a

machine to execute. The processing time of job on
machine is

 Each machine specifies a policy how jobs assigned to
the machine are to be scheduled.

 Eg: Shortest Processing Time First (SPT)

n m

 The cost of a job is its completion time.

i
j pij

 The social cost is the makespan, i.e.

ci i

machine 1
machine 2
machine 3

max
i

ci

Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs

assigned to the machine.

Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs

assigned to the machine.

 What about policies that do not require this knowledge?
 Incomplete information games
 Private information of jobs
 Jobs cannot influence on their completion time

by misreporting their processing time

Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs

assigned to the machine.

 What about policies that do not require this knowledge?
 Incomplete information games
 Private information of jobs
 Jobs cannot influence on their completion time

by misreporting their processing time

Non-clairvoyant policies

existence
Nash equilibrium

small PoA

Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an
equal fraction of the processor.

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile , is assigned to : σ i j

Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an
equal fraction of the processor.

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile , is assigned to : σ i j

A
B

C

C

D

pA = 1
pB = 1

pC = 2
pD = 3

0 4 6 7

Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an
equal fraction of the processor.

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile , is assigned to : σ i j

ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are jobs on machine s.t: p1j ≤ . . . ≤ pkjk j

Models

 Def of models:

 Def: A job is balanced if i max pij/ min pij ≤ 2

 Identical machines: for some length

 Uniform machines: for some speed

 Unrelated machines: arbitrary

pij = pi ∀j

pij = pi/sj

pij

sj

pi

Existence of equilibrium

 The game under EQUI policy is a potential game.

 Theorem:

 The game under RANDOM policy is a potential
game for 2 unrelated machines but it is not for more
than 3 machines. For uniform machines, balanced jobs,
there always exists equilibrium.

RANDOM, uniform machines
 Def: A job is unhappy if it can decrease its cost by

changing the strategy (other players’ strategies are fixed)

RANDOM, uniform machines
 Def: A job is unhappy if it can decrease its cost by

changing the strategy (other players’ strategies are fixed)

 Def: a best move of a job is the strategy which
minimizes the cost of the job
(while other players’ strategies are fixed)

RANDOM, uniform machines
 Def: A job is unhappy if it can decrease its cost by

changing the strategy (other players’ strategies are fixed)

 Def: a best move of a job is the strategy which
minimizes the cost of the job
(while other players’ strategies are fixed)

 Jobs have length
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj

RANDOM, uniform machines

 Lemma: Consider a job making a best move from
to . If there is a new unhappy job with index greater
than , then

 Def: A job is unhappy if it can decrease its cost by
changing the strategy (other players’ strategies are fixed)

 Def: a best move of a job is the strategy which
minimizes the cost of the job
(while other players’ strategies are fixed)

 Jobs have length
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj

sa > sb

i

i

a
b

Potential function
 Dynamic: among all unhappy jobs, let the one with the

greatest index make a best move.

Potential function
 Dynamic: among all unhappy jobs, let the one with the

greatest index make a best move.

 For any strategy profile , let be the unhappy job with
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.
1 0t

Potential function
 Dynamic: among all unhappy jobs, let the one with the

greatest index make a best move.

 For any strategy profile , let be the unhappy job with
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.

 lex. decreases

1 0t

Φ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))

Potential function
 Dynamic: among all unhappy jobs, let the one with the

greatest index make a best move.

 For any strategy profile , let be the unhappy job with
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.

If t′ < t
 lex. decreases

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t′), 1, sσ(t′+1), . . . , 1, sσ(t), . . .)
Φ(σ′) = (1, sσ(1), . . . , 1, sσ(t′), 0, sσ(t′+1), . . . , 0, sσ′(t), . . .)

1 0t

Φ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))

Potential function
 Dynamic: among all unhappy jobs, let the one with the

greatest index make a best move.

 For any strategy profile , let be the unhappy job with
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.

If
 lex. decreases

t′ > t

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t), . . . , 0, sσ(t′), . . .)
Φ(σ′) = (1, sσ(1), . . . , 1, sσ′(t), . . . , 0, sσ(t′), . . .)

1 0t

Φ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))

Potential function
 Dynamic: among all unhappy jobs, let the one with the

greatest index make a best move.

 For any strategy profile , let be the unhappy job with
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.

If
 lex. decreases

t′ > t

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t), . . . , 0, sσ(t′), . . .)
Φ(σ′) = (1, sσ(1), . . . , 1, sσ′(t), . . . , 0, sσ(t′), . . .)

by Lemma: sσ(t) > sσ′(t)

1 0t

Φ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))

Inefficiency

 Theorem: For unrelated machines, the PoA of policy
EQUI is at most 2m – interestingly, that matches the
best clairvoyant policy.

 PoA is not increased
when processing times
are unknown to the
machines.

the worst
NE

PoA

OPT

Mechanism Design

Goal: self-interested behavior yields desired
outcomes.

Define the game

Online Auction
 A company produces one perishable item per time unit

(items have to be immediately delivered to customers,
e.g. electricity, ice-cream, ...)

 Opt. prob: maximize the welfare over all
satisfied customers.

 Single-minded customers arrive online: a customer
arrives at , pays if he receives items before
deadline , otherwise he pays nothing. ∑

i

wi

wi ki

di

ri

Online Auction
 A company produces one perishable item per time unit

(items have to be immediately delivered to customers,
e.g. electricity, ice-cream, ...)

 Opt. prob: maximize the welfare over all
satisfied customers.

 Single-minded customers arrive online: a customer
arrives at , pays if he receives items before
deadline , otherwise he pays nothing. ∑

i

wi

 Mechanism design: are private
 Customers may misreport

their value. They bid

wi ki

di

ri

wi

bi

Mechanism Design (MD)
Mechanism:

receives all bids

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

Mechanism:
receives all bids

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

payment algorithm:
determine how much
a customer has to pay

Mechanism:
receives all bids

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

payment algorithm:
determine how much
a customer has to pay

Mechanism:
receives all bids

ui =

{
wi − pi if satisfied,

0 otherwise.

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

payment algorithm:
determine how much
a customer has to pay

Mechanism:
receives all bids

ui =

{
wi − pi if satisfied,

0 otherwise.

Goal: self-interested behavior yields
truthfulness, bi = wi

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

payment algorithm:
determine how much
a customer has to pay

Mechanism:
receives all bids

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

payment algorithm:
determine how much
a customer has to pay

monotone:
a winner still win if he

raises his bid

Mechanism:
receives all bids

Mechanism Design (MD)

allocation algorithm:
determine the set of
satisfied customers

payment algorithm:
determine how much
a customer has to pay

monotone:
a winner still win if he

raises his bid

Mechanism:
receives all bids

critical payment:
the smallest bid that a
winner needs to bid in

order to win.

Truthful MD

 Theorem: for single-parameter domain, a mechanism is
truthful iff its allocation algo is monotone and it uses the
critical payment scheme.

 Our problem:
 design a monotone algorithm

 verify whether the critical payment
scheme can be computed efficiently.

Online Algorithm

 Maximizing the welfare is hard.

 Def: an online algorithm is -competitive if for
any instance , the outcome

∑

i

wi

ALG
I c · ALG(I) ≥ OPT (I)

c

Online Algorithm

 Maximizing the welfare is hard.

 Def: an online algorithm is -competitive if for
any instance , the outcome

∑

i

wi

ALG
I c · ALG(I) ≥ OPT (I)

 Theorem: if all then there exists a 7-competitive
truthful mechanism.

ki = k

c

Algorithm
 The CONSERVATIVE algo:

 if there is no currently running job, serve the
pending one with highest value

 still schedule the current customer except there
is a new one with value at least 2 that of the current
customer

Algorithm
 The CONSERVATIVE algo:

 Proof:

 if there is no currently running job, serve the
pending one with highest value

 still schedule the current customer except there
is a new one with value at least 2 that of the current
customer

 the algorithm is monotone
 7-competitive by a charging scheme

i 7wi

OPTCONSER
wj

j

Proof (sketch)

CONSER

OPT

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

wj/k wj/k wj/k

? ??

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

(j, 1)

 type 1: if is completed by CONSERj

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

 type 1: if is completed by CONSERj

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

 type 1: if is completed by CONSERj

 type 2: if 2wi > wj

(i, a) (i0, 1)

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

 type 1: if is completed by CONSERj

 type 2: if 2wi > wj

Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

 type 1: if is completed by CONSERj

 type 2: if 2wi > wj

(i′, a′) (i0, 1)

 type 3: otherwise , is not pending.

last time
still pending

j

2wi′ > wj 2wi0/k > wj/k

2wi ≤ wj j

then

(i, a)

Proof (sketch)

 Observation: receives at most charges
of type 3.

(j, b)

CONSER

OPT

(i′, a′) (i, a)(i0, 1)

last time
still pending

j

(i0, 1) k

≤ k

 Summing up all charges, we get 7-competitive.

General case

 Theorem: if all then there exists a -
competitive truthful mechanism. This mechanism is
optimal.

O(k/ log k)ki ≤ k

 Proof: more elaborated but the idea is similar.

Conclusion

 Motivation through two problems.

 Inspired by Game Theory, using technique of Computer
Science

 Inspired by Computer Science, using technique of
Game Theory

 theoretically beautiful

 real problems, practical importance.

