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 Entities in society, each with its own information and 

interests, behave in rational manners.

 Theoretical computer science studies optimization 
problems, seeks to optimum, efficient computing, 
impossibility results, ... etc

 Game theory is a deep theory studying such 
interactions (in economics, political science, ... etc).  



Algorithmic Game Theory

 Research field on the interface of game theory and 
theoretical computer science (mostly algorithms)

 The field has phenomenally exploded with many 
branches: computing Nash equilibrium, mechanism 
design, inefficiency of equilibria, ... etc 

 Formulating novel goals and problems, fresh looks on 
different issues (inspired by Internet, ...).



Outline

 Existence and inefficiency of pure Nash equilibrium

 Online Algorithmic Mechanism Design

 Scheduling Games in the Dark

 Online Auction with single-minded customers
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Nash Equilibrium
 Equilibrium: strategy profile that is resilient to 

deviation of individual player.

Mixed equilibrium Pure equilibrium

always exists (by Nash)

choose a distribution 
over strategies

deterministically 
choose a strategy

does not necessarily exist

 Potential games:  admit a function such that if a player 
change her strategy to get a better utility then the 
function strictly decreases.



Inefficiency of equilibria

the worst Nash
equilibrium price of anarchy

(PoA) = worst NE/OPT

price of stability (PoS) 
= best NE/OPT

the best Nash
equilibrium 

OPT

Good equilibria ?social objective function



Scheduling Game



Scheduling Game
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

n m
i

j pij



Scheduling Game
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

n m

 The cost     of a job   is its completion time. 

i
j pij

ci i



Scheduling Game
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

n m

 The cost     of a job   is its completion time. 

i
j pij

 The social cost is the makespan, i.e.  

ci i

max
i

ci



Scheduling Game
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

 Each machine specifies a policy how jobs assigned to 
the machine are to be scheduled.

n m

 The cost     of a job   is its completion time. 

i
j pij

 The social cost is the makespan, i.e.  

ci i

max
i

ci



Scheduling Game
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

 Each machine specifies a policy how jobs assigned to 
the machine are to be scheduled.

 Eg: Shortest Processing Time First (SPT)

n m

 The cost     of a job   is its completion time. 

i
j pij

 The social cost is the makespan, i.e.  

ci i

machine 1
machine 2
machine 3

max
i

ci



Scheduling Game
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

 Each machine specifies a policy how jobs assigned to 
the machine are to be scheduled.

 Eg: Shortest Processing Time First (SPT)

n m

 The cost     of a job   is its completion time. 

i
j pij

 The social cost is the makespan, i.e.  

ci i

machine 1
machine 2
machine 3

max
i

ci



Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs 

assigned to the machine.



Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs 

assigned to the machine.

 What about policies that do not require this knowledge?
 Incomplete information games
 Private information of jobs
 Jobs cannot influence on their completion time 

by misreporting their processing time



Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs 

assigned to the machine.

 What about policies that do not require this knowledge?
 Incomplete information games
 Private information of jobs
 Jobs cannot influence on their completion time 

by misreporting their processing time

Non-clairvoyant policies

existence
Nash equilibrium

small PoA
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Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an 
equal fraction of the processor.  

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile   ,   is assigned to   :         σ i j

ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j



Models

 Def of models:

 Def:  A job   is balanced if i max pij/ min pij ≤ 2

 Identical machines:                    for some length 

 Uniform machines:                    for some speed

 Unrelated machines:        arbitrary

pij = pi ∀j

pij = pi/sj

pij

sj

pi



Existence of equilibrium

 The game under EQUI policy is a potential game.

 Theorem:

 The game under RANDOM policy is a potential 
game for 2 unrelated machines but it is not for more 
than 3 machines. For uniform machines, balanced jobs, 
there always exists equilibrium.
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RANDOM, uniform machines

 Lemma: Consider a job   making a best move from    
to   . If there is a new unhappy job with index greater 
than   , then 

 Def:  A job is unhappy if it can decrease its cost by 
changing the strategy (other players’ strategies are fixed) 

 Def:  a best move of a job is the strategy which 
minimizes the cost of the job 
(while other players’ strategies are fixed)

 Jobs have length 
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj

sa > sb

i

i

a
b
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Potential function
 Dynamic: among all unhappy jobs, let the one with the 

greatest index make a best move.

 For any strategy profile   , let    be the unhappy job with 
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.

If 
                                                            lex. decreases

t′ > t

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t), . . . , 0, sσ(t′), . . .)
Φ(σ′) = (1, sσ(1), . . . , 1, sσ′(t), . . . , 0, sσ(t′), . . .)

by Lemma: sσ(t) > sσ′(t)

1 0t

Φ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))



Inefficiency 

 Theorem:  For unrelated machines, the PoA of policy 
EQUI is at most 2m – interestingly, that matches the 
best clairvoyant policy. 

 PoA is not increased 
when processing times 
are unknown to the 
machines.

the worst
NE

PoA

OPT



Mechanism Design

Goal: self-interested behavior yields desired 
outcomes. 

Define the game
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arrives at    , pays      if he receives     items before 
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i

wi

 Mechanism design:       are private
 Customers may misreport 

their value. They bid 

wi ki

di

ri

wi

bi
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Mechanism Design (MD)

allocation algorithm: 
determine the set of 
satisfied customers

payment algorithm: 
determine how much 
a customer has to pay

monotone: 
a winner still win if he 

raises his bid

Mechanism: 
receives all bids

critical payment:
the smallest bid that a 
winner needs to bid in 

order to win.  



Truthful MD

 Theorem:  for single-parameter domain, a mechanism is 
truthful iff its allocation algo is monotone and it uses the 
critical payment scheme.

 Our problem: 
 design a monotone algorithm 

 verify whether the critical payment 
scheme can be computed efficiently.



Online Algorithm
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 Def: an online algorithm          is   -competitive if for 
any instance   , the outcome 
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 Maximizing the welfare            is hard. 

 Def: an online algorithm          is   -competitive if for 
any instance   , the outcome 

∑

i

wi

ALG
I c · ALG(I) ≥ OPT (I)

 Theorem: if all             then there exists a 7-competitive 
truthful mechanism.

ki = k

c



Algorithm
 The CONSERVATIVE algo:

 if there is no currently running job, serve the 
pending one with highest value  

 still schedule the current customer except there 
is a new one with value at least 2 that of the current 
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Algorithm
 The CONSERVATIVE algo:

 Proof:

 if there is no currently running job, serve the 
pending one with highest value  

 still schedule the current customer except there 
is a new one with value at least 2 that of the current 
customer

 the algorithm is monotone
 7-competitive by a charging scheme

i 7wi

OPTCONSER
wj

j
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Proof (sketch)

(j, k) (j, b) (j, 1)

CONSER

OPT

 type 1: if    is completed by CONSERj

 type 2: if 2wi > wj

(i′, a′) (i0, 1)

 type 3: otherwise               ,     is not pending.                 

last time
still pending

j

2wi′ > wj 2wi0/k > wj/k

2wi ≤ wj j

then

(i, a)



Proof (sketch)

 Observation:          receives at most    charges 
of type 3.

(j, b)

CONSER

OPT

(i′, a′) (i, a)(i0, 1)

last time
still pending

j

(i0, 1) k

≤ k

 Summing up all charges, we get 7-competitive.



General case

 Theorem: if all             then there exists a                   -
competitive truthful mechanism. This mechanism is 
optimal.

O(k/ log k)ki ≤ k

 Proof: more elaborated but the idea is similar.



Conclusion

  Motivation through two problems.

 Inspired by Game Theory, using technique of Computer 
Science

 Inspired by Computer Science, using technique of 
Game Theory

 theoretically beautiful 

 real problems, practical importance.


